

Kansas City Power & Light Company

Regulatory Workshop (Team A)

Load Forecasting

MPSC

August 11, 2004

Outline

- Overall Methodology
- 2. '04-'08 Budget Forecast
- Drivers
- 2002 Long-term Forecast
- Drivers
- 4. '04-'24 Strategic Planning Forecast
- Blended Results
- Planning Scenarios
- Current Situation
- Models
- 8. Statistically Adjusted End-Use (SAE) Methodology

1) Overall Methodology

several forecasts. The Strategic Planning Forecast is a blend of

Basic Method: Monthly Econometric Models

System Peak = f(Temperature, Economy, Customers)

System Energy = f(Degree Days, Economy, Customers)

Revenue Class = f(Degree Days, Economy, Customers)

Customers = f(Population, Economy)

- All methods have some variation of Seasonal, Event, and/or Dummy Variables
- System Energy is also referred to as "Net System Input" or NSI

2) '04-'08 Budget Forecast

'04-'08 Budget Forecast - Drivers

Peak & NSI

GMP Growth Rates (KC MSA)

Peak Model NSI Model 2.79% 2.77%

'98-'03 = 2.79% '04-'08 = 2.55%

2.64%

Source: Economy.com

Customer Growth Rates

'98-'03 = 1.82% '04-'08 = 1.54%

'04-'08 Budget Forecast - Drivers Class Customers - Kansas Residential Urban

Population Growth Rates (KC MSA)

'98-'03 = 1.14% '04-'08 = .45%

Source: Economy.com

'04-'08 Budget Forecast - Drivers Class kWh - Kansas Residential Urban

3) 2002 Long-Term Forecast

'02-'20 Long-Term Forecast - Driver

Peak & NSI

Residential/Commercial Growth Rates

'98-'03 = 1.81% '04-'08 = 1.38%

'98-'03 = 3.43% '04-'08 = 2.84%

04-20 = 2.47%

Source: Economy.com

GMP Growth Rates (KC MSA)

'04-'20 = .99%

4) '04-'24 Strategic Planning Forecast

Summary of Forecasts – Peak Demand

Summary of Forecasts - Energy

Net System Input

Note: GST Steel removed from 98 Long-Term Forecast

Strategic Planning Forecast – Peak Demand

04-'14

Historical data ('90-'03 not weather normalized)

15

ENERGIZING LIFE

Kansas City Power & Light

1.9% 1.5% 1.4%

Strategic Planning Forecast – Energy

5) Planning Scenarios

Planning Scenarios

Driven by environmental, technical, and energy price/volatility

2004 -	2004 - 2024 Average Annual Growth Rates	Annual Grow	th Rates
	Low	Base	High
Peak	1.0%	1.4%	1.8%
Energy	1.3%	1.8%	2.2%

6) Current Situation

Current Situation: Kansas City Economy

- Record Single-family Permits
- Office Vacancy Rates Top Out
- Year-Over-Year ('03/'02) Growth in Manufacturing Energy Use
- Issues:
- Sprint
- **Employment growth**
- Downtown
- Arena
- H&R Block
- KC Star
- Other
- Entertainment District
- Lofts

7) Models

'04-'08 Budget Forecast – Peak Demand Model

Forecast Period End Date: Estimation End Date: Estimation Begin Date: 2008:12 2003:5

Variable	Coefficient	StdErr	T-Stat	P-Value
CONST	-230.121	334.555	-0.688	49.45%
DJAN	120.755	78.982	1.529	13.21%
DFEB	3.750	76.464	0.049	96.11%
DMAY	346.387	91.502	3.786	0.04%
DJUNE	569.878	109.692	5.195	0.00%
DAUG	760,496	126.775	5.999	0.00%
DSEPT	648.445	109.552	5.919	0.00%
DOCT	107.022	84.223	1.271	20.93%
DNOV	5.936	69.843	0.085	93.26%
DDEC	123 293	74.934	1.645	10.57%
DMAY97	-1159.452	2023,243	-0.573	56.90%
Cooling	29.707	4.742	6.265	0.00%
heating	6.479	1.665	3.892	0.03%
GMP	27.794	4.913	5.658	0.00%
DJulyMaxTemp	7.235	1.346	5.374	0.00%
AR(1)	0.084	0.136	0.616	54.03%

Z
P
2
7
(D
10
-
0
3
S
a
S
0
S

Mean Abs. % Err. (MAPE) 3.58			Durbin-H Statistic 0.00	stic				Adjusted Observations	Iterations	•
3.58%	83.48	132.19	0.000	1.989	0.943	0.955	56	72	6	

