

7. Appendix A – Detailed Methodology and Model Description

In this appendix we present and discuss our basic methodology for conducting market potential studies. We also present an overview of DSM ASSYST[™], our model used to develop market potential estimates. Information presented here has been extracted from several recent energy efficiency potential reports.

7.1 Overview of DSM Forecasting Method

The crux of any DSM forecasting process involves carrying out a number of systematic analytical steps that are necessary to produce accurate estimates of energy efficiency (EE) effects on system load. A simplified overview of these basic analytical steps is shown in Figure 7-1.

Figure 7-1 Simplified Conceptual Overview of Modeling Process

Developing a DSM forecast is viewed by KEMA as a five-step process. The steps include:

Step 1: Develop Initial Input Data

- Develop list of EE measure opportunities to include in scope
- Gather and develop technical data (costs and savings) on efficient measure opportunities
- Gather, analyze, and develop information on building characteristics, including total square footage and households, electricity consumption and intensity by end use, enduse consumption load patterns by time of day and year (i.e., load shapes), market shares of key electric consuming equipment, and market shares of EE technologies and practices.

Step 2: Estimate Technical Potential and Develop Supply Curves

 Match and integrate data on efficient measures to data on existing building characteristics to produce estimates of technical potential and EE supply curves.

Step 3: Estimate Economic Potential

- Gather economic input data such as current and forecasted retail electric prices and current and forecasted costs of electricity generation, along with estimates of other potential benefits of reducing supply, such as the value of reducing environmental impacts associated with electricity production
- Match and integrate measure and building data with economic assumptions to produce indicators of costs from different viewpoints (e.g., utility, societal, and consumer)
- Estimate total economic potential using supply curve approach

Step 4: Estimate Achievable Program and Naturally Occurring Potentials

- Gather and develop estimates of program costs (e.g., for administration and marketing) and historic program savings
- Develop estimates of customer adoption of EE measures as a function of the economic attractiveness of the measures, barriers to their adoption, and the effects of program intervention
- Estimate achievable program and naturally occurring potentials; calibrate achievable and naturally occurring potential to recent program and market data
- Develop alternative economic estimates associated with alternative future scenarios

Step 5: Scenario Analyses and Resource Planning Inputs

• Recalculate potentials under alternate economic scenarios and deliver data in format required for resource planning.

Provided below is additional discussion of KEMA's modeling approaches for technical, economic, and achievable DSM forecasts.

7.1.1 Estimate Technical Potential and Develop Energy-Efficiency Supply Curves

Technical potential refers to the amount of energy savings or peak demand reduction that would occur with the *complete* penetration of all measures analyzed in applications where they were deemed *technically* feasible from an *engineering* perspective. Total technical potential is developed from estimates of the technical potential of individual measures as they are applied to discrete market segments (commercial building types, residential dwelling types, etc.).

7.1.1.1 Core Equation

The core equation used to calculate the energy technical potential for each individual efficiency measure, by market segment, is shown below (using a commercial example):³

Technical		Total		Base				Not				
Potential of	=	Square	×	Case	×	Applicability	×	Complete	×	Feasibility	×	Savings
Efficient		Feet		Equipment		Factor		Factor		Factor		Factor
Measure				EUI								

where:

- **Square feet** is the total floor space for all buildings in the market segment. For the residential analysis, the **number of dwelling units** is substituted for square feet.
- **Base-case equipment EUI** is the energy used per square foot by each base-case technology in each market segment. This is the consumption of the energy-using equipment that the efficient technology replaces or affects. For example, if the efficient measure were a CFL, the base EUI would be the annual kWh per square foot of an equivalent incandescent lamp. For the residential analysis, unit energy consumption (UECs), energy used per dwelling, are substituted for EUIs.

³ Note that stock turnover is not accounted for in our estimates of technical and economic potential, stock turnover *is accounted for* in our estimates of achievable potential. Our definition of technical potential assumes instantaneous replacement of standard-efficiency with high-efficiency measures.

- **Applicability factor** is the fraction of the floor space (or dwelling units) that is applicable for the efficient technology in a given market segment; for the example above, the percentage of floor space lit by incandescent bulbs.
- Not complete factor is the fraction of applicable floor space (or dwelling units) that has not yet been converted to the efficient measure; that is, (1 minus the fraction of floor space that already has the EE measure installed).
- **Feasibility factor** is the fraction of the applicable floor space (or dwelling units) that is technically feasible for conversion to the efficient technology from an *engineering* perspective.
- **Savings factor** is the reduction in energy consumption resulting from application of the efficient technology.

Technical potential for peak demand reduction is calculated analogously.

An example of the core equation is shown in Table 7-1 for the case of a prototypical 4-lamp 4foot standard T-8 lighting fixture, which is replaced by a 4-lamp 4-foot premium T-8 fixture in the office segment of a large utility service territory.

