FILED
August 30, 2023
Data Center
Missouri Public
Service Commission

Exhibit No. 7

Exhibit No.
Issue: Cost of Capital
Witness: Dylan W. D'Ascendis
Type of Exhibit: Direct Testimony
Sponsoring Party: Confluence Rivers
Case No.: WR-2023-0006/SR-2023-0007
Date: December 19, 2022

BEFORE THE

MISSOURI PUBLIC SERVICE COMMISSION

DIRECT TESTIMONY
OF
DYLAN W. D'ASCENDIS
PARTNER
SCOTTMADDEN, INC.

ON BEHALF OF

TABLE OF CONTENTS

Page

I. INTRODUCTION 1
A. WITNESS IDENTIFICATION 1
B. BACKGROUND AND QUALIFICATIONS 1
II. PURPOSE OF TESTIMONY 2
III. SUMMARY 3
IV. GENERAL PRINCIPLES 5
A. BUSINESS RISK 8
B. FINANCIAL RISK 11
V. CONFLUENCE RIVERS AND THE UTILITY PROXY GROUP 12
VI. CAPITAL STRUCTURE 15
VII. COMMON EQUITY COST RATE MODELS 20
A. DISCOUNTED CASH FLOW MODEL 21
B. THE RISK PREMIUM MODEL 25

1. The Predictive Risk Premium Model 26
2. The Total Market Approach Risk Premium Model 29
C. THE CAPITAL ASSET PRICING MODEL 38
D. COMMON EQUITY COST RATES FOR A PROXY GROUP OF DOMESTIC, NON-PRICE REGULATED COMPANIES BASED ON THE DCF, RPM, AND CAPM 45
VIII. CONCLUSION OF COMMON EQUITY COST RATE BEFORE ADJUSTMENT 48
IX. ADJUSTMENTS TO THE COMMON EQUITY COST RATE 49
A. BUSINESS RISK ADJUSTMENT 49
B. Financial Risk Adjustment 52
X. CONCLUSION 56

I. INTRODUCTION

A. WITNESS IDENTIFICATION

Q. Please state your name and business address.
A. My name is Dylan W. D'Ascendis. My business address is 3000 Atrium Way, Suite 200, Mount Laurel, NJ 08054.

Q. By whom are you employed and in what capacity?

A. I am a Partner at ScottMadden, Inc.

B. BACKGROUND AND QUALIFICATIONS

Q. Please summarize your professional experience and educational background.
A. I have offered expert testimony on behalf of investor-owned utilities in over 35 state regulatory commissions in the United States, the Federal Energy Regulatory Commission, the Alberta Utility Commission, one American Arbitration Association panel, and the Superior Court of Rhode Island on issues including, but not limited to, common equity cost rate, rate of return, valuation, capital structure, class cost of service, and rate design.

On behalf of the American Gas Association ("AGA"), I calculate the AGA Gas Index, which serves as the benchmark against which the performance of the American Gas Index Fund ("AGIF") is measured on a monthly basis. The AGA Gas Index and AGIF are a market capitalization-weighted index and mutual fund, respectively, comprised of the common stocks of the publicly traded corporate members of the AGA.

I am a member of the Society of Utility and Regulatory Financial Analysts ("SURFA"). In 2011, I was awarded the professional designation "Certified Rate
of Return Analyst" by SURFA, which is based on education, experience, and the successful completion of a comprehensive written examination.

I am also a member of the National Association of Certified Valuation Analysts ("NACVA") and was awarded the professional designation "Certified Valuation Analyst" by the NACVA in 2015.

I am a graduate of the University of Pennsylvania, where I received a Bachelor of Arts degree in Economic History. I have also received a Master of Business Administration with high honors and concentrations in Finance and International Business from Rutgers University.

The details of my educational background and expert witness appearances are included in Appendix A.

II. PURPOSE OF TESTIMONY

Q. What is the purpose of your Direct Testimony in this proceeding?
A. The purpose of my Direct Testimony is to present evidence on behalf of Confluence Rivers Utility Operating Company, Inc. ("Confluence Rivers" or the "Company") about the appropriate capital structure and corresponding cost rates the Company should be given the opportunity to earn on its jurisdictional rate base.
Q. Have you prepared any Schedules in support of your recommendation?
A. Yes. I have prepared Schedules DWD-1 through DWD-9, which have been prepared by me or under my direct supervision.
Q. What is your recommended cost of capital for Confluence Rivers?
A. I recommend the Missouri Public Service Commission ("MPSC" or the "Commission") authorize the Company the opportunity to earn an overall rate of return of 9.86% based on the actual capital structure of Confluence Rivers, which
consists of 31.44% long-term debt at an embedded cost rate of 6.60%, and 68.56% common equity at my recommended return on common equity ("ROE") of 11.35%. The overall rate of return is summarized on page 1 of Schedule DWD-1 and in Table 1 below:

Table 1: Summary of Overall Rate of Return

Type of Capital	$\underline{\text { Ratios }}$	$\underline{\text { Cost Rate }}$	Weighted Cost Rate
Long-Term Debt	31.44%	6.60%	
Common Equity	$\underline{68.56 \%}$	11.35%	$\underline{2.08 \%}$
Total	$\underline{\underline{100.00 \%}}$		$\underline{\underline{7.78 \%}}$

III. SUMMARY

Q. Please summarize your recommended common equity cost rate.

A. My recommended common equity cost rate of 11.35% is summarized on page 2 of Schedule DWD-1. I have assessed the market-based common equity cost rates of companies of relatively similar, but not necessarily identical, risk to Confluence Rivers. Using companies of relatively comparable risk as proxies is consistent with the principles of fair rate of return established in the Hope ${ }^{1}$ and Bluefield 2 Supreme Court cases. No proxy group can be identical in risk to any single company, so there must be an evaluation of relative risk between the company and the proxy group to see if it is appropriate to make adjustments to the proxy group's indicated rate of return.

My recommendation results from the application of several cost of common equity models, specifically the Discounted Cash Flow ("DCF") model, the Risk

[^0]Premium Model ("RPM"), and the Capital Asset Pricing Model ("CAPM"), to the market data of a proxy group of six water companies ("Utility Proxy Group") whose selection criteria will be discussed below. In addition, I also applied the DCF, RPM, and CAPM to a proxy group of domestic, non-price regulated companies comparable in total risk to the Utility Proxy Group ("Non-Price Regulated Proxy Group").

The results derived from each are as follows:
Table 2: Summary of Common Equity Cost Rate

Discounted Cash Flow Model	9.73%
Risk Premium Model	11.84%
Capital Asset Pricing Model	12.00%
Market Models Applied to Comparable Risk,	$\underline{11.97 \%}$
Non-Price Regulated Companies	
Indicated Range of Common Equity Cost Rates	$10.36 \%-11.36 \%$
Before Adjustments for Company-Specific Risk	1.00%
Business Risk Adjustment	$\underline{\underline{-0.51 \%}}$
Financial Risk Adjustment	$\underline{\underline{10.85 \%-11.85 \%}}$
Indicated Range of Common Equity Cost Rates	
after Adjustment	$\underline{\underline{11.35 \%}}$
Recommended Cost of Common Equity	

After analyzing the indicated common equity cost rates derived through these models, the indicated range of common equity cost rates applicable to the Utility Proxy Group is between 10.36% and 11.36%. 3

[^1]The indicated range of common equity cost rates applicable to the Utility Proxy Group was then adjusted upward by 1.00%, and downward by 0.51%, to reflect Confluence Rivers' greater business risk, and lesser financial risk, respectively, relative to the Utility Proxy Group. These adjustments result in a Company-specific range of common equity cost rates between 10.85% and 11.85%. From this range of results, I recommend the Commission consider a common equity cost rate of 11.35%, or the approximate midpoint, for use in setting rates for the Company.

IV. GENERAL PRINCIPLES

Q. What general principles have you considered in arriving at your

 recommended common equity cost rate of 11.35% ?A. In unregulated industries, the competition of the marketplace is the principal determinant of the price of products or services. For regulated public utilities, regulation must act as a substitute for marketplace competition. Assuring that the utility can provide safe and reliable service at all times to their customers requires a level of earnings sufficient to maintain the integrity of presently invested capital. Sufficient earnings also permit the attraction of needed new capital at a reasonable cost, for which the utility must compete with other firms of comparable risk, consistent with the fair rate of return standards established by the U.S. Supreme Court in the previously cited Hope and Bluefield decisions. The U.S. Supreme Court affirmed the fair rate of return standards in Hope, when it stated:

The rate-making process under the Act, i.e., the fixing of 'just and reasonable' rates, involves a balancing of the investor and the consumer interests. Thus we stated in the Natural Gas Pipeline Co. case that 'regulation does not insure [sic] that the business shall produce net revenues.' 315 U.S. at
page 590, 62 S.Ct. at page 745 . But such considerations aside, the investor interest has a legitimate concern with the financial integrity of the company whose rates are being regulated. From the investor or company point of view it is important that there be enough revenue not only for operating expenses but also for the capital costs of the business. These include service on the debt and dividends on the stock. Cf. Chicago \& Grand Trunk R. Co. v. Wellman, 143 U.S. 339, 345, 34612 S.Ct. 400, 402. By that standard the return to the equity owner should be commensurate with returns on investments in other enterprises having corresponding risks. That return, moreover, should be sufficient to assure confidence in the financial integrity of the enterprise, so as to maintain its credit and to attract capital. ${ }^{4}$

In summary, the U.S. Supreme Court has found a return that is adequate to attract capital at reasonable terms enables the utility to provide service while maintaining its financial integrity. As discussed above, and in keeping with established regulatory standards, that return should be commensurate with the returns expected elsewhere for investments of corresponding risk. The Commission's decision in this proceeding, therefore, should provide the Company with the opportunity to earn a return that is: 1) adequate to attract capital at reasonable cost and terms; 2) sufficient to ensure its financial integrity; and 3) commensurate with returns on investments in enterprises having corresponding risks.

In addition, the required return for a regulated public utility is established on a stand-alone basis, i.e., for the utility operating company at issue in a rate case. Parent entities, like other investors, have capital constraints and must look at the attractiveness of the expected risk-adjusted return of each investment alternative in their capital budgeting process. That is, utility holding companies that own many

[^2]utility operating companies have choices as to where they will invest their limited capital within the holding company family. Therefore, the opportunity cost concept applies regardless of whether the funding source is public or corporate.

When funding is provided by a parent entity, the return still must be sufficient to provide an incentive to allocate equity capital to the subsidiary or business unit rather than other internal or external investment opportunities. That is, the regulated subsidiary must compete for capital with all the parent company's affiliates, and with other similar risk companies, which may include non-utilities. In that regard, investors value corporate entities on a sum-of-the-parts basis and expect each division within the parent company to provide an appropriate riskadjusted return.

It, therefore, is important that the authorized ROE for the Company reflects the risks and prospects of its operations and supports its financial integrity from a stand-alone perspective.

Q. Within that broad framework, how is the cost of capital estimated in regulatory proceedings?

A. Regulated utilities primarily use common stock and long-term debt to finance their permanent property, plant, and equipment (i.e., rate base). The fair rate of return for a regulated utility is based on its weighted average cost of capital, in which, as noted earlier, the costs of the individual sources of capital are weighted by their respective book values.

The cost of capital is the return investors require to make an investment in a firm. Investors will provide funds to a firm only if the return that they expect is
equal to, or greater than, the return that they require to accept the risk of providing funds to the firm.

The cost of capital (that is, the combination of the costs of debt and equity) is based on the economic principle of "opportunity costs." The principle of opportunity costs recognizes that investing in any asset (whether debt or equity securities) represents a forgone opportunity to invest in alternative assets. For any investment to be sensible, its expected return must be at least equal to the return expected on alternative investment opportunities with comparable risks. Because investments with like risks should offer similar returns, the opportunity cost of an investment should equal the return available on an investment of comparable risk.

The cost of debt is contractually defined and can be directly observed as the interest rate or yield on debt securities. However, the cost of equity must be estimated based on market data and various financial models. Because the cost of equity is premised on opportunity costs, the models used to determine it are typically applied to a group of "comparable" or "proxy" companies.

In the end, the estimated cost of capital should reflect the return that investors require in light of the subject company's business and financial risks, and the returns available on comparable investments.

A. BUSINESS RISK

Q. Please define business risk and explain why it is important to the determination of a fair rate of return.
A. Business risk is the riskiness of a company's common stock without the use of debt and/or preferred capital. Examples of such general business risks faced by all utilities (i.e., electric, natural gas distribution, and water) include size, the quality
of management, the regulatory environment in which utilities operate, customer mix and concentration of customers, service territory growth, and capital intensity. All of these have a direct bearing on earnings.

Consistent with the basic financial principle of risk and return, business risk is important to the determination of a fair rate of return, because the higher the level of risk, the higher the rate of return investors demand.

Q. What business risks do the water and wastewater industries face in general?

A. Water and wastewater utilities have an ever-increasing responsibility to be stewards of the environment from which water supplies are drawn in order to preserve and protect essential natural resources of the United States. This increased environmental stewardship is a direct result of compliance with the Safe Drinking Water Act, as well as a response to continuous monitoring by the Environmental Protection Agency and state and local governments, of the water supply for potential contaminants and their resultant regulations. This, plus aging infrastructure, necessitate additional capital investment in the distribution and treatment of water, exacerbating the pressure on free cash flows arising from increased capital expenditures for infrastructure repair and replacement. The significant amount of capital investment and, hence, high capital intensity, is a major risk factor for the water and wastewater utility industry.

Value Line Investment Survey ("Value Line") observes the following about the water utility industry:

Just about every company in the [Water Utility] Industry has been busy replacing old pipelines. For decades, most water utilities did not invest the funds required to modernize their systems. Water utilities and regulators were both satisfied in keeping customers' monthly bills low. When compared to other utilities' bills, such as electric, gas, and cable, water was
relatively cheap. There was a long-term cost to this lack of capital expenditures. In the earlier part of the $21^{\text {st }}$ century, as water started to become more of a scarcer commodity, water districts became alarmed when they realized how much water was being lost because of old leaky pipes. Since then, the industry has been investing heavily to fix the problem. The replacement process will likely take decades to complete. ${ }^{5}$

The water and wastewater industry also experiences low depreciation rates.
Depreciation rates are one of the principal sources of internal cash flows for all utilities (through a utility's depreciation expense) and are vital for a company to fund ongoing replacements and repairs of water and wastewater systems. Water/wastewater utility assets have long lives, and therefore have long capital recovery periods. As such, they face greater risk due to inflation, which results in a higher replacement cost per dollar of net plant. Simply, capital that is retiring today will need to be replaced with capital which is significantly more expensive.

Substantial capital expenditures, as noted by Value Line, will require significant financing. The three sources of financing typically used are debt, equity (common and preferred), and cash flow. All three are intricately linked to the opportunity to earn a sufficient rate of return as well as the ability to achieve that return. Consistent with Hope and Bluefield, the return must be sufficient to maintain credit quality as well as enable the attraction of necessary new capital, be it debt or equity capital. If unable to raise debt or equity capital, the utility must turn to either retained earnings or free cash flow, ${ }^{6}$ both of which are directly linked to earning a sufficient rate of return. The level of free cash flow represents a utility's ability to meet the needs of its debt and equity holders. If either retained earnings
or free cash flow is inadequate, it will be nearly impossible for the utility to attract the needed capital for new infrastructure investment necessary to ensure quality service to its customers. An insufficient rate of return can be financially devastating for utilities as well as a public safety issue for their customers.

The water and wastewater utility industry's high degree of capital intensity and low depreciation rates, coupled with the need for substantial infrastructure capital spending, require regulatory support in the form of adequate and timely rate relief, and in particular, a sufficient authorized return on common equity, so that the industry can successfully meet the challenges it faces.

B. FINANCIAL RISK

Q. Please define financial risk and explain why it is important to the determination of a fair rate of return.
A. Financial risk is the additional risk created by the introduction of debt and preferred stock into the capital structure. The higher the proportion of debt and preferred stock in the capital structure, the higher the financial risk (i.e., likelihood of default). Therefore, consistent with the basic financial principle of risk and return, investors demand a higher common equity return as compensation for bearing higher default risk.
Q. Can bond and credit ratings be a proxy for the combined business and financial risk (i.e., investment risk of an enterprise)?
A. Yes, similar bond ratings/issuer credit ratings reflect, and are representative of, similar combined business and financial risks (i.e., total risk) faced by bond
investors. ${ }^{7}$ Although specific business or financial risks may differ between companies, the same bond/credit rating indicates that the combined risks are roughly similar, albeit not necessarily equal, as the purpose of the bond/credit rating process is to assess credit quality or credit risk (i.e., the risk of the company not paying its outstanding debt), and not common equity risk (i.e., the risk of the company not paying its outstanding debt, nor compensating its equity investors).
Q. That being said, do rating agencies reflect company size in their bond ratings?
A. No. Neither S\&P nor Moody's have minimum company size requirements for any given rating level. This means, all else equal, a relative size analysis needs to be conducted for companies with similar bond ratings.

V. CONFLUENCE RIVERS AND THE UTILITY PROXY GROUP

Q. Are you familiar with the operations of Confluence Rivers?
A. Yes. Confluence Rivers is headquartered in St. Louis, Missouri, and provides service to 68 water and sewer service areas, representing approximately 7,999 wastewater connections and water connections. ${ }^{8}$
Q. Why is it necessary to develop a proxy group when estimating the ROE for the Company?
A. Because the Company is not publicly traded and does not have publicly traded equity securities, it is necessary to develop groups of publicly traded, comparable companies to serve as "proxies" for the Company. In addition to the analytical

[^3]necessity of doing so, the use of proxy companies is consistent with the Hope and Bluefield comparable risk standards, as discussed above. I have selected a proxy group that, in my view, is fundamentally risk-comparable to the Company.

Even when proxy groups are carefully selected, it is common for analytical results to vary from company to company. Despite the care taken to ensure comparability, because no two companies are identical, market expectations regarding future risks and prospects will vary within the proxy group. It therefore is common for analytical results to reflect a seemingly wide range, even for a group of similarly situated companies. At issue is how to estimate the ROE for the target company from within that range. That determination will be best informed by employing a variety of sound analyses and necessarily must consider the sort of quantitative and qualitative information discussed throughout my Direct Testimony. Additionally, a relative risk analysis between the Company and the Utility Proxy Group must be made to determine whether explicit Company-specific adjustments need to be made to the Utility Proxy Group's indicated results.

My analyses are based on the Utility Proxy Group, containing U.S. water utilities. As discussed earlier, utilities must compete for capital with other companies with commensurate risk (including non-utilities) and, to do so, must be provided the opportunity to earn a comparable return to these companies having a commensurate risk. Consequently, it is appropriate to consider the Utility Proxy Group's market data in determining the Company's ROE.

Q. Please explain how you chose your Utility Proxy Group.

A. The basis of selection for the Utility Proxy Group was to select those companies which meet the following criteria:
(i) They are included in the Water Utility Group of Value Line's Standard Edition (October 7, 2022);
(ii) They have 60% or greater of 2021 total operating income or 60% or greater of 2021 total assets attributable to regulated water operations;
(iii) At the time of preparation of this testimony, they had not publicly announced that they were involved in any major merger or acquisition activity (i.e., one publicly traded utility merging with or acquiring another);
(iv) They have not cut or omitted their common dividends during the five years ending 2021 or through the time of the preparation of this testimony;
(v) They have Value Line and Bloomberg Professional Services ("Bloomberg") adjusted Beta coefficients ("beta");
(vi) They have a positive Value Line five-year dividends per share ("DPS") growth rate projection; and
(vii) They have Value Line, Zacks or Yahoo! Finance five-year earnings per share ("EPS") growth rate projections.

The following six companies met these criteria: American States Water Company, American Water Works Company, Inc., California Water Service Group, Essential Utilities Inc., Middlesex Water Company, and SJW Group.

Q. Please describe Schedule DWD-2, page 1.

A. Page 1 of Schedule DWD-2 contains comparative capitalization and financial statistics for the Utility Proxy Group identified above for the years 2017 to 2021. During the five-year period ending 2021, the historically achieved earnings rate on book common equity for the group averaged 10.40%. The average common equity
ratio based on total permanent capital (excluding short-term debt) was 51.78%, and the average dividend payout ratio was 59.46%.

Total debt to earnings before interest, taxes, depreciation, and amortization for the years 2017 to 2021 ranges between $3.48 x$ and $5.92 x$, with an average of 4.88x. Funds from operations to total debt range from 11.39% to 23.56%, with an average of 16.75\%.

VI. CAPITAL STRUCTURE

Q. What capital structure ratio do you recommend be employed in developing an overall fair rate of return appropriate for the Company in this proceeding?
A. I recommend the Commission authorize the Company's actual capital structure consisting of 31.44% long-term debt and 68.56% common equity.
Q. What are the typical sources of capital commonly considered in establishing a utility's capital structure?
A. Common equity and long-term debt are commonly considered in establishing a utility's capital structure because they are the typical sources of capital financing a utility's rate base.

Q. Please explain.

A. Long-lived assets are typically financed with long-lived securities, so that the overall term structure of the utility's long-term liabilities (both debt and equity) closely match the life of the assets being financed. As stated by Brigham and Houston:

In practice, firms don't finance each specific asset with a type of capital that has a maturity equal to the asset's life. However, academic studies do show that most firms tend to
finance short-term assets from short-term sources and longterm assets from long-term sources. ${ }^{9}$

Whereas short-term debt has a maturity of one year or less, long-term debt may have maturities of 30 years or longer. Although there are practical financing constraints, such as the need to "stagger" long-term debt maturities, the general objective is to extend the average life of long-term debt. Still, long-term debt has a finite life, which is likely to be less than the life of the assets included in rate base. Common equity, on the other hand is outstanding into perpetuity. Thus, common equity more accurately matches the life of the going concern of the utility, which is also assumed to operate in perpetuity. Consequently, it is both typical and important for utilities to have significant proportions of common equity in their capital structures.

Q. Why is it important for Confluence Rivers' actual capital structure,

 consisting of 31.44% long-term debt and 68.56% common equity, be authorized in this proceeding?A. In order to provide safe, reliable, and affordable service to its customers, Confluence Rivers must meet the needs and serve the interests of its various stakeholders, including customers, shareholders, and bondholders. The interests of these stakeholder groups are aligned with maintaining a healthy balance sheet, strong credit ratings, and a supportive regulatory environment, so that the Company has access to capital on reasonable terms in order to make necessary investments.

