FILED²

OCT 2 1 2009

Missouri Public Service Commission

§ 192.1

Subpart A—General

§ 192.1 Scope of part.

(a) This part prescribes <u>minimum</u> safety requirements for pipeline facilities and the transportation of gas, including pipeline facilities and the transportation of gas within the limits of the outer continental shelf as that term is defined in the Outer Continental Shelf Lands Act (43 U.S.C. 1331). (b) This part does not apply to:

(1) Offshore pipelines upstream from the outlet flange of each facility where hydrocarbons are produced or where produced hydrocarbons are first separated, dehydraced, or otherwise processed, whichever facility is farther downstream;

(2) Onshore gathering of gas outside of the following areas:

(i) An area within the limits of any incorporated or unincorporated city, town, or village.

(ii) Any designated residential or commercial area such as a subdivision, business or shopping center, or community development.

(3) Onshore gathering of gas within inlets of the Gulf of Mexico except as provided in §192.612.

(4) Any pipeline system that transports only petroleum gas or petroleum gas/air mixtures to—

(i) Fewer than 10 customers, if no portion of the system is located in a public place: or

(ii) A single customer, if the system is located entirely on the customer's premises (no matter if a portion of the system is located in a public place).

(5) On the Outer Continental Shelf upstream of the point at which operating responsibility transfers from a producing operator to a transporting operator.

 [35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192-27, 41 FR 34605, Aug. 16, 1976;
 Amdt. 192-67, 56 FR 63771, Dec. 5, 1991; Amdt. 192-78, 61 FR 28782, June 6, 1996; Amdt. 192-81, 62 FR 61695, Nov. 19, 1997]

§192.3 Definitions.

As used in this part:

Abandoned means permanently removed from service.

Administrator means the Administrator of the Research and Special Programs Administration or any person to

49 CFR Ch. I (10-1-02 Edition)

whom authority in the matter concerned has been delegated by the Secretary of Transportation.

Distribution line means a pipeline other than a gathering or transmission line.

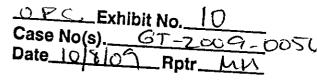
Exposed pipeline means a pipeline where the top of the pipe is protruding above the seabed in water less than 15 feet (4.6 meters) deep, as measured from the mean low water.

Gas means natural gas, flammable gas, or gas which is toxic or corrosive.

Gathering line means a pipeline that transports gas from a current production facility to a transmission line or main.

Gulf of Mexico and its inlets means the waters from the mean high water mark of the coast of the Gulf of Mexico and its inlets open to the sea (excluding rivers, tidal marshes, lakes, and canals) seaward to include the territorial sea and Outer Continental Shelf to a depth of 15 feet (4.6 meters), as measured from the mean low water.

Hazard to navigation means, for the purpose of this part, a pipeline where the top of the pipe is less than 12 inches (305 millimeters) below the seabed in water less than 15 feet (4.6 meters) deep, as measured from the mean low water.


High-pressure distribution system means a distribution system in which the gas pressure in the main is higher than the pressure provided to the customer.

Line section means a continuous run of transmission line between adjacent compressor stations, between a compressor station and storage facilities, between a compressor station and a block valve, or between adjacent block valves.

Listed specification means a specification listed in section I of appendix B of this part.

Low-pressure distribution system means a distribution system in which the gas pressure in the main is substantially the same as the pressure provided to the customer.

Main means a distribution line that serves as a common source of supply for more than one service line.

(b) In this part:

(1) Words importing the singular include the plural;

(2) Words importing the plural include the singular; and

(3) Words importing the masculine gender include the feminine.

§192.16 Customer notification.

(a) This section applies to each operator of a service line who does not maintain the customer's buried piping up to entry of the first building downstream, or, if the customer's buried piping does not enter a building, up to the principal gas utilization equipment or the first fence (or wall) that surrounds that equipment. For the purpose of this section, "customer's buried piping" does not include branch lines that serve yard lanterns, pool heaters, or other types of secondary equipment. Also, "maintain" means monitor for corrosion according to §192.465 if the customer's buried piping is metallic. survey for leaks according to §192.723, and if an unsafe condition is found, shut off the flow of gas, advise the customer of the need to repair the unsafe condition, or repair the unsafe condition.

(b) Each operator shall notify each customer once in writing of the following information:

(1) The operator does not maintain the customer's buried piping.

(2) If the customer's buried piping is not maintained, it may be subject to the potential hazards of corrosion and leakage.

(3) Buried gas piping should be-

(i) Periodically inspected for leaks:

(ii) Periodically inspected for corrosion if the piping is metallic; and

(iii) Repaired if any unsafe condition is discovered.

(4) When excavating near buried gas piping, the piping should be located in advance, and the excavation done by hand.

(5) The operator (if applicable), plumbing contractors, and heating contractors can assist in locating, inspecting, and repairing the customer's buried piping.

(c) Each operator shall notify each customer not later than August 14, 1996, or 90 days after the customer first receives gas at a particular location,

49 CFR Ch. I (10-1-02 Edition)

whichever is later. However, operators of master meter systems may continuously post a general notice in a prominent location frequented by customers.

(d) Each operator must make the following records available for inspection by the Administrator or a State agency participating under 49 U.S.C. 60105 or 60106:

(1) A copy of the notice currently in use; and

(2) Evidence that notices have been sent to customers within the previous 3 years.

[Amdt. 192-74. 60 FR 41828, Aug. 14, 1995, as amended by Amdt. 192-74A, 60 FR 63451, Dec. 11, 1995; Amdt. 192-83, 63 FR 7723, Feb. 17, 1998]

Subpart B—Materials

§192.51 Scope.