Table 7-1

Example of Technical Potential Calculation—Replace 4-Lamp 4-Foot Standard T-8s with 4-Lamp 4-Foot Premium T-8s in the Office Segment of a Utility Service Territory (*Note: Data are illustrative only*)

Technical Potential of = Efficient Measure	Total square feet	Base × Case Equipment UEC	× Applicability Factor	Not × Complete Factor	× Feasibility Factor	× Savings Factor
57 million kWh	195 million	5.74	0.34	0.95	1.00	0.16

Technical EE potential is calculated in two steps. In the first step, all measures are treated *independently*; that is, the savings of each measure are not marginalized or otherwise adjusted for overlap between competing or synergistic measures. By treating measures independently, their relative economics are analyzed without making assumptions about the order or combinations in which they might be implemented in customer buildings. However, the total technical potential across measures cannot be estimated by summing the individual measure

potentials directly. The cumulative savings cannot be estimated by adding the savings from the individual savings estimates because some savings would be double counted. For example, the savings from a measure that reduces heat gain into a building, such as window film, are partially dependent on other measures that affect the efficiency of the system being used to cool the building, such as a high-efficiency chiller; the more efficient the chiller, the less energy saved from the application of the window film.

7.1.1.2 Use of Supply Curves

In the second step, cumulative technical potential is estimated using an EE supply curve approach.⁴ This method eliminates the double-counting problem. In Figure 7-2, we present a generic example of a supply curve. As shown in the figure, a supply curve typically consists of two axes—one that captures the cost per unit of saving a resource or mitigating an impact (e.g., \$/kWh saved or \$/ton of carbon avoided) and the other that shows the amount of savings or mitigation that could be achieved at each level of cost. The curve is typically built up across individual measures that are applied to specific base-case practices or technologies by market segment. Savings or mitigation measures are sorted on a least-cost basis, and total savings or impacts mitigated are calculated incrementally with respect to measures that precede them. Supply curves typically, but not always, end up reflecting diminishing returns, i.e., as costs increase rapidly and savings decrease significantly at the end of the curve.

⁴ This section describes conservation supply curves as they have been defined and implemented in numerous studies. Readers should note that Stoft 1995 describes several technical errors in the definition and implementation of conservation supply curves in the original and subsequent conservation supply curve studies. Stoft concludes that conservation supply curves are not "true" supply curves in the standard economic sense but can still be useful (albeit with his recommended improvements) for their intended purpose (demonstration of cost-effective conservation opportunities).

Figure 7-2 Generic Illustration of EE Supply Curve

As noted above, the cost dimension of most EE supply curves is usually represented in dollars per unit of energy savings. Costs are usually annualized (often referred to as "levelized") in supply curves. For example, EE supply curves usually present levelized costs per kWh or kW saved by multiplying the initial investment in an efficient technology or program by the "capital recovery rate" (CRR):

$$CRR = \frac{d}{1 - (1 + d)^{-n}}$$

where d is the real discount rate and n is the number of years over which the investment is written off (i.e., amortized).

Thus,

Levelized Cost per kWh Saved = Initial Cost x CRR/Annual Energy Savings

Levelized Cost per kW Saved = Initial Cost x CRR/Peak Demand Savings

The levelized cost per kWh and kW saved are useful because they allow simple comparison of the characteristics of EE with the characteristics of energy supply technologies. However, the levelized cost per kW saved is a biased indicator of cost-effectiveness because all of the efficiency measure costs are arbitrarily allocated to peak savings.

Returning to the issue of EE supply curves, Table 7-2 shows a simplified numeric example of a supply curve calculation for several EE measures applied to commercial lighting for a hypothetical population of buildings. What is important to note is that in an EE supply curve, the measures are sorted by relative cost—from least to most expensive. In addition, the energy consumption of the system being affected by the efficiency measures goes down as each measure is applied. As a result, the savings attributable to each subsequent measure decrease if the measures are interactive. For example, the occupancy sensor measure shown in Table 1-2 would save more at less cost per unit saved if it were applied to the base-case consumption before the T8 lamp and electronic ballast combination. Because the T8 electronic ballast combination is more cost-effective, however, it is applied first, reducing the energy savings potential for the occupancy sensor. Thus, in a typical EE supply curve, the base-case end-use consumption is reduced with each unit of EE that is acquired. Notice in Table 1-2 that the total end-use GWh consumption is recalculated after each measure is implemented, thus reducing the base energy available to be saved by the next measure.

Table A-2 shows an example that would represent measures for one base-case technology in one market segment. These calculations are performed for all of the base-case technologies, market segments, and measure combinations in the scope of a study. The results are then ordered by levelized cost and the individual measure savings are summed to produce the EE potential for the entire sector.

In the next subsection, we discuss how economic potential is estimated as a subset of the technical potential.