[^4]Safe and reliable service cannot be maintained at a reasonable cost if utilities do not have the financial flexibility and strength to access the competitive markets on reasonable terms. The authorization of a capital structure other than the Company's actual capital structure will weaken its financial condition and adversely impact the Company's ability to address expenses and investment, to the detriment of customers and shareholders. Safe and reliable service for customers cannot be sustained over the long term if the interests of shareholders and bondholders are minimized such that the public interest is not optimized.
Q. How does the regulatory environment in which a utility operates affect its access to, and cost of, capital?
A. The regulatory environment can significantly affect both the access to, and cost of, capital in several ways. The proportion and cost of debt capital available to utility companies are both influenced, in large part, by the rating agencies' assessment of the regulatory environment. In other words, the Company's credit rating and outlook depend substantially on the extent to which rating agencies view the regulatory environment as credit supportive, or not. In fact, Moody's finds the regulatory environment to be so important that 50.00% of the factors that weigh in the Company's ratings determination are dependent on the nature of regulation. ${ }^{10}$ Similarly, S\&P has noted that:

The regulatory framework/regime's influence is of critical importance when assessing regulated utilities' credit risk because it defines the environment in which a utility operates 2017, at 4.
and has a significant bearing on a utility's financial performance. ${ }^{11}$

The regulatory environment, is thus, one of the most important factors considered by both debt and equity investors in assessing the risks and prospects of utility companies. From the perspective of debt investors, the authorized return should enable the Company to generate the cash flow necessary to meet its nearterm financial obligations, make the capital investments needed to maintain and expand its system, and maintain sufficient levels of liquidity to fund unexpected events.

Moreover, because fixed income investors have many investment alternatives, even within a given market sector, the Company's financial profile must be adequate, on a relative basis, to ensure its ability to attract capital under a variety of economic and financial market conditions. From the perspective of equity investors, the authorized return must be sufficient to provide a riskcomparable return on the equity portion financing the Company's capital investments.

Q. Please comment on the constructiveness of Missouri's regulatory environment.

A. The Regulatory Research Associates ("RRA") provides an assessment of the extent to which regulatory jurisdictions are constructive, or not, from the perspective of investors. As RRA explains, less constructive environments are associated with higher levels of risk:

RRA maintains three principal rating categories, Above
Average, Average, and Below Average, with Above Average
11 Standard \& Poor's, RatingsDirect, Key Credit Factors for the Regulated Utilities Industry, November 19, 2013, at 6.
indicating a relatively more constructive, lower-risk regulatory environment from an investor viewpoint, and Below Average indicating a less constructive, higher-risk regulatory climate. Within the three principal rating categories, the numbers 1,2 , and 3 indicate relative position. The designation 1 indicates a stronger (more constructive) rating; 2 , a mid range rating; and, 3 , a weaker (less constructive) rating. We endeavor to maintain an approximately equal number of ratings above the average and below the average. ${ }^{12}$

The RRA ranks this Commission as Average / 3, the fourth least constructive ranking ${ }^{13}$. If this Commission authorizes a capital structure in this proceeding that is not representative of the Company's operations, a signal would be sent to the investment community that Missouri's regulatory risk may be increasing further based on the unpredictability and instability of regulatory outcomes. This may lead to additional downgrades to the constructiveness of the Commission.
Q. How does your proposed ratemaking common equity ratio of 68.56% for Confluence Rivers compare with the common equity ratios maintained by the Utility Proxy Groups?
A. My proposed ratemaking common equity ratio of 68.56% for Confluence Rivers is outside of the range of common equity ratios maintained by the Utility Proxy Groups. Since Confluence Rivers would be perceived to have less financial risk than the Utility Proxy Group, I have made a downward adjustment to Confluence Rivers' indicated ROE, as will be discussed below.

[^5]
VII. COMMON EQUITY COST RATE MODELS

Q. Is it important that cost of common equity models be market-based?
A. Yes. A public utility must compete for equity in capital markets along with all other companies of comparable risk, which includes non-utilities. The cost of common equity is thus determined based on equity market expectations for the returns of those comparable risk companies. If individual investors are choosing to invest their capital among companies of comparable risk, they will choose a company providing a higher return over a company providing a lower return.
Q. Are your cost of common equity models market-based models?
A. Yes. The DCF model is market-based because market prices are used in developing the dividend yield component of the model. The RPM is market-based because the bond ratings and expected bond yields used in the application of the RPM reflect the market's assessment of bond/credit risk. In addition, the use of beta (β) to determine the equity risk premium reflects the market's assessment of market/systematic risk, since betas are derived from regression analyses of market prices. The Predictive Risk Premium Model ("PRPM") uses monthly market returns in addition to expectations of the risk-free rate. The CAPM is market-based for many of the same reasons that the RPM is market-based (i.e., the use of expected bond yields and beta). Selection of the comparable risk non-price regulated companies is market-based because it is based on statistics which result from regression analyses of market prices and reflect the market's assessment of total risk.
Q. What analytical approaches did you use to determine the Company's ROE?
A. As discussed earlier, I have relied on the DCF model, the RPM, and the CAPM, which I apply to the Utility Proxy Group described above. I also applied these same models to a Non-Price Regulated Proxy Group described later in this section.

I rely on these models because reasonable investors use a variety of tools and do not rely exclusively on a single source of information or single model. Moreover, the models on which I rely focus on different aspects of return requirements, and provide different insights to investors' views of risk and return. The DCF model, for example, estimates the investor-required return assuming a constant expected dividend yield and growth rate in perpetuity, while Risk Premium-based methods (i.e., the RPM and CAPM approaches) provide the ability to reflect investors' views of risk, future market returns, and the relationship between interest rates and the Cost of equity. Just as the use of market data for the Utility Proxy Group adds the reliability necessary to inform expert judgment in arriving at a recommended common equity cost rate, the use of multiple generally accepted common equity cost rate models also adds reliability and accuracy when arriving at a recommended common equity cost rate.

A. DISCOUNTED CASH FLOW MODEL

Q. What is the theoretical basis of the DCF model?

A. The DCF model is based on the theory that the present value of an expected future stream of net cash flows during the investment holding period can be determined by discounting those cash flows at the cost of capital, or the investors' capitalization rate. Mathematically this is shown as:

$$
P_{0}=\frac{D_{1}}{(1+k e)}+\frac{D_{2}}{(1+k e)^{2}}+\ldots+\frac{D_{t}}{(1+k e)^{t}}
$$

where:
$k=$ the required Return on Common Equity;
$D_{1 \ldots} . . D_{t}=$ the future expected dividends; and
$P_{0}=$ the current stock price.
The above equation can be rearranged to form the single-stage constant growth DCF model as such:

$$
K_{e}=\left(D_{0}(1+g)\right) / P+g
$$

where:

$$
\begin{aligned}
& K_{e}=\text { the required Return on Common Equity; } \\
& D_{0}=\text { the annualized Dividend Per Share; } \\
& P=\text { the current stock price; and } \\
& g=\text { the growth rate. }
\end{aligned}
$$

In this form, the required ROE is equal to the expected dividend yield plus an expected long-term growth rate. The constant growth DCF formula is derived from the present value DCF formula.

Under the model's strict assumptions, the growth rate equals the rate of capital appreciation (that is, the growth in the stock price). Given that assumption, it does not matter whether the investor holds the stock in perpetuity, or whether they hold the stock for some period of time, collect the dividends, then sell at the prevailing market price.

Q. Which version of the DCF model did you use?

A. I used the single-stage constant growth DCF model.
Q. Please describe the dividend yield you used in your application of the DCF model.
A. The unadjusted dividend yields are based on the proxy companies' dividends as of October 31, 2022, divided by the average of closing market prices for the 60 trading days ending October 31, 2022. ${ }^{14}$
Q. Please explain your adjustment to the dividend yield.
A. Because dividends are paid periodically (quarterly), as opposed to continuously (daily), an adjustment must be made to the dividend yield. This is often referred to as the discrete, or the Gordon Periodic, version of the DCF model.

DCF theory calls for the use of the full growth rate, or D_{1}, in calculating the dividend yield component of the model. Since the various companies in the Utility Proxy Group increase their quarterly dividend at various times during the year, a reasonable assumption is to reflect one-half the annual dividend growth rate in the dividend yield component, or $\mathrm{D}_{1 / 2}$. Because the dividend should be representative of the next 12-month period, my adjustment is a conservative approach that does not overstate the dividend yield. Therefore, the actual average dividend yields in Column 1 on page 1 of Schedule DWD-3 have been adjusted upward to reflect one-half the average projected growth rate shown in Column 5.
Q. Please explain the basis of the growth rates you applied to the Utility Proxy Group in your DCF model.
A. Investors with more limited resources than institutional investors are likely to rely on widely available financial information services, such as Value Line, Zacks, and Yahoo! Finance. Investors realize that analysts have significant insight into the
dynamics of the industries and individual companies they analyze, as well as companies' abilities to effectively manage the effects of changing laws and regulations, and ever-changing economic and market conditions. For these reasons, I used analysts' five-year forecasts of EPS growth in my DCF analysis.

Over the long run, there can be no growth in DPS without growth in EPS. Security analysts' earnings expectations have a more significant influence on market prices than dividend expectations. Thus, the use of earnings growth rates in a DCF analysis provides a better match between investors' market price appreciation expectations and the growth rate component of the DCF.

Q. Please summarize the DCF model results.

A. As shown on page 1 of Schedule DWD-3, the application of the constant growth DCF model to the Utility Proxy Group results in a wide range of indicated ROEs from 5.08% to 14.28%. The mean result, the median result, and the average of the mean and median results is 9.28% for the Utility Proxy Group.

Q. Do you have any comments regarding your DCF model results?

A. Because Middlesex Water Company's ("MSEX") indicated DCF result of 5.08% is below that of the marginal yield on A-rated utility debt (5.88\%), ${ }^{15}$ it violates the basic financial principle of risk and return, namely that investors require greater returns for bearing greater risk. It is generally accepted that common equity capital has greater investment risk than debt capital, as common equity shareholders are behind debt holders in any claim on a company's assets and earnings. Because of this, any investor required return on equity below the marginal yield on longterm debt related to that particular stock is non-sensical and should not be
considered. Given that MSEX's long-term credit rating from S\&P is A, and the current (i.e., marginal) yield on A-rated utility bonds of $5.88 \%,{ }^{16}$ MSEX's indicated DCF of 5.08% result violates the principle of risk and return stated above and should be eliminated.
Q. Considering the above, what is your recommended indicated ROE applicable to the DCF model?
A. Eliminating MSEX's indicated DCF cost rate of 5.08% results in mean, median, and average of mean and median ROEs of 10.12%, 10.21%, and 10.17%, respectively. In arriving at a conclusion for the DCF-indicated common equity cost rate for the Utility Proxy Group of 9.73%, I have relied on an average of the mean and the median results of the DCF both including and excluding MSEX's DCF result, which takes into consideration all the proxy companies' results, while mitigating the theoretically inconsistent nature of MSEX's DCF results. Because my recommended DCF cost rate considers MSEX's illogical DCF result, the 9.73\% DCF-indicated common equity cost rate should be viewed as extremely conservative.

B. THE RISK PREMIUM MODEL

Q. Please describe the theoretical basis of the RPM.
A. The RPM is based on the fundamental financial principle of risk and return, namely, that investors require greater returns for bearing greater risk. The RPM recognizes that common equity capital has greater investment risk than debt capital, as common equity shareholders are behind debt holders in any claim on a company's
assets and earnings. As a result, investors require higher returns from common stocks than from investment in bonds, to compensate them for bearing the additional risk.

While it is possible to directly observe bond returns and yields, investors' required common equity return cannot be directly determined or observed. According to RPM theory, one can estimate a common equity risk premium over bonds (either historically or prospectively) and use that premium to derive a cost rate of common equity. The cost of common equity equals the expected cost rate for long-term debt capital, plus a risk premium over that cost rate, to compensate common shareholders for the added risk of being unsecured and last-in-line for any claim on the corporation's assets and earnings in the event of a liquidation.
Q. Please explain how you derived your indicated cost of common equity based on the RPM.
A. I relied on the results of the application of two risk premium methods. The first method is the PRPM, while the second method is a risk premium model using a total market approach.

1. The Predictive Risk Premium Model

Q. Please explain the PRPM.

A. The PRPM, published in the Journal of Regulatory Economics and The Electricity Journal 17, was developed from the work of Robert F. Engle, who shared the Nobel Prize in Economics in 2003 "for methods of analyzing economic time series with

17 Autoregressive conditional heteroscedasticity. See "A New Approach for Estimating the Equity Risk Premium for Public Utilities", Pauline M. Ahern, Frank J. Hanley and Richard A. Michelfelder, The Journal of Regulatory Economics (December 2011), 40:261-278 and "Comparative Evaluation of the Predictive Risk Premium Model, the Discounted Cash Flow Model and the Capital Asset Pricing Model for Estimating the Cost of Common Equity", Richard A. Michelfelder, Pauline M. Ahern, Dylan W. D’Ascendis, and Frank J. Hanley, The Electricity Journal (May 2013), 84-89.
time-varying volatility ("ARCH")". ${ }^{18}$ Engle found that volatility changes over time and is related from one period to the next, especially in financial markets. Engle discovered that the volatility in prices and returns clusters over time and is therefore highly predictable and can be used to predict future levels of risk and risk premiums.

The PRPM estimates the risk / return relationship directly, as the predicted equity risk premium is generated by the prediction of volatility or risk. The PRPM is not based on an estimate of investor behavior, but rather on the evaluation of the results of that behavior (i.e., the variance of historical equity risk premiums).

The inputs to the model are the historical returns on the common shares of each company in the Utility Proxy Group minus the historical monthly yield on longterm U.S. Treasury securities through October 2022. Using a generalized form of ARCH, known as GARCH, I calculated each Utility Proxy Group company's projected equity risk premium using Eviews ${ }^{\circledR}$ statistical software. When the GARCH Model is applied to the historical return data, it produces a predicted GARCH variance series ${ }^{19}$ and a GARCH coefficient ${ }^{20}$. Multiplying the predicted monthly variance by the GARCH coefficient, then annualizing it ${ }^{21}$, produces the predicted annual equity risk premium. I then added the forecasted 30-year U.S. Treasury Bond yield, $3.96 \%{ }^{22}$, to each company's PRPM-derived equity risk premium to arrive at an indicated cost of common equity. The 30-year Treasury
www.nobelprize.org.
Illustrated on Columns 1 and 2 of page 2 of Schedule DWD-4.
Illustrated on Column 4 of page 2 of Schedule DWD-4.
Annualized Return $=(1+\text { Monthly Return })^{\wedge} 12-1$.
See, Column 6 of page 2 of Schedule DWD-4.
yield is a consensus forecast derived from the Blue Chip Financial Forecasts ("Blue Chip" ${ }^{23}$.
Q. Please describe your selection of a risk-free rate of return.
A. As shown in Schedules DWD-4 and DWD-5, the risk-free rate adopted for applications of the RPM and CAPM is 3.96%. This risk-free rate of 3.96% is based on the average of the Blue Chip consensus forecast of the expected yields on 30year U.S. Treasury bonds for the six quarters ending with the first calendar quarter of 2024, and long-term projections for the years 2024 to 2028 and 2029 to 2033.

Q. Why do you use the 30-year Treasury yield in your analyses?

A. The yield on long-term U.S. Treasury Bonds is almost risk-free, and its term is consistent with the long-term cost of capital to public utilities measured by the yields on A2 rated public utility bonds, the long-term investment horizon inherent in utilities' common stocks, and the long-term life of the jurisdictional rate base to which the allowed fair rate of return (i.e., cost of capital) will be applied. In contrast, short-term U.S. Treasury yields are more volatile and largely a function of Federal Reserve monetary policy.

Q. What are the results of the PRPM?

A. As shown on page 2 of Schedule DWD-4, the mean PRPM indicated common equity cost rate for the Utility Proxy Group is 12.28%, the median is 12.12%, and the average of the two is 12.20%. Consistent with my reliance on the average of the median and mean results of the DCF, I relied on the average of the mean and median results of the Utility Proxy Group PRPM to calculate a cost of common equity rate of 12.20%.

2. The Total Market Approach Risk Premium Model

Q. Please explain the total market approach RPM.
A. The total market approach RPM adds a prospective public utility bond yield to an average of: 1) an equity risk premium that is derived from a beta-adjusted total market equity risk premium; and 2) an equity risk premium based on the S\&P Utilities Index.
Q. Please explain the basis of the expected bond yield of 5.74% applicable to the Utility Proxy Group.
A. The first step in the total market approach RPM analysis is to determine the expected bond yield. Because both ratemaking and the cost of capital, including common equity cost rate, are prospective in nature, a prospective yield on similarly-rated long-term debt is essential. I rely on a consensus forecast of about 50 economists of the expected yield on Aaa rated corporate bonds for the six calendar quarters ending with the first calendar quarter of 2024, and the long-term projections for 2024 to 2028, and 2029 to 2033 from Blue Chip. As shown on line 1 of page 3 of Schedule DWD-4, the average expected yield on Moody's Aaa rated corporate bonds is 5.24%. In order to derive an expected yield on A2 rated public utility bonds, I make an upward adjustment of 0.39%, which represents a recent spread between Aaa rated corporate bonds and A2 rated public utility bonds, in order to adjust the expected Aaa rated corporate bond yield to an equivalent Moody's A2 rated public utility bond. ${ }^{24}$ Adding that recent 0.39% spread to the expected Aaa rated corporate bond yield of 5.24% results in an expected A2 rated public utility bond of 5.63%.

Since the Utility Proxy Group's average Moody's long-term issuer rating is A3, another adjustment to the expected A2 rated public utility bond yield is needed to reflect the difference in bond ratings. An upward adjustment of 0.11%, which represents one-third of a recent spread between A2 and Baa2 rated public utility bond yields, is necessary to make the A2 rated prospective bond yield applicable to an A3 rated public utility bond. ${ }^{25}$ Adding the 0.11% to the 5.63% prospective A2 rated public utility bond yield results in a 5.74% expected bond yield for the Utility Proxy Group.

Table 3: Summary of the Calculation of the Utility Proxy Group Projected Bond Yield ${ }^{26}$

Prospective Yield on Moody's Aaa Rated Corporate Bonds (Blue Chip)	5.24%
Adjustment to Reflect Yield Spread Between Moody's Aaa Rated Corporate Bonds and Moody's A2 Rated Utility Bonds	0.39%
Adjustment to Reflect the Utility Proxy Group's Average Moody's Bond Rating of A3	$\underline{0.11 \%}$
Prospective Bond Yield Applicable to the Utility Proxy Group	$\underline{\underline{5.74 \%}}$

To develop the indicated ROE using the total market approach RPM, this prospective bond yield is then added to the average of the three different equity risk premiums described below.

Q. Please explain how the beta-derived equity risk premium is determined.

A. The components of the beta-derived risk premium model are: 1) an expected market equity risk premium over corporate bonds, and 2) beta. The derivation of

25 As shown on line 4 and explained in note 3, page 3 of Schedule DWD-4. Moody's does not provide public utility bond yields for A3 rated bonds. As such, it was necessary to estimate the difference between A2 rated and A3 rated public utility bonds. Because there are three steps between Baa2 and A2 (Baa2 to Baa1, Baa1 to A3, and A3 to A2) I assumed an adjustment of one-third of the difference between the A2 rated and Baa2 rated public utility bond yield was appropriate. As shown on page 3 of Schedule DWD-4.
the beta-derived equity risk premium that I applied to the Utility Proxy Group is shown on lines 1 through 9 of page 8 of Schedule DWD-4. The total beta-derived equity risk premium I applied was based on an average of: 1) Ibbotson-based equity risk premiums; 2) Value Line-based equity risk premiums; and 3) Bloomberg-based equity risk premium. Each of these is described in turn.

Q. How did you derive a market equity risk premium based on long-term historical data?

A. To derive a historical market equity risk premium, I used the most recent holding period returns for the large company common stocks from the Kroll Stocks, Bonds, Bills, and Inflation ("SBBI") 2022 Yearbook ("SBBI - 2022") ${ }^{27}$ less the average historical yield on Moody's Aaa/Aa rated corporate bonds for the period 1928 to 2021. The use of holding period returns over a very long period of time is appropriate because it is consistent with the long-term investment horizon presumed by investing in a going concern, i.e., a company expected to operate in perpetuity.

SBBI's long-term arithmetic mean monthly total return rate on large company common stocks was 12.11% and the long-term arithmetic mean monthly yield on Moody's Aaa/Aa rated corporate bonds was 5.98% from 1928 to $2021 .{ }^{28}$ As shown on line 1 of page 8 of Schedule DWD-4, subtracting the mean monthly bond yield from the total return on large company stocks results in a long-term historical equity risk premium of 6.13%.

[^6]I used the arithmetic mean monthly total return rates for the large company stocks and yields (income returns) for the Moody's Aaa/Aa rated corporate bonds, because they are appropriate for the purpose of estimating the cost of capital as noted in SBBI - 2022. ${ }^{29}$ The use of the arithmetic mean return rates and yields is appropriate because historical total returns and equity risk premiums provide insight into the variance and standard deviation of returns needed by investors in estimating future risk when making a current investment. If investors relied on the geometric mean of historical equity risk premiums, they would have no insight into the potential variance of future returns because the geometric mean relates to the change over many periods to a constant rate of change, thereby obviating the year-to-year fluctuations, or variance, which is critical to risk analysis.
Q. Please explain the derivation of the regression-based market equity risk premium.
A. To derive the regression analysis-derived market equity risk premium of 7.02%, shown on line 2 of page 8 of Schedule DWD-4, I used the same monthly annualized total returns on large company common stocks relative to the monthly annualized yields on Moody's Aaa/Aa rated corporate bonds as mentioned above. The relationship between interest rates and the market equity risk premium was modeled using the observed monthly market equity risk premium as the dependent variable, and the monthly yield on Moody's Aaa/Aa rated corporate bonds as the independent variable. I used a linear Ordinary Least Squares ("OLS") regression, in which the market equity risk premium is expressed as a function of the Moody's Aaa/Aa rated corporate bond yield:

SBBI-2022, at 200-201.

$$
R P=\alpha+\beta\left(R_{\text {Aaaa }}\right)
$$

where:
$R P=$ the market equity risk premium;
$\alpha=$ the regression intercept coefficient;
$\beta=$ the regression slope coefficient; and
$R_{\text {Aaa/Aa }}=$ the Moody's Aaa/Aa rated corporate bond yield.
Using the equation generated by the regression, an expected equity risk premium of 7.02% is calculated using the average forecast of Aaa corporate bond yield of 5.24%, as discussed above.