This subpart prescribes <u>minimum re-</u> <u>quirements for the selection and quali-</u> <u>fication of pipe</u> and components for use in pipelines.

§192.53 General.

Materials for pipe and components must be:

(a) Able to maintain the structural integrity of the pipeline under temperature and other environmental conditions that may be anticipated:

(b) Chemically compatible with any gas that they transport and with any other material in the pipeline with which they are in contact; and

(c) Qualified in accordance with the applicable requirements of this subpart.

§ 192.55 Steel pipe.

(a) New steel pipe is qualified for use under this part if:

(1) It was manufactured in accordance with a listed specification;

(2) It meets the requirements of-

(i) Section II of appendix B to this part; or

(ii) If it was manufactured before November 12, 1970, either section II or III of appendix B to this part; or

(3) It is used in accordance with paragraph (c) or (d) of this section.

(b) Used steel pipe is qualified for use under this part if:

(1) It was manufactured in accordance with a listed specification and it

(2) Specifications or standards giving pressure, temperature, and other appropriate criteria for the use of items are readily available.

[Amdt. 192-1, 35 FR 17660, Nov. 17, 1970. as amended by Amdt. 192-31, 43 FR 863. Apr. 3, 1978: Amdt. 192-61, 53 FR 36793. Sept. 22, 1968; Amdt. 192-62, 54 FR 5627, Feb. 6, 1989; Amdt. 192-61A, 54 FR 32642, Aug. 9, 1989; 58 FR 14521, Mar. 18, 1983: Amdt. 192-76. 61 FR 26122, May 24, 1996; 61 FR 36826, July 15, 1996]

§192.65 Transportation of pipe.

In a pipeline to be operated at a hoop stress of 20 percent or more of SMYS, an operator may not use pipe having an outer diameter to wall thickness ratio of 70 to 1, or more, that is transported by railroad unless:

(a) The transportation is performed in accordance with API RP 5L1.

(b) In the case of pipe transported before November 12, 1970, the pipe is tested in accordance with subpart J of this part to at least 1.25 times the maximum allowable operating pressure if it is to be installed in a class 1 location and to at least 1.5 times the maximum allowable operating pressure if it is to be installed in a class 2, 3, or 4 location. Notwithstanding any shorter time period permitted under subpart J of this part, the test pressure must be maintained for at least 8 hours.

[Amdt. 192-12. 38 FR 4761, Feb. 22. 1973, as amended by Amdt. 192-17, 40 FR 6346, Feb. 11, 1975: 58 FR 14521, Mar. 18, 1993]

Subpart C-Pipe Desian

§192.101 Scope.

This subpart prescribes the <u>minimum</u> requirements for the design of pipe.

§192.103 General.

Pipe must be designed with sufficient wall thickness, or must be installed with adequate protection, to withstand anticipated external pressures and loads that will be imposed on the pipe after installation.

§192.105 Design formula for steel pipe.

(a) The design pressure for steel pipe is determined in accordance with the following formula:

 $P=(2 St/D) \times F \times E \times T$

49 CFR Ch. I (10-1-02 Edition)

P=Design pressure in pounds per square inch (kPa) gauge.

- S=Yield strength in pounds per square inch (kPa) determined in accordance with §192.107.
- D=Nominal outside diameter of the pipe in inches (millimeters).
- t=Nominal wall thickness of the pipe in inches (millimeters). If this is unknown, it is determined in accordance with §192.109. Additional wall thickness required for concurrent external loads in accordance with §192.103 may not be included in computing design pressure.
- F=Design factor determined in accordance with §192.111.

E=Longitudinal joint factor determined in accordance with §192.113.

T=Temperature derating factor determined in accordance with §192.115.

(b) If steel pipe that has been subjected to cold expansion to meet the SMYS is subsequently heated, other than by welding or stress relieving as a part of welding, the design pressure is limited to 75 percent of the pressure determined under paragraph (a) of this section if the temperature of the pipe exceeds 900° F (482° C) at any time or is held above 600° F (316° C) for more than 1 hour.

[35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192-47, 49 FR 7569, Mar. 1, 1984; Amdt. 192-85, 63 FR 37502, July 13, 1998]

\$192.107 Yield strength (S) for steel pipe.

(a) For pipe that is manufactured in accordance with a specification listed in section I of appendix B of this part, the yield strength to be used in the design formula in §192.105 is the SMYS stated in the listed specification, if that value is known.

(b) For pipe that is manufactured in accordance with a specification not listed in section I of appendix B to this part or whose specification or tensile properties are unknown, the yield strength to be used in the design formula in \$192.105 is one of the followine:

(1) If the pipe is tensile tested in accordance with section II-D of appendix B to this part, the lower of the following:

(i) 80 percent of the average yield strength determined by the tensile tests.

(ii) The lowest yield strength determined by the tensile tests.

§ 192.144

temperature rating by the manufacturer consistent with that operating temperature; or

(2) Above the following applicable temperatures:

(i) For thermoplastic pipe, the temperature at which the long-term hydrostatic strength used in the design formula under \$192.121 is determined. However, if the pipe was manufactured before May 18, 1978 and its long-term hydrostatic strength was determined at 73°F (23°C), it may be used at temperatures up to 100°F (38°C).

(ii) For reinforced thermosetting plastic pipe, 150°F (66°C).

(c) The wall thickness for thermoplastic pipe may not be less than 0.062 inches (1.57 millimeters).