Table 7-2Sample Technical Potential Supply Curve Calculation for Commercial Lighting(Note: Data are illustrative only)

Measure	Total End Use Consumption of Population (GWh)	Applicable, Not Complete and Feasible (1000s of ft ²)	Average kWh/ft ² of population	Savings %	GWh Savings	Levelized Cost (\$/kWh saved)
Base Case: T12 lamps with Magnetic Ballast	425	100,000	4.3	N/A	N/A	N/A
1. T8 w. Elec. Ballast	425	100,000	4.3	21%	89	\$0.04
2. Occupancy Sensors	336	40,000	3.4	10%	13	\$0.11
3. Perimeter Dimming	322	10,000	3.2	45%	14	\$0.25
With all measures	309		3.1	27%	116	

7.1.2 Estimation of Economic Potential

Economic potential is typically used to refer to the *technical potential* of those energy conservation measures that are cost effective when compared to either supply-side alternatives or the price of energy. Economic potential takes into account the fact that many EE measures cost more to purchase initially than do their standard-efficiency counterparts. The incremental costs of each efficiency measure are compared to the savings delivered by the measure to produce estimates of energy savings per unit of additional cost. These estimates of EE resource costs can then be compared to estimates of other resources such as building and operating new power plants.

7.1.2.1 Cost Effectiveness Tests

To estimate economic potential, it is necessary to develop a method by which it can be determined that a measure or program is *economic*. There is a large body of literature that debates the merits of different approaches to calculating whether a public purpose investment in EE is cost effective (Chamberlin and Herman 1993, RER 2000, Ruff 1988, Stoft 1995, and Sutherland 2000). We usually utilize the total resource cost (TRC) test to assess cost effectiveness. The TRC is a form of societal benefit-cost test. Other tests that have been used in analyses of program cost-effectiveness by EE analysts include the utility cost, ratepayer impact measure (RIM), and participant tests. These tests are discussed in detail the CASPM.

Before discussing the TRC test and how it is often used in our DSM forecasts, we present below a brief introduction to the basic tests as described in the CASPM:⁵

- Total Resource Cost Test—The TRC test measures the net costs of a demand-side management program as a resource option based on the total costs of the program, including both the participants' and the utility's costs. The test is applicable to conservation, load management, and fuel substitution programs. For fuel substitution programs, the test measures the net effect of the impacts from the fuel not chosen versus the impacts from the fuel that is chosen as a result of the program. TRC test results for fuel substitution programs should be viewed as a measure of the economic efficiency implications of the total energy supply system (gas and electric). A variant on the TRC test is the societal test. The societal test differs from the TRC test in that it includes the effects of externalities (e.g. environmental, national security), excludes tax credit benefits, and uses a different (societal) discount rate.
- **Participant Test**—The participant test is the measure of the quantifiable benefits and costs to the customer due to participation in a program. Since many customers do not base their decision to participate in a program entirely on quantifiable variables, this test cannot be a complete measure of the benefits and costs of a program to a customer.
- Utility (Program Administrator) Test—The program administrator cost test measures the net costs of a demand-side management program as a resource option based on the costs incurred by the program administrator (including incentive costs) and excluding any net costs incurred by the participant. The benefits are similar to the TRC benefits. Costs are defined more narrowly.
- Ratepayer Impact Measure Test—The ratepayer impact measure (RIM) test measures what happens to customer bills or rates due to changes in utility revenues and operating costs caused by the program. Rates will go down if the change in revenues from the program is greater than the change in utility costs. Conversely, rates or bills will go up if revenues collected after program implementation are less than the total costs incurred by the utility in implementing the program. This test indicates the direction and magnitude of the expected change in customer bills or rate levels.

The key benefits and costs of the various cost-effectiveness tests are summarized in Table 7-3.

⁵ These definitions are direct excerpts from the California Standard Practice Manual, October 2001.

Table 7-3 Summary of Benefits and Costs of California Standard Practice Manual Tests

Test	Benefits	Costs
TRC Test	Generation, transmission and distribution savings Participants avoided equipment costs (fuel switching only)	Generation costs Program costs paid by the administrator Participant measure costs
Participant Test	Bill reductions Incentives Participants avoided equipment costs (fuel switching only)	Bill increases Participant measure costs
Utility (Program Administrator) Test	Generation, transmission and distribution savings	Generation costs Program costs paid by the administrator Incentives
Ratepayer Impact Measure Test	Generation, transmission and distribution savings Revenue gain	Generation costs Revenue loss Program costs paid by the administrator Incentives

Generation, transmission and distribution savings (hereafter, energy benefits) are defined as the economic value of the energy and demand savings stimulated by the interventions being assessed. These benefits are typically measured as induced changes in energy consumption, valued using some mix of avoided costs. Statewide values of avoided costs are prescribed for use in implementing the test. Electricity benefits are valued using three types of avoided electricity costs: avoided distribution costs, avoided transmission costs, and avoided electricity generation costs.

Participant costs are comprised primarily of incremental measure costs. Incremental measure costs are essentially the costs of obtaining EE. In the case of an add-on device (say, an adjustable-speed drive or ceiling insulation), the incremental cost is simply the installed cost of the measure itself. In the case of equipment that is available in various levels of efficiency (e.g., a central air conditioner), the incremental cost is the excess of the cost of the high-efficiency unit over the cost of the base (reference) unit.