Q. Please explain the derivation of a PRPM equity risk premium.

A. I used the same PRPM approach described previously to develop another equity risk premium estimate. The inputs to the model are the historical monthly returns on large company common stocks minus the monthly yields on Aaa/Aa rated corporate bonds during the period from January 1928 through October 2022.30 Using the previously discussed generalized form of ARCH, known as GARCH, the projected equity risk premium is determined using Eviews ${ }^{\ominus}$ statistical software. The resulting PRPM predicted market equity risk premium is 9.79%. ${ }^{31}$
Q. Please explain the derivation of a projected equity risk premium based on Value Line Summary and Index data for your RPM analysis.
A. As noted previously, because both ratemaking and the cost of capital are prospective, a prospective market equity risk premium is needed. The derivation of the forecasted or prospective market equity risk premium can be found in note

[^7]4 on page 8 of Schedule DWD-4. Consistent with the premise that total returns are the sum of capital appreciation and income returns, this prospective market return is derived from an average of the three to five-year median market price appreciation potential by Value Line Summary and Index for the 13 weeks ending November 4, 2022, plus an average of the median estimated dividend yield for the common stocks of the 1,700 firms covered in Value Line's Standard Edition. ${ }^{32}$

The average median expected price appreciation is 70.00%, which translates to a 14.19% annual appreciation, and when added to the average of Value Line's median expected dividend yields of 2.21%, equates to a forecasted annual total return rate on the market of 16.40%. The forecasted Aaa rated bond yield of 5.24% is deducted from the total market return of 16.40%, resulting in an equity risk premium of 11.16%, shown on page 8 , line 4 of Schedule DWD-4.
Q. Please explain the derivation of an equity risk premium based on Value Line data for the S\&P 500 companies.
A. Using data from Value Line, I calculated an expected total return on the S\&P 500 using expected dividend yields as a proxy for income return and long-term growth estimates as a proxy for capital appreciation. The expected total return for the S\&P 500 is 16.41%. Subtracting the prospective yield on Aaa rated corporate bonds of 5.24% results in a 11.17% projected equity risk premium.
Q. Please explain the derivation of an equity risk premium based on Bloomberg data.
A. Using data from Bloomberg, I calculated an expected total return on the S\&P 500 using expected dividend yields as a proxy for income return and long-term growth
estimates as a proxy for capital appreciation, identical to the method described above. The expected total return for the S\&P 500 is 12.05%. Subtracting the prospective yield on Aaa rated corporate bonds of 5.24% resulted in a 6.81% projected equity risk premium.
Q. What is your conclusion of a beta-derived equity risk premium for use in your RPM analysis?
A. I gave equal weight to the six equity risk premiums in arriving at my conclusion of $8.68 \% .{ }^{33}$

Table 4: Summary of the Calculation of the Equity Risk Premium Using Total Market Returns ${ }^{34}$

Historical Spread Between Total Returns of Large Stocks and Aaa and Aa2 Rated Corporate Bond Yields (1928 2021)	6.13\%
Regression Analysis on Historical Data	7.02\%
PRPM Analysis on Historical Data	9.79\%
Prospective Equity Risk Premium using Total Market Returns from Value Line Summary \& Index less Projected Aaa Corporate Bond Yields	11.16\%
Prospective Equity Risk Premium using Measures of Capital Appreciation and Income Returns from Value Line for the S\&P 500 less Projected Aaa Corporate Bond Yields	11.17\%
Prospective Equity Risk Premium using Measures of Capital Appreciation and Income Returns from Bloomberg Professional Services for the S\&P 500 less Projected Aaa Corporate Bond Yields	6.81\%
Average	8.68\%

After calculating the average market equity risk premium of 8.68%, । adjusted it by beta to account for the risk of the Utility Proxy Group. As discussed below, the beta is a meaningful measure of prospective relative risk to the market as a whole and is a logical means by which to allocate a company's, or proxy group's, share of the market's total equity risk premium relative to corporate bond

[^8]yields. As shown on page 1 of Schedule DWD-5, the average of the mean and median beta for the Utility Proxy Group is 0.78 . Multiplying the beta of the Utility Proxy Group of 0.78 by the market equity risk premium of 8.68% resulted in a betaadjusted equity risk premium of 6.77% for the Utility Proxy Group.
Q. How did you derive the equity risk premium based on the S\&P Utility Index and Moody's A rated public utility bonds?
A. I estimated three equity risk premiums based on S\&P Utility Index holding returns, and two equity risk premiums based on the expected returns of the S\&P Utilities Index, using Value Line and Bloomberg data, respectively. Turning first to the S\&P Utility Index holding period returns, I derived a long-term monthly arithmetic mean equity risk premium between the S\&P Utility Index total returns of 10.74% and monthly A rated public utility bond yields of 6.46% from 1928 to 2021, to arrive at an equity risk premium of $4.28 \% .{ }^{35}$ I then used the same historical data to derive an equity risk premium of 5.01% based on a regression of the monthly equity risk premiums. The final S\&P Utility Index holding period equity risk premium involved applying the PRPM using the historical monthly equity risk premiums from January 1928 to October 2022 to arrive at a PRPM-derived equity risk premium of 5.51% for the S\&P Utility Index.

I then derived expected total returns on the S\&P Utilities Index of 9.60% and 10.38% using data from Value Line and Bloomberg, respectively, and subtracted the prospective A2 rated public utility bond yield (5.63\%) ${ }^{36}$, which results in risk premiums of 3.97% and 4.75%, respectively. As with the market
equity risk premiums, I averaged each risk premium to arrive at my utility-specific equity risk premium of 4.70%.

Table 5: Summary of the Calculation of the Equity Risk Premium Using S\&P Utility Index Holding Returns ${ }^{37}$

Historical Spread Between Total Returns of the S\&P Utilities Index and A2 Rated Utility Bond Yields (1928 - 2021)	4.28%
Regression Analysis on Historical Data	5.01%
PRPM Analysis on Historical Data	5.51%
Prospective Equity Risk Premium using Measures of Capital Appreciation and Income Returns from Value Line for the S\&P Utilities Index less Projected A2 Utility Bond Yields	3.97%
Prospective Equity Risk Premium using Measures of Capital Appreciation and Income Returns from Bloomberg Professional Services for the S\&P Utilities Index less Projected A2 Utility Bond Yields	$\underline{4.75 \%}$
Average	$\underline{\underline{4.70 \%}}$

Q. What is your conclusion of an equity risk premium for use in your total market approach RPM analysis?
A. The equity risk premium I applied to the Utility Proxy Group is 5.74%, which is the average of the beta-derived and the S\&P utility equity risk premiums of 6.77% and 4.70\%, respectively. ${ }^{38}$
Q. What is the indicated RPM common equity cost rate based on the total market approach?
A. As shown on line 7 of Schedule DWD-4, page 3, I calculated a common equity cost rate of 11.48% for the Utility Proxy Group based on the total market approach of the RPM.

[^9]Table 6: Summary of the Total Market Return Risk Premium Model ${ }^{39}$

Prospective Moody's A3 Rated Utility Bond Applicable to the Utility Proxy Group	5.74%
Prospective Equity Risk Premium	$\underline{5.74 \%}$
Indicated Cost of Common Equity	$\underline{\underline{11.48 \%}}$

Q. What are the results of your application of the PRPM and the total market approach RPM?
A. As shown on page 1 of Schedule DWD-4, the indicated RPM-derived common equity cost rate is 11.84%, which gives equal weight to the PRPM (12.20\%) and the adjusted market approach results (11.48\%).

C. THE CAPITAL ASSET PRICING MODEL

Q. Please explain the theoretical basis of the CAPM.
A. CAPM theory defines risk as the co-variability of a security's returns with the market's returns as measured by beta (β). A beta of less than 1.0 indicates lower variability than the market as a whole, while a beta greater than 1.0 indicates greater variability than the market.

The CAPM assumes that all other risk (i.e., all non-market or unsystematic risk) can be eliminated through diversification. The risk that cannot be eliminated through diversification is called market, or systematic, risk. In addition, the CAPM presumes that investors require compensation only for systematic risk, which is the result of macroeconomic and other events that affect the returns on all assets. The model is applied by adding a risk-free rate of return to a market risk premium, which is adjusted proportionately to reflect the systematic risk of the individual
security relative to the total market, as measured by beta. The traditional CAPM model is expressed as:

$$
R_{s} \quad=\quad R_{f}+\beta\left(R_{m}-R_{f}\right)
$$

Where: $\quad R_{s}=\quad$ Return rate on the common stock;
$R_{f}=\quad$ Risk-free rate of return;
$\mathrm{Rm}_{\mathrm{m}}=$ Return rate on the market as a whole; and
$\beta=$ Adjusted beta (volatility of the security relative to the market as a whole).

Numerous tests of the CAPM have measured the extent to which security returns and beta are related as predicted by the CAPM, confirming its validity. The empirical CAPM ("ECAPM") reflects the reality that while the results of these tests support the notion that beta is related to security returns, the empirical Security Market Line ("SML") described by the CAPM formula is not as steeply sloped as the predicted SML. ${ }^{40}$ The ECAPM reflects this empirical reality. Fama and French clearly state regarding Figure 2, below, that "[t]he returns on the low beta portfolios are too high, and the returns on the high beta portfolios are too low." 41

Figure 2 http://pubs.aeaweb.org/doi/pdfplus/10.1257/0895330042162430
Average Annualized Monthly Return versus Beta for Value Weight Portfolios Formed on Prior Beta, 1928-2003

In addition, Morin observes that while the results of these tests support the notion that beta is related to security returns, the empirical SML described by the CAPM formula is not as steeply sloped as the predicted SML. Morin states:

With few exceptions, the empirical studies agree that ... low-beta securities earn returns somewhat higher than the CAPM would predict, and high-beta securities earn less than predicted. ${ }^{42}$

Therefore, the empirical evidence suggests that the expected return on a security is related to its risk by the following approximation:

$$
K=R_{F}+x \beta\left(R_{M}-R_{F}\right)+(1-x) \beta\left(R_{M}-R_{F}\right)
$$

where x is a fraction to be determined empirically. The value of x that best explains the observed relationship [is] Return $=0.0829+$
0.0520β is between 0.25 and 0.30 . If $x=0.25$, the equation becomes:

$$
K=R_{F}+0.25\left(R_{M}-R_{F}\right)+0.75 \beta\left(R_{M}-R_{F}\right)^{43}
$$

Fama and French provide similar support for the ECAPM when they state:
The early tests firmly reject the Sharpe-Lintner version of the CAPM. There is a positive relation between beta and average return, but it is too 'flat.'... The regressions consistently find that the intercept is greater than the average risk-free rate... and the coefficient on beta is less than the average excess market return... This is true in the early tests... as well as in more recent cross-section regressions tests, like Fama and French (1992). ${ }^{44}$

Finally, Fama and French further note:
Confirming earlier evidence, the relation between beta and average return for the ten portfolios is much flatter than the Sharpe-Linter CAPM predicts. The returns on low beta portfolios are too high, and the returns on the high beta portfolios are too low. For example, the predicted return on the portfolio with the lowest beta is 8.3 percent per year; the actual return as 11.1 percent. The predicted return on the portfolio with the highest beta is 16.8 percent per year; the actual is 13.7 percent. ${ }^{45}$

Clearly, the justification from Morin, Fama, and French along with their reviews of other academic research on the CAPM, validate the use of the ECAPM. In view of theory and practical research, I have applied both the traditional CAPM and the ECAPM to the companies in the Utility Proxy Group and averaged the results.

Q. What beta did you use in your CAPM analysis?

A. With respect to beta, I considered two methods of calculation: 1) the average beta of the Utility Proxy Group companies reported by Bloomberg Professional Services; and 2) the average beta of the Utility Proxy Group companies as reported

[^10]by Value Line. While both of those services adjust their calculated (or "raw") betas to reflect the tendency of beta to regress to the market mean of 1.00, Value Line calculates beta over a five-year period, while Bloomberg's calculation is based on two years of data.

Q. Please describe your selection of a risk-free rate of return.

A. Discussed previously, the risk-free rate adopted for both applications of the CAPM is 3.96%. This risk-free rate is based on the average of the Blue Chip consensus forecast of the expected yields on 30 -year U.S. Treasury bonds for the six quarters ending with the first calendar quarter of 2024, and long-term projections for the years 2024 to 2028 and 2029 to 2033.
Q. Please explain the estimation of the expected risk premium for the market used in your CAPM analyses.
A. The basis of the market risk premium is explained in detail in note 1 on page 2 of Schedule DWD-5. As discussed previously, the market risk premium is derived from an average of:
(i) Ibbotson-based market risk premiums;
(ii) Value Line data-based market risk premiums; and
(iii) Bloomberg data-based market risk premiums.

The long-term income return on U.S. Government Securities of 5.02% was deducted from the SBBI - 2022 monthly historical total market return of 12.37\%, which results in an historical market equity risk premium of $7.35 \% .{ }^{46} \mathrm{I}$ applied a linear OLS regression to the monthly annualized historical returns on the S\&P 500 relative to historical yields on long-term U.S. Government Securities from SBBI -

SBBI - 2022, at 256-258, 274-276.
2022. That regression analysis yielded a market equity risk premium of 8.65%. The PRPM market equity risk premium is 10.89% and is derived using the PRPM relative to the yields on long-term U.S. Treasury securities from January 1926 through October 2022.

The Value Line Summary and Index-derived forecasted total market equity risk premium is derived by deducting the forecasted risk-free rate of 3.96%, discussed above, from the Value Line Summary and Index projected total annual market return of 16.40%, resulting in a forecasted total market equity risk premium of 12.44%. The S\&P 500 projected market equity risk premium using Value Line data is derived by subtracting the projected risk-free rate of 3.96% from the projected total return of the S\&P 500 of 16.41%. The resulting market equity risk premium is 12.45%.

The S\&P 500 projected market equity risk premium using Bloomberg data is derived by subtracting the projected risk-free rate of 3.96% from the projected total return of the S\&P 500 of 12.05%. The resulting market equity risk premium is 8.09%.

These six market risk premiums, when averaged, resulted in an average total market equity risk premium of 9.98%.

Table 7: Summary of the Calculation of the Market Risk Premium for Use in the CAPM ${ }^{47}$

Historical Spread Between Total Returns of Large Stocks and Long-Term Government Bond Yields $(1926-2021)$	7.35%
Regression Analysis on Historical Data	8.65%
PRPM Analysis on Historical Data	10.89%
Prospective Equity Risk Premium using Total Market Returns from Value Line Summary \& Index less Projected 30-Year Treasury Bond Yields	12.44%
Prospective Equity Risk Premium using Measures of Capital Appreciation and Income Returns from Value Line for the S\&P 500 less Projected 30-Year Treasury Bond Yields	12.45%
Prospective Equity Risk Premium using Measures of Capital Appreciation and Income Returns from Bloomberg Professional Services for the S\&P 500 less Projected 30-Year Treasury Bond Yields	$\underline{8.09 \%}$
Average	$\underline{9.98 \%}$

Q. What are the results of your application of the traditional and empirical CAPM to the Utility Proxy Group?
A. As shown on page 1 of Schedule DWD-5, the mean result of my CAPM/ECAPM analysis is 12.14%, the median is 11.85%, and the average of the two is 12.00%. Consistent with my reliance on the average of mean and median DCF results discussed above, the indicated common equity cost rate using the CAPM/ECAPM is 12.00%.
$47 \quad$ As shown on page 2 of Schedule DWD-5.

D. COMMON EQUITY COST RATES FOR A PROXY GROUP OF DOMESTIC, NON-PRICE REGULATED COMPANIES BASED ON THE DCF, RPM, AND CAPM

Q. Why did you also consider a proxy group of domestic, non-price regulated companies?
A. In the Hope and Bluefield cases, the U.S. Supreme Court did not specify that comparable risk companies had to be utilities. Since the purpose of rate regulation is to be a substitute for the competition of the marketplace, non-price regulated firms operating in the competitive marketplace make an excellent proxy if they are comparable in total risk to the Utility Proxy Group being used to estimate the cost of common equity. The selection of such domestic, non-price regulated competitive firms theoretically and empirically results in a proxy group which is comparable in total risk to the Utility Proxy Group.
Q. How did you select non-price regulated companies that are comparable in total risk to the Utility Proxy Group?
A. In order to select a proxy group of domestic, non-price regulated companies similar in total risk to the Utility Proxy Group, I relied on beta and related statistics derived from Value Line regression analyses of weekly market prices over the most recent 260 weeks (i.e., five years). Using these selection criteria resulted in a proxy group of 27 domestic, non-price regulated firms comparable in total risk to the Utility Proxy Group. Total risk is the sum of non-diversifiable market risk and diversifiable company-specific risks. The following criteria were used in the selection of the domestic, non-price regulated firms:
(i) They must be covered by Value Line;
(ii) They must be domestic, non-price regulated companies, i.e., non-utilities;
(iii) Their beta must lie within plus or minus two standard deviations of the average unadjusted beta of the Utility Proxy Group; and
(iv) The residual standard errors of the Value Line regressions which gave rise to the unadjusted betas must lie within plus or minus two standard deviations of the average residual standard error of the Utility Proxy Group. Betas are a measure of market or systematic risk, which is not diversifiable. The residual standard errors of the regressions were used to measure each firm's company-specific, diversifiable risk. Companies that have similar betas and similar residual standard errors resulting from the same regression analyses have similar total investment risk.
Q. Have you prepared a schedule which shows the data from which you selected the 27 domestic, non-price regulated companies that are comparable in total risk to the Utility Proxy Group?
A. Yes, the basis of my selection, and both proxy groups' regression statistics, are shown in Schedule DWD-6.
Q. Did you calculate common equity cost rates using the DCF, RPM, and CAPM for the Non-Price Regulated Proxy Group?
A. Yes. Because the DCF, RPM, and CAPM have been applied in an identical manner as described above, I will not repeat the details of the rationale and application of each model. One exception is in the application of the RPM, where I did not use public utility-specific equity risk premiums, nor did I apply the PRPM to the individual companies.

Page 2 of Schedule DWD-7 contains the derivation of the DCF cost rates. As shown, the indicated common equity cost rate using the DCF for the Non-Price

Regulated Proxy Group comparable in total risk to the Utility Proxy Group, is 11.29\%.

Pages 3 through 5 of DWD-7 contain the data and calculations that support the 12.76% RPM cost rate. As shown on line 1 of page 3 of Schedule DWD-7, the consensus prospective yield on Moody's Baa rated corporate bonds for the six quarters ending in the first quarter of 2024, and for the years 2024 to 2028 and 2029 to 2033 , is $6.25 \% .^{48}$ Since the Non-Price Regulated Proxy Group has an average Moody's long-term issuer rating of Baa1, a 0.17% downward adjustment of the prospective Baa2 rated corporate bond yield is necessary to reflect a difference in ratings. ${ }^{49}$

When the beta-adjusted risk premium of $6.68 \%{ }^{50}$ relative to the Non-Price Regulated Proxy Group is added to the adjusted prospective Baa1 rated corporate bond yield of 6.08%, the indicated RPM cost rate is 12.76%.

Page 6 contains the inputs and calculations that support my indicated CAPM/ECAPM cost rate of 11.94%.
Q. What is the cost rate of common equity based on the Non-Price Regulated Proxy Group comparable in total risk to the Utility Proxy Group?
A. As shown on page 1 of Schedule DWD-7, the results of the DCF, RPM, and CAPM applied to the Non-Price Regulated Proxy Group comparable in total risk to the Utility Proxy Group are $11.29 \%, 12.76 \%$, and 11.94%, respectively. The average
of the mean and median of these models is 11.97%, which I used as the indicated common equity cost rate for the Non-Price Regulated Proxy Group.

VIII. CONCLUSION OF COMMON EQUITY COST RATE BEFORE ADJUSTMENT

Q. What is the indicated range of common equity cost rates before adjustments?
A. Based on the results of the application of multiple cost of common equity models to the Utility Proxy Group, my recommended range of ROEs attributable to the Utility Proxy Group is between 10.36% and 11.36%. The indicated range is equal to 50 basis points above and below the midpoint of my results.

I used multiple cost of common equity models as primary tools in arriving at my recommended common equity cost rate, because no single model is so inherently precise that it can be relied on solely to the exclusion of other theoretically sound models. The use of multiple models adds reliability to the estimation of the common equity cost rate, and the prudence of using multiple cost of common equity models is supported in both the financial literature and regulatory precedent.

As discussed previously, after determining the indicated range of ROE attributable to a comparable group, there must be an evaluation of relative risk between that group and the target company to determine whether it is appropriate to apply adjustments to the comparable group's indicated ROE to better reflect the target company's specific risks.

IX. ADJUSTMENTS TO THE COMMON EQUITY COST RATE
 A. BUSINESS RISK ADJUSTMENT
 Q. Does Confluence Rivers' smaller size compared with the Utility Proxy Group increase its business risk?

A. Yes. Confluence Rivers' smaller size relative to the Utility Proxy Group companies indicates greater relative business risk for the Company because, all else being equal, size has a material bearing on risk.

Size affects business risk because smaller companies generally are less able to cope with significant events that affect sales, revenues, and earnings. For example, smaller companies face more risk exposure to business cycles and economic conditions, both nationally and locally. Additionally, the loss of revenues from a few larger customers would have a greater effect on a small company than on a bigger company with a larger, more diverse, customer base.

As further evidence illustrates that smaller firms are riskier, investors generally demand greater returns from smaller firms to compensate for less marketability and liquidity of their securities. Duff \& Phelps' (now Kroll) discusses the nature of the small-size phenomenon, providing an indication of the magnitude of the size premium based on several measures of size. In discussing "Size as a Predictor of Equity Premiums," Kroll states:

The size effect is based on the empirical observation that companies of smaller size are associated with greater risk and, therefore, have greater cost of capital [sic]. The "size" of a company is one of the most important risk elements to consider when developing cost of equity capital estimates for use in valuing a business simply because size has been shown to be a predictor of equity returns. In other words, there is a significant (negative) relationship between size and
historical equity returns - as size decreases, returns tend to increase, and vice versa. (footnote omitted) (emphasis in original) ${ }^{51}$

Furthermore, in "The Capital Asset Pricing Model: Theory and Evidence,"
Fama and French note size is indeed a risk factor which must be reflected when estimating the cost of common equity. On page 38, they note:
. . . the higher average returns on small stocks and high book-tomarket stocks reflect unidentified state variables that produce undiversifiable risks (covariances) in returns not captured in the market return and are priced separately from market betas. ${ }^{52}$

Based on this evidence, Fama and French proposed their three-factor model which includes a size variable in recognition of the effect size has on the cost of common equity.

Also, it is a basic financial principle that the use of funds invested, and not the source of funds, is what gives rise to the risk of any investment. ${ }^{53}$ Eugene Brigham, a well-known authority, states:

A number of researchers have observed that portfolios of small-firms (sic) have earned consistently higher average returns than those of large-firm stocks; this is called the "small-firm effect." On the surface, it would seem to be advantageous to the small firms to provide average returns in a stock market that are higher than those of larger firms. In reality, it is bad news for the small firm; what the smallfirm effect means is that the capital market demands higher returns on stocks of small firms than on otherwise similar stocks of the large firms. (emphasis added) ${ }^{54}$

Consistent with the financial principle of risk and return discussed above, increased relative risk due to small size must be considered in the allowed rate of

51 Kroll: Cost of Capital Navigator: U.S. Cost of Capital Module, "Size as a Predictor of Equity Returns," at 1
Fama \& French, at 25-43.
Richard A. Brealey and Stewart C. Myers, Principles of Corporate Finance (McGraw-Hill Book Company, 1996), at 204-205, 229.
Eugene F. Brigham, Fundamentals of Financial Management, Fifth Edition (The Dryden Press, 1989), at 623.
return on common equity. Therefore, the Commission's authorization of a cost rate of common equity in this proceeding must appropriately reflect the unique risks of Confluence Rivers, including its small size, which is justified and supported above by evidence in the financial literature.
Q. Is there a way to quantify a relative risk adjustment due to Confluence Rivers' greater business risk relative to the Utility Proxy Group?
A. Yes. In the absence of other empirical methods, I compared Confluence Rivers' and the Utility Proxy Group's relative size, as measured by an estimated market capitalization of common equity for Confluence Rivers.

Table 8: Size as Measured by Market Capitalization for the Company and the Utility Proxy Group

	Market Capitalization* (\$ Millions)	Times Greater Than the Company
Confluence Rivers	$\$ 38.085$	
Utility Proxy Group Median	$\$ 3,337.436$	$87.6 x$
${ }^{*}$ From page 1 of Schedule DWD-8.		