(d) The wall thickness for reinforced thermosetting plastic pipe may not be less than that listed in the following table:

Nominal size in inches (millimeters).	Minimum wall thick- ness inches (millime- ters).
2 (51)	0.060 (1.52)
3 (76)	0.060 (1.52)
4 (102)	0.070 (1.78)
6 (152)	0.100 (2.54)

[35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192-31, 43 FR 13883, Apr. 3, 1978; Amdt. 192-78, 61 FR 28783, June 6, 1996; Amdt. 192-85, 63 FR 37502, July 13, 1998]

§ 192.125 Design of copper pipe.

(a) Copper pipe used in mains must have a minimum wall thickness of 0.065 inches (1.65 millimeters) and must be hard drawn.

(b) Copper pipe used in service lines must have wall thickness not less than that indicated in the following table:

	inch O.D. inch	Wall thickness inch (milli- meter)	
		Nominal	Tolerance
1⁄2 (13)	.625 (16)	.040 (1.06)	.0035 (.0889)
5⁄8 (16)	.750 (19)	.042 (1.07)	.0035 (.0889)
3/4 (19)	.875 (22)	.045 (1.14)	.004 (.102
1 (25)	1.125 (29)	.050 (1.27)	.004 (.102
11/4 (32)	1.375 (35)	055 (1 40)	.0045 (.1143
11/2 (38)	1.625 (41)	.060 (1.52)	,0045 (.1143)

(c) Copper pipe used in mains and service lines may not be used at pressures in excess of 100 p.s.i. (689 kPa) gage.

(d) Copper pipe that does not have an internal corrosion resistant lining may not be used to carry gas that has an average hydrogen sulfide content of more than 0.3 grains/100 ft³ (6.9/m³) under standard conditions. Standard conditions refers to 60°F and 14.7 psia (15.6°C and one atmosphere) of gas.

[35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192-62, 54 FR 5628, Feb. 6, 1989; Amdt. 192-85, 63 FR 37502, July 13, 1998]

Subpart D—Design of Pipeline Components

§192.141 Scope.

This subpart prescribes minimum requirements for the design and installation of pipeline components and facilities. In addition, it prescribes requirements relating to protection against accidental overpressuring.

§192.143 General requirements.

Each component of a pipeline must be able to withstand operating pressures and other anticipated loadings without impairment of its serviceability with unit stresses equivalent to those allowed for comparable material in pipe in the same location and kind of service. However, if design based upon unit stresses is impractical for a particular component, design may be based upon a pressure rating established by the manufacturer by pressure testing that component or a prototype of the component.

[Amdt. 48, 49 FR 19824, May 10, 1984]

§ 192.144 Qualifying metallic components.

Notwithstanding any requirement of this subpart which incorporates by reference an edition of a document listed in appendix A of this part, a metallic component manufactured in accordance with any other edition of that document is qualified for use under this part if—

(a) It can be shown through visual inspection of the cleaned component that no defect exists which might impair the strength or tightness of the component; and

(b) The edition of the document under which the component was manufactured has equal or more stringent

Subpart E—Welding of Steel in Pipelines

§192.221 Scope.

(a) This subpart prescribes <u>minimum</u> requirements for welding steel materials in pipelines.

(b) This subpart does not apply to welding that occurs during the manufacture of steel pipe or steel pipeline components.

§192.225 Welding-General.

(a) Welding must be performed by a qualified welder in accordance with welding procedures qualified to produce welds meeting the requirements of this subpart. The quality of the test welds used to qualify the procedure shall be determined by destructive testing.

(b) Each welding procedure must be recorded in detail, including the results of the qualifying tests. This record must be retained and followed whenever the procedure is used.

[Amdt. 192-52, 51 FR 20297, June 4, 1986]

§192.227 Qualification of welders.

(a) Except as provided in paragraph (b) of this section, each welder must be qualified in accordance with section 3 of API Standard 1104 or section IX of the ASME Boiler and Pressure Vessel Code. However, a welder qualified under an earlier edition than listed in appendix A may weld but may not requalify under that earlier edition.

(b) A welder may qualify to perform welding on pipe to be operated at a pressure that produces a hoop stress of less than 20 percent of SMYS by performing an acceptable test weld, for the process to be used, under the test set forth in section I of Appendix C of this part. Each welder who is to make a welded service line connection to a main must first perform an acceptable test weld under section II of Appendix C of this part as a requirement of the qualifying test.

[35 FR 13257. Aug. 19, 1970. as amended by Amdt. 192-43, 47 FR 46851, Oct. 21, 1982; Amdt. 192-52, 51 FR 20297, June 4, 1986; Amdt. 192-78.
61 FR 28784, June 6, 1996]

49 CFR Ch. I (10-1-02 Edition)

§192.229 Limitations on welders.

(a) No welder whose qualification is based on nondestructive testing may weld compressor station pipe and components.

(b) No welder may weld with a particular welding process unless, within the preceding 6 calendar months, he has engaged in welding with that process.

(c) A welder qualified under §192.227(a)—

(1) May not weld on pipe to be operated at a pressure that produces a hoop stress of 20 percent or more of SMYS unless within the preceding 6 calendar months the welder has had one weld tested and found acceptable under section 3 or 6 of API Standard 1104, except that a welder qualified under an earlier edition previously listed in Appendix A of this part may weld but may not requalify under that earlier edition; and

(2) May not weld on pipe to be operated at a pressure that produces a hoop stress of less than 20 percent of SMYS unless the welder is tested in accordance with paragraph (c)(1) of this section or requalifies under paragraph (d)(1) or (d)(2) of this section.