Administrative costs encompass the real resource costs of program administration, including the costs of administrative personnel, program promotions, overhead, measurement and evaluation, and shareholder incentives. In this context, administrative costs are not defined to include the costs of various incentives (e.g., customer rebates and salesperson incentives) that may be

offered to encourage certain types of behavior. The exclusion of these incentive costs reflects the fact that they are essentially transfer payments. That is, from a societal perspective they involve offsetting costs (to the program administrator) and benefits (to the recipient).

7.1.2.2 Use of the Total Resource Cost to Estimate Economic Potential

We often use the TRC test in two ways in our model. First, we develop an estimate of economic potential by calculating the TRC of individual measures and applying the methodology described below. Second, we develop estimates of whether different program scenarios are cost effective.

Economic potential can be defined either inclusively or exclusively of the costs of programs that are designed to increase the adoption rate of EE measures. *In many of our projects, we define economic potential to* **exclude** *program costs*. We do so primarily because program costs are dependent on a number of factors that vary significantly as a function of program delivery strategy. There is no single estimate of program costs that would accurately represent such costs across the wide range of program types and funding levels possible. Once an assumption is made about program costs, one must also link those assumptions to expectations about market response to the types of interventions assumed. Because of this, we believe it is more appropriate to factor program costs into our analysis of *program potential*. Thus, our definition of *economic potential* is that portion of the technical potential that passes our economic screening test (described below) exclusive of program costs. Economic potential, like technical potential, is a theoretical quantity that will exceed the amount of potential we estimate to be achievable through current or more aggressive program activities.

As implied in Table A-3 and defined in the CASPM 2001, the TRC focuses on resource savings and counts benefits as utility-avoided supply costs and costs as participant costs and utility program costs. It ignores any impact on rates. It also treats financial incentives and rebates as transfer payments; i.e., the TRC is not affected by incentives. The somewhat simplified benefit and cost formulas for the TRC are presented in Equation 7-1 and 7-2 below.

Equation 7-1

$$Benefits = \sum_{t=1}^{N} \frac{Avoided Costs of Supply_{p,t}}{(1+d)^{t-1}}$$

Equation 7-2

$$Costs = \sum_{t=1}^{N} \frac{Program Cost_{t} + Participant Cost_{t}}{(1+d)^{t-1}}$$

Where:

- d = the discount rate
- p = the costing period
- t = time (in years)
- n = 20 years

A nominal discount rate is typically used in the analysis, as inflation is taken into account separately. We use a *normalized* measure life of 20 years to capture the benefit of long-lived measures. Measures with measure lives shorter than 20 years are "re-installed" in our analysis as many times as necessary to reach the normalized 20-year life of the analysis.

The avoided costs of supply are calculated by multiplying measure energy savings and peak demand impacts by per-unit avoided costs by costing period. Energy savings are allocated to costing periods and peak impacts estimated using load shape factors.

As noted previously, in the *measure-level* TRC calculation used to estimate economic potential, program costs are excluded from Equation 7-2. Using the supply curve methodology discussed previously, measures are ordered by TRC (highest to lowest) and then the *economic* potential is calculated by summing the energy savings for all of the technologies for which the marginal TRC test is greater than 1.0. In the example in Table 7-4, the economic potential would include the savings for measures 1 and 2, but exclude saving for measure 3 because the TRC is less than 1.0 for measure 3. The supply curve methodology, when combined with estimates of the TRC for individual measures, produces estimates of the economic potential of efficiency improvements. By definition and intent, this estimate of economic potential is a theoretical quantity that will exceed the amount of potential we estimate to be achievable through program activities in the final steps of our analyses.

Table 7-4Sample Use of Supply Curve Framework to Estimate Economic Potential(Note: Data are illustrative only)

Measure	Total End Use Consumption of Population (GWh)	Applicable, Not Complete and Feasible Sq.Feet (000s)	Average kWh/ft ² of population	Savings %	GWh Savings	Total Resource Cost Test	Savings Included in Economic Potential?
Base Case: T12 lamps with Magnetic Ballast	425	100,000	4.3	N/A	N/A	N/A	N/A
1. T8 w. Elec. Ballast	425	100,000	4.3	21%	89	2.5	Yes
2. Occupancy Sensors	336	40,000	3.4	10%	13	1.3	Yes
3. Perimeter Dimming	322	10,000	3.2	45%	14	0.8	No
Technical Potential wit	h all measures	27%	116				
Economic Potential wi	th measures for	which TRC Ratio	> 1.0	24%	102		

7.1.3 Estimation of Program and Naturally occurring Potentials

In this section we present the method we employ to estimate the fraction of the market that adopts each EE measure in the presence and absence of EE programs. We define:

- **Program potential** as the amount of savings that would occur in response to one or more specific market interventions
- **Naturally occurring potential** as the amount of savings estimated to occur as a result of normal market forces, that is, in the absence of any utility or governmental intervention.

Our estimates of program potential are typically the most important results of the modeling process. Estimating technical and economic potentials are necessary steps in the process from which important information can be obtained; however, the end goal of the process is better understanding how much of the remaining potential can be captured in programs, whether it would be cost-effective to increase program spending, and how program costs may be expected to change in response to measure adoption over time.