The Company's estimated market capitalization was at $\$ 38.085$ million as of October 31, 2022, compared with the median market capitalization of the Utility Proxy Group of $\$ 3.34$ billion as of October 31, 2022. The Utility Proxy Group's market capitalization is 87.6 times the size of Confluence Rivers' estimated market capitalization.

As a result, it is necessary to upwardly adjust the indicated range of common equity cost rates to reflect Confluence Rivers' greater risk due to its smaller relative size. The determination is based on the size premiums for portfolios of New York Stock Exchange, American Stock Exchange, and NASDAQ
listed companies ranked by deciles for the 1926 to 2021 period. The average size premium for the Utility Proxy Group with a market capitalization of $\$ 3.34$ billion falls in the $5^{\text {th }}$ decile, while Confluence Rivers' market capitalization of $\$ 38.085$ million places the Company in the $10^{\text {th }}$ decile. The size premium spread between the $5^{\text {th }}$ decile and the $10^{\text {th }}$ decile is 3.91%. Even though a 3.91% upward size adjustment is indicated, I applied a size premium of 1.00% to Confluence Rivers' indicated range of common equity cost rates.

B. Financial Risk Adjustment

Q. You mentioned above that Confluence Rivers' capital structure contained less financial risk than that of the Utility Proxy Group. Can the lesser financial risk of Confluence Rivers' capital structure be quantified?
A. Yes. The relationship between leverage and financial risk has been formalized by financial economists. Franco Modigliani and Merton Miller demonstrated that the cost of common equity may be expressed as:

$$
k_{e, L}=k_{e, U}+\left(k_{e, U}-k_{d}\right)(1-T)(D / E)
$$

Where: $\mathrm{k}_{\mathrm{e}, \mathrm{U}}=$ Cost of common equity for an unlevered firm
$\mathrm{k}_{\mathrm{e}, \mathrm{L}}=$ Cost of common equity for a levered firm
$\mathrm{kd}_{\mathrm{d}} \quad=\quad$ Cost of debt (interest rate)
D = Level of debt
$\mathrm{E} \quad=\quad$ Level of equity
$\mathrm{T}=\quad$ Income tax rate
The equation above expresses the cost of common equity for a levered firm as the cost of common equity for an unlevered firm, which reflects business risk only, plus a premium for financial risk.

Robert Hamada ${ }^{55}$ proposed an equivalent leverage relationship in the context of the CAPM equation. Here, because the only firm-specific factor used is beta, the relationship between leverage and the cost of common equity reduces to a relationship between beta and leverage: ${ }^{56}$

$$
\beta_{\mathrm{L}}=\beta_{\mathrm{U}}[1+(1-\mathrm{T})] \frac{\mathrm{D}}{\mathrm{E}}
$$

Where: $\quad \beta\llcorner=$ the levered equity beta $\beta u=$ the unlevered equity beta

Confluence Rivers' capital structure consists of 31.44% long-term debt and 68.56% common equity. As shown on page 1 of Schedule DWD-9, the 2021 capital structure of the Utility Proxy Group company with the highest (top of the range) common equity ratio consisted of 62.44% common equity.

Also, as discussed above, financial risk, or leverage, affects the cost of capital, including the cost of common equity; the greater the degree of financial leverage, the greater the concentration of business risk on common shareholders, increasing their required return to compensate them for bearing that risk. Indications of the magnitude of financial leverage's effect on the common equity cost rate is given by the Modigliani-Miller ("M\&M") method and the Hamada equation, which are derived on pages 1 and 2 of Schedule DWD-9, respectively.

[^11]The M\&M method holds the pretax weighted average cost of capital ("WACC") constant regardless of capital structure. As shown and explained on page 1 of Schedule DWD-9, applying the M\&M method results in indicated adjustments to the common equity cost rate of negative 0.53% relative to the common equity cost rate, based on the next financially risky Water Proxy Company. In other words, applying a common equity cost rate of 10.86% (which reflects the financial risk of the high end of the Water Proxy Group's 2021 capital structure, as represented by the midpoint of its unadjusted indicated return on equity range), results in a pretax WACC of 11.42% as shown in page 1 of Schedule DWD-9. Applying that 11.42% pretax WACC to Confluence Rivers' proposed capital structure, which contains less financial risk than the Utility Proxy Group's lowest risk capital structure, results in a common equity cost rate of 10.34%. This indicates a downward adjustment of 0.53% based on the differences in financial risk between Confluence Rivers and the Utility Proxy Group.

Table 10: Summary of the Calculation of the M\&M Financial Adjustment ${ }^{57}$

	$\frac{\text { Utility }}{\text { Proxy }}$ Group
ROE based on High End of Proxy Group Equity Ratios (Midpoint of unadjusted ROE Range)	10.86%
Resulting Pre-Tax WACC	11.42%
ROE based on Pre-Tax WACC applied to Confluence Rivers' Proposed Capital Structure	10.34%
Indicated Financial Risk Adjustment	$-\underline{\underline{0.0 .53 \%}}$

Applying the Hamada equation, which involves un-levering the Utility Proxy Groups' betas based on the Utility Proxy Group's least financially risky actual

57 As shown on page 1 of Schedule DWD-9.
capital structure, then re-levering the beta using Confluence Rivers' recommended capital structure, and recalculating the Utility Proxy Group's CAPM, is shown and explained on page 2 of Schedule DWD-9. The Hamada equation results in a financial risk adjustment of -0.50% for the Utility Proxy Group, which is the difference between the CAPM result for the Utility Proxy Group applicable to its capital structure, 11.74% (line 9), and the CAPM result applicable to Confluence Rivers' recommended capital structure, 11.24% (line 10), respectively.

Table 11: Summary of the Calculation of the Hamada Financial Adjustment ${ }^{58}$

	$\frac{\text { Utility }}{\text { Proxy }}$
Long-Term Debt (Least Risky Proxy Company)	37.56%
Common Equity (Least Risky Proxy Company)	62.44%
Proxy Group Beta	0.78
Un-Levered Beta	0.54
Re-Levered Beta	0.73
Risk-Free Rate	3.96%
CAPM Based on Proxy Group Capital Structure	11.74%
CAPM Based on Confluence Rivers' Capital Structure (Re-Levered Beta)	11.24%
Indicated Financial Risk Adjustment	$\underline{\underline{0.50 \%}}$

Therefore, a downward adjustment of 0.51% (the average adjustment based on the M\&M and Hamada applications) to the indicated range of common equity cost rate is necessary to reflect the greater financial risk inherent in Confluence Rivers' recommended capital structure ratios compared with that of the Utility Proxy Group.
Q. What is the indicated range of common equity cost rates after adjustment for the Confluence Rivers' smaller size and lesser financial risk relative to the Utility Proxy Group?
A. After applying the 1.00% size adjustment and the negative 0.51% financial risk adjustment to the indicated range of common equity cost rates between 10.36% and 11.36%, based on the Utility Proxy Group results, a range of common equity cost rates between 10.85% and 11.85% is applicable to Confluence Rivers.

X. CONCLUSION

Q. Using the just and reasonable standard applicable in utility rate cases, what is your recommended return on investor-supplied capital for Confluence Rivers?
A. Given the Company's actual capital structure which consists of 31.44% long-term debt at an embedded debt cost rate of 6.60% and 68.56% common equity at my recommended ROE of 11.35%, I conclude that an appropriate return on investorsupplied capital for the Company is 9.86%. A common equity cost rate of 11.35% is consistent with the Hope and Bluefield standard of a just and reasonable return which ensures the integrity of presently invested capital and enables the attraction of needed new capital on reasonable terms. It also ensures that Confluence Rivers will be able to continue providing safe, adequate, and reliable service to the benefit of its customers. Thus, it balances the interests of both customers and the Company.
Q. Does this conclude your Direct Testimony?
A. Yes, it does.

BEFORE THE PUBLIC SERVICE COMMISSION OF THE STATE OF MISSOURI

In the Matter of Confluence Rivers Utility) Operating Company, Inc.'s Request for Authority) to Implement a General Rate Increase for Water) Service and Sewer Service Provided in Missouri) Service Areas.

File No. WR-2023-0006
File No. SR-2023-0007

AFFIDAVIT OF DYLAN D'ASCENDIS

STATE OF NEW JERSEY
 SS
 COUNTY OF

Dylan D'Ascendis, of lawful age and being first duly sworn, deposes and states:

1. My name is Dylan D'Ascendis. I am a Partner with ScottMadden, Inc. I have been retained to provide testimony in this proceeding by Confluence Rivers Utility Operating Company, LLC.
2. Attached hereto and made a part hereof for all purposes is my direct testimony.
3. I hereby swear and affirm that my statements contained in the attached testimony are true and correct to the best of my knowtedge and belief.

Subscribed and sworn to me this 16 day of December, 2022

My commission expires 6/9/2024.

Summary

Dylan is an experienced consultant and a Certified Rate of Return Analyst (CRRA) and Certified Valuation Analyst (CVA). Dylan joined ScottMadden in 2016 and has become a leading expert witness with respect to cost of capital and capital structure. He has served as a consultant for investor-owned and municipal utilities and authorities for 14 years. Dylan has testified as an expert witness on over 125 occasions regarding rate of return, cost of service, rate design, and valuation before more than 35 regulatory jurisdictions in the United States and Canada, an American Arbitration Association panel, and the Superior Court of Rhode Island. He also maintains the benchmark index against which the Hennessy Gas Utility Mutual Fund performance is measured. Dylan holds a B.A. in economic history from the University of Pennsylvania and an M.B.A. with concentrations in finance and international business from Rutgers University.

Areas of Specialization

\author{

- Regulation and Rates
 - Rate of Return
 - Valuation
 - Mutual Fund Benchmarking
 - Capital Market Risk
 - Regulatory Strategy
 - Cost of Service
}

Recent Expert Testimony Submission/Appearance

- Regulatory Commission of Alaska - Capital Structure
- Federal Energy Regulatory Commission - Rate of Return
- Public Utility Commission of Texas - Return on Equity
- Hawaii Public Utilities Commission - Cost of Service / Rate Design
- Pennsylvania Public Utility Commission - Valuation

Recent Assignments

- Provided expert testimony on the cost of capital for ratemaking purposes before numerous state utility regulatory agencies
- Sponsored valuation testimony for a large municipal water company in front of an American Arbitration Association Board to justify the reasonability of their lease payments to the City
- Co-authored a valuation report on behalf of a large investor-owned utility company in response to a new state regulation which allowed the appraised value of acquired assets into rate base

Recent Articles and Speeches

- Co-Author of: "Decoupling, Risk Impacts and the Cost of Capital", co-authored with Richard A. Michelfelder, Ph.D., Rutgers University and Pauline M. Ahern. The Electricity Journal, March, 2020
- Co-Author of: "Decoupling Impact and Public Utility Conservation Investment", co-authored with Richard A. Michelfelder, Ph.D., Rutgers University and Pauline M. Ahern. Energy Policy Journal, 130 (2019), 311-319
- "Establishing Alternative Proxy Groups", before the Society of Utility and Regulatory Financial Analysts: 51st Financial Forum, April 4, 2019, New Orleans, LA
- "Past is Prologue: Future Test Year", Presentation before the National Association of Water Companies 2017 Southeast Water Infrastructure Summit, May 2, 2017, Savannah, GA.
- Co-author of: "Comparative Evaluation of the Predictive Risk Premium Model ${ }^{\text {TM }}$, the Discounted Cash Flow Model and the Capital Asset Pricing Model", co-authored with Richard A. Michelfelder, Ph.D., Rutgers University, Pauline M. Ahern, and Frank J. Hanley, The Electricity Journal, May, 2013
- "Decoupling: Impact on the Risk and Cost of Common Equity of Public Utility Stocks", before the Society of Utility and Regulatory Financial Analysts: 45th Financial Forum, April 17-18, 2013, Indianapolis, IN

Appendix A - Resume \& Testimony Listing of:
Dylan W. D'Ascendis, CRRA, CVA

Sponsor	Date	Case/Applicant	Docket No.	Subject
Regulatory Commission of Alaska				
ENSTAR Natural Gas Company	08/22	ENSTAR Natural Gas Company	Docket No. TA334-4	Rate of Return
Cook Inlet Natural Gas Storage Alaska, LLC	07/21	Cook Inlet Natural Gas Storage Alaska, LLC	Docket No. TA45-733	Capital Structure
Alaska Power Company	09/20	Alaska Power Company; Goat Lake Hydro, Inc.; BBL Hydro, Inc.	Tariff Nos. TA886-2; TA6-521; TA4-573	Capital Structure
Alaska Power Company	07/16	Alaska Power Company	Docket No. TA857-2	Rate of Return
Alberta Utilifties Commission				
AltaLink, L.P., and EPCOR Distribution \& Transmission, Inc.	01/20	AltaLink, L.P., and EPCOR Distribution \& Transmission, Inc.	2021 Generic Cost of Capital, Proceeding ID. 24110	Rate of Return
Arizona Corporation Commission				
EPCOR Water Arizona, Inc.	08/22	EPCOR Water Arizona, Inc.	$\begin{aligned} & \text { Docket No. WS-01303A-22- } \\ & 0236 \end{aligned}$	Rate of Return
EPCOR Water Arizona, Inc.	06/20	EPCOR Water Arizona, Inc.	$\begin{aligned} & \text { Docket No. WS-01303A-20- } \\ & 0177 \end{aligned}$	Rate of Return
Arizona Water Company	12/19	Arizona Water Company - Western Group	Docket No. W-01445A-19-0278	Rate of Return
Arizona Water Company	08/18	Arizona Water Company - Northern Group	Docket No. W-01445A-18-0164	Rate of Return
Arkansas Public Service Commission				
Southwestern Electric Power Co.	07/21	Southwestern Electric Power Co.	Docket No. 21-070-U	Return on Equity
CenterPoint Energy Resources Corp.	05/21	CenterPoint Arkansas Gas	Docket No. 21-004-U	Return on Equity
Colorado Public Utilities Commission				
Atmos Energy Corporation	08/22	Atmos Energy Corporation	Docket No. 22AL-0348G	Rate of Return
Summit Utilities, Inc.	04/18	Colorado Natural Gas Company	Docket No. 18AL-0305G	Rate of Return
Atmos Energy Corporation	06/17	Atmos Energy Corporation	Docket No. 17AL-0429G	Rate of Return
Delaware Public Service Commission				
Delmarva Power \& Light Co.	01/22	Delmarva Power \& Light Co.	Docket No. 22-002 (Gas)	Return on Equity
Delmarva Power \& Light Co.	11/20	Delmarva Power \& Light Co.	Docket No. 20-0149 (Electric)	Return on Equity
Delmarva Power \& Light Co.	10/20	Delmarva Power \& Light Co.	Docket No. 20-0150 (Gas)	Return on Equity
Tidewater Utilities, Inc.	11/13	Tidewater Utilities, Inc.	Docket No. 13-466	Capital Structure
Public Service Commission of the District of Columbia				
Washington Gas Light Company	04/22	Washington Gas Light Company	Formal Case No. 1169	Rate of Return
Washington Gas Light Company	09/20	Washington Gas Light Company	Formal Case No. 1162	Rate of Return
Federal Energy Regulatory Commission				
LS Power Grid California, LLC	10/20	LS Power Grid California, LLC	Docket No. ER21-195-000	Rate of Return
Florida Public Service Commission				
Tampa Electric Company	04/21	Tampa Electric Company	Docket No. 20210034-EI	Return on Equity
Peoples Gas System	09/20	Peoples Gas System	Docket No. 20200051-GU	Rate of Return
Utilities, Inc. of Florida	06/20	Utilities, Inc. of Florida	Docket No. 20200139-WS	Rate of Return
Hawail Public Utilifites Commission				
Launiupoko Irrigation Company, Inc.	12/20	Launiupoko Irrigation Company, Inc.	Docket No. 2020-0217 / Transferred to 2020-0089	Capital Structure
Lanai Water Company, Inc.	12/19	Lanai Water Company, Inc.	Docket No. 2019-0386	Cost of Service / Rate Design

Appendix A - Resume \& Testimony Listing of:
Dylan W. D'Ascendis, CRRA, CVA
Partner

Sponsor	Date	Case/Applicant	Docket No.	Subject
Manele Water Resources, LLC	08/19	Manele Water Resources, LLC	Docket No. 2019-0311	Cost of Service / Rate Design
Kaupulehu Water Company	02/18	Kaupulehu Water Company	Docket No. 2016-0363	Rate of Return
Aqua Engineers, LLC	05/17	Puhi Sewer \& Water Company	Docket No. 2017-0118	Cost of Service / Rate Design
Hawaii Resources, Inc.	09/16	Laie Water Company	Docket No. 2016-0229	Cost of Service / Rate Design
Illinois Commerce Commission				
Utility Services of Illinois, Inc.	02/21	Utility Services of Illinois, Inc.	Docket No. 21-0198	Rate of Return
Ameren Illinois Company d/b/a Ameren Illinois	07/20	Ameren Illinois Company d/b/a Ameren Illinois	Docket No. 20-0308	Return on Equity
Utility Services of Illinois, Inc.	11/17	Utility Services of Illinois, Inc.	Docket No. 17-1106	Cost of Service / Rate Design
Aqua Illinois, Inc.	04/17	Aqua Illinois, Inc.	Docket No. 17-0259	Rate of Return
Utility Services of Illinois, Inc.	04/15	Utility Services of Ilinois, Inc.	Docket No. 14-0741	Rate of Return
Indiana Utility Regulatory Commission				
Aqua Indiana, Inc.	03/16	Aqua Indiana, Inc. Aboite Wastewater Division	Docket No. 44752	Rate of Return
Twin Lakes, Utilities, Inc.	08/13	Twin Lakes, Utilities, Inc.	Docket No. 44388	Rate of Return
Kansas Corporation Commission				
Atmos Energy Corporation	07/19	Atmos Energy Corporation	19-ATMG-525-RTS	Rate of Return
Kentucky Public Service Commission				
Water Service Corporation of KY	06/22	Water Service Corporation of KY	2022-00147	Rate of Return
Atmos Energy Corporation	07/21	Atmos Energy Corporation	2021-00304	PRP Rider Rate
Atmos Energy Corporation	06/21	Atmos Energy Corporation	2021-00214	Rate of Return
Duke Energy Kentucky, Inc.	06/21	Duke Energy Kentucky, Inc.	2021-00190	Return on Equity
Bluegrass Water Utility Operating Company	10/20	Bluegrass Water Utility Operating Company	2020-00290	Return on Equity
Louisiana Public Service Commission				
Utilities, Inc. of Louisiana	05/21	Utilities, Inc. of Louisiana	Docket No. U-36003	Rate of Return
Southwestern Electric Power Company	12/20	Southwestern Electric Power Company	Docket No. U-35441	Return on Equity
Atmos Energy	04/20	Atmos Energy	Docket No. U-35535	Rate of Return
Louisiana Water Service, Inc.	06/13	Louisiana Water Service, Inc.	Docket No. U-32848	Rate of Return
Maine Public Utillities Commission				
Summit Natural Gas of Maine, Inc.	03/22	Summit Natural Gas of Maine, Inc.	Docket No. 2022-00025	Rate of Return
The Maine Water Company	09/21	The Maine Water Company	Docket No. 2021-00053	Rate of Return
Maryland Public Service Commission				
Washington Gas Light Company	08/20	Washington Gas Light Company	Case No. 9651	Rate of Return
FirstEnergy, Inc.	08/18	Potomac Edison Company	Case No. 9490	Rate of Return
Massachusetits Department of Public Utilities				
Unitil Corporation	12/19	Fitchburg Gas \& Electric Co. (Elec.)	D.P.U. 19-130	Rate of Return
Unitil Corporation	12/19	Fitchburg Gas \& Electric Co. (Gas)	D.P.U. 19-131	Rate of Return
Liberty Utilities	07/15	Liberty Utilities d/b/a New England Natural Gas Company	Docket No. 15-75	Rate of Return
Minnesota Public Utilities Commission				
Northern States Power Company	11/01	Northern States Power Company	Docket No. G002/GR-21-678	Return on Equity
Northern States Power Company	10/21	Northern States Power Company	Docket No. E002/GR-21-630	Return on Equity

Appendix A - Resume \& Testimony Listing of:
Dylan W. D'Ascendis, CRRA, CVA

Sponsor	Date	Case/Applicant	Docket No.	Subject
Northern States Power Company	11/20	Northern States Power Company	Docket No. E002/GR-20-723	Return on Equity
Mississippi Public Service Commission				
Great River Utility Operating Co.	07/22	Great River Utility Operating Co.	Docket No. 2022-UN-86	Rate of Return
Atmos Energy	03/19	Atmos Energy	Docket No. 2015-UN-049	Capital Structure
Atmos Energy	07/18	Atmos Energy	Docket No. 2015-UN-049	Capital Structure
Missouri Public Service Commission				
Spire Missouri, Inc.	12/20	Spire Missouri, Inc.	Case No. GR-2021-0108	Return on Equity
Indian Hills Utility Operating Company, Inc.	10/17	Indian Hills Utility Operating Company, Inc.	Case No. SR-2017-0259	Rate of Return
Raccoon Creek Utility Operating Company, Inc.	09/16	Raccoon Creek Utility Operating Company, Inc.	Case No. SR-2016-0202	Rate of Return
Public Utilifies Commission of Nevada				
Southwest Gas Corporation	09/21	Southwest Gas Corporation	Docket No. 21-09001	Return on Equity
Southwest Gas Corporation	08/20	Southwest Gas Corporation	Docket No. 20-02023	Return on Equity
New Hampshire Public Utilities Commission				
Aquarion Water Company of New Hampshire, Inc.	12/20	Aquarion Water Company of New Hampshire, Inc.	Docket No. DW 20-184	Rate of Return
New Jersey Board of Public UEilifities				
Middlesex Water Company	05/21	Middlesex Water Company	Docket No. WR21050813	Rate of Return
Atlantic City Electric Company	12/20	Atlantic City Electric Company	Docket No. ER20120746	Return on Equity
FirstEnergy	02/20	Jersey Central Power \& Light Co.	Docket No. ER20020146	Rate of Return
Aqua New Jersey, Inc.	12/18	Aqua New Jersey, Inc.	Docket No. WR18121351	Rate of Return
Middlesex Water Company	10/17	Middlesex Water Company	Docket No. WR17101049	Rate of Return
Middlesex Water Company	03/15	Middlesex Water Company	Docket No. WR15030391	Rate of Return
The Atlantic City Sewerage Company	10/14	The Atlantic City Sewerage Company	Docket No. WR14101263	Cost of Service / Rate Design
Middlesex Water Company	11/13	Middlesex Water Company	Docket No. WR1311059	Capital Structure