(d) A welder qualified under §192.227(b) may not weld unless—

(1) Within the preceding 15 calendar months, but at least once each calendar year, the welder has requalified under §192.227(b); or

(2) Within the preceding 7½ calendar months, but at least twice each calendar year, the welder has had—

(i) A production weld cut out, tested, and found acceptable in accordance with the qualifying test; or

(ii) For welders who work only on service lines 2 inches (51 millimeters) or smaller in diameter, two sample welds tested and found acceptable in accordance with the test in section III of Appendix C of this part.

[35 FR 13257. Aug. 19, 1970, as amended by Amdt. 192-37, 46 FR 10159, Feb. 2, 1981; Amdt. 192-78. 61 FR 28784, June 6, 1996; Amdt. 192-85. 63 FR 37503, July 13, 1998]

§ 192.231 Protection from weather.

The welding operation must be protected from weather conditions that would impair the quality of the completed weld.

tested, when nondestructive testing is required under §192.241(b).

(f) When nondestructive testing is required under §192.241(b), each operator must retain, for the life of the pipeline, a record showing by milepost, engineering station, or by geographic feature, the number of girth welds made, the number nondestructively tested, the number rejected, and the disposition of the rejects.

[35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192-27, 41 FR 34606, Aug. 16, 1976; Amdt. 192-50, 50 FR 37192, Sept. 12, 1985; Amdt. 192-78, 61 FR 28784, June 6, 1996]

§ 192.245 Repair or removal of defects.

(a) Each weld that is unacceptable under $\S192.241(c)$ must be removed or repaired. Except for welds on an offshore pipeline being installed from a pipeline vessel, a weld must be removed if it has a crack that is more than 8 percent of the weld length.

(b) Each weld that is repaired must have the defect removed down to sound metal and the segment to be repaired must be preheated if conditions exist which would adversely affect the quality of the weld repair. After repair, the segment of the weld that was repaired must be inspected to ensure its acceptability.

(c) Repair of a crack, or of any defect in a previously repaired area must be in accordance with written weld repair procedures that have been qualified under §192.225. Repair procedures must provide that the minimum mechanical properties specified for the welding procedure used to make the original weld are met upon completion of the final weld repair.

[Amdt. 192-46, 48 FR 48674, Oct. 20, 1983]

Subpart F—Joining of Materials Other Than by Welding

§192.271 Scope.

(a) This subpart prescribes <u>minimum</u> requirements for joining materials in pipelines, other than by welding.

(b) This subpart does not apply to joining during the manufacture of pipe or pipeline components.

49 CFR Ch. I (10-1-02 Edition)

§192.273 General.

(a) The pipeline must be designed and installed so that each joint will sustain the longitudinal pullout or thrust forces caused by contraction or expansion of the piping or by anticipated external or internal loading.

(b) Each joint must be made in accordance with written procedures that have been proven by test or experience to produce strong gastight joints.

(c) Each joint must be inspected to insure compliance with this subpart.

§192.275 Cast iron pipe.

(a) Each caulked bell and spigot joint in cast iron pipe must be sealed with mechanical leak clamps.

(b) Each mechanical joint in cast iron pipe must have a gasket made of a resilient material as the sealing medium. Each gasket must be suitably confined and retained under compression by a separate gland or follower ring.

(c) Cast iron pipe may not be joined by threaded joints.

(d) Cast iron pipe may not be joined by brazing.

[35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192-62, 54 FR 5628, Feb. 6, 1989]

§ 192.277 Ductile iron pipe.

(a) Ductile iron pipe may not be joined by threaded joints.

(b) Ductile iron pipe may not be joined by brazing.

[35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192-62, 54 FR 5628, Feb. 6, 1989]

§192.279 Copper pipe.

Copper pipe may not be threaded except that copper pipe used for joining screw fittings or valves may be threaded if the wall thickness is equivalent to the comparable size of Schedule 40 or heavier wall pipe listed in Table C1 of ASME/ANSI B16.5.

[Amdt. 192-62, 54 FR 5628, Feb. 6, 1989, as amended at 58 FR 14521, Mar. 18, 1993]

§192.281 Plastic pipe.

(a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion may not be disturbed until it has properly set. Plastic pipe

§ 192.309

his system is qualified in accordance with this section.

[Amdt. 192-34A, 45 FR 9935. Feb. 14, 1980. as amended by Amdt. 192-34B, 46 FR 39, Jan. 2, 1981]

§192.287 Plastic pipe: inspection of joints.

No person may carry out the inspection of joints in plastic pipes required by §§ 192.273(c) and 192.285(b) unless that person has been qualified by appropriate training or experience in evaluating the acceptability of plastic pipe joints made under the applicable joining procedure.

[Amdt. 192-34, 44 FR 42974, July 23, 1979]

Subpart G—General Construction Requirements for Transmission Lines and Mains

§192.301 Scope.

This subpart prescribes minimum requirements for constructing transmission lines and mains.

§ 192.303 Compliance with specifications or standards.

Each transmission line or main must be constructed in accordance with comprehensive written specifications or standards that are consistent with this part.

§192.305 Inspection: General.

Each transmission line or main must be inspected to ensure that it is constructed in accordance with this part.

§192.307 Inspection of materials.

Each length of pipe and each other component must be visually inspected at the site of installation to ensure that it has not sustained any visually determinable damage that could impair its serviceability.

§ 192.309 Repair of steel pipe.