7.1.3.1 Adoption Method Overview

We use a method of estimating adoption of EE measures that applies equally to be our program and naturally occurring analyses. Whether as a result of natural market forces or aided by a

program intervention, the rate at which measures are adopted is modeled in our method as a function of the following factors:

- The availability of the adoption opportunity as a function of capital equipment turnover rates and changes in building stock over time
- Customer awareness of the efficiency measure
- The cost-effectiveness of the efficiency measure
- Market barriers associated with the efficiency measure.

The method we employ is executed in the measure penetration module of KEMA's DSM ASSYST[™] model.

In many of our projects, only measures that pass the measure-level TRC test are put into the penetration module for estimation of customer adoption.

7.1.3.2 Availability

A crucial part of the model is a stock accounting algorithm that handles capital turnover and stock decay over a period of up to 20 years. In the first step of our achievable potential method, we calculate the number of customers for whom each measure will apply. The input to this calculation is the total floor space available for the measure from the technical potential analysis, i.e., the total floor space multiplied by the applicability, not complete, and feasibility factors described previously. We call this the *eligible* stock. The stock algorithm keeps track of the amount of floor space available for each efficiency measure in each year based on the total eligible stock and whether the application is new construction, retrofit, or replace-on-burnout.⁶

Retrofit measures are available for implementation by the entire eligible stock. The eligible stock is reduced over time as a function of adoptions⁷ and building decay.⁸ Replace-on-burnout

⁶ Replace-on-burnout measures are defined as the efficiency opportunities that are available only when the base equipment turns over at the end of its service life. For example, a high-efficiency chiller measure is usually only considered at the end of the life of an existing chiller. By contrast, retrofit measures are defined to be constantly available, for example, application of a window film to existing glazing.

⁷ That is, each square foot that adopts the retrofit measure is removed from the eligible stock for retrofit in the subsequent year.

measures are available only on an annual basis, approximated as equal to the inverse of the service life.⁹ The annual portion of the eligible market that does not accept the replace-onburnout measure does not have an opportunity again until the end of the service life.

New construction applications are available for implementation in the first year. Those customers that do not accept the measure are given subsequent opportunities corresponding to whether the measure is a replacement or retrofit-type measure.

7.1.3.3 Awareness

In our modeling framework, customers cannot adopt an efficient measure merely because there is stock available for conversion. Before they can make the adoption choice, they must be aware and informed about the efficiency measure. Thus, in the second stage of the process, the model calculates the portion of the available market that is *informed*. An initial user-specified parameter sets the initial level of awareness for all measures. Incremental awareness occurs in the model as a function of the amount of money spent on awareness/information building and how well those information-building resources are directed to target markets. User-defined program characteristics determine how well information-building money is targeted. Well-targeted programs are those for which most of the money is spent informing only those customers that are in a position to implement a particular group of measures. Untargeted programs are those in which advertising cannot be well focused on the portion of the market that is available to implement particular measures. The penetration module in DSM ASSYST has a target effectiveness parameter that is used to adjust for differences in program advertising efficiency associated with alternative program types.

The model also controls for information retention. An information decay parameter in the model is used to control for the percentage of customers that will retain program information from one year to the next. Information retention is based on the characteristics of the target audience and the temporal effectiveness of the marketing techniques employed.

⁸ Buildings do not last forever. An input to the model is the rate of decay of the existing floor space. Floor space typically decays at a very slow rate.

⁹ For example, a base-case technology with a service life of 15 years is only available for replacement to a high-efficiency alternative each year at the rate of 1/15 times the total eligible stock. For example, the fraction of the market that does not adopt the high-efficiency measure in year *t* will not be available to adopt the efficient alternative again until year t + 15.

7.1.3.4 Adoption

The portion of the total market this is available and informed can now face the choice of whether or not to adopt a particular measure. Only those customers for whom a measure is available for implementation (stage 1) and, of those customers, only those who have been informed about the program/measure (stage 2), are in a position to make the implementation decision.

In the third stage of our penetration process, the model calculates the fraction of the market that adopts each efficiency measure as a function of the participant test. The participant test is a benefit-cost ratio that is generally calculated as follows:

Equation 7-3

Benefits =
$$\sum_{t=1}^{N} \frac{\text{Customer Bill Savings ($)}_{t}}{(1+d)^{t-1}}$$

Equation 7-4

$$Costs = \sum_{t=1}^{N} \frac{Participant Costs (\$)_{t}}{(1+d)^{t-1}}$$

Where:

n = 20 years

We use a *normalized* measure life of 20 years in order to capture the benefits associated with long-lived measures. Measures with lives shorter than 20 years are "re-installed" in our analysis as many times as necessary to reach the normalized 20-year life of the analysis.

The bill reductions are calculated by multiplying measure energy savings and customer peak demand impacts by retail energy and demand rates.

