Exhibit No.

Issue: Weather Data Witness: Jayna R Long

Type of Exhibit: Supplemental

Direct Testimony

Sponsoring Party: Empire District

Case No. ER-2006-0315

Before the Missouri Public Service Commission

Supplemental Direct Testimony

of

Jayna R. Long

July 2006

JAYNA R. LONG SUPPLEMENTAL DIRECT TESTIMONY

SUPPLEMENTAL DIRECT TESTIMONY OF JAYNA R. LONG ON BEHALF OF THE EMPIRE DISTRICT ELECTRIC COMPANY BEFORE THE MISSOURI PUBLIC SERVICE COMMISSION CASE NO. ER-2006-0315

1	Q.	PLEASE STATE YOUR NAME AND BUSINESS ADDRESS.
2	A.	My name is Jayna R. Long. My business address is 602 Joplin Street, Joplin,
3		Missouri.
4	Q.	BY WHOM ARE YOU EMPLOYED?
5	A.	I am employed by The Empire District Electric Company. ("Empire" or
6		"Company").
7	Q.	ARE YOU THE SAME JAYNA R. LONG THAT FILED DIRECT
8		TESTIMONY IN THIS CASE?
9	A.	Yes, I am.
10	Q.	WHAT IS THE PURPOSE OF YOUR SUPPLEMENTAL DIRECT
11		TESTIMONY IN THIS CASE BEFORE THE MISSOURI PUBLIC
12		SERVICE ("COMMISSION")?
13	A.	I am filing this testimony in response to a Commission order in this rate case
14		requesting additional information from the parties on fuel and purchased power.
15		Specifically, I am responding to a Commission question concerning the use of
16		weather data to determine Empire's revenue requirement in this rate case.
17	Q.	WHAT IS NORMAL WEATHER?

JAYNA R. LONG SUPPLEMENTAL DIRECT TESTIMONY

1	A.	Typically normal weather is defined as simply the long term <i>average</i> of weather.
2		The World Meteorological Organization uses a 30-year average to define
3		climatological "normals". However these normals are merely averages and
4		significant year to year variability in weather is likely to occur.
5	Q.	WHAT IS THE DIFFERENCE BETWEEN WEATHER AND CLIMATE?
6	A.	While weather changes daily, climate changes over time. For example during the
7		era of the dinosaurs, scientists believe the Earth was much warmer than it is
8		today. While more recently some argue the recent increase of hurricanes, wild
9		fires and tornadoes are a result of permanent climate changes, others argue we are
10		experiencing merely a cycle in the Earth's history.
11	Q.	WHAT NORMAL WEATHER STATISTICS SHOULD THE
12		COMMISSION USE TO DETERMINE THE REVENUE REQUIREMENT
13		FOR FUEL AND PURCHASED POWER COSTS IN THIS RATE CASE?
14	A.	The Commission's decision should be based upon historical weather statistics.
15	Q.	PLEASE EXPLAIN.
16	A.	No one can predict what the climate or the weather will be over the next several
17		years. As a result, Empire relies on historical averages to compile its rate cases.
18		Below are tables showing several scenarios of cooling and heating degree days
19		based on the NOAA Springfield first order weather station. The NOAA normals
20		are based on the years 1976 to 2000. All other averages are based on the years
21		ending with 2005.

Cooling Degree Days	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total	% of NOAA
NOAA Normal		-	3	20	83	258	415	379	179	28	1	-	1,366	100%
30 years	-	•	2	22	88	255	418	393	188	28	3	-	1,397	102%
20 years	-	-	2	25	93	258	406	383	174	27	3	-	1,371	100%
10 years		-	2	21	98	247	408	392	186	34	5	-	1,393	102%
5 years	-		1	36	91	255	417	404	193	35	9	-	1,441	105%
3 years		-	2	23	106	245	403	402	197	42	14	-	1,434	105%
Heating Degree Days	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total	% of NOAA
Heating Degree Days NOAA Normal	Jan 1,034	Feb 790	Mar 581	Apr 300	May 100	Jun 8	Jul 1	Aug 1	Sep 62	Oct 248	Nov 