New Mexico Public Regulation Commission

Southwestern Public Service Co.	01/21	Southwestern Public Service Co.	Case No. 20-00238-UT	Return on Equity
North Carolina Utilities Commission				
Carolina Water Service, Inc.	07/22	Carolina Water Service, Inc.	Docket No. W-354 Sub 400	Rate of Return
Aqua North Carolina, Inc.	06/22	Aqua North Carolina, Inc.	Docket No. W-218 Sub 573	Rate of Return
Carolina Water Service, Inc.	07/21	Carolina Water Service, Inc.	Docket No. W-354 Sub 384	Rate of Return
Piedmont Natural Gas Co., Inc.	03/21	Piedmont Natural Gas Co., Inc.	Docket No. G-9, Sub 781	Return on Equity
Duke Energy Carolinas, LLC	07/20	Duke Energy Carolinas, LLC	Docket No. E-7, Sub 1214	Return on Equity
Duke Energy Progress, LLC	07/20	Duke Energy Progress, LLC	Docket No. E-2, Sub 1219	Return on Equity
Aqua North Carolina, Inc.	12/19	Aqua North Carolina, Inc.	Docket No. W-218 Sub 526	Rate of Return
Carolina Water Service, Inc.	06/19	Carolina Water Service, Inc.	Docket No. W-354 Sub 364	Rate of Return
Carolina Water Service, Inc.	09/18	Carolina Water Service, Inc.	Docket No. W-354 Sub 360	Rate of Return
Aqua North Carolina, Inc.	07/18	Aqua North Carolina, Inc.	Docket No. W-218 Sub 497	Rate of Return
North Dakota Public Service Commission				
Northern States Power Company	09/21	Northern States Power Company	Case No. PU-21-381	Rate of Return
Northern States Power Company	11/20	Northern States Power Company	Case No. PU-20-441	Rate of Return
Public Utilities Commission of Ohio				
Duke Energy Ohio, Inc.	10/21	Duke Energy Ohio, Inc.	Case No. 21-887-EL-AIR	Return on Equity
Aqua Ohio, Inc.	07/21	Aqua Ohio, Inc.	Case No. 21-0595-WW-AIR	Rate of Return
Aqua Ohio, Inc.	05/16	Aqua Ohio, Inc.	Case No. 16-0907-WW-AIR	Rate of Return

Appendix A - Resume \& Testimony Listing of:
Dylan W. D'Ascendis, CRRA, CVA

Sponsor	Date	Case/Applicant	Docket No.	Subject
Pennsylvania Public Utility Commission				
Borough of Ambler	06/22	Borough of Ambler - Bureau of Water	Docket No. R-2022-3031704	Rate of Return
Citizens' Electric Company of Lewisburg	05/22	C\&T Enterprises	Docket No. R-2022-3032369	Rate of Return
Valley Energy Company	05/22	C\&T Enterprises	Docket No. R-2022-3032300	Rate of Return
Community Utilities of Pennsylvania, Inc.	04/21	Community Utilities of Pennsylvania, Inc.	Docket No. R-2021-3025207	Rate of Return
Vicinity Energy Philadelphia, Inc.	04/21	Vicinity Energy Philadelphia, Inc.	Docket No. R-2021-3024060	Rate of Return
Delaware County Regional Water Control Authority	02/20	Delaware County Regional Water Control Authority	Docket No. A-2019-3015173	Valuation
Valley Energy, Inc.	07/19	C\&T Enterprises	Docket No. R-2019-3008209	Rate of Return
Wellsboro Electric Company	07/19	C\&T Enterprises	Docket No. R-2019-3008208	Rate of Return
Citizens' Electric Company of Lewisburg	07/19	C\&T Enterprises	Docket No. R-2019-3008212	Rate of Return
Steelton Borough Authority	01/19	Steelton Borough Authority	Docket No. A-2019-3006880	Valuation
Mahoning Township, PA	08/18	Mahoning Township, PA	Docket No. A-2018-3003519	Valuation
SUEZ Water Pennsylvania Inc.	04/18	SUEZ Water Pennsylvania Inc.	Docket No. R-2018-000834	Rate of Return
Columbia Water Company	09/17	Columbia Water Company	Docket No. R-2017-2598203	Rate of Return
Veolia Energy Philadelphia, Inc.	06/17	Veolia Energy Philadelphia, Inc.	Docket No. R-2017-2593142	Rate of Return
Emporium Water Company	07/14	Emporium Water Company	Docket No. R-2014-2402324	Rate of Return
Columbia Water Company	07/13	Columbia Water Company	Docket No. R-2013-2360798	Rate of Return
Penn Estates Utilities, Inc.	12/11	Penn Estates, Utilities, Inc.	Docket No. R-2011-2255159	Capital Structure / Long-Term Debt Cost Rate
South Carolina Public Service Commission				
Blue Granite Water Co.	12/19	Blue Granite Water Company	Docket No. 2019-292-WS	Rate of Return
Carolina Water Service, Inc.	02/18	Carolina Water Service, Inc.	Docket No. 2017-292-WS	Rate of Return
Carolina Water Service, Inc.	06/15	Carolina Water Service, Inc.	Docket No. 2015-199-WS	Rate of Return
Carolina Water Service, Inc.	11/13	Carolina Water Service, Inc.	Docket No. 2013-275-WS	Rate of Return
United Utility Companies, Inc.	09/13	United Utility Companies, Inc.	Docket No. 2013-199-WS	Rate of Return
Utility Services of South Carolina, Inc.	09/13	Utility Services of South Carolina, Inc.	Docket No. 2013-201-WS	Rate of Return
Tega Cay Water Services, Inc.	11/12	Tega Cay Water Services, Inc.	Docket No. 2012-177-WS	Capital Structure
South Dakota Public Service Commission				
Northern States Power Company	06/22	Northern States Power Company	Docket No. EL22-017	Rate of Return
Tennessee Public Utillity Commission				
Piedmont Natural Gas Company	07/20	Piedmont Natural Gas Company	Docket No. 20-00086	Return on Equity
Public Utility Commission of Texas				
Oncor Electric Delivery Co. LLC	05/22	Oncor Electric Delivery Co. LLC	Docket No. 53601	Return on Equity
Southwestern Public Service Co.	02/21	Southwestern Public Service Co.	Docket No. 51802	Return on Equity
Southwestern Electric Power Co.	10/20	Southwestern Electric Power Co.	Docket No. 51415	Rate of Return
Virginia State Corporation Commission				
Washington Gas Light Company	06/22	Washington Gas Light Company	PUR-2022-00054	Return on Equity
Virginia Natural Gas, Inc.	04/21	Virginia Natural Gas, Inc.	PUR-2020-00095	Return on Equity
Massanutten Public Service Corporation	12/20	Massanutten Public Service Corporation	PUE-2020-00039	Return on Equity
Aqua Virginia, Inc.	07/20	Aqua Virginia, Inc.	PUR-2020-00106	Rate of Return

Appendix A - Resume \& Testimony Listing of:
Dylan W. D'Ascendis, CRRA, CVA

Date	Case/Applicant	Docket No.	Subject
$07 / 18$	Washington Gas Light Company	PUR-2018-00080	Rate of Return
$05 / 18$	Atmos Energy Corporation	PUR-2018-00014	Rate of Return
$07 / 17$	Aqua Virginia, Inc.	PUR-2017-00082	Rate of Return
$08 / 14$	Massanutten Public Service Corp.	PUE-2014-00035	Rate of Return / Rate Design
1 11/21	Monongahela Power Company and The Potomac Edison Company	Monongahela Power Company and The Potomac Edison Company	Case No. 21-0813-E-P (Solar)

Confluence Rivers (MO) Utility Operating Company, Inc. Table of Contents
 Supporting Schedules Accompanying the Direct Testimony of Dylan W. D'Ascendis, CRRA, CVA

Schedule
Summary of Cost of Capital and Fair Rate of Return DWD-1
Financial Profile of and Capital Structures of the Utility Proxy Group DWD-2
Indicated Common Equity Cost Rate Using the Discounted Cash Flow Model DWD-3
Indicated Common Equity Cost Rate Using the Risk Premium Model DWD-4
Indicated Common Equity Cost Rate Using the Capital Asset Pricing Model DWD-5
Basis of Selection for the Non-Price Regulated Companies Comparable in Total Risk to the Utility Proxy Group DWD-6
Cost of Common Equity Models Applied to the Non-Price Regulated Proxy Group DWD-7
Estimated Market Capitalization for Confluence Rivers (MO) Utility Operating Company, Inc. and the Utility Proxy Group DWD-8
Calculation of the Financial Risk Adjustment DWD-9

Confluence Rivers (MO) Utility Operating Company, Inc.
Recommended Capital Structure and Cost Rates for Ratemaking Purposes

Type Of Capital	Ratios (1)	Cost Rate		Weighted Cost Rate
Long-Term Debt	31.44\%	6.60\%	(1)	2.08\%
Common Equity	68.56\%	11.35\%	(2)	7.78\%
Total	100.00\%			9.86\%

Notes:
(1) Company provided.
(2) From page 2 of this Schedule.

Confluence Rivers (MO) Utility Operating Company, Inc. Brief Summary of Common Equity Cost Rate

Line No.	$\underline{\text { Principal Methods }}$	Proxy Group of Six Water Companies
1.	Discounted Cash Flow Model (DCF) (1)	9.73\%
2.	Risk Premium Model (RPM) (2)	11.84\%
3.	Capital Asset Pricing Model (CAPM) (3)	12.00\%
4.	Market Models Applied to Comparable Risk, Non-Price Regulated Companies (4)	11.97\%
5.	Indicated Common Equity Cost Rate before Adjustment for Unique Risk	10.36\%-11.36\%
7.	Business Risk Adjustment (5)	1.00\%
6.	Financial Risk Adjustment (6)	-0.51\%
8.	Indicated Common Equity Cost Rate after Adjustment	10.85\%-11.85\%
9.	Recommended Common Equity Cost Rate	11.35\%

Notes: (1) From page 1 of Schedule DWD-3.
(2) From page 1 of Schedule DWD-4.
(3) From page 1 of Schedule DWD-5.
(4) From page 1 of Schedule DWD-7.
(5) Business risk adjustment to reflect Confluence Rivers' unique risk compared to the Utility Proxy Group as detailed in the accompanying Direct Testimony.
(6) From Schedule DWD-9.

2017-2021, Inclusive

Capital Structure Based upon Total Permanent Capital for the

Proxy Group of Six Water Companies
2017-2021, Inclusive

	$\underline{2021}$	$\underline{2020}$	$\underline{2019}$	$\underline{2018}$	$\underline{2017}$	$\begin{gathered} \text { 5 YEAR } \\ \text { AVERAGE } \end{gathered}$
American States Water Company						
Long-Term Debt	37.56 \%	40.72 \%	31.87 \%	36.54 \%	37.75 \%	36.89 \%
Preferred Stock	0.00	0.00	0.00	0.00	0.00	0.00
Common Equity	62.44	59.28	68.13	63.46	62.25	63.11
Total Capital	100.00 \%	100.00 \%	$\underline{100.00}$ \%	100.00 \%	100.00 \%	$\underline{100.00}$ \%
American Water Works Company, Inc.						
Long-Term Debt	58.75 \%	59.93 \%	58.59 \%	56.55 \%	55.81 \%	57.93 \%
Preferred Stock	0.02	0.02	0.03	0.05	0.07	0.04
Common Equity	41.23	40.05	41.38	43.40	44.12	42.03
Total Capital	100.00 \%	100.00 \%	$\underline{100.00}$ \%	$\underline{100.00}$ \%	100.00 \%	$\underline{100.00}$ \%
California Water Service Group						
Long-Term Debt	47.28 \%	46.04 \%	50.90 \%	52.74 \%	43.40 \%	48.07 \%
Preferred Stock	0.00	0.00	0.00	0.00	0.00	0.00
Common Equity	52.72	53.96	49.10	47.26	56.60	51.93
Total Capital	100.00 \%	$\underline{100.00}$ \%	$\underline{100.00}$ \%	100.00 \%	$\underline{100.00}$ \%	$\underline{100.00}$ \%

Essential Utilities Inc.
Long-Term Debt
Preferred Stock
Common Equity
Total Capital

53.28 \%	54.42 \%	44.23 \%	56.06 \%	52.26 \%	52.05 \%
0.00	0.00	0.00	0.00	0.00	0.00
46.72	45.58	55.77	43.94	47.74	47.95
100.00 \%	100.00 \%	100.00 \%	100.00 \%	100.00 \%	100.00 \%

46.87 \%	44.61 \%	42.20 \%	38.94 \%	38.65 \%	42.25 \%
0.30	0.33	0.37	0.59	0.64	0.45
52.83	55.06	57.43	60.47	60.71	57.30
100.00 \%	100.00 \%	100.00 \%	100.00 \%	100.00 \%	100.00 \%

SJW Group

Long-Term Debt
Preferred Stock
Common Equity
Total Capital

Proxy Group of Six Water Companies
Long-Term Debt
Preferred Stock
Common Equity
Total Capital

50.57 \%	50.92 \%	47.81 \%	45.58 \%	46.01 \%	48.18 \%
0.05	0.06	0.06	0.11	0.12	0.08
49.38	49.02	52.13	54.31	53.87	51.74
100.00 \%	100.00 \%	100.00 \%	100.00 \%	100.00 \%	100.00 \%

Source of Information
Annual Forms 10-K
Confluence Rivers (MO) Utility Operating Company, Inc.
Indicated Common Equity Cost Rate Using the Discounted Cash Flow Model for the

(SMILL.)			
Cash Assets	36.7	5.0	10.8
Accts Receivable	29.2	34.4	27.1
Other	91.2	98.7	101.1
Current Assets	157.1	138.1	139.0
Accts Payable	63.8	65.9	71.9
Debt Due	4	31.4	223.9
Other	54.4	58.3	52.9
Current Liab.	118.6	155.6	348.7

ANNUAL RATES of change (per sh) Revenues "Cash Flow" Earnings Dividends Book Value		Past P 10 Yrs. 5 2.5% 5.5% 9.0% 8.5 9.5% 8.5 5.5%		Past Est'd '19-'21 5Yrs. to '25-27 1.5% 5.5% 4.5% 5.5% 8.5% 5.5% 8.0% 9.0% 6.0% 5.5%					
Calendar	QUARTERLY REVENUES (\$ mill.) Mar. 31 Jun. 30 Sep. 30 Dec. 31				Full Year				
$\begin{aligned} & 2019 \\ & 2020 \\ & 2021 \\ & 2022 \\ & 2023 \end{aligned}$	$\begin{array}{r} \hline 101.7 \\ 109.1 \\ 117.1 \\ 108.6 \\ 112 \end{array}$	124.7	134.5	113.0	473.9				
		121.3	133.6	124.2	488.2				
		128.4	136.8	116.6	498.9				
		122.6	143.8	135	510				
		130	145	138	525				
Calendar	EARNINGS PER SHARE AMar. 31 Jun. 30 Sep. 30 Dec. 31				Full Year				
2019	. 35	. 72	. 76	. 45	2.28				
2020	. 38	. 69	. 72	. 54	2.33				
2021	. 52	. 72	. 76	. 55	2.55				
2022	. 38	. 54	. 65	. 88	2.45				
2023	. 50	. 75	. 75	. 60	260				
Cal-endar	QUARTERLY DIVIDENDS PAID ${ }^{\text {ma }}$				Full Year				
	Mar. 31	Jun. 30	Sep. 30	Dec. 31					
2018	. 255	255	275	. 275	1.06				
2019	. 275	. 275	. 305	. 305	1.16				
2020	. 305	. 305	. 335	. 335	1.28				
2021	. 335	. 335	. 365	. 365	1.40				
2022	. 365	. 365	. 3975						

BUSINESS: American States Water Co. operates as a holding
company. Through its principal subsidiary, Golden State Water Co., it supplies water to 262,770 customers in 10 California counties. Service areas include the metropolitan areas of Los Angeles and Orange Counties. The company also provides electricity to 24,656 customers in Big Bear Lake and San Bernardino Cnty. Provides
American States Water had another difficult quarter. In the June interim, the company's share net came in at $\$ 0.54$, versus last year's $\$ 0.72$ showing. About $\$ 0.10$ a share of the shortfall was the result of old rates still being in effect. Recall that the company's Golden States Water utility has already reached a settlement regarding higher rates with the state's Office of Public Advocate. The California Public Utility Commission (CPUC) has yet to approve the deal. Typically, the CPUC goes along with the Public Advocate's recommendation. (Indeed, as a body, it can be tougher on utilities than the CPUC.) Also, with the rate increase not in effect yet, third-quarter income will be hurt as well. It is important to note, however, that once the agreement is finalized, the utility will be able to collect these funds retroactive to the beginning of 2022 .
We have lowered our earnings estimates for both 2022 and 2023. Assuming the CPUC makes a final ruling by the end of the year, we have still reduced our share-net estimate by a dime for this year and next. The main reason being that American States has to adjust the valua-
water \& wastewater services to U.S. military bases through its ASUS subsidiary. Sold Chaparral City Wtr. of AZ. (6/11). Employs 808. BlackRock, Inc. owns 17.7% of out. shares; State St., 13.7\%; off. \& dir., 0.9\% (4/22 Proxy). Chairman: Lloyd Ross. Pres. \& CEO: Robert Sprowls. Inc: CA. Address: 630 East Foothill Blvd., San Dimas, CA 91773. Tel.: 909-394-3600. Internet: www.aswater.com.
tion of its portfolio of assets set aside for the pension program each quarter. Losses were incurred that impacted the June period by $\$ 0.10$ a share. Moreover, we think the third quarter will cause another asset writedown, as both the bond and equity markets slumped.
Nonutility operations could be a growth catalyst out to 2025 to 2027. Through its ASUS subsidiary, American States provides water and waste treatment services to U.S. military bases. As the armed forces continue to privatize their water systems, we believe that ASUS will keep winning a fair amount of the 50year contracts that are being put out for competitive bidding. This business is not regulated, so earnings here can exceed those in its other operations.
These shares do not hold much appeal at the recent quotation. In the near term, the equity is ranked to underperform the broader market averages in the coming year. Furthermore, over the threeto five-year pull, AWR's total return potential is well below that of the Value Line median.
James A. Flood
October 7, 2022

(SMILL.)			
Cash Assets	576	136	97
Accts Receivable	321	271	383
Other	1009	1147	538
Current Assets	1906	1554	1018
Accts Payable	189	235	196
Debt Due	1611	641	598
Other	1081	1265	934
Current Liab.	2881	2141	1728

BUSINESS: American Water Works Company, Inc. is the largest investor-owned water and wastewater utility in the U.S., providing services to approximately 14 million people in 24 states. Nonregulated business assists municipalities and military bases with the maintenance and upkeep as well. Regulated operations made up 86% of 2021 revenues. Pennsylvania is its largest market account-
Profits from American Water Works' operations ought to be flattish for the second half of this year. After deducting a $\$ 2.70$-a-share one-time gain in 2021's final period, the company's share net was $\$ 2.38$ over the third and fourth quarters. That is the same amount we expect the utility to make in the remainder of 2022.
The bottom line ought to get back on track in 2023. Assuming reasonable treatment from regulators, American Water's share net could well rise 9% to $\$ 4.85$. A healthy percentage of the profit increase will come from the utility's acquisition strategy (more below).
The regulatory climate could change. American Water has enjoyed a good relationship with the authorities that determine the rates it's allowed to charge customers. State regulators have been cognizant that large capital expenditures are required to upgrade the existing infrastructure. The potential problem ahead is inflation. When prices were rising just 2% annually, it was easier to pass along higher rates to residents. When inflation is high, though, it makes it more difficult politically to approve hikes of $6 \%-8 \%$, even
ing for 21.5% of regulated revenues; New Jersey, 20.3\%; Missouri, 13.9%. Has 6,400 employees. Vanguard owns 11.8% of outstanding shares; BlackRock, 8.9%; State St., 5.4%; officers \& directors, less than 1.0% (4/22 Proxy). President \& CEO: Susan N. Story. Chairman: George MacKenzie. Address: 1 Water Street, Camden, NJ 08102. Tel.: 856-346-8200. Internet: www.amwater.com.
if the costs are justified.
The construction program is massive. Management has been pursuing an aggressive building policy aimed mostly at replacing antiquated pipelines and wastewater systems. In 2022, the company is on pace to spend $\$ 2.5$ billion. Since most of its pipelines and other assets are not in great shape, the spending should be ongoing.
Acquisitions ought to be a driver of income growth. There are thousands of small municipally run water district in the U.S. A good portion do not have the finances to fund the necessary repairs and upgrades needed to be in compliance with EPA guidelines. American Water has been absorbing many smaller entities over the decade. This has enabled it to expand its rate base, on which it earns a return. Also, there are redundancies in the industry that can be eliminated from the districts it purchases, which should increase operating margins.
These timely shares are not suitable for long-term accounts. The price of the equity is already trading within our projected 2025-2027 Target Price Range. James A. Flood

October 7, 2022

[^12]

(\$MILL.) Cash Assets	44.6	78.4	. 7
Other	221.4	222.1	215.0
Current Assets	266.0	300.5	276.7
Accts Payable	131.7	144.4	139.7
Debt Due	375.1	40.2	75.8
Other	81.9	72.0	70.6
Current Liab.	588.7	256.6	286.1

(A) Basic EPS. Excl. nonrecurring gain (Ioss):	$\begin{array}{l}\text { available. } \\ \text { '11, } 4 \varnothing \text {. Next earnings report due early Nov. }\end{array}$
(C) Incl. intangible assets. In '21: $\$ 36.8$ mill.,	

BUSINESS: California Water Service Group provides regulated and nonregulated water service to 494,500 customers in 100 communities in the state of California. Accounts for about 94\% of total customers. Also operates in Washington, New Mexico, and Hawaii. Main service areas: San Francisco Bay area, Sacramento Valley, Salinas Valley, San Joaquin Valley \& parts of Los Angeles. Ac-
California Water Service Group has made some moves since our early-July review. First, the company's Californiaand Washington-based subsidiaries both inked deal's to acquire water system assets of two adjacent utilities. The acquisitions, which are still pending customary closing conditions and regulatory approval, ought to bolster California Water's residential operating footprint in these areas. Meanwhile, in Texas, the company recently entered into a long-term water supply agreement with the Guadalupe Blanco River Authority. The deal is imperative to meeting residential water demand in the growing region, and is likely to require substantial pipeline infrastructure development. Lastly, management continues to make progress on its 2021 cost of capital review and general rate case filing.

Earnings are apt to take a step back

 this year. California Water posted net income of $\$ 0.36$ per share in the June peri-od, roughly half that of the prior-year tally The softer-than-expected showing can ly. The softer-than-expected showing can change in deferred revenue, weaker cus-
quired Rio Grande Corp; West Hawaii Utilities (9/08). Revenue breakdown, '21: residential, 69\%; business, 19\%; industrial, 3%; public authorities, 5%; other 4%. Off. and dir. own 1% of common stock (4/22 proxy). Has 1,184 employees. Pres. and CEO: Martin A. Kropelnicki. Inc.: DE. Addr.: 1720 North First St., San Jose, CA 95112-4598. Tel.: 408-367-8200. Internet: www.calwatergroup.com.
tomer water consumption, and an uptick in general and administrative expenses. That said, bottom-line comparisons are poised to improve over the back half of 2022, largely owing to prospects for customer rate increases. Even so, we are shaving $\$ 0.30$ from our current-year earnings estimate, to $\$ 1.70$ per share.