The model uses measure implementation curves to estimate the percentage of the informed market that will accept each measure based on the participant's benefit-cost ratio. The model provides enough flexibility so that each measure in each market segment can have a separate implementation rate curve. The functional form used for the implementation curves is:

$$y = \frac{a}{\left(1 + e^{-\ln\frac{x}{4}}\right) \times \left(1 + e^{-c\ln(bx)}\right)}$$

where:

y = the fraction of the market that installs a measure in a given year from the pool of informed applicable customers;

- x = the customer's benefit-cost ratio for the measure;
- a = the maximum annual acceptance rate for the technology;

b = the inflection point of the curve. It is generally 1 over the benefit-cost ratio that will give a value of 1/2 the maximum value; and

c = the parameter that determines the general shape (slope) of the curve.

The primary curves utilized in our model are shown in Figure 7-3. These curves produce base year program results that are calibrated to actual measure implementation results associated with major IOU commercial efficiency programs over the past several years. Different curves are used to reflect different levels of market barriers for different efficiency measures. A list of market barriers is shown in Table 7-5. It is the existence of these barriers that necessitates program interventions to increase the adoption of EE measures.

Figure 7-3 Primary Measure Implementation Curves Used in Adoption Model

Note that for the moderate, high barrier, and extremely high curves, the participant benefit-cost ratios have to be very high before significant adoption occurs. This is because the participant benefit-cost ratios are based on a 15-percent discount rate. This discount rate reflects likely adoption if there were no market barriers or market failures, as reflected in the no-barriers curve in the figure. Experience has shown, however, that actual adoption behavior correlates with implicit discount rates several times those that would be expected in a perfect market.¹⁰

¹⁰ For some, it is easier to consider adoption as a function of simple payback. However, the relationship between payback and the participant benefit-cost ratio varies depending on measure life and discount rate. For a long-lived measure of 15 years with a 15-percent discount rate, the equivalent payback at which half of the market would adopt a measure is roughly 6 months, based on the high barrier curve in Figure 2-3. At a 1-year payback, one-quarter of the market would adopt the measure. Adoption reaches near its maximum at a 3-month payback. The curves reflect the real-world observation that implicit discount rates can average up to 100 percent.

Table 7-5

Summary Description of Market Barriers from Eto, Prahl, Schlegel 1997

Barrier	Description
Information or Search Costs	The costs of identifying energy-efficient products or services or of learning about energy-efficient practices, including the value of time spent finding out about or locating a product or service or hiring someone else to do so.
Performance Uncertainties	The difficulties consumers face in evaluating claims about future benefits. Closely related to high search costs, in that acquiring the information needed to evaluate claims regarding future performance is rarely costless.
Asymmetric Information and Opportunism	The tendency of sellers of energy-efficient products or services to have more and better information about their offerings than do consumers, which, combined with potential incentives to mislead, can lead to sub-optimal purchasing behavior.
Hassle or Transaction Costs	The indirect costs of acquiring EE, including the time, materials and labor involved in obtaining or contracting for an energy-efficient product or service. (Distinct from search costs in that it refers to what happens once a product has been located.)
Hidden Costs	Unexpected costs associated with reliance on or operation of energy-efficient products or services - for example, extra operating and maintenance costs.
Access to Financing	The difficulties associated with the lending industry's historic inability to account for the unique features of loans for energy savings products (i.e., that future reductions in utility bills increase the borrower's ability to repay a loan) in underwriting procedures.
Bounded Rationality	The behavior of an individual during the decision-making process that either seems or actually is inconsistent with the individual's goals.
Organization Practices or Customs	Organizational behavior or systems of practice that discourage or inhibit cost-effective EE decisions, for example, procurement rules that make it difficult to act on EE decisions based on economic merit.
Misplaced or Split incentives	Cases in which the incentives of an agent charged with purchasing EE are not aligned with those of the persons who would benefit from the purchase.
Product or Service Unavailability	The failure of manufacturers, distributors or vendors to make a product or service available in a given area or market. May result from collusion, bounded rationality, or supply constraints.
Externalities	Costs that are associated with transactions, but which are not reflected in the price paid in the transaction.
Non-externality Pricing	Factors other than externalities that move prices away from marginal cost. An example arises when utility commodity prices are set using ratemaking practices based on average (rather than marginal) costs.
Inseparability of Product Features	The difficulties consumers sometimes face in acquiring desirable EE features in products without also acquiring (and paying for) additional undesired features that increase the total cost of the product beyond what the consumer is willing to pay.
Irreversibility	The difficulty of reversing a purchase decision in light of new information that may become available, which may deter the initial purchase, for example, if energy prices decline, one cannot resell insulation that has been blown into a wall.

The model estimates adoption under both naturally occurring and program intervention situations. There are only two differences between the naturally occurring and program

analyses. First, in any program intervention case in which measure incentives are provided, the participant benefit-cost ratios are adjusted based on the incentives. Thus, if an incentive that pays 50 percent of the incremental measure cost is applied in the program analysis, the participant benefit-cost ratio for that measure will double (since the costs have been halved). The effect on the amount of adoption estimated will depend on where the pre- and post-incentive benefit-cost ratios fall on the curve. This effect is illustrated in Figure 7-4.