(a) Each imperfection or damage that impairs the serviceability of a length of steel pipe must be repaired or removed. If a repair is made by grinding, the remaining wall thickness must at least be equal to either:

(1) The minimum thickness required by the tolerances in the specification to which the pipe was manufactured; or

(2) The nominal wall thickness required for the design pressure of the pipeline.

(b) Each of the following dents must be removed from steel pipe to be operated at a pressure that produces a hoop stress of 20 percent, or more, of SMYS, unless the dent is repaired by a method that reliable engineering tests and analyses show can permanently restore the serviceability of the pipe:

(1) A dent that contains a stress concentrator such as a scratch, gouge, groove, or arc burn.

(2) A dent that affects the longitudinal weld or a circumferential weld.

(3) In pipe to be operated at a pressure that produces a hoop stress of 40 percent or more of SMYS, a dent that has a depth of:

(i) More than ¼ inch (6.4 millimeters) in pipe 12¾ inches (324 millimeters) or less in outer diameter; or

(ii) More than 2 percent of the nominal pipe diameter in pipe over 1234 inches (324 millimeters) in outer diameter.

For the purpose of this section a "dent" is a depression that produces a gross disturbance in the curvature of the pipe wall without reducing the pipe-wall thickness. The depth of a dent is measured as the gap between the lowest point of the dent and a prolongation of the original contour of the pipe.

(c) Each arc burn on steel pipe to be operated at a pressure that produces a hoop stress of 40 percent, or more, of SMYS must be repaired or removed. If a repair is made by grinding, the arc burn must be completely removed and the remaining wall thickness must be at least equal to either:

(1) The minimum wall thickness required by the tolerances in the specification to which the pipe was manufactured; or

(2) The nominal wall thickness required for the design pressure of the pipeline.

(d) A gouge, groove, arc burn, or dent may not be repaired by insert patching or by pounding out.

(e) Each gouge, groove, arc burn, or dent that is removed from a length of

this section, each plastic transmission line or main must be installed with sufficient clearance, or must be insulated. from any source of heat so as to prevent the heat from impairing the serviceability of the pipe.

(d) Each pipe-type or bottle-type holder must be installed with a minimum clearance from any other holder as prescribed in §192.175(b).

[35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192-85, 63 FR 37503, July 13, 1998]

§192.327 Cover.

(a) Except as provided in paragraphs (c), (e), (f), and (g) of this section, each buried transmission line must be installed with a minimum cover as follows:

Location	Normal soil	Consoli- dated rock	
Inches (Millimeters). Class 1 locations Class 2, 3, and 4 locations Drainage ditches of public roads	30 (762) 36 (914)	18 (457) 24 (610)	
and railroad crossings	36 (914)	24 (610)	

(b) Except as provided in paragraphs (c) and (d) of this section, each buried main must be installed with at least 24 inches (610 millimeters) of cover.

(c) Where an underground structure prevents the installation of a transmission line or main with the minimum cover, the transmission line or main may be installed with less cover if it is provided with additional protection to withstand anticipated external loads.

(d) A main may be installed with less than 24 inches (610 millimeters) of cover if the law of the State or municipality:

(1) Establishes a minimum cover of less than 24 inches (610 millimeters):

(2) Requires that mains be installed in a common trench with other utility lines; and

(3) Provides adequately for prevention of damage to the pipe by external forces.

(e) Except as provided in paragraph (c) of this section, all pipe installed in a navigable river, stream, or harbor must be installed with a minimum cover of 48 inches (1219 millimeters) in soil or 24 inches (610 millimeters) in consolidated rock between the top of the pipe and the natural bottom.

49 CFR Ch. I (10-1-02 Edition)

(f) All pipe installed offshore, except in the Gulf of Mexico and its inlets, under water not more than 200 feet (60 meters) deep, as measured from the mean low tide, must be installed as follows:

(1) Except as provided in paragraph (c) of this section, pipe under water less than 12 feet (3.66 meters) deep, must be installed with a minimum cover of 36 inches (914 millimeters) in soil or 18 inches (457 millimeters) in consolidated rock between the top of the pipe and the natural bottom.

(2) Pipe under water at least 12 feet (3.66 meters) deep must be installed so that the top of the pipe is below the natural bottom, unless the pipe is supported by stanchions, held in place by anchors or heavy concrete coating, or protected by an equivalent means.

(g) All pipelines installed under water in the Gulf of Mexico and its inlets, as defined in §192.3, must be installed in accordance with §192.612(b)(3).

[35 FR 13257, Aug. 19. 1970. as amended by Amdt. 192-27, 41 FR 34606, Aug. 16, 1976; Amdt. 192-78, 61 FR 28785, June 6, 1996; Amdt. 192-85, 63 FR 37503, July 13, 1998]

Subpart H—Customer Meters, Service Regulators, and Service Lines

§192.351 Scope.

This subpart prescribes <u>minimum re-</u> <u>quirements for installing customer me-</u> <u>ters. service regulators. service lines</u>, <u>service line valves, and service line</u> <u>connections to mains</u>.

§192.353 Customer meters and regulators: Location.

(a) Each meter and service regulator, whether inside or outside of a building, must be installed in a readily accessible location and be protected from corrosion and other damage. However, the upstream regulator in a series may be buried.

(b) Each service regulator installed within a building must be located as near as practical to the point of service line entrance.

(c) Each meter installed within a building must be located in a ventilated place and not less than 3 feet (914

Technology Committee guide for gas transmission and distribution systems; (iii) A short notice service line relocation request.