Significant infrastructure investment

 is on the docket over the pull to late decade. In addition to upgrading aging water delivery systems and treatment plants, California Water is allocating funds to shore up its preparation for unexpected wildfires and climate-related challenges. Meanwhile, the company's recently announced $\$ 350$-million stock buyback program is imminent.California Water shares lack investment appeal at this juncture. The stock has slipped one notch on our Timeliness ranking scale, to 4 (Below Average). Moreover, much of the growth we envision three to five years hence appears to already be factored into the recent quotation. All told, subscribers would do well to remain on the sidelines, for now. Nicholas Patrikis

October 7, 2022
© 2022 Value Line, Inc. All rights reserved. Factual material is obtained from sources believed to be reliable and is provided without warranties of any kind © 2022 Value Line, Inc. All rights reserved. Factual material is obtained from sources believed to be reliable and is provided without warranties of any kind.
THE PUBLISHER IS NOT RESPONSIBLE FOR ANY ERRORS OR OMISSIONS HEREIN. This publication is strictly for subscriber's own, non-commercial, internal use. No part

Cash Assets	4.8	10.6	13.0
Receivables	154.8	141.0	143.4
Inventory (AvgCst)	58.4	109.6	128.6
Other	162.2	176.6	128.3
	380.2	437.8	413.3
Current Assets	177.5	192.9	194.1
Accts Payable	162.6	197.1	125.6
Debt Due	263.8	285.1	224.4
Other	603.9	675.1	544.1
Current Liab.			

BUSINESS: Essential Utilities, Inc. became the new name for Aqua America on Feb. 3, 2020, to reflect the acquisition of Peoples, a natural gas utility, which occurred in 3/20. In 2021, Aqua Amer. provided water and wastewater services to about 5 million people in PA, OH, TX, IL, NC, NJ, IN, VA NS WS. Employs 3,211. Acquired AquaSource, $7 / 13$; N. Maine Util., $7 / 15$; and others. Water respn.
Essential Utilities' second-quarter earnings were in line with our expectations. The water and gas utility posted share net of $\$ 0.31$, versus our $\$ 0.32$ estimate. Management reaffirmed the same guidance as before, so we are sticking with our previous bottom-line estimates of $\$ 1.80$ and 1.95 for 2022 and 2023, respectively. These figures represent a solid 8% increase for both this year and next.
A potential acquisition of a large wastewater project has been shelved, for now. Last summer, Essential's Aqua America water subsidiary signed an exclusivity agreement with the Bucks County Water and Sewer Authority to discuss purchasing the asset for about $\$ 1.1$ billion. In early September, the negotiations were suddenly halted. Aqua continues to express interest in completing the transaction, however. In any case, it has already closed two acquisitions this year and agreed to buy parts, or all of the assets of seven different water systems. The price tag will total approximately $\$ 365$ million.
The policy of aggressively buying
for 52% of revenues in 2021; residential, 30\%; commercial, 8.0\%; industrial, wastewater \& other, 14%. Gas 46%; other, 2.0%. Off. \& dir. own less than 1% of the common stock; BlackRock, 10.6%; Vanguard, 9.7\%; Can. Pen. Plan 8.6% ($3 / 22$ proxy). Pres. \& CEO: Christopher Franklin. Inc.: PA Addr:: 762 W Lancaster Ave., Bryn Mawr, PA 19010. Tel.: 610-525-1400. Int:: www.essential.co.
long-term growth. America's water industry is incredibly fragmented with most water districts being run by small, undercapitalized municipal entities. Not only do they not have the funds required to replace old pipelines and treatment centers, but they are inefficient. When a bigger company, such as Aqua, takes over a smaller water authority, it can create significant efficiencies by eliminating many redundancies.
The dividend was hiked by a healthy percentage. The board increased the quarterly payout by 7%, to $\$ 0.287$ a share in the latest quarter.
Shares of Essential do not look particularly attractive at this time. In the year ahead, the equity is just ranked to perform in line with the broader market averages. Also, the stock's total return potential is well below that of the average equity under Value Line review. Similar to others in this industry, Essential has many appealing features, including welldefined earnings and dividend growth, but they all appear to be more than reflected in the recent quotation.
James A. Flood
October 7, 2022
(A) Diluted egs. Excl. nonrec. gains: '12, 18c. \quad outstanding in the Dec. period. Next earnings \quad available (5\% discount). Excl. gain from disc. operations: '12, 74;' '13, 9¢; '14, 114. Quarterly EPS do not add in '19 due to a large change in the number of share
© 2022 Value Line, Inc. All rights reserved. Factual material is obtained from sources believed to be reliable and is provided without warranties of any kind THE PUBLISHER IS NOT RESPONSIBLE FOR ANY ERRORS OR OMISSIONS HEREIN. This publication is strictly for subscriber's own, non-commercial, internal use. No part of it may be reproduced, resold, stored or transmitted in any printed, electronic or other form, or used for generating or marketing any printed or electronic pubbication, service or produc.

Company's Financial Strength

Stock's Price Stability
Price Growth Persistence
Earnings Predictability
To subscribe call 1-800-VALUELINE

CURRENT POSITION (SMILL.)	2020	2021	6/30/22
Cash Assets	4.5	3.5	4.3
Other	29.6	30.9	34.7
Current Assets	34.1	34.4	39.0
Accts Payable	30.4	21.1	24.2
Debt Due	9.3	6.7	7.8
Other	17.1	28.8	46.8
Current Liab.	56.8	56.6	78.8

NU	Past	P	Est'd '19-2
of change (per sh)		5 Yrs.	'2
Revenues	2.0\%	.5\%	2.5\%
"Cash Flow"	8.0\%	9.5\%	3.5\%
Earnings	9.5\%	11.0\%	4.5\%
Dividends	3.5\%	6.0\%	5.0\%
Book Value	6.0\%	9.0\%	2.5

Calendar	QUARTERLY REVENUES (\$ mill.) Mar. 31 Jun. 30 Sep. 30 Dec. 31				Full Year
2019	30.7	33.4	37.8	32.7	134.6
2020	31.8	35.3	39.9	34.6	141.6
2021	32.5	36.7	39.9	34.0	143.1
2022	36.2	39.7	41.0	38.1	155
2023	38.0	41.0	42.0	39.0	160
$\begin{array}{\|l} \text { Cal- } \\ \text { endar } \\ \hline \end{array}$	EARNINGS PER SHARE AMar. 31 Jun. 30 Sep. 30 Dec. 31				Full Year
2019	. 39	49	. 66	. 46	2.01
2020	44	. 55	. 72	. 47	2.18
2021	. 39	. 62	. 65	. 41	2.07
2022	. 68	. 50	. 75	. 52	2.45
2023	. 53	. 60	. 77	. 60	2.50
Cal-	QUARTERLY DIVIDENDS PAID Bu				Full
endar	Mar. 31	Jun. 30	Sep. 30	Dec. 31	Year
2018	. 22375 . 22375 . 22375.24				. 91
2019	. 24	. 24	. 24	. 2562	98
2020	. 2562	. 2562	. 2562	. 2725	1.04
2021	. 2725	. 2725	. 2725	. 29	1.11
2022	. 29	. 29	. 29		

BUSINESS: Middlesex Water Company engages in the ownership and operation of regulated water utility systems in New Jersey, Delaware, and Pennsylvania. It also operates water and wastewater systems under contract on behalf of municipal and private clients in NJ and DE. Its Middlesex System provides water services to 61,000 retail customers, primarily in Middlesex County, New Jersey. In
Middlesex Water recently inked a deal to manage the Borough of Avalon, New Jersey's water and sewer utility operations. The new 10 -year contract, which went into effect on September 1, 2022, replaces the previous decade-long agreement, and includes provisions for maintenance and customer services.
Periodic rate hikes have more than offset the company's regulated Delaware wastewater divestment from earlier this year. The latter resulted in approximately $\$ 0.7$ million in reduced revenues for the June period. However, the top line is benefiting notably from the latest round of customer rate increases. To wit, the New Jersey Board of Public Utilities recently approved another rate hike, largely due to aggressive infrastructure and distribution system investments. In sum, we now look for revenues of $\$ 155$ million this year (up from our previous call of $\$ 153$ million) and $\$ 160$ million in the next (up from $\$ 158$ million).
Strong bottom-line expansion is likely on tap for 2022 , despite a modest reduction to our current-year profit
forecast. Earnings contracted about 20%

2021, the Middlesex System accounted for 59% of operating revenues. At 12/31/21, the company had 347 employees. Incorporated: NJ. President, CEO, and Chairman: Dennis W. Doll. Officers \& directors own 2.0% of the com. stock; BlackRock Inst. Trust Co., 7.8\% (4/22 proxy). Add.: 485 C Route 1 South, Suite 400, Iselin, NJ 08830. Telephone: 732-634-1500. Int.: www.middlesexwater.com.
year over year in the second quarter, to $\$ 0.50$ per share. Expiring income tax benefits and higher operating expenses weighed on the figure. Consequently, we are shaving a dime from our full-year 2022 bottom-line estimate, to $\$ 2.45$ per share.
Over the pull to late decade, leadership is poised to invest heavily on infrastructure-related upgrades. Indeed, aging water delivery systems and pipelines are long overdue for replacement. Management is apt to focus on facility treatment enhancements as well. Overall, aggressive spending on public infrastructure projects suggests that additional rate hikes are probably in the cards further down the road.
Middlesex stock is ranked to mirror the broader market averages over the coming six to 12 months. What's more, at the recent quotation, the equity lacks appeal over the 18 -month and 3 - to 5 -year windows. Although the company is noncyclical and pays a stable quarterly dividend that is well-covered by earnings, we think waiting for a better entry point is the prudent move here at this juncture. Nicholas Patrikis

October 7, 2022

SJW GROUP NYSE-SJW								RECENT PRICE		$\begin{aligned} & \text { P/E } \\ & \text { RATIO } 28.9\binom{\text { Trailing: } 34.2}{\text { Median: } 23.0} \end{aligned}$				$\text { RELATIVE } 2.01$		$1 \text { IVIV'D }$	2.4%		VALUE LINE					
TIMELINESS $\mathbf{4}$ Lowered $81 / 1222$ SAFETY $\mathbf{3}$ New 4/2211 TECHNICAL 3 Raised 107722 BETA .80 (1.00 $=$ Market)				High: Low:	26.8 20.9	26.9 22.6	30.1 24.5	33.7 25.5	$\begin{aligned} & 35.7 \\ & 27.5 \end{aligned}$	$\begin{aligned} & 56.9 \\ & 28.6 \end{aligned}$	$\begin{aligned} & 69.3 \\ & 45.4 \end{aligned}$	$\begin{aligned} & 68.4 \\ & 51.3 \end{aligned}$	$\begin{aligned} & 74.5 \\ & 53.9 \end{aligned}$	$\begin{aligned} & 75.0 \\ & 45.6 \end{aligned}$	$\begin{aligned} & 73.7 \\ & 58.0 \end{aligned}$	$\begin{aligned} & 73.4 \\ & 55.7 \end{aligned}$			Target Pric $2025 \mid 202$	Zange 2027				
																120								
18-Month Target Price Range Low-High Midpoint (\% to Mid) $\$ 57-\$ 96$ $\$ 77(30 \%)$																								
																				60				
																				50				
																				40				
2025-27 PROJECTIONS An'I Total Price Gain Return 90 $(+50 \%)$ 60 (Nil)														1										30
																				-20				
																		15						
Institutional Decisions						Percent shares traded															THET			
	40221	102022	202022																					
$\begin{aligned} & \text { to Buy } \\ & \text { to Sell } \end{aligned}$	$\begin{aligned} & 98 \\ & 68 \end{aligned}$	$\begin{aligned} & 93 \\ & 80 \end{aligned}$																	$\begin{array}{ll} -5.2 & -12.0 \\ -0.4 & 43.2 \end{array}$					
$\begin{aligned} & \text { to Selil } \\ & \text { HId's }(000) \end{aligned}$	21898	$\begin{array}{r} 80 \\ 21360 \\ \hline \end{array}$	104 21790		ШلШ1			Wلل\|ل11								林		5 yr .	27.2 54.9					
2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	\bigcirc © VAL	E LINE PUB. LLC	25-27				
10.35	11.25	12.12	11.68	11.62	12.85	14.01	13.73	15.76	14.97	16.61	18.97	14.00	14.78	19.77	19.01	20.00	20.85	Rev	sper sh	22.15				
2.38	2.30	2.44	2.21	2.38	2.80	2.97	2.90	4.42	3.86	4.76	5.24	3.29	3.13	5.28	5.13	3.60	4.15	"Cash	ow" per sh	4.90				
1.19	1.04	1.08	81	. 84	1.11	1.18	1.12	2.54	1.85	2.57	2.86	1.82	. 82	2.14	2.03	1.95	2.50	Earning	per sh A	3.25				
. 57	. 61	. 65	66	. 68	69	. 71	. 73	. 75	. 78	. 81	1.04	1.12	1.20	1.28	1.36	1.44	1.52	Div'd D	cl'd per sh Bm	1.76				
3.87	6.62	3.79	3.17	5.65	3.75	5.67	4.68	5.02	5.24	6.95	7.26	5.08	6.25	7.44	8.32	7.50	8.00	Cap'I S	ending per sh	7.75				
12.48	12.90	13.99	13.66	13.75	14.20	14.71	15.92	17.75	18.83	20.61	22.57	31.31	31.27	32.12	34.28	36.65	39.15	Book V	ue per sh	40.85				
18.28	18.36	18.18	18.50	18.55	18.59	18.67	20.17	20.29	20.38	20.46	20.52	28.40	28.46	28.56	30.18	30.00	30.00	Common Shs Outst'g ${ }^{\text {c }}$		30.00				
23.5	33.4	26.2	28.7	29.1	21.2	20.4	24.3	11.2	16.6	15.7	18.8	32.7	NMF	30.0	32.9	Bold figures are Value Line estimates		Avg Ann'I P/E Ratio Relative P/E Ratio Avg Ann'l Div'd Yield		23.0				
1.27	1.77	1.58	1.91	1.85	1.33	1.30	1.37	. 59	. 84	. 82	. 95	1.77	NMF	1.54	1.80			1.30						
2.0\%	1.7\%	2.3\%	2.8\%	2.8\%	2.9\%	3.0\%	2.7\%	2.6\%	2.5\%	2.0\%	1.9\%	1.9\%	1.9\%	2.0\%	2.0\%			2.3\%						
CAPITAL STRUCTURE as of $6 / 30 / 22$ Total Debt $\$ 1494.7$ mill. Due in 5 Yrs $\$ 39.0$ mill. LT Debt $\$ 1455.7$ mill. LT Interest $\$ 50.0$ mill. (LT Interest Coverage: 3.6x) (59\% of Cap')						261.5	276.9	319.7	305.1	339.7	389.2	397.7	420.5	564.5	573.7	600	625			Revenues (\$mill) Net Profit (\$mill)		665		
						22.3	23.5	51.8	37.9	52.8	59.2	38.8	23.4	61.5	60.5	59.0	75.0			98.0				
						41.1\%	38.7\%	32.5\%	38.1\%	38.8\%	36.7\%	20.6\%	26.4\%					Income Tax Rate AFUDC \% to Net Profit				21.0%		
														2.0\%	1.5\%	1.5\%	1.5\%							
						55.0\%	51.1\%	51.6\%	49.8\%	50.7\%	48.2\%	32.7\%	59.1\%	58.4\%	59.1\%	57.5\%	54.0\%	Long-Term Debt Ratio Common Equity Ratio		45.0\%				
						45.0\%	48.9\%	48.4\%	50.2\%	49.3\%	51.8\%	67.3\%	40.9\%	41.6\%	40.9\%	42.5\%	46.0\%			55.0\%				
Pension Assets-12/21 \$310.2 mill. Oblig. $\$ 383.8$ mill.						610.2	656.2	744.5	764.6	855.0	894.3	1320.7	2173.6	2204.7	2527.5	2575	2550	Total Capital (\$mill)		2225				
						831.6	898.7	963.0	1036.8	1146.4	1239.3	1328.8	2206.5	2334.9	2497.5	2565	2650	Net Pla	(\$mill)	2825				
						5.0\%	5.0\%	8.3\%	6.3\%	7.4\%	7.9\%	3.9\%	1.8\%	4.0\%	3.5\%	3.0\%	3.5\%	Return on Total Cap'I		5.0\%				
Pfd Stock None. Oblig. 3883.8 min.						8.1\%	7.3\%	14.4\%	9.9\%	12.5\%	12.8\%	4.4\%	2.6\%	6.7\%	5.8\%	5.5\%	6.5\%	Return	Shr. Equity	8.0\%				
Common Stock $30,248,000$ shs.						8.1\%	7.3\%	14.4\%	9.9\%	12.5\%	12.8\%	4.4\%	2.6\%	6.7\%	5.8\%	5.5\%	6.5\%	Return	Com Equity	8.0\%				
MARKET CAP: $\$ 1.8$ billion (Small Cap)						3.3\%	2.8\%	10.2\%	5.7\%	8.6\%	8.2\%	1.8\%	NMF	2.7\%	2.0\%	1.5\%	2.5\%	Retained to Com Eq All Div'ds to Net Prof		3.5\%				
$\begin{array}{llll}\begin{array}{c}\text { CURRENT POSITION } \\ \text { (SMILL.) }\end{array} \quad 2020 & 2021 & 6 / 30 / 22\end{array}$						59\%	62\%	29\%	42\%	31\%	36\%	60\%	NMF	59\%	66\%	74\%	61\%			54\%				

CURRENT POSITION	2020	2021	$6 / 30 / 22$
(SMILL.)	9.3	10.9	12.0
Cash Assets	58.1	53.7	58.8
Accts Receivable	58.1		
Other	59.9	69.5	688.0
Current Assets	127.3	134.1	138.8
Accts Payable	34.2	30.4	26.6
Debb Due	76.2	39.1	39.0
Other	240.4	133.8	212.2
Current Liab.	350.8	203.3	277.8
Alry			

ANNUAL RATES of change (per sh) Revenues "Cash Flow" Earnings Dividends Book Value		Past P 10 Yrs. 5 4.0% 2 6.0% 6.0% -6 6.5% 10 9.0% 1		Past Est'd '19.'21 5 Yrs. to 25.27 2.5% 3.5% $.5 \%$ 2.5% -6.5% 14.0% 10.5% 5.5% 11.5% 4.0%	
$\begin{gathered} \text { Cal- } \\ \text { endar } \end{gathered}$	QUARTERLY REVENUES (\$ mill.) Mar 31 Jun. 30 Sep. 30 Dec. 31				Full Year
2019	77.7	103.0	114.0	125.8	420.5
2020	115.8	147.2	165.9	135.6	564.5
2021	114.8	152.2	166.9	139.8	573.7
2022	124.3	149.0	175	151.7	600
2023	130	160	180	155	625
Cal- endar	EARNINGS PER SHARE A Mar. 31 Jun. 30 Sep. 30 Dec. 31				Full Year
2019	21	47	. 33	d. 19	82
2020	. 08	. 69	. 91	. 46	2.14
2021	. 09	. 69	. 64	. 60	2.03
2022	12	. 38	. 75	. 70	1.95
2023	. 23	. 57	. 95	. 75	250
	QUARTERLY DIVIDENDS PAID ${ }^{\text {BD }}$				
endar	Mar. 31	Jun. 30	Sep. 30	Dec. 31	Year
2018	. 28	. 28	. 28	. 28	1.12
2019	. 30	. 30	. 30	. 30	1.20
2020	. 32	. 32	. 32	. 32	1.28
2021	. 34	. 34	. 34	. 34	1.36
2022	. 36	36	. 36		

BUSINESS: SJW Group engages in the production, purchase, storage, purification, distribution, and retail sale of water. It provides water service to approximately 231,000 connections with a total population of roughly one million people in the San Jose area and 16,000 connections that reach about 49,000 residents in the region between San Antonio and Austin, Texas. The company merged
SJW Group reported weaker-thananticipated second-quarter bottomline results. The East and West coast water utility operator earned $\$ 0.38$ per share in the June period. Indeed, the figure, which was well short of consensus estimates, contracted about 45% year over year. On top of a softer revenue performance during the period (on an annual basis), higher administrative expenses, depreciation, and interest on long-term obligations weighed on the result. All told, despite management reaffirming an upbeat outlook for the remainder of the year, we are lowering our 2022 earnings estimate by $\$ 0.55$, to $\$ 1.95$ per share, which would mark the company's secondconsecutive year of share profit declines.
We think 2023 holds more promise. To start, modest revenue growth ought to be underpinned by further customer rate hikes and a wider base. Regarding the former, SJW Group expects the currently pending 2021 California General Rate Case decision to be reached by the end of this year, which would allow the company to not only boost rates, but recoup reve-
nues retroactively. Rate increases in Con-
with Connecticut Water (10/19) which provides service to approx. 138,000 connections with a total population of 450,000 people. Has 751 employees. Officers and directors own about 8.0% of outstanding shares ($3 / 22$ proxy). Chairman \& CEO: Eric Thornburg. Incorporated: California. Address: 110 West Taylor Street, San Jose, CA 95110. Telephone: (408) 279-7800. Internet: www.sjwater.com.
necticut, Maine, and Texas were also recently approved by regulators. Moreover, prospects for a healthier economic backdrop should support increased water consumption. Elsewhere, we envision a notable earnings recovery in 2023. Leadership is likely to focus on curtailing operating expenses and lowering debt obliga-

tions.

Aggressive infrastructure investment remains on tap over the 3- to 5 -year stretch. For this year, top brass has utilized roughly half of its $\$ 223$ million capital investment budget. Funds are allocated across all operating regions, and support aging pipeline replacement, facility and treatment plant upgrades, as well as the company's advanced metering initiative. By late decade, SJW Group intends to spend approximately $\$ 1.3$ billion on infrastructure upgrades.
Investors should turn the page, for now. SJW stock is unfavorably ranked (4) for relative year-ahead price performance. What's more, at the recent quotation, total return potential over the pull to 2025-2027 leaves much to be desired.
Nicholas Patrikis
October 7, 2022

Confluence Rivers (MO) Utility Operating Company, Inc.

Summary of Risk Premium Models for the
Proxy Group of Six Water Companies

		Proxy Group of Six Water Companies
Predictive Risk		
Premium Model		
(PRPM) (1)		12.20 \%
Risk Premium Using		
Market Approach (2)		11.48
	Average	11.84 \%

Notes:
(1) From page 2 of this Schedule.
(2) From page 3 of this Schedule.
Confluence Rivers (MO) Utility Operating Company, Inc.
Derived by the Predictive Risk Premium Model (1)

Proxy Group of Six Water Companies	[1]	[2]	[3]	[4]	[5]	[6]	[7]
	LT Average Predicted Variance	Spot Predicted Variance	Recommended Variance (2)	GARCH Coefficient	$\begin{gathered} \text { Predicted } \\ \text { Risk } \\ \text { Premium (3) } \\ \hline \end{gathered}$	Risk-Free Rate (4)	Indicated ROE (5)
American States Water Company American Water Works Company, Inc. California Water Service Group Essential Utilities Inc. Middlesex Water Company SJW Group	0.38\%	0.41\%	0.38\%	1.8762	8.99\%	3.96\%	12.95\%
	0.29\%	0.42\%	0.29\%	4.3376	15.91\%	3.96\%	NMF
	0.33\%	0.51\%	0.33\%	1.9400	7.97\%	3.96\%	11.93\%
	0.45\%	0.72\%	0.45\%	2.1737	12.33\%	3.96\%	NMF
	0.33\%	0.86\%	0.33\%	1.9845	8.26\%	3.96\%	12.22\%
	0.42\%	0.44\%	0.42\%	1.5394	8.05\%	3.96\%	12.01\%
						Average	12.28\%
		F=Not Mean	ful Figure			Median	12.12\%
					Average of M	and Median	12.20\%
Notes: (1)							
	The Predictive Risk Premium Model uses historical data to generate a predicted variance and a GARCH coefficient. The historical data used are the equity risk premiums for the first available trading month as reported by Bloomberg Professional Services.						
(2)	Recommended variance based on the long-term average predicted variance.						
(3)	$\left(1+\left(\right.\right.$ Column [3] ${ }^{*}$ Column [4]) ${ }^{\wedge 12}$)-1.						
(4)	From note 2 on page 2 of Schedule DWD-5.						
(5)	Column [5] + Column [6].						