In many of our projects achievable potential EE forecasts are developed for several scenarios, ranging from base levels of program intervention, through moderate levels, up to an aggressive EE acquisition scenario. Uncertainty in rates and avoided costs are often characterized in alternate scenarios. The final results produced are annual streams of achievable program impacts (energy and demand by time-of-use period) and all societal and participant costs (program costs plus end-user costs).

7.1.4 Scenario Analyses

Achievable potential forecasts can be developed for multiple scenarios. For example, program savings can be modeled under low levels of program intervention, through moderate levels, up to an aggressive DSM acquisition scenario. Uncertainty in rates and avoided costs can be characterized in alternate scenarios as well. The final results produced will be annual streams of achievable DSM program impacts (energy and demand by time-of-use period) and all societal and participant costs. An example of the types of outputs that have been produced for similar studies in the past is shown in Table 7-6 and Figure 7-5.

DSM ASSYST Program Output	2006	2007	2008	etc.
Annual Energy Savings (kWh)				
Summer Period Energy Savings (kWh)				
Non Summer Period Energy Savings (kWh)				
Net Annual Energy Savings (kWh)				
Summer Period Net Energy Savings (kWh)				
Non Summer Period Net Energy Savings (kWh)				
Peak Demand Savings (kW)				
Net Peak Demand Savings (kW)				
Annual Program Costs				
Supplemental Customer Costs				

 Table 7-6

 Example Format of DSM ASSYST Achievable Potential Outputs

Figure 7-5 Example of DSM Scenario Outputs

7.1.5 Measure "Bundles" for Complex End Uses

Although potential can be estimated through measure-specific analyses for many sectors and end uses, there are some cases where the measure-specific approach becomes problematic because of the complexity or heterogeneity of the base-case energy systems being addressed. Two key examples are industrial processes and some aspects of residential and commercial new construction.

In the industrial case, there may be dozens or even hundreds of individual measures that can be applied to industrial processes throughout the population of industrial facilities in a service territory; however, analyzing each of these opportunities, though possible, is impractical within a resource and time-constrained study such as this one.

In the case of new construction, the problem is sometimes that an equipment substitution paradigm does not fit the real-world circumstances in which efficiency levels are improved. For example, in commercial lighting, virtually all new buildings tend to have electronic ballasts and T-8 lamps, as well as CFLs, and other high-efficiency components. These high-efficiency components are generally needed to meet Title 24 efficiency requirements; however, the overall

lighting system efficiency can often be increased by using these same components in smarter designs configurations or by combining with other features such as daylighting.

For both of these situations, our approach on recent related work has been to bundle multiple individual efficiency measures into somewhat simplified efficiency levels. For example, lighting levels for commercial new construction might be set at 10- and 20-percent improvement over Title 24 standards (as they are often specified in the Savings by Design program planning documents). Similarly, for industrial compressed air systems, we have bundled savings opportunities into three levels where both savings and costs increase with each level. We then estimate an incremental cost for achieving each of the efficiency levels. An example of these results developed in a recent study for industrial motors, compressed air, and processes in California is shown in Table 7-7.

DSM ASSYST AD	DITIVE SUPP	PLY ANALYSIS	Year	2011			
		Vintage: Existing			Levelized	Levelized	Total
		Sector: Industrial Scenario: Base			Cost per	Cost per	Resource
End	Measure		GWH	MW	KWh Saved	KW Saved	Cost Test
Use	Number	Measure	Savings	Savings	\$/kWH	\$/kW	TRC
Motors	101	Replace 1-5 HP Motor	248.7	34.1	\$0.10	\$698	0.8
Motors	102	Add 1-5 HP VSD	447.1	61.3	\$0.14	\$1,019	0.6
Motors	103	Motor Practices Level 1	607.0	83.2	\$0.06	\$440	1.3
Motors	104	Motor Practices Level 2	539.1	73.9	\$0.24	\$1,764	0.3
Motors	121	Replace 21-50 HP Motor	78.1	10.7	\$0.09	\$661	0.9
Motors	122	Add 21-50 HP VSD	319.0	43.7	\$0.04	\$278	2.1
Motors	123	Motor Practices Level 1	404.3	55.4	\$0.03	\$211	2.7
Motors	124	Motor Practices Level 2	361.9	49.6	\$0.12	\$840	0.7
Motors	151	Replace 201-500 HP Motor	143.5	19.7	\$0.03	\$201	2.8
Motors	152	Add 201-500 HP VSD	516.6	70.8	\$0.01	\$106	5.4
Motors	153	Motor Practices Level 1	598.6	82.0	\$0.02	\$152	3.7
Motors	154	Motor Practices Level 2	554.9	76.0	\$0.08	\$586	1.0
Compressed Air	202	CAS Level 1	433.9	59.5	\$0.02	\$168	3.4
Compressed Air	203	CAS Level 2	453.6	62.2	\$0.05	\$362	1.6
Compressed Air	204	CAS Level 3	325.5	44.6	\$0.13	\$936	0.6
Other Process	301	Process Level 1	1,031.8	141.4	\$0.03	\$190	3.0
Other Process	302	Process Level 2	1,219.7	167.1	\$0.05	\$345	1.7
Other Process	303	Process Level 3	767.3	105.1	\$0.25	\$1,831	0.3