[Amdt.192-82, 63 FR 5471, Feb. 3, 1998; Amdt. 192-83, 63 FR 20135, Apr. 23, 1998]

Subpart I—Requirements for Corrosion Control

SOURCE: Amdt. 192-4, 36 FR 12302, June 30, 1971, unless otherwise noted.

§192.451 Scope.

(a) This subpart prescribes <u>minimum</u> requirements for the protection of metallic pipelines from external, internal, and atmospheric corrosion.

(b) [Reserved]

[Amdt. 192-4, 36 FR 12302, June 30, 1971, as amended by Amdt, 192-27, 41 FR 34606, Aug. 16, 1976; Amdt. 192-33, 43 FR 39389, Sept. 5, 1978]

§ 192.452 Applicability to converted pipelines.

Notwithstanding the date the pipeline was installed or any earlier deadlines for compliance, each pipeline which qualifies for use under this part in accordance with §192.14 must meet the requirements of this subpart specifically applicable to pipelines installed before August 1, 1971, and all other applicable requirements within 1 year after the pipeline is readied for service. However, the requirements of this subpart specifically applicable to pipelines installed after July 31, 1971, apply if the pipeline substantially meets those requirements before it is readied for service or it is a segment which is replaced, relocated, or substantially altered.

[Amdt. 192-30, 42 FR 60148, Nov. 25, 1977]

§192.453 General.

The corrosion control procedures required by \$192.605(b)(2), including those for the design, installation, operation. and maintenance of cathodic protection systems, must be carried out by, or under the direction of, a person qualified in pipeline corrosion control methods.

[Amdt. 192-71, 59 FR 6584, Feb. 11, 1994]

§ 192.455 External corrosion control: Buried or submerged pipelines installed after July 31, 1971.

(a) Except as provided in paragraphs (b), (c), and (f) of this section, each buried or submerged pipeline installed after July 31, 1971, must be protected against external corrosion, including the following:

(1) It must have an external protective coating meeting the requirements of 192.461.

(2) It must have a cathodic protection system designed to protect the pipeline in accordance with this subpart, installed and placed in operation within 1 year after completion of construction.

(b) An operator need not comply with paragraph (a) of this section, if the operator can demonstrate by tests, investigation, or experience in the area of application, including, as a minimum, soil resistivity measurements and tests for corrosion accelerating bacteria. that a corrosive environment does not exist. However, within 6 months after an installation made pursuant to the preceding sentence, the operator shall conduct tests, including pipe-to-soil potential measurements with respect to either a continuous reference electrode or an electrode using close spacing, not to exceed 20 feet (6 meters), and soil resistivity measurements at potential profile peak locations, to adequately evaluate the potential profile along the entire pipeline. If the tests made indicate that a corrosive condition exists, the pipeline must be cathodically protected in accordance with paragraph (a)(2) of this section.

(c) An operator need not comply with paragraph (a) of this section, if the operator can demonstrate by tests, investigation, or experience that—

(1) For a copper pipeline, a corrosive environment does not exist; or

(2) For a temporary pipeline with an operating period of service not to exceed 5 years beyond installation, corrosion during the 5-year period of service of the pipeline will not be detrimental to public safety.

(d) Notwithstanding the provisions of paragraph (b) or (c) of this section, if a pipeline is externally coated, it must

§ 192.455

pipe wall, subject to the limitations prescribed in the procedures.

[Amdt. 192-4, 36 FR 12302, June 30, 1971, as amended by Amdt. 192-33, 43 FR 39390, Sept. 5, 1978; Amdt. 192-78, 61 FR 28785, June 6, 1996; Amdt. 192-88, 64 FR 69664, Dec. 14, 1999]

§ 192.487 Remedial measures: Distribution lines other than cast iron or ductile iron lines.

(a) General corrosion. Except for cast iron or ductile iron pipe, each segment of generally corroded distribution line pipe with a remaining wall thickness less than that required for the MAOP of the pipeline, or a remaining wall thickness less than 30 percent of the nominal wall thickness. must be replaced. However, corroded pipe may be repaired by a method that reliable engineering tests and analyses show can permanently restore the serviceability of the pipe. Corrosion pitting so closely grouped as to affect the overall strength of the pipe is considered general corrosion for the purpose of this paragraph.

(b) Localized corrosion pitting. Except for cast iron or ductile iron pipe, each segment of distribution line pipe with localized corrosion pitting to a degree where leakage might result must be replaced or repaired.

[Amdt. 192-4, 36 FR 12302, June 30, 1971, as amended by Amdt. 192-88, 64 FR 69665, Dec. 14, 1999]

§ 192.489 Remedial measures: Cast iron and ductile iron pipelines.

(a) General graphitization. Each segment of cast iron or ductile iron pipe on which general graphitization is found to a degree where a fracture or any leakage might result, must be replaced.

(b) Localized graphitization. Each segment of cast iron or ductile iron pipe on which localized graphitization is found to a degree where any leakage might result, must be replaced or repaired, or sealed by internal sealing methods adequate to prevent or arrest any leakage.

§ 192.491 Corrosion control records.

(a) Each operator shall maintain records or maps to show the location of cathodically protected piping, cathodic protection facilities, galvanic anodes,

49 CFR Ch. I (10-1-02 Edition)

and neighboring structures bonded to the cathodic protection system. Records or maps showing a stated number of anodes, installed in a stated manner or spacing, need not show specific distances to each buried anode.

(b) Each record or map required by paragraph (a) of this section must be retained for as long as the pipeline remains in service.