Confluence Rivers (MO) Utility Operating Company, Inc.
 Indicated Common Equity Cost Rate
 Through Use of a Risk Premium Model
 Using an Adjusted Total Market Approach

Line No.
Proxy Group of Six
Water Companies

1. Prospective Yield on Aaa Rated Corporate Bonds (1)
5.24%
2. Adjustment to Reflect Yield Spread

Between Aaa Rated Corporate
Bonds and A2 Rated Public
Utility Bonds
3. Adjusted Prospective Yield on A2 Rated Public Utility Bonds
5.63 \%
4. Adjustment to Reflect Bond

Rating Difference of Proxy Group (3)
0.11
5. Adjusted Prospective Bond Yield
5.74 \%
6. Equity Risk Premium (4)
7. Risk Premium Derived Common Equity Cost Rate

Notes: (1) Consensus forecast of Moody's Aaa Rated Corporate bonds from Blue Chip Financial Forecasts (see pages 9 and 10 of this Schedule).
(2) The average yield spread of A2 rated public utility bonds over Aaa rated corporate bonds of 0.39% from page 4 of this Schedule.
(3) Adjustment to reflect the A3 Moody's LT issuer rating of the Utility Proxy Group as shown on page 5 of this Schedule. The 0.11% upward adjustment is derived by taking $1 / 3$ of the spread between A2 and Baa2 Public Utility Bonds $(1 / 3 * 0.32 \%=0.11 \%)$ as derived from page 4 of this Schedule.
(4) From page 7 of this Schedule.

Confluence Rivers (MO) Utility Operating Company, Inc. Interest Rates and Bond Spreads for
Moody's Corporate and Public Utility Bonds

Selected Bond Yields
[1] [2]
[3]

A2 Rated

	Aaa Rated Corporate Bond	A2 Rated Public Utility Bond	Baa2 Rated Public Utility Bond
Oct-2022	5.10 \%	5.88 \%	6.18 \%
Sep-2022	5.59	5.28	5.61
Aug-2022	4.07	4.76	5.09
Average	4.92 \%	5.31 \%	5.63 \%

Selected Bond Spreads
A2 Rated Public Utility Bonds Over Aaa Rated Corporate Bonds:

$$
0.39 \%(1)
$$

Baa2 Rated Public Utility Bonds Over A2 Rated Public Utility Bonds:
$0.32 \%(2)$
Notes:
(1) Column [2] - Column [1].
(2) Column [3] - Column [2].

Source of Information:
Bloomberg Professional Services

Confluence Rivers (MO) Utility Operating Company, Inc.
Comparison of Long-Term Issuer Ratings for Proxy Group of Six Water Companies

	Moody's		Standard \& Poor's				
	Long-Term Issuer Rating		Long-Term Issuer Rating				
	October 2022		October 2022				
Proxy Group of Six Water Companies	Long- Term Issuer Rating	Numerical Weighting (1)	Long- Term Issuer Rating	Numerical Weighting (1)			
American States Water Company (2)	A2	6.0	A+	5.0			
American Water Works Company, Inc. (3)	A3	7.0	A	6.0			
California Water Service Group	NR	--	A+	5.0			
Essential Utilities Inc. (4)	Baa1	8.0	A	6.0			
Middlesex Water Company	NR	--	A	6.0			
SJW Group (5)	NR	--	A-	7.0			
Average	A3	7.0	A	5.8			
Notes:							
(1) From page 6 of this Schedule.							
(2) Ratings that of Golden State Water Company.							
(3) Ratings that of New Jersey American Water Co., and Pennsylvania American Water Co.							
(4) Ratings that of PNG Companies and Aqua Pennsylvania, Inc. (S\&P).							
(5) Ratings are that of San Jose Water Company, Connecticut Water Inc. an							
Connecticut Water Service Inc.							
Source Information:	Moody's Investors Service Standard \& Poor's Global Utilities Rating Service						

Numerical Assignment for
Moody's and Standard \& Poor's Bond Ratings

Moody's Bond Rating	Numerical Bond Weighting	 Poor's Bond Rating
Ааa	1	AAA
Aa1	2	AA+
Aa2	3	AA
Aa3	4	AA-
A1	5	A+
A2	6	A
A3	7	A-
Baa1	8	BBB+
Baa2	9	BBB
Baa3	10	BBB-
Ba1	11	BB+
Ba2	12	BB
Ba3	13	BB-
B1	14	B+
B2	15	B
B3	16	B-

Line
No.

1. Calculated equity risk premium based on the total market using the beta approach (1) 6.77 \%
2. Mean equity risk premium based on a study using the holding period returns of public utilities with A2 rated bonds (2)
3. Average equity risk premium
5.74 \%

Notes: (1) From page 8 of this Schedule.
(2) From page 11 of this Schedule.

Confluence Rivers (MO) Utility Operating Company, Inc.
Derivation of Equity Risk Premium Based on the Total Market Approach
Using the Beta for the
Proxy Group of Six Water Companies

Line No.	Equity Risk Premium Measure	Proxy Group of Six Water Companies
1.	Ibbotson Equity Risk Premium (1)	6.13 \%
2.	Regression on Ibbotson Risk Premium Data	7.02 (2)
3.	Ibbotson Equity Risk Premium based on PRPM (3)	9.79
4.	Equity Risk Premium Based on Value Line Summary and Index	11.16 (4)
5.	Equity Risk Premium Based on Value Line S\&P 500 Companies	11.17 (5)
6.	Equity Risk Premium Based on Bloomberg S\&P 500 Companies	6.81 (6)
7.	Conclusion of Equity Risk Premium	8.68 \%
8.	Adjusted Beta (7)	0.78
9.	Forecasted Equity Risk Premium	6.77 \%

Notes:
(1) Based on the arithmetic mean historical monthly returns on large company common stocks from Kroll 2022 SBBI® Yearbook minus the arithmetic mean monthly yield of Moody's average Aaa and Aa2 corporate bonds from 1928-2021.
(2) This equity risk premium is based on a regression of the monthly equity risk premiums of large company common stocks relative to Moody's average Aaa and Aa2 rated corporate bond yields from 1928-2021 referenced in Note 1 above. Using the equation generated from the regression, an expected equity risk premium is calculated using the average consensus forecast of Aaa corporate bonds of 5.24% (from page 3 of this Schedule).
(3) The Predictive Risk Premium Model (PRPM) is discussed in the accompanying direct testimony. The Ibbotson equity risk premium based on the PRPM is derived by applying the PRPM to the monthly risk premiums between Ibbotson large company common stock monthly returns and average Aaa and Aa2 corporate monthly bond yields, from January 1928 through October 2022.
(4) The equity risk premium based on the Value Line Summary and Index is derived by subtracting the average consensus forecast of Aaa corporate bonds of 5.24% (from page 3 of this Schedule) from the projected 3-5 year total annual market return of 16.40% (described fully in note 1 on page 2 of Schedule DWD-5).
(5) Using data from Value Line for the S\&P 500, an expected total return of 16.41% was derived based upon expected dividend yields and long-term earnings growth estimates as a proxy for capital appreciation. Subtracting the average consensus forecast of Aaa corporate bonds of 5.24% results in an expected equity risk premium of 11.17%.
(6) Using data from the Bloomberg Professional Service for the S\&P 500, an expected total return of 12.05% was derived based upon expected dividend yields and long-term earnings growth estimates as a proxy for capital appreciation. Subtracting the average consensus forecast of Aaa corporate bonds of 5.24% results in an expected equity risk premium of 6.81\%.
(7) Average of mean and median beta from Schedule DWD-5.

Sources of Information:
Kroll 2022 SBBI® Yearbook
Industrial Manual and Mergent Bond Record Monthly Update.
Value Line Summary and Index
Blue Chip Financial Forecasts, June 1, 2022 and November 1, 2022
Bloomberg Professional Services

Consensus Forecasts of U.S. Interest Rates and Key Assumptions

Interest Rates
Federal Funds Rate
Prime Rate
SOFR
Commercial Paper, 1-mo.
Treasury bill, 3-mo.
Treasury bill, 6-mo.
Treasury bill, 1 yr.
Treasury note, 2 yr.
Treasury note, 5 yr.
Treasury note, 10 yr .
Treasury note, 30 yr .
Corporate Aaa bond
Corporate Baa bond
State \& Local bonds
Home mortgage rate

Key Assumptions
Fed's AFE \$ Index
Real GDP
GDP Price Index
Consumer Price Index
PCE Price Index

-------------------------------------Hverage For Week Ending--1verage For Month--- Latest Qtr								Consensus Forecasts-Quarterly Avg.					
								4Q	1Q	2Q	3Q	4Q	1 Q
Oct 21	Oct 14	Oct 7	Sep 30	Sep	Aug	Jul	3Q 2022	$\underline{2022}$	2023	$\underline{2023}$	2023	$\underline{2023}$	$\underline{2024}$
3.08	3.08	3.08	3.08	2.56	2.33	1.68	2.19	3.9	4.6	4.7	4.6	4.4	4.1
6.25	6.25	6.25	6.25	5.73	5.50	4.85	5.36	6.9	7.6	7.7	7.6	7.4	7.1
3.04	3.04	3.04	2.98	2.50	2.28	1.60	2.13	3.7	4.5	4.6	4.5	4.3	4.0
3.31	3.16	3.08	3.07	2.80	2.33	1.90	2.34	4.0	4.6	4.6	4.5	4.3	4.0
4.05	3.74	3.46	3.37	3.22	2.72	2.30	2.75	4.1	4.6	4.6	4.5	4.3	4.0
4.43	4.24	4.02	3.90	3.71	3.15	2.87	3.24	4.4	4.8	4.7	4.5	4.3	4.0
4.57	4.38	4.15	4.07	3.89	3.28	3.02	3.40	4.5	4.7	4.7	4.5	4.3	4.0
4.51	4.38	4.18	4.20	3.86	3.25	3.04	3.38	4.4	4.5	4.4	4.1	3.9	3.7
4.32	4.18	3.98	4.06	3.70	3.03	2.96	3.23	4.2	4.3	4.1	4.0	3.8	3.6
4.12	3.95	3.75	3.83	3.52	2.90	2.90	3.11	4.0	4.0	3.9	3.8	3.7	3.6
4.16	3.95	3.78	3.76	3.56	3.13	3.10	3.26	4.0	4.1	4.1	4.0	3.9	3.9
5.56	5.37	5.16	5.19	4.87	4.35	4.39	4.54	5.3	5.5	5.4	5.4	5.3	5.1
6.38	6.19	5.96	6.00	5.64	5.08	5.15	5.29	6.3	6.5	6.5	6.4	6.3	6.2
4.59	4.52	4.53	4.58	4.31	3.84	3.82	3.99	4.6	4.8	4.7	4.6	4.5	4.4
6.94	6.92	6.66	6.70	6.11	5.22	5.41	5.58	6.8	6.9	6.7	6.6	6.4	6.2
			---Histor						onsensu	S Fore	casts-	Quarter	
4Q	1Q	2Q	3Q	4 Q	1Q	2Q	3Q	4Q	1 Q	2 Q	3Q	4Q	$1 Q$
$\underline{2020}$	$\underline{2021}$	$\underline{2021}$	$\underline{2021}$	$\underline{2021}$	$\underline{2022}$	$\underline{2022}$	$\underline{2022}$	$\underline{2022}$	2023	2023	2023	2023	$\underline{2024}$
105.1	103.4	102.9	105.0	107.0	108.4	113.7	119.0	123.2	123.2	122.0	120.4	119.6	118.9
3.9	6.3	7.0	2.7	7.0	-1.6	-0.6	2.6	0.4	-0.4	-0.1	0.9	1.2	1.5
2.5	5.2	6.3	6.2	6.8	8.3	9.0	4.1	4.6	3.8	3.1	2.7	2.7	2.3
2.2	4.1	8.2	6.7	7.9	9.2	10.5	5.7	4.8	4.0	3.0	2.8	2.6	2.4
1.6	4.5	6.4	5.6	6.2	7.5	7.3	4.2	4.3	3.6	2.8	2.6	2.4	2.3

Forecasts for interest rates and the Federal Reserve's Advanced Foreign Economies Index represent averages for the quarter. Forecasts for Real GDP, GDP Price Index, CPI and PCE Price Index are seasonally-adjusted annual rates of change (saar). Individual panel members' forecasts are on pages 4 through 9 . Historical data: Treasury rates from the Federal Reserve Board's H.15; AAA-AA and A-BBB corporate bond yields from Bank of America-Merrill Lynch and are 15+ years, yield to maturity; State and local bond yields from Bank of America-Merrill Lynch, A-rated, yield to maturity; Mortgage rates from Freddie Mac, 30-year, fixed; SOFR from the New York Fed. All interest rate data are sourced from Haver Analytics. Historical data for Fed's Major Currency Index are from FRSR H.10. Historical data for Real GDP, GDP Price Index and PCE Price Index are from the Bureau of Economic Analysis (BEA). Consumer Price Index history is from the Department of Labor's Bureau of Labor Statistics (BLS)..

Long-Range Survey:

The table below contains the results of our twice-annual long-range CONSENSUS survey. There are also Top 10 and Bottom 10 averages for each variable. Shown are consensus estimates for the years 2023 through 2028 and averages for the five-year periods 2024-2028 and 2029-2033. Apply these projections cautiously. Few if any economic, demographic and political forces can be evaluated accurately over such long time spans.

		2023					2028	Five-Year Averages	
			2024	2025	2026	2027		2024-2028	2029-2033
1. Federal Funds Rate	consensus	3.0	2.7	2.5	2.5	2.5	2.5	2.6	2.5
	Top 10 Average	3.5	3.3	3.0	2.8	2.8	2.8	3.0	2.8
	Bottom 10 Average	2.6	2.1	2.0	2.2	2.2	2.2	2.2	2.1
2. Prime Rate	consensus	6.1	5.9	5.7	5.6	5.6	5.6	5.7	5.6
	Top 10 Average	6.6	6.4	6.1	6.0	6.0	6.0	6.1	5.9
	Bottom 10 Average	5.6	5.3	5.2	5.3	5.3	5.3	5.3	5.2
3. SOFR	consensus	3.0	2.8	2.5	2.5	2.5	2.5	2.6	2.5
	Top 10 Average	3.4	3.3	3.0	2.9	2.8	2.8	3.0	2.8
	Bottom 10 Average	2.7	2.2	2.0	2.2	2.2	2.2	2.2	2.1
4. Commercial Paper, 1-Mo	consensus	3.2	2.9	2.6	2.6	2.6	2.6	2.7	2.6
	Top 10 Average	3.5	3.4	3.1	2.9	2.9	2.9	3.0	2.9
	Bottom 10 Average	2.8	2.5	2.3	2.4	2.4	2.3	2.3	2.3
5. Treasury Bill Yield, 3-Mo	CONSENSUS	3.0	2.8	2.6	2.6	2.6	2.5	2.6	2.5
	Top 10 Average	3.6	3.4	3.1	3.1	3.0	2.9	3.1	2.9
	Bottom 10 Average	2.5	2.2	2.0	2.1	2.2	2.2	2.1	2.2
6. Treasury Bill Yield, 6-Mo	consensus	3.2	2.9	2.7	2.7	2.7	2.6	2.7	2.6
	Top 10 Average	3.8	3.6	3.2	3.2	3.1	3.0	3.2	3.0
	Bottom 10 Average	2.6	2.2	2.1	2.2	2.3	2.3	2.2	2.3
7. Treasury Bill Yield, 1-Yr	CONSENSUS	3.2	3.0	2.9	2.9	2.8	2.8	2.9	2.8
	Top 10 Average	3.9	3.8	3.5	3.4	3.3	3.2	3.4	3.2
	Bottom 10 Average	2.6	2.4	2.2	2.4	2.4	2.4	2.3	2.4
8. Treasury Note Yield, 2-Yr	consensus	3.4	3.2	3.1	3.1	3.0	3.0	3.1	3.0
	Top 10 Average	4.3	4.1	3.8	3.6	3.5	3.5	3.7	3.5
	Bottom 10 Average	2.7	2.4	2.3	2.5	2.6	2.5	2.4	2.5
9. Treasury Note Yield, 5-Yr	CONSENSUS	3.5	3.4	3.3	3.3	3.3	3.2	3.3	3.3
	Top 10 Average	4.3	4.2	4.1	3.9	3.8	3.8	3.9	3.8
	Bottom 10 Average	2.8	2.6	2.5	2.7	2.7	2.7	2.6	2.8
10. Treasury Note Yield, 10-Yr	CONSENSUS	3.5	3.5	3.4	3.5	3.5	3.4	3.5	3.5
	Top 10 Average	4.4	4.4	4.2	4.2	4.1	4.1	4.2	4.1
	Bottom 10 Average	2.8	2.5	2.6	2.9	2.9	2.8	2.7	2.8
11. Treasury Bond Yield, $30-\mathrm{Yr}$	CONSENSUS	3.8	3.8	3.8	3.9	3.8	3.8	3.8	3.9
	Top 10 Average	4.6	4.7	4.5	4.5	4.4	4.5	4.5	4.5
	Bottom 10 Average	3.0	2.9	3.0	3.3	3.2	3.2	3.1	3.2
12. Corporate Aaa Bond Yield	consensus	5.0	5.0	4.9	5.0	5.0	4.9	4.9	5.0
	Top 10 Average	5.7	5.7	5.6	5.5	5.5	5.5	5.5	5.6
	Bottom 10 Average	4.4	4.2	4.3	4.4	4.4	4.4	4.3	4.4
13. Corporate Baa Bond Yield	CONSENSUS	6.0	5.9	5.8	5.9	5.9	5.9	5.9	5.9
	Top 10 Average	6.6	6.6	6.4	6.3	6.3	6.3	6.4	6.4
	Bottom 10 Average	5.4	5.3	5.2	5.4	5.4	5.4	5.3	5.4
14. State \& Local Bonds Yield	CONSENSUS	4.3	4.3	4.2	4.3	4.3	4.3	4.3	4.3
	Top 10 Average	5.0	5.0	4.8	4.8	4.7	4.7	4.8	4.8
	Bottom 10 Average	3.7	3.7	3.7	3.9	3.9	3.9	3.8	3.9
15. Home Mortgage Rate	consensus	5.7	5.5	5.4	5.4	5.4	5.4	5.4	5.4
	Top 10 Average	6.4	6.4	6.1	6.0	6.0	6.0	6.1	6.0
	Bottom 10 Average	4.9	4.7	4.6	4.8	4.8	4.8	4.7	4.8
A. Fed's AFE Nominal \$ Index	consensus	113.8	112.8	111.9	111.0	110.6	110.4	111.3	109.8
	Top 10 Average	115.6	114.7	114.0	113.4	113.1	112.8	113.6	112.7
	Bottom 10 Average	112.2	111.0	109.9	108.8	108.2	107.9	109.2	107.4
				--Ove	\% Chan	-----		Five-Yea	verages
		2023	2024	2025	2026	2027	2028	2024-2028	2029-2033
B. Real GDP	consensus	2.0	2.0	2.1	2.1	2.1	2.1	2.1	2.0
	Top 10 Average	2.6	2.4	2.4	2.4	2.4	2.4	2.4	2.3
	Bottom 10 Average	1.5	1.5	1.8	1.8	1.8	1.8	1.7	1.8
C. GDP Chained Price Index	consensus	3.0	2.4	2.3	2.3	2.2	2.2	2.3	2.2
	Top 10 Average	3.7	2.8	2.7	2.6	2.6	2.6	2.7	2.6
	Bottom 10 Average	2.3	2.0	1.9	1.9	1.9	1.9	1.9	1.9
D. Consumer Price Index	CONSENSUS	3.2	2.4	2.4	2.4	2.3	2.3	2.4	2.3
	Top 10 Average	4.1	3.0	2.9	2.8	2.7	2.7	2.8	2.7
	Bottom 10 Average	2.3	1.8	2.0	2.0	1.9	1.9	1.9	1.9
E. PCE Price Index	consensus	3.0	2.3	2.3	2.3	2.3	2.2	2.3	2.3
	Top 10 Average	3.8	2.8	2.8	2.7	2.7	2.6	2.7	2.7
	Bottom 10 Average	2.2	1.8	1.9	1.9	1.9	1.8	1.9	1.9

Confluence Rivers (MO) Utility Operating Company, Inc. Derivation of Mean Equity Risk Premium Based Studies Using Holding Period Returns and
 Projected Market Appreciation of the S\&P Utility Index

Line No.

1. Historical Equity Risk Premium (1)
2. Regression of Historical Equity Risk Premium
3. Forecasted Equity Risk Premium Based on PRPM (3)

Forecasted Equity Risk Premium based on
4. Projected Total Return on the S\&P Utilities Index (Value Line Data) (4)

Forecasted Equity Risk Premium based on
5. Projected Total Return on the S\&P Utilities Index (Bloomberg Data) (5)
6. Average Equity Risk Premium (6)

Notes: (1) Based on S\&P Public Utility Index monthly total returns and Moody's Public Utility Bond average monthly yields from 1928-2021. Holding period returns are calculated based upon income received (dividends and interest) plus the relative change in the market value of a security over a one-year holding period.
(2) This equity risk premium is based on a regression of the monthly equity risk premiums of the S\&P Utility Index relative to Moody's A2 rated public utility bond yields from 1928-2021 referenced in note 1 above. Using the equation generated from the regression, an expected equity risk premium is calculated using the prospective A2 rated public utility bond yield of 5.63% (from line 3, page 3 of this Schedule).
(3) The Predictive Risk Premium Model (PRPM) is applied to the risk premium of the monthly total returns of the S\&P Utility Index and the monthly yields on Moody's A2 rated public utility bonds from January 1928-October 2022.
(4) Using data from Value Line for the S\&P Utilities Index, an expected return of 9.60\% was derived based on expected dividend yields and long-term growth estimates as a proxy for market appreciation. Subtracting the expected A2 rated public utility bond yield of 5.63%, calculated on line 3 of page 3 of this Schedule results in an equity risk premium of 3.97%. $(9.60 \%-5.63 \%=3.97 \%)$
(5) Using data from Bloomberg Professional Service for the S\&P Utilities Index, an expected return of 10.38% was derived based on expected dividend yields and longterm growth estimates as a proxy for market appreciation. Subtracting the expected A2 rated public utility bond yield of 5.63%, calculated on line 3 of page 3 of this Schedule results in an equity risk premium of 4.75%. $10.38 \%-5.63 \%=$
(6) Average of lines 1 through 5 .
Confluence Rivers (MO) Unuity Cost Rate Through Use
of the Traditional Capital Asset Pricing Model (CAPM) and Empirical Capital Asset Pricing Model (ECAPM)
$\sqrt{6}$

	${ }^{\circ}$	${ }^{\circ}$	do	do
		$\begin{array}{l\|\|} \infty \\ \stackrel{a}{i} \\ \underset{\sim}{\|\mid} \end{array}$	$\stackrel{3}{7}$	찬

$\sqrt{2}$

$\begin{array}{c}\text { Risk-Free } \\ \text { Rate (2) }\end{array}$

$\begin{array}{r}\text { Market Risk } \\ \text { Premium (1) } \\ \hline\end{array}$
$\alpha 0$
ت
\circ
\circ
σ

\bar{m}

Proxy Group of Six Water Companies
American States Water Company
American Water Works Company, Inc.
California Water Service Group
Essential Utilities Inc.
Middlesex Water Company
SJW Group

Notes on page 2 of this Schedule.