Variable Definitions

Dependent Variable = Gross Peak Demand (MW) minus GST Steel plus PLCC

CONST = Constant Term

DFEB = Seasonal dummy value for February; value of 0 for all months except February DJAN = Seasonal dummy value for January; value of 0 for all months except January

DMAY = Seasonal dummy value for May; value of 0 for all months except May

DSEPT = Seasonal dummy value for September, value of 0 for all months except DAUG = Seasonal dummy value for August; value of 0 for all months except August **DJUNE** = Seasonal dummy value for June; value of 0 for all months except June

DOCT = Seasonal dummy value for October, value of 0 for all months except October

DNOV = Seasonal dummy value for November, value of 0 for all months except

DDEC = Seasonal dummy value for December; value of 0 for all months except

DMAY97 = Event variable to account for data error, value of 0 for all months except for

COOLING = Temperature at Peak, minus 70 degrees for cooling peaks

HEATING = Absolute value of the difference between temperature at peak and 65

degrees (for heating peaks)

DJULYMAXTEMP = Max temp in July the day of peak; value of 0 for all months except for July, historical period equals actual max temp day of peak, forecast period sets max GMP = Gross Metro Product, (Bil. Constant\$, SAAR), Economy.com; Kansas City MSA

'04-'08 Budget Forecast – System Energy Model

Forecast Period End Date: Estimation End Date: Estimation Begin Date: 2003:12 1990:1

2008:12

Variable	Coefficient	StdErr	T-Stat	P-Value
CONST	154087.789379	25091.172091	6.141	0.00%
CDD Cust	0.002524	0.000090	28.098	0.00%
HDD Cust	0.000485	0.000035	13,685	0.00%
DJAN	4992.834750	10217.917964	0.489	62.60%
DFEB	-70331.409284	7571.047333	-9.290	0.00%
DAPR	-19829.808323	9187.312070	-2.158	3.30%
DMAY	62293.901230	12657.008007	4.922	0.00%
DJUNE	92019.062370	16623.052017	5.536	0.00%
DJULY	163756.284303	21122.051703	7.753	0.00%
DAUG	174409.975691	20353.381353	8.569	0.00%
DSEPT	97174.382112	14686.948011	6,616	0.00%
DOCT	43033.635688	10989.025273	3.916	0.02%
DNOV	-22368 120739	8884.384408	-2.518	1.32%
DDEC	15161.666602	9894.338261	1.532	12.82%
GMP	11254.192781	376,906369	29.859	0.00%
D911TEST	-4663.389708	7944.474629	-0.587	55.84%
AR(1)	0.331460	0.089276	3.713	0.03%

Variable Definitions

Dependent Variable = System Energy (MWh) minus GST Steel

CDD = Cooling Degree Days CONST = Constant Term

HDD = Heating Degree Days

CDD_CUST =CDD multiplied by residential/commercial customers

HDD_CUST = HDD multiplied by residential/commercial customers

JAN = Seasonal dummy value for January; value of 0 for all months except January

APR = Seasonal dummy value for April; value of 0 for all months except April FEB = Seasonal dummy value for February; value of 0 for all months except February

JUNE = Seasonal dummy value for June; value of 0 for all months except June MAY = Seasonal dummy value for May; value of 0 for all months except May

JULY = Seasonal dummy value for July; value of 0 for all months except July

SEPT = Seasonal dummy value for September, value of 0 for all months except September AUG = Seasonal dummy value for August; value of 0 for all months except August

NOV = Seasonal dummy value for November, value of 0 for all months except November OCT = Seasonal dummy value for October, value of 0 for all months except October

D911TEST = Event variable to account for the events of September 11, 2001; value of 0 GMP = Gross Metro Product, (Bil. Constant\$, SAAR), Economy.com; Kansas City MSA DEC = Seasonal dummy value for December; value of 0 for all months except December

for all month except for September 2001 through February 2003

Regression Statistics

Mean Abs. % Err. (MAPE)	Std. Error of Regression	Durbin-H Statistic	Durbin-Watson Statistic	Adjusted R-Squared	R-Squared	Deg. of Freedom for Error	Adjusted Observations	Iterations
1.36%	19657.48	0.000	1.914	0.992	0.993	115	132	_

'04-'08 Budget Forecast - Class Customers

Kansas Residential Urban

Estimation Begin Date: 1990:1
Estimation End Date: 2003:11
Forecast Period End Date: 2008:12