(c) Each operator shall maintain a record of each test, survey, or inspection required by this subpart in sufficient detail to demonstrate the adequacy of corrosion control measures or that a corrosive condition does not exist. These records must be retained for at least 5 years, except that records related to \$192.475(b) must be retained for as long as the pipeline remains in service.

[Amdt, 192-78, 61 FR 28785, June 6, 1996]

Subpart J—Test Requirements

§192.501 Scope.

This subpart prescribes minimum leak-test and strength-test requirements for pipelines.

§192.503 General requirements.

(a) No person may operate a new segment of pipeline, or return to service a segment of pipeline that has been relocated or replaced, until—

(1) It has been tested in accordance with this subpart and §192.619 to substantiate the maximum allowable operating pressure; and

- (2) Each potentially hazardous leak has been located and eliminated.
- (b) The test medium must be liquid, air, natural gas, or inert gas that is—

(1) Compatible with the material of which the pipeline is constructed:

(2) Relatively free of sedimentary materials; and

(3) Except for natural gas, nonflammable.

(c) Except as provided in §192.505(a), if air, natural gas, or inert gas is used as the test medium, the following maximum hoop stress limitations apply:

Class location	Maximum hoop stress allowed as per- centage of SMYS		
. [Natural gas	Air or inert gas	
1	80	80	
2 !	30	75	

§ 192.555

(e) Pressure recording charts. or other record of pressure readings.(f) Elevation variations, whenever

significant for the particular test. (g) Leaks and failures noted and their disposition.

Subpart K—Uprating

§192.551 Scope.

This subpart prescribes <u>minimum re-</u> <u>quirements</u> for <u>increasing maximum</u> <u>allowable operating pressures</u> (uprating) for pipelines.

§192.553 General requirements.

(a) Pressure increases. Whenever the requirements of this subpart require that an increase in operating pressure be made in increments, the pressure must be increased gradually, at a rate that can be controlled, and in accordance with the following:

(1) At the end of each incremental increase, the pressure must be held constant while the entire segment of pipeline that is affected is checked for leaks.

(2) Each leak detected must be repaired before a further pressure increase is made. except that a leak determined not to be potentially hazardous need not be repaired, if it is monitored during the pressure increase and it does not become potentially hazardous.

(b) *Records.* Each operator who uprates a segment of pipeline shall retain for the life of the segment a record of each investigation required by this subpart, of all work performed, and of each pressure test conducted, in connection with the uprating.

(c) Written plan. Each operator who uprates a segment of pipeline shall establish a written procedure that will ensure that each applicable requirement of this subpart is complied with.

(d) Limitation on increase in maximum allowable operating pressure. Except as provided in § 192.555(c), a new maximum allowable operating pressure established under this subpart may not exceed the maximum that would be allowed under this part for a new segment of pipeline constructed of the same materials in the same location. However, when uprating a steel pipeline, if any variable necessary to determine the design pressure under the design formula (\$192.105) is unknown, the MAOP may be increased as provided in \$192.619(a)(1).

[35 FR 13257, Aug. 10, 1970, as amended by Amdt. 192-78, 61 FR 28785, June 6, 1996]

§ 192.555 Uprating to a pressure that will produce a hoop stress of 30 percent or more of SMYS in steel pipelines.

(a) Unless the requirements of this section have been met, no person may subject any segment of a steel pipeline to an operating pressure that will produce a hoop stress of 30 percent or more of SMYS and that is above the established maximum allowable operating pressure.

(b) Before increasing operating pressure above the previously established maximum allowable operating pressure the operator shall:

(1) Review the design, operating, and maintenance history and previous testing of the segment of pipeline and determine whether the proposed increase is safe and consistent with the requirements of this part; and

(2) Make any repairs, replacements, or alterations in the segment of pipeline that are necessary for safe operation at the increased pressure.

(c) After complying with paragraph (b) of this section, an operator may increase the maximum allowable operating pressure of a segment of pipeline constructed before September 12, 1970, to the highest pressure that is permitted under §192.619, using as test pressure the highest pressure to which the segment of pipeline was previously subjected (either in a strength test or in actual operation).

(d) After complying with paragraph (b) of this section, an operator that does not qualify under paragraph (c) of this section may increase the previously established maximum allowable operating pressure if at least one of the following requirements is met:

(1) The segment of pipeline is successfully tested in accordance with the requirements of this part for a new line of the same material in the same location.

(2) An increased maximum allowable operating pressure may be established for a segment of pipeline in a Class 1

§ 192.605

three places where the cover is most likely to be greatest and shall use the greatest cover measured.

(3) Unless the actual nominal wall thickness is known, the operator shall determine the wall thickness by cutting and measuring coupons from at least three separate pipe lengths. The coupons must be cut from pipe lengths in areas where the cover depth is most likely to be the greatest. The average of all measurements taken must be increased by the allowance indicated in the following table:

	Allowance inches (millimeters)		
Pipe size inches (millimeters)	Cast iron pipe		
	Pit cast pipe	Centrifugally cast pipe	Ductile iron pipe
3 to 8 (76 to 203)	0.075 (1.91) 0.08 (2.03) 0.08 (2.03) 0.09 (2.29) 0.09 (2.29) 0.09 (2.29) 0.09 (2.29)	0.065 (1.65) 0.07 (1.78) 0.08 (2.03) 0.09 (2.29) 0.09 (2.29)	0.065 (1.65) 0.07 (1.78) 0.075 (1.91) 0.075 (1.91) 0.075 (1.91) 0.08 (2.03)

(4) For cast iron pipe, unless the pipe manufacturing process is known, the operator shall assume that the pipe is pit cast pipe with a bursting tensile strength of 11,000 p.s.i. (76 MPa) gage and a modulus of rupture of 31.000 p.s.i. (214 MPa) gage.