Confluence Rivers (MO) Utility Operating Company, Inc.
 Notes to Accompany the Application of the CAPM and ECAPM

Notes:
(1) The market risk premium (MRP) is derived by using six different measures from three sources: Ibbotson, Value Line, and Bloomberg as illustrated below:

Historical Data MRP Estimates:

Measure 1: Ibbotson Arithmetic Mean MRP (1926-2021)

Arithmetic Mean Monthly Returns for Large Stocks 1926-2021: $12.37 \quad \%$
Arithmetic Mean Income Returns on Long-Term Government Bond 5.02

MRP based on Ibbotson Historical Data:
7.35%
Measure 2: Application of a Regression Analysis to Ibbotson Historical Data (1926-2021)
8.65%
Measure 3: Application of the PRPM to Ibbotson Historical Data:
(January 1926-October 2022)
10.89 \%

Value Line MRP Estimates:

Measure 4: Value Line Projected MRP (Thirteen weeks ending November 04, 2022)

Total projected return on the market 3-5 years hence*: $16.40 \quad \%$
Projected Risk-Free Rate (see note 2):
MRP based on Value Line Summary \& Index:
*Forcasted 3-5 year capital appreciation plus expected dividend yield
Measure 5: Value Line Projected Return on the Market based on the S\&P 500
Total return on the Market based on the S\&P 500:
Projected Risk-Free Rate (see note 2):
MRP based on Value Line data

16.41
3.96
12.45

Measure 6: Bloomberg Projected MRP
Total return on the Market based on the S\&P 500:

	12.05
	3.96
MRP based on Bloomberg data	8.09
Average of Value Line, Ibbotson, and Bloomberg MRP:	9.98

(2) For reasons explained in the Direct Testimony, the appropriate risk-free rate for cost of capital purposes is the average forecast of 30 year Treasury Bonds per the consensus of nearly 50 economists reported in Blue Chip Financial Forecasts. (See pages 9 and 10 of Schedule DWD-4.) The projection of the risk-free rate is illustrated below:

Fourth Quarter 2022	4.00%
First Quarter 2023	4.10
Second Quarter 2023	4.10
Third Quarter 2023	4.00
Fourth Quarter 2023	3.90
First Quarter 2024	3.90
2024-2028	3.80
2029-2033	3.90

(3) Average of Column 6 and Column 7.

Sources of Information:
Value Line Summary and Index
Blue Chip Financial Forecasts, June 1, 2022 and November 1, 2022
Kroll 2022 SBBI® Yearbook
Bloomberg Professional Services

Confluence Rivers (MO) Utility Operating Company, Inc. Basis of Selection of the Group of Non-Price Regulated Companies Comparable in Total Risk to the Utility Proxy Group

The criteria for selection of the Non-Price Regulated Proxy Group was that the non-price regulated companies be domestic and reported in Value Line Investment Survey (Standard Edition).

The Non-Price Regulated Proxy Group companies were then selected based on the unadjusted beta range of $0.49-0.77$ and residual standard error of the regression range of $2.8333-3.3793$ of the Utility Proxy Group.

These ranges are based upon plus or minus two standard deviations of the unadjusted beta and standard error of the regression. Plus or minus two standard deviations captures 95.50% of the distribution of unadjusted betas and residual standard errors of the regression.

The standard deviation of the Water Utility Proxy Group's residual standard error of the regression is 0.1365 . The standard deviation of the standard error of the regression is calculated as follows:

Standard Deviation of the Std. Err. of the Regr. $=$ Standard Error of the Regression $\sqrt{2 N}$
where: $N=\quad$ number of observations. Since Value Line betas are derived from weekly price change observations over a period of five years, $\mathrm{N}=259$

$$
\text { Thus, } 0.1365=\frac{3.1063}{\sqrt{518}}=\frac{3.1063}{22.7596}
$$

Source of Information: Value Line, Inc., September 2022
Value Line Investment Survey (Standard Edition)

Confluence Rivers (MO) Utility Operating Company, Inc.
 Basis of Selection of Comparable Risk
 Domestic Non-Price Regulated Companies

	[1]	[2]	[3]	[4]
Proxy Group of Six Water Companies	Value Line Adjusted Beta	Unadjusted Beta	Residual Standard Error of the Regression	Standard Deviation of Beta
American States Water Company	0.65	0.44	2.6059	0.0604
American Water Works Company, Inc.	0.90	0.78	3.3488	0.0776
California Water Service Group	0.70	0.48	3.1091	0.0721
Essential Utilities Inc.	0.95	0.91	2.7564	0.0639
Middlesex Water Company	0.70	0.51	3.4761	0.0806
SJW Group	0.80	0.65	3.3417	0.0775
Average	0.78	0.63	3.1063	0.0720
Beta Range ($+/-2$ std. Devs. of Beta)	0.49	0.77		
2 std. Devs. of Beta	0.14			
Residual Std. Err. Range ($+/-2$ std. Devs. of the Residual Std. Err.)	2.8333	3.3793		
Std. dev. of the Res. Std. Err.	0.1365			
2 std. devs. of the Res. Std. Err.	0.2730			

Confluence Rivers (MO) Utility Operating Company, Inc.
 Proxy Group of Non-Price Regulated Companies
 Comparable in Total Risk to the
 Proxy Group of Six Water Companies

[1] [2] [3]
[4]

Proxy Group of Twenty-Seven NonPrice Regulated Companies	Value Line Adjusted Beta	Unadjusted Beta	Residual Standard Error of the Regression	Standard Deviation of Beta
Balchem Corp.	0.75	0.56	3.3474	0.0776
Becton, Dickinson	0.75	0.59	2.9969	0.0695
Black Knight, Inc.	0.75	0.56	3.1415	0.0728
Booz Allen Hamilton	0.85	0.76	3.1644	0.0733
Bristol-Myers Squibb	0.85	0.70	2.9185	0.0676
C.H. Robinson	0.70	0.54	3.3437	0.0775
Chemed Corp.	0.80	0.66	2.8403	0.0658
CSG Systems Int'l	0.75	0.56	2.8967	0.0671
CSW Industrials	0.85	0.76	3.0218	0.0700
Heartland Express	0.70	0.51	3.0304	0.0702
Henry (Jack) \& Assoc	0.85	0.70	2.9759	0.0690
Lilly (Eli)	0.80	0.63	3.3732	0.0782
McCormick \& Co.	0.75	0.62	3.0694	0.0711
Merck \& Co.	0.80	0.63	2.9122	0.0675
Monster Beverage	0.85	0.76	2.9657	0.0687
NewMarket Corp.	0.75	0.59	2.9165	0.0676
Northrop Grumman	0.80	0.67	3.3239	0.0770
Oracle Corp.	0.80	0.67	2.8812	0.0668
Pfizer, Inc.	0.80	0.69	2.9056	0.0673
Progressive Corp.	0.75	0.60	3.0605	0.0709
Quest Diagnostics	0.80	0.62	3.2991	0.0765
RLI Corp.	0.75	0.62	2.9185	0.0676
Rollins, Inc.	0.85	0.71	3.2681	0.0758
Selective Ins. Group	0.85	0.76	3.0002	0.0695
Watsco, Inc.	0.85	0.73	2.8872	0.0669
Werner Enterprises	0.75	0.56	3.3343	0.0773
Western Union	0.80	0.68	3.0050	0.0697
Average	0.79	0.65	3.0666	0.0711
Proxy Group of Six Water Companies	0.78	0.63	3.1063	0.0720

Source of Information:

Confluence Rivers (MO) Utility Operating Company, Inc. Summary of Cost of Equity Models Applied to Proxy Group of Twenty-Seven Non-Price Regulated Companies

Comparable in Total Risk to the Proxy Group of Six Water Companies

Principal Methods		Proxy Group of Twenty-Seven Non-Price Regulated Companies
Discounted Cash Flow Model (DCF) (1)		11.29 \%
Risk Premium Model (RPM) (2)		12.76
Capital Asset Pricing Model (CAPM) (3)		11.94
	Mean	12.00 \%
	Median	11.94 \%
	Median	11.97 \%

Notes:
(1) From page 2 of this Schedule.
(2) From page 3 of this Schedule.
(3) From page 6 of this Schedule.

Σ
∞

(1) The application of the DCF model to the domestic, non-price regluated comparable risk companies is identical to the application of the DCF to the
utility proxy group. The dividend yield is derived by using the 60 day average price and the spot indicated dividend as of October 31, 2022. The
dividend yield is then adjusted by $1 / 2$ the average projected growth rate in EPS, which is calculated by averaging the 5 year projected growth in EPS
provided by Value Line, www.zacks.com, and www.yahoo.com (excluding any negative growth rates) and then adding that growth rate to the adjusted
dividend yield.
Value Line Investment Survey
www.zacks.com Downloaded on $10 / 31 / 2022$
(1) The application of the DCF model to the domestic, non-price regluated comparable risk companies is identical to the application of the DCF to the
utility proxy group. The dividend yield is derived by using the 60 day average price and the spot indicated dividend as of October 31,2022 . The
dividend yield is then adjusted by $1 / 2$ the average projected growth rate in EPS, which is calculated by averaging the 5 year projected growth in EPS
provided by Value Line, www.zacks.com, and www.yahoo.com (excluding any negative growth rates) and then adding that growth rate to the adjusted
dividend yield.
Value Line Investment Survey
www.zacks.com Downloaded on 10/31/2022
(1) The application of the DCF model to the domestic, non-price regluated comparable risk companies is identical to the application of the DCF to the
utility proxy group. The dividend yield is derived by using the 60 day average price and the spot indicated dividend as of October 31,2022 . The
dividend yield is then adjusted by $1 / 2$ the average projected growth rate in EPS, which is calculated by averaging the 5 year projected growth in EPS
provided by Value Line, www.zacks.com, and www.yahoo.com (excluding any negative growth rates) and then adding that growth rate to the adjusted
dividend yield.
Value Line Investment Survey
www.zacks.com Downloaded on 10/31/2022
(1) The application of the DCF model to the domestic, non-price regluated comparable risk companies is identical to the application of the DCF to the
utility proxy group. The dividend yield is derived by using the 60 day average price and the spot indicated dividend as of October 31,2022 . The
dividend yield is then adjusted by $1 / 2$ the average projected growth rate in EPS, which is calculated by averaging the 5 year projected growth in EPS
provided by Value Line, www.zacks.com, and www.yahoo.com (excluding any negative growth rates) and then adding that growth rate to the adjusted
dividend yield.
Value Line Investment Survey
www.zacks.com Downloaded on $10 / 31 / 2022$
Value Line Investment Survey
www.zacks.com Downloaded on 10/31/2022
www.yahoo.com Downloaded on 10/31/2022

Proxy Group of Twenty-Seven Non-
Price Regulated Companies

$N A=$ Not Available
$\mathrm{NMF}=$ Not Meaning
NA= Not Available
NMF $=$ Not Meaningful Figure

Confluence Rivers (MO) Utility Operating Company, Inc.

Indicated Common Equity Cost Rate
Through Use of a Risk Premium Model
Using an Adjusted Total Market Approach

Line No.
Proxy Group of Twenty-Seven Non-
Price Regulated
Companies
1.

Prospective Yield on Baa2 Rated
Corporate Bonds (1)
Adjustment to Reflect Bond rating Difference of
2. Non-Price Regulated Companies (2)
(0.17)
3. Adjusted Prospective Bond Yield
4. Equity Risk Premium (3)
5. Risk Premium Derived Common Equity Cost Rate
6.08
6.68
12.76%

Notes: (1) Average forecast of Baa2 corporate bonds based upon the consensus of nearly 50 economists reported in Blue Chip Financial Forecasts dated June 1, 2022 and November 1, 2022 (see pages 9 and 10 of Schedule DWD-4). The estimates are detailed below.

Fourth Quarter 2022	6.30%
First Quarter 2023	6.50
Second Quarter 2023	6.50
Third Quarter 2023	6.40
Fourth Quarter 2023	6.30
First Quarter 2024	6.20
2024-2028	5.90
2029-2033	5.90
Average	$\%$

(2) The average yield spread of Baa rated corporate bonds over A corporate bonds for the three months ending October 2022. To reflect the Baa1 average rating of the non-utility proxy group, the prosepctive yield on Baa corporate bonds must be adjusted by $1 / 3$ of the spread between A and Baa corporate bond yields as shown below:

	A Corp. Bond Yield	Baa Corp. Bond Yield	Spread	
Oct-22	5.74 \%	6.26	\%	0.52
Sep-22	5.18	5.68		0.50
Aug-22	4.65	5.15		0.50
Average yield spread				0.51
$1 / 3$ of spread				0.17

(3) From page 5 of this Schedule.

Confluence Rivers (MO) Utility Operating Company, Inc.

Comparison of Long-Term Issuer Ratings for the
Proxy Group of Twenty-Seven Non-Price Regulated Companies of Comparable risk to the Proxy Group of Six Water Companies

Notes:
(1) From page 6 of Schedule DWD-4.

Source of Information:
Bloomberg Professional Services

Confluence Rivers (MO) Utility Operating Company, Inc. Derivation of Equity Risk Premium Based on the Total Market Approach Using the Beta for Proxy Group of Twenty-Seven Non-Price Regulated Companies of Comparable risk to the Proxy Group of Six Water Companies

Line No.	Equity Risk Premium Measure	Proxy Group of Twenty-Seven NonPrice Regulated Companies
1.	Ibbotson Equity Risk Premium (1)	6.13 \%
2.	Regression on Ibbotson Risk Premium Data (2)	7.02
3.	Ibbotson Equity Risk Premium based on PRPM (3)	9.79
4.	Equity Risk Premium Based on Value Line Summary and Index (4)	11.16
5	Equity Risk Premium Based on Value Line S\&P 500 Companies (5)	11.17
6.	Equity Risk Premium Based on Bloomberg S\&P 500 Companies (6)	6.81
7.	Conclusion of Equity Risk Premium	8.68 \%
8.	Adjusted Beta (7)	0.77
9.	Forecasted Equity Risk Premium	6.68 \%

Notes:

(1) From note 1 of page 8 of Schedule DWD-4.
(2) From note 2 of page 8 of Schedule DWD-4.
(3) From note 3 of page 8 of Schedule DWD-4.
(4) From note 4 of page 8 of Schedule DWD-4.
(5) From note 5 of page 8 of Schedule DWD-4.
(6) From note 6 of page 8 of Schedule DWD-4.
(7) Average of mean and median beta from page 6 of this Schedule.

Sources of Information:
Kroll 2022 SBBI® Yearbook
Value Line Summary and Index
Blue Chip Financial Forecasts, June 1, 2022 and November 1, 2022
Bloomberg Professional Services
∞

$\stackrel{\square}{6}$

त	-
言 \sum°	
준	

o̊

$$
\Xi
$$

$$
\mathfrak{m}
$$

$$
\begin{gathered}
\text { Average } \\
\text { Beta } \\
\hline
\end{gathered}
$$

豳 성

Ibbotson Associates' Size Premia for the Decile Portfolios of the NYSE/AMEX/NASDAQ

$[4]$
$\begin{array}{c}\text { Spread from } \\ \text { Applicable Size } \\ \text { Premium (4) }\end{array}$

玉

[C]

$\underset{\sim}{\infty}$

Notes: $\quad 2$ of this Schedule.

1) From page 2 of this Schedule.
2) Gleaned from Columns $[B]$ and $[C]$ on the bottom of this page. The appropriate decile (Column $[A]$) corresponds
to the market capitalization of the proxy group, which is found in Column $[1]$.
Gleaned from Columns $[\mathrm{B}]$ and $[\mathrm{C}]$ on the bottom of this page. The appropriate decile (Column $[\mathrm{A}]$) corresponds
to the market capitalization of the proxy group, which is found in Column $[1]$.
(3) Corresponding risk premium to the decile is provided in Column [D] on the bottom of this page.
(4) Line No. 1 Column [3]-Line No. 2 Column [3]. For example, the 3.91\% in Column [4], Line No
(4) Line No. 1 Column [3] - Line No. 2 Column [3]. For example, the 3.91\% in Column [4], Line No. 2 is derived as

$\ddot{0}$
$\stackrel{0}{0}$
$\underset{z}{0}$
Market Capitalization of Confluence Rivers (MO) Utility Operating Company, Inc. and the

Confluence Rivers (MO) Utility Operating Company, Inc.
Return on Common Equity Implied Based on
Capital Structure of Proxy Group of Six Water Companies and Weighted Average Cost of Capital

[1]	[2]		[3]		[4]	[5]
Description	Weight (\%)		Cost		$\begin{gathered} \text { Weighted } \\ \text { Cost } \\ \hline \end{gathered}$	Pre-Tax Weighted Cost
High End of Proxy Group of Six Water Companies						
Debt	37.56\%	(1)	6.60\%	(2)	2.48\%	2.48\%
Common Equity	62.44\%		10.86\%	(3)	6.78\%	8.94\%
Weighted Average Cost of Capital					9.26\%	11.42\%
Capital Structure of Confluence Rivers						
Debt	31.44\%	(2)	6.60\%		2.08\%	2.08\%
Common Equity	68.56\%		10.34\%		7.09\%	9.34\%
Weighted Average Cost of Capital					9.16\%	11.42\%
Indicated ROE Adjustment			-0.53\%			

Notes:
(1) High End of capital structures from Proxy Group of Six Water Companies, as shown on page 2 of Schedule DWD-2.
(2) Company provided.
(3) From page 2 of Schedule DWD-1.
(4) Assuming an effective composite Federal and State income tax rate of 24.16%, the pre-tax weighted cost of common equity based on the Proxy Group of Water Companies, 10.86% common equity cost rate before adjustment and actual capital structure is $8.94 \% .8 .94 \%=6.78 \% /(1-0.2416)$.
(5) Pre-tax weighted cost rate of common equity equals the pre-tax overall weighted cost rate (11.42\%) minus the weighted cost rate of debt based on Confluence River's proposed actual capital structure, 2.08\%. $11.42 \%-2.08 \%=9.34 \%$.
(6) Pre-tax weighted overall cost of capital based on Mr. D'Ascendis's proposed overall rate of return.

Confluence Rivers (MO) Utility Operating Company, Inc.

Calculation of Indicated Financial Risk Adjustment Based upon Proxy Group of Six Water Companies
Using the Hamada Equation

(5) The beta is then re-levered using Confluence River's requested Capital Structure

$$
\begin{aligned}
b_{l} & =b_{u}\left[1+\frac{D}{E}(1-T)\right] \\
.70 & =.52\left[1+\frac{31.44 \%}{68.56 \%}(1-24.16 \%)\right]
\end{aligned}
$$

(6) Market Risk Premium from Schedule DWD-5, page 1.
(7) Risk-Free Rate from Schedule DWD-5, page 1.
(8) Line 4 * Line 7 + Line 8.
(9) Line 6 * Line 7 + Line 8 .
(10) Line 10 - Line 9.

[^0]: 1 Federal Power Commission v. Hope Natural Gas Co., 320 U.S. 591 (1944). ("Hope")
 2

[^1]: 3
 The indicated range is equal to 50 basis points above and below the midpoint of my four model results.

[^2]: 4
 Hope, 320 U.S. 591 (1944), at 603.

[^3]: 7
 Risk distinctions within S\&P's bond rating categories are recognized by a plus or minus, i.e., within the A category, an S\&P rating can be at A+, A, or A-. Similarly, risk distinctions for Moody's ratings are distinguished by numerical rating gradations, i.e., within the A category, a Moody's rating can be A1, A2 and A3.
 8 Source: See Direct Testimony of Brent Thies.

[^4]: 9
 Eugene F. Brigham and Joel F. Houston, Fundamentals of Financial Management, Concise $4^{\text {th }}$ Ed., Thomson South-Western, 2004, at 574.

[^5]: 12
 13

[^6]: 27
 28
 SBBI-2022 Appendix A Tables: Morningstar Stocks, Bonds, Bills, \& Inflation 1926-2021. As explained in note 1 on page 8 of Schedule DWD-4.

[^7]: Data from January 1928-December 2021 is from SBBI - 2022. Data from January 2022 - October 2022 is from Bloomberg Professional Services. Shown on line 3 on page 8 of Schedule DWD-4.

[^8]: 33
 34
 See, line 7 on page 8 of Schedule DWD-4. As shown on page 8 of Schedule DWD-4.

[^9]: 37

[^10]: 43 Morin, at 221.
 44
 Fama \& French, at 32.
 Fama \& French, at 33.

[^11]: R. S. Hamada, "The Effect of the Firm's Capital Structure on the Systematic Risk of Common Stocks", The Journal of Finance 27 No. 2, May 1972, at pages 435 to 452.
 The leverage relationship in the Hamada equation is equivalent to that in the M\&M method in that if the assumptions for leverage, capital costs and income tax rate used in the M\&M method are applied to the Hamada equation, the resulting levered equity beta will produce the same cost of common equity using the CAPM. However, the Hamada equation is more restrictive than the M\&M method, since the Hamada equation assumes that the beta of debt is zero. Under that assumption, the cost of corporate debt is identical to the risk-free rate of return. Whenever that assumption does not hold (which generally is the case), the cost of common equity measured from the Hamada equation will differ from the M\&M method.

[^12]: (A) Diluted earnings. Excludes nonrecur. $\$ 2.70$ sh. gain from sale of HOS sub.in Q4,'21. losses: '08, \$4.62; '09, \$2.63; '11, \$0.07. Disc. Next earnings report due late Oct.

 '13,(\$0.01). GAAP used as of 2014. Includes and December. - Div. reinvestment available.
 © 2022 Value Line, Inc. All rights reserved. Factual material is obtained from sources believed to be reliable and is provided without warranties of any kind.
 THE PUBLISHER IS NOT RESPONSIBLE FOR ANY ERRORS OR OMISSIONS HEREIN. This publication is strictly for subscriber's own non-commercial interal use. No part of it may be reproduced, resold, stored or transmitted in any printed, electronic or other form, or used for generating or marketing any printed or electronic publication, senvice or product

