

GTI Energy develops innovative solutions that transform lives, economies, and the environment

80-year history of turning raw technology into practical energy solutions

Across the entire energy value chain

We work collaboratively to address critical energy challenges

Our approach:

systems thinking

innovation

collaboration

Natural Gas Low Greenhouse Gas Pathways

Near-Term (25-50+%)

Expanded use of highefficiency gas equipment

Hybrid natural gas furnace/ boilers and electric heat pump systems

Building envelope improvement

Next-Gen (40-60+%)

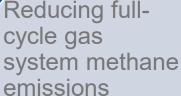
Gas heat pumps for space & water heating

Micro CHP systems

Deep building retrofits

Renewables (Added 10-30+%)

RNG & Hydrogen blends



Solar thermal/ gas space & water heating systems

Reducing fullcycle gas

Hydrogen Technology Center

Capabilities

- Thought leadership
- Deep hydrogen expertise across the value chain
- Decades of experience and hydrogen technology projects
- Expanded labs and facilities

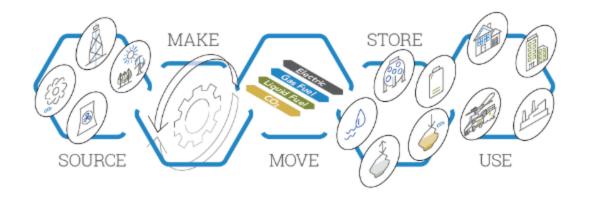
Enabling

- Hydrogen Generator Technology
- Hydrogen Blending Impact Studies
- H2@Scale TX Demonstration

Technologies/Projects

Open Hydrogen Initiative

- Compact Hydrogen Generator
- Biomass gasification
- Liquid Phase Reformer


- Material impacts of blending
- Operational impacts
- Blending technology and standards

Use in Industry and Buildings

- End-use equipment testing
- Codes and standards
- H2 sensors

Use in Transportation

- HD Trucks
- H2 Locomotives
- Fueling station technology

H2@Scale Demonstration Site

Renewable H₂ generation

- ~100 kg/day from two SMRs
 - Renewable credits from landfill gas (RNG)
- ~40 kg/day PEM electrolyzers in two SimpleFuel units
 - Emulated wind and solar power through UT CEM microgrid

Large scale, industry H₂ user

100kW fuel cell powering Texas Advanced Computing Center

Vehicle refueling

- Fueling fleet of Toyota Mirai's
- Hydrogen powered drones

OPEN HYDROGEN INITIATIVE

What is the Open Hydrogen Initiative

The Mission

The **Open Hydrogen Initiative** is laying the foundation for low-carbon hydrogen marketplaces

The Objective

OHI will develop an analytical toolkit to assess the carbon intensity of hydrogen production

- Facility Level
- Cradle-to-Gate
- Compatible with International Norms & Best Practices
- Comprehensive Stakeholder Engagement
- Open Sourced

Leadership

Stakeholders and Sponsors

OPEN

HYDROGEN

INITIATIVE

Foundational Sponsors

Technical Sponsors

LanzaTech

Building systems for carbon accounting Veritas

Methane emissions measurement protocols enabling verifiable emissions reductions through a consistent measurement approach

The protocols...

- Calculate **methane emissions** for natural gas systems by six segments
- Consistent approach to demonstrate emissions reductions in a transparent way
- Now available online for everyone to use: Veritas.com

Accelerating Hydrogen Market Development

Department of Energy

DOE Launches Bipartisan Infrastructure Law's \$8 Billion Program for Clean Hydrogen Hubs Across U.S.

JUNE 6, 2022

EnergySource | September 20, 2022

The Inflation Reduction Act will accelerate clean hydrogen adoption

By Joseph Webster

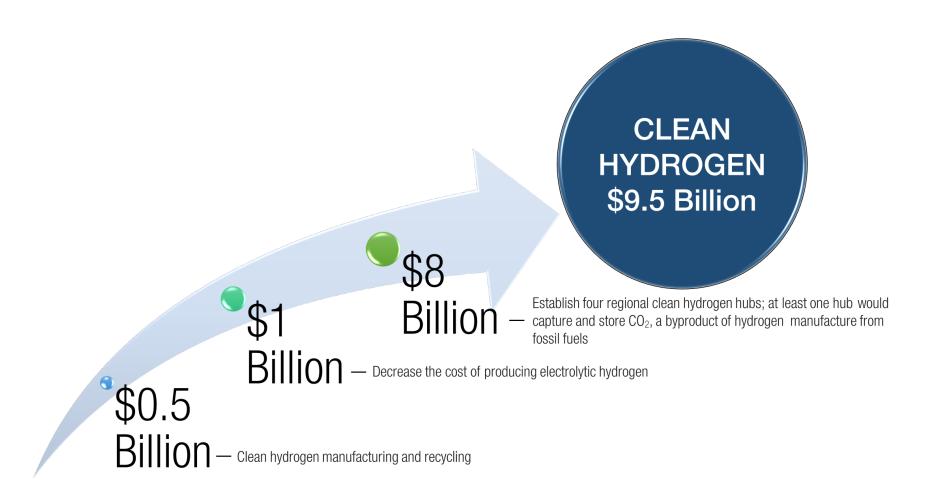
Hydrogen and Fuel Cell Technologies Office