 Table 7-7

 Example of Industrial Efficiency Levels Developed for a Recent California Potential Study

Once the levels efficiency are specified in terms of costs and savings, they are run through the modeling system as if they were individual measures. Thus, cost-effectiveness indicators are calculated for each level, those that pass the TRC are included in the achievable potential forecasting, and adoption is modeled using the same process as described above. Although we recommend using this approach for complex end uses in the proposed study because it creates a manageable forecasting process, care must be taken in developing the levels and recognizing that this approach results in some aggregation bias.

7.2 DSM ASSYST[™] Model Description

DSM ASSYST[™] (Demand-Side Management Technology Assessment System) is a tool developed to assess the technical, economic and market potential of DSM technologies in the residential, commercial and industrial sectors. Based on user-specified information about base technologies, conservation technologies, load shapes, utility avoided costs, utility service rates, and economic parameters, DSM ASSYST yields numeric data for a variety of criteria. The user can then evaluate and compare technologies. DSM ASSYST allows the user to analyze each DSM technology in multiple combinations of building types, market segments, end uses, and vintages both individually and compared to other DSM technology options.

The current version of DSM ASSYST uses a combination of Microsoft Excel spreadsheets and Visual Basic (VB) programming software. All input and output data are stored in spreadsheets. The VB modules read input data from various spreadsheets, perform the various analyses, and store output results into spreadsheets.

There are three major VB analysis modules: Basic, Supply, and Penetration. Figure 7-6 provides an overview of the model process and key inputs. Each module is briefly described below.

7.2.1 Basic Module

In the Basic module, each technology is assessed individually by comparing it to a base case. Comparisons are made at a high degree of segmentation. The segmentation may include, but is not limited to sector, building type, end use, vintage and geographic area.

The Basic module reads four types of information, contained within four spreadsheet files. These files include:

- **Economic**: containing utility rates paid by customers, discount rates, avoided costs, and other utility-specific economic parameters
- Building: containing square footage or number of households and load shape data
- Measure: containing technology based inputs for the Basic Analysis
- **Driver**: containing information that drives the analysis process.

Figure 7-6 DSM ASSYST Analytic Flow

The output files produced by the Basic module include a Summary Basic Output file that contains an assessment of how much energy and demand each technology will save relative to the base case within each segment. In addition, the summary contains cost data, savings fractions, before and after EUIs or UECs, service life, the levelized costs of implementing the technology, and results of economic tests including the TRC test, participant test, and customer payback.

This module also produces a second file that contains all the measures that were assessed in the Basic Analysis sorted in the highest to lowest TRC order within each market segment and end use. This file serves as an input file for the Supply module.

7.2.2 Supply Module

In the Supply Module each technology, within each market segment, is stacked, or implemented, such that all energy savings are realized from preceding technologies prior to the implementation of all subsequent technologies. The stacking order generally follows the TRC sort order, highest to lowest, resulting from the Basic module.

The Supply module requires two input files: a Driver file and a modified output file from the Basic module. As in the Basic module, the Driver file contains instructions for the analysis process. The output file from the basic analysis must be modified in Excel to address overlapping measures, such as different SEER levels or measures that are direct substitutes for each other.

Output from the Supply module contains the technical and economic potential plus energy and demand supply curves. The Supply module produces measure-level information that can be incorporated into the input file for the Penetration module

7.2.3 Penetration Module

The Penetration (or Program Potential) module of ASSYST is designed to calculate the costs and net energy and demand savings from DSM programs under a variety of marketing scenarios. This module estimates the net impact and cost of a program over time by forecasting the naturally occurring penetration of each measure as well as the penetration of each measure given the program activities (i.e., incentives and awareness building).

Using a stock accounting algorithm over a period of 20 years, this module first calculates the number of customers for whom the measure will apply. Second, the model calculates the number of informed customers based on the amount of money spent on advertising. Third, the

Appendices

model calculates the number of customers who will implement the technology based on their benefit/cost ratio. Finally, the model compares the number of customers that implement the technology due to the program with those who would take the technology anyway (naturally occurring). Per-unit energy and demand savings are applied to the net number of customers (total minus naturally occurring) over the 20-year period. After completing the analysis, the results are automatically summed across measures to provide program-level costs and savings for 20 years, and formatted for input into Integrated Resource Planning models.

A program input file is used to define a program and provide the building stock forecast. The program characterization variables include:

- Incentive Levels
- Incentive Budget Constraints
- Yearly Incentive Adjuster
- Technology Acceptance Curve Parameters
- Administration Budgets

- Advertising Budgets
- Awareness Decay Rate
- Target Effectiveness
- Advertising Effective Ratio.