 Coefficient
 StdErr
 T-Stat

 -61696.718
 6245.718
 -9.878

 55.680
 6.257
 8.898

 0.799
 0.031
 25.795

Population

Variable CONST

LagDep(12)

T-Stat P-Value -9.878 0% 8.898 0%

Regression Statistics Iterations

Adjusted Observations

155

Deg. of Freedom for Error
R-Squared
Adjusted R-Squared
Durbin-Watson Statistic

Durbin-H Statistic
Std. Error of Regression
Mean Abs. % Err. (MAPE)

1032.77 0.52%

0.996 0.996 0.668 -0.102

Variable Definitions

Dependent Variable = Kansas Residential Urban Customers

CONST = Constant Term
Population = Total Population, (Ths.), economy.com – Kansas City MSA

Example of class models used to allocate system forecast to classes

'04-'08 Budget Forecast – Class kWh Model

Kansas Residential Urban

Forecast Period End Date:	Estimation End Date:	Estimation
eriod E	End D	Begin
ind [ate:	Date
ate:		
2008:12	2003:11	1992:1

Regression Statistics Iterations Adjusted Observations Deg. of Freedom for Error R-Squared Adjusted R-Squared Durbin-Watson Statistic Durbin-H Statistic Std. Error of Regression	.agDep(24)	DEC 59	SEPT 432	DAUG 2579	DJULY 353:	DJUNE 809		Real_Per_Income	IDD_70_30_Customers	DD_70_30_Customers	CONST -3989	Variable	
	0.232	5941807.619	43219704.139	25791054.807	35322764.787	8098574,730	10014300.096	2245.374	0.304	1.545	-39899363,776	Coefficient	
1 119 108 0.970 0.967 2.349 0.000 9912390.00	0.062	4037340.572	6416115.318	9172957.381	8821367.113	5096836.841	4508761.661	297.421	0.034	0.160	10902242.939	StdErr	
	3.770	1.472	6.736	2.812	4.004	1.589	2.221	7.549	9.029	9.682	-3.660	T-Stat	

Variable Definitions

CONST = (Dependent
onstant Term	Variable = Kansas
	Residential
	Urban
	kWh

CDD = Cooling Degree Days

HDD = Heating Degree Days

CDD_70_30= ((Lag(Weather1.CDD.1))*.30+(Weather1.CDD*.70))
HDD_70_30 = ((Lag(Weather1.HDD.1))*.30+(Weather1.HDD*.70)) Split].CDD_70_30*KS_Cus_ResUrban (customers) CDD_70_30_Customers = [CDD_HDD Billing Cycle

12% JUNE = Seasonal dummy value for June; value of 0 for all months except June JAN = Seasonal dummy value for January; value of 0 for all months except Split].HDD_70_30*KS_Cus_ResUrban (customers) HDD_70_30_Customers = [CDD_HDD Billing Cycle

OCT = Seasonal dummy value for October, value of 0 for all months except September SEPT = Seasonal dummy value for September, value of 0 for all months except AUG = Seasonal dummy value for August; value of 0 for all months except August JULY = Seasonal durniny value for July; value of 0 for all months except July

DEC = Seasonal dummy value for December, value of 0 for all months except

Real_Per_Income = Real Personal Income, (Mil. \$96, SAAR), economy.com -

Kansas City MSA

Example of class models used to allocate system forecast to classes

'02-'20 Long-Term Forecast - Peak Demand

Forecast Period End Date: Estimation End Date: Estimation Begin Date: 2020:12 2002:9

Variable	Coefficient	StdErr	T-Stat	P-Value
CONST	-1797.3535436	855.2313666	-2.102	3.79%
DJAN	63.7192220	42.8136009	1.488	13.95%
DFEB	1.3100435	40.7500449	0.032	97.44%
DAPR	-84.9428209	47.5200557	-1.788	7.66%
DMAY	221 1072889	63.6721156	3,473	0.07%
DJUNE	482.7678048	74.6945173	6,463	0.00%
DAUG	647.9619938	80.6245476	8.037	0.00%
DSEPT	527.7860886	69.8459920	7.556	0.00%
DOCT	-58.5528485	61.0296341	-0.959	33.95%
DDEC	103.2302693	39.7916425	2.594	1.08%
DMAY97	-551.4238684	103.8476386	-5.310	0.00%
TCool95 RCCUS	0.0000713	0.0000064	11.142	0.00%
TCOOL95P_CUST	0.0000296	0.0000148	1.999	4.80%
THeat Cust	0.0000122	0.0000027	4.499	0.00%
Gross Metro Product	2.9638560	7.5580379	0.392	69.57%
Total_RES_COM	0.0071987	0.0029274	2.459	1.55%
HeatBuildUp	6.9139042	0.8878853	7.787	0.00%

70
P
9
(D)
S
S
~
\simeq
_
S
50
=
S
=
C
W

lean Abs. % Err. (MAPE) 3.18		ourbin-H Statistic -0.7		djusted R-Squared 0.9		leg. of Freedom for Error		erations
3.18%	98.98	0.706	1.722	0.969	0.973	112	129	_

SOUDARDAG

Variable Definitions

Dependent Variable = Gross Peak Demand (MW) minus GST Steel plus PLCC curtailment load CONST = Constant Term

DJAN = Seasonal dummy value for January; value of 0 for all months except January

DFEB = Seasonal dummy value for February, value of 0 for all months except February DAPR = Seasonal dummy value for April; value of 0 for all months except April DMAY = Seasonal dummy value for May; value of 0 for all months except May

DSEPT = Seasonal dummy value for September; value of 0 for all months except September DAUG = Seasonal dummy value for August; value of 0 for all months except August **DJUNE** = Seasonal dummy value for June; value of 0 for all months except June

DDEC = Seasonal dummy value for December, value of 0 for all months except December DOCT = Seasonal dummy value for October, value of 0 for all months except October DMAY97 = Event variable to account for data error; value of 0 for all months except for May

commercial customers defined as TCOOL, but with a maximum value of 25 * residential and commercial customers than 95 degrees, which is essentially the difference between TCOOL and T95 * residential and TCOOL95_RCCUS = On-peak cooling requirements for temperature range of 70-95 degrees TCOOL95P_CUST = On-peak cooling requirements for temperature at peak range of greater TCOOL = On-peak cooling requirements defined as temperature at peak, less 70 degrees

0)*residential/commercial customers THEAT_CUST = (If (Temp_at_Peak < 65) THEN 65 - Temp_at_Peak ELSE

GMP = Gross Metro Product, (Bil. Constant\$, SAAR), Economy.com; Kansas City MSA TOTAL RES COM = Total residential and commercial customers

multiplied by DJULYTWODAYAVG (Temp dummy value for July; value of 0 for all months except July; value for July is a two day average of max temp before the day of peak) **HEATBUILDUP** = Djuly (Seasonal dummy value for July), value of 0 for all months except July)

'02-'20 Long-Term Forecast – Energy Model

Forecast Period End Date: Estimation End Date: Estimation Begin Date 2002:9

2020:12

Variable	Coefficient	StdErr	T-Stat	P-Value
CONST	294453.808478	37322.350657	7.889	0.00%
GST	-23344.389000	12313.005073	-1.896	6.19%
CDD_Cust	0.002488	0.000136	18.314	0.00%
HDD_Cust	0.000418	0.000057	7.346	0.00%
DJAN	24587.815712	15592 601030	1.577	11.91%
DFEB	-67283.229123	11977.053103	-5.618	0.00%
DAPR	-31241.128701	15500.328774	-2.016	4.75%
DMAY	43119.027570	19793 224780	2.178	3 26%
DJUNE	79438.251677	25818.653641	3.077	0.29%
DJULY	157206.635473	32918.932910	4776	0.00%
DAUG	168639.233969	31209.202651	5.404	0.00%
DSEPT	101974.748157	23070.236359	4.420	0.00%
DOCT	35715.884318	16826.346920	2 123	3.71%
DNOV	-21340.227520	12340.535996	-1 729	8.79%
DDEC	24629.002329	14665.659899	1.679	9.73%
Gross_Metro_Product	10402.730728	519.670407	20.018	0.00%
D911	-36524.182929	13017.761601	-2 806	0.64%

Variable Definitions

Dependent Variable = System Energy (kWh) minus GST Steel

CONST = Constant Term

GST = Event dummy value for the loss of GST Steel; Value of 0 until April 01 then a value of 1

CDD = Cooling Degree Days

HDD = Heating Degree Days

HDD_CUST = Heating degree days multiplied by residential/commercial cusolmers CDD_CUST = Cooling degree days multiplied by residential/commercial customers DJAN = Seasonal dummy value for January; value of 0 for all months except January

DFEB = Seasonal dummy value for February; value of 0 for all months except February DAPR = Seasonal dummy value for April; value of 0 for all months except April DMAY = Seasonal dummy value for May; value of 0 for all months except May

DJUNE = Seasonal dummy value for June; value of 0 for all months except June DAUG = Seasonal dummy value for August; value of 0 for all months except August DJULY = Seasonal dummy value for July, value of 0 for all months except July

DSEPT = Seasonal dummy value for September, value of 0 for all months except September DDEC = Seasonal dummy value for December; value of 0 for all months except December DOCT = Seasonal dummy value for October, value of 0 for all months except October

D911 = Event variable to account for the events of September 11, 2001; value of 0 for all month GMP = Gross Metro Product, (Bil. Constant\$, SAAR), Economy.com; Kansas City MSA DMAY97 = Event variable to account for data error, value of 0 for all months except for May

except for September 2001 through May 2003

Regression Statistics

Mean Abs. % Err. (MAPE)	Std. Error of Regression	Durbin-H Statistic	Durbin-Watson Statistic	Adjusted R-Squared	R-Squared	Deg. of Freedom for Error	Adjusted Observations	Iterations
1.36%	23571.89	1.628	1.496	0.988	0.990	76	93	_

8) SAE Methodology

Current Modeling Efforts

- capability development Completing Statistically-Adjusted End-Use Models (SAE)
- Blend of End-Use and Econometric Approaches
- MetrixLT ("HELM") Class energy forecasts converted to hourly system loads with
- RER/ITRON

End Use Modeling

- Each component is modeled separately over time
- Saturation = f (Prices, Income, Costs, Appliance Life)
- Structure) Efficiency and Size = f (Prices, Standards, Costs, House
- Usage = f (Weather, Income, Prices)
- Households = f (Population)
- relationship and parameters Forecast generated through a set of pre-defined structural

SAE Approach

- Economic impacts income, household size, household growth
- Price impacts
- integrity trends Structural changes - saturation, efficiency, footage, thermal
- Weather impacts
- Appropriate interaction of these variables

Statistically Adjusted End-use Modeling

Blend end-use concepts into an econometric modeling framework:

Average Use = Heating + Cooling + Other Use

Define components in terms of its end use structure: e.g.

- Cooling = f (Saturation, Efficiency, Utilization)
- Utilization = g (Weather, Price, Income, Household Size)

Estimate model using Ordinary Least Squares

AvgUse_t = b_0 + (b_1 × XHeat_t) + (b_2 × XCool_t) +(b_3 × XOther_t) + e_t

Residential Cooling End Use

$$XCool_{y,m} = CoolIndex_{y} \times CoolUse_{y,m}$$

$$\frac{\text{CoolUse}_{\text{y,m}} = \left(\frac{\text{Price}_{\text{y,m}}}{\text{Price}_{98}}\right)^{-0.20}}{\times} \left(\frac{\text{Income}_{\text{y,m}}}{\text{Income}_{98}}\right)^{0.20}} \times \left(\frac{\text{HHSize}_{\text{y,m}}}{\text{HHSize}_{98}}\right)^{0.20} \times \left(\frac{\text{CDD}_{\text{y,m}}}{\text{CDD}_{98}}\right)^{0.20}}{\times} \left(\frac{\text{CDD}_{\text{y,m}}}{\text{CDD}_{98}}\right)^{0.20} \times \left(\frac{\text{HHSize}_{\text{y,m}}}{\text{CDD}_{98}}\right)^{0.20} \times \left(\frac{\text{CDD}_{\text{y,m}}}{\text{CDD}_{98}}\right)^{0.20} \times \left(\frac{\text{CDD}_{\text{y,m}}}{\text{CDD}_{\text{y,m}}}\right)^{0.20} \times \left(\frac{\text{CDD}_{\text{y,m}}}{\text{CDD}_{\text{y,m}}}\right)^{0.20} \times \left(\frac{\text{CDD}_{\text{y,m}}}{\text{CDD}_{\text{y,m}}}\right)^{0.20} \times \left(\frac$$

$$\begin{aligned} & \text{CoolIndex}_{y} = \text{Structural Index}_{y} \times \underset{\text{Type}}{\Sigma} & \text{Weight}^{\text{Type}} \times \frac{\left(\text{Sat}_{y}^{\text{Type}} \right) \text{Eff}_{y}^{\text{Type}}}{\left(\text{Sat}_{98}^{\text{Type}} \right) \text{Eff}_{98}^{\text{Type}}} \end{aligned}$$

Residential Cooling End Use (Cont.)

Structural index accounts for

- Change in housing square footage
- Change in structural thermal integrity Overall R-Value

where:

Surface Area_y = 892 + 1.44 × Footage_y