 [35 FR 13257, Aug. 19, 1970. as amended by Amdt. 192-37, 46 FR 10160, Feb. 2, 1981; Amdt.
 192-62, 54 FR 5628, Feb. 6, 1989; Amdt. 195-85, 63 FR 37504, July 13, 1998]

Subpart L-Operations

§192.601 Scope.

This subpart prescribes <u>minimum re-</u> <u>quirements for the operation of pipe-</u> <u>line facilities</u>.

§ 192.603 General provisions.

(a) No person may operate a segment of pipeline unless it is operated in accordance with this subpart.

(b) Each operator shall keep records necessary to administer the procedures established under §192.605.

(c) The Administrator or the State Agency that has submitted a current certification under the pipeline safety laws, (49 U.S.C. 60101 *et seq.*) with respect to the pipeline facility governed by an operator's plans and procedures may, after notice and opportunity for hearing as provided in 49 CFR 190.237 or the relevant State procedures, require the operator to amend its plans and procedures as necessary to provide a reasonable level of safety.

[35 FR 13257, Aug. 19. 1970, as amended by Amdt. 192-66, 56 FR 31090, July 9, 1991; Amdt. 192-71, 59 FR 6584, Feb. 11, 1994; Amdt. 192-75, 61 FR 18517, Apr. 26, 1996]

\$ 192.605 Procedural manual for operations, maintenance, and emergencies.

(a) General. Each operator shall prepare and follow for each pipeline, a manual of written procedures for conducting operations and maintenance activities and for emergency response. For transmission lines, the manual must also include procedures for handling abnormal operations. This manual must be reviewed and updated by the operator at intervals not exceeding 15 months, but at least once each calendar year. This manual must be prepared before operations of a pipeline system commence. Appropriate parts of the manual must be kept at locations where operations and maintenance activities are conducted.

(b) Maintenance and normal operations. The manual required by paragraph (a) of this section must include procedures for the following, if applicable, to provide safety during maintenance and operations.

(1) Operating, maintaining, and repairing the pipeline in accordance with each of the requirements of this subpart and subpart M of this part.

ĩ

ļ

lower explosive limit, the gas is readily detectable by a person with a normal sense of smell.

(b) After December 31, 1976. a combustible gas in a transmission line in a Class 3 or Class 4 location must comply with the requirements of paragraph (a) of this section unless:

(1) At least 50 percent of the length of the line downstream from that location is in a Class 1 or Class 2 location;

(2) The line transports gas to any of the following facilities which received gas without an odorant from that line before May 5, 1975:

(i) An underground storage field:

(ii) A gas processing plant;

(iii) A gas dehydration plant; or

(iv) An industrial plant using gas in a process where the presence of an odorant:

(A) Makes the end product unfit for the purpose for which it is intended;

(B) Reduces the activity of a catalyst; or

(C) Reduces the percentage completion of a chemical reaction;

(3) In the case of a lateral line which transports gas to a distribution center, at least 50 percent of the length of that line is in a Class 1 or Class 2 location: or

(4) The combustible gas is hydrogen intended for use as a feedstock in a manufacturing process.

(c) In the concentrations in which it is used, the odorant in combustible gases must comply with the following:

(1) The odorant may not be deleterious to persons, materials, or pipe.

(2) The products of combustion from the odorant may not be toxic when breathed nor may they be corrosive or harmful to those materials to which the products of combustion will be exposed.

(d) The odorant may not be soluble in water to an extent greater than 2.5 parts to 100 parts by weight.

(e) Equipment for odorization must introduce the odorant without wide variations in the level of odorant.

(f) Each operator shall conduct periodic sampling of combustible gases to assure the proper concentration of odorant in accordance with this section. Operators of master meter systems may comply with this requirement by—

49 CFR Ch. | (10–1–02 Edition)

(1) Receiving written verification from their gas source that the gas has the proper concentration of odorant; and

(2) Conducting periodic "sniff" tests at the extremities of the system to confirm that the gas contains odorant.

[35 FR 13257, Aug. 19, 1970]

EDITORIAL NOTE: For FEDERAL REGISTER citations affecting §192.625, see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed volume and on GPO Access.

§ 192.627 Tapping pipelines under pressure.

Each tap made on a pipeline under pressure must be performed by a crew qualified to make hot taps.

§192.629 Purging of pipelines.

(a) When a pipeline is being purged of air by use of gas, the gas must be released into one end of the line in a moderately rapid and continuous flow. If gas cannot be supplied in sufficient quantity to prevent the formation of a hazardous mixture of gas and air, a slug of inert gas must be released into the line before the gas.

(b) When a pipeline is being purged of gas by use of air, the air must be released into one end of the line in a moderately rapid and continuous flow. If air cannot be supplied in sufficient quantity to prevent the formation of a hazardous mixture of gas and air, a slug of inert gas must be released into the line before the air.

Subpart M-Maintenance

§192.701 Scope.

This subpart prescribes <u>minimum re-</u> <u>quirements for maintenance of pipeline</u> facilities.

§192.703 General.

(a) No person may operate a segment of pipeline, unless it is maintained in accordance with this subpart.

(b) Each segment of pipeline that becomes unsafe must be replaced, repaired, or removed from service.

(c) Hazardous leaks must be repaired promptly.