Clean Hydrogen Production Standard

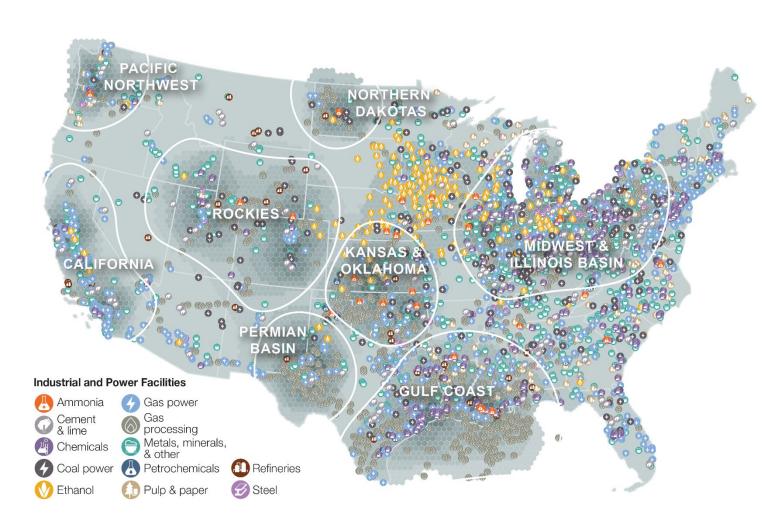
SEPTEMBER 22, 2022

Inflation Reduction Act & Infrastructure Bill

This legislation maps the next decade of industrial policies


Systems of tomorrow will be built on systems of today & expand beyond renewables

- Decarbonize traditional energy infrastructure
- Hydrogen production credits based on carbon intensity
- Aviation fuel credits for clean fuel production and low-emission aviation technology
- Carbon capture tax credit broadened
- Methane fees directly taxing GHG emissions



Infrastructure Investment and Jobs Act (IIJA) Clean Hydrogen Programs

Regional Hub Development for Hydrogen Market

Demonstration Focus: Funding projects at demonstration phase (IEA definition: "operation of a prototype at or near commercial scale")

Emissions Reduction: Implementing Infrastructure Bill's definition of "clean hydrogen" through a carbon intensity standard (2kg CO2/kg H2 at site of production)

Clean Hydrogen Cost Targets: Implementing cost targets for "clean hydrogen" of \$2/kg by 2025 and \$1/kg by 2030

Regionality: "at least 4" (but most likely 6-10) regional hubs

Supply and Demand Diversity: Seek diverse H2 production technologies (fossil fuels, renewables or nuclear) and diverse sectors (power generation, industrial, residential and commercial heating, and transportation).

Stimulate Clean Hydrogen Demand: Use demand side tools (such as contract for differences) to encourage fuel switching

Hydrogen Hub Initiatives in the U.S.

Pacific Northwest

- Port communities
- Tribal communities
- Extensive renewables
- 8 jobs per \$1M invested in H2

California

- Diverse populations
- Extensive infrastructure
- Emissions regulations
- 40,000+ jobs

Southwest

- Tribal and Hispanic communities
- Underutilized solar
- Nuclear power
- Up to 2B tonnes/yr emission reduction potential

Central U.S.

- Ample wind
- Geological storage
- Railway transport
- Nuclear resources
- >630,000 tonnes/yr CO2 reduction

Great Lakes

Major national corridors • Nuclear power • 60,000+ jobs

New England

- Offshore wind
- Fishing communities
- Backup power and winter heating
- ~120K tons CO2/year reduction

Appalachia

- Retiring fossil plants
- Mining, refining transferable skills
- Carbon capture and sequestration
- 70,000 tons/yr H2 production

Alaska and Hawaii

- Extensive renewables geothermal, solar, ocean
- Backup power
- · Isolated communities
- 86,000 tonnes/yr emission reduction

Gulf Coast

- Existing infrastructure
- Multiple opportunity zones
- Renewable resources
- 1,000s of jobs
- Chemical industry

Source: DOE Hydrogen Shot Summit

Advancing the Hydrogen Ecosystem Across the U.S.

HYDROGEN

Hydrogen Production Tax Credit 45V in Inflation Reduction Act (IRA)

- Precludes facilities from utilizing both the PTC and 45Q; renewable and nuclear electricity credits allowed
- To Qualify construction must begin before January 1, 2033
- Direct pay
 - Taxable entities: available for the first five tax-years after the project is placed in service with enhanced transferability thereafter
 - Tax-exempt entities/Coops/Munis: Line of the credit
- Maximum credit value is \$3.00 per kg of clean hydrogen if the hydrogen production facility meets the prevailing wage and apprenticeship requirements
- One-year for rulemaking by Treasury on lifecycle analysis and other issues

Lifecycle GHG Intensity (kg CO2e/kg H2)	PTC \$Value per kg (% of max credit)	ITC % Value (% of max credit)
< 0.45 kg	\$3.00 (100%)	30% (100%)
< 1.5 and <u>></u> 0.45 kg	\$1.00 (33.4%)	10.2% (34%)
< 2.5 and <u>></u> 1.5 kg	\$0.75 (25%)	7.5% (25%)
<4 and <u>></u> 2.5 kg	\$0.60 (20%)	6% (20%)

IRA Hydrogen Related Programs

Questions About Presentation Contact

Daniel S. LeFevers

Director State and Consumer Programs

GTI Energy

dlefevers@gti.energy

847-544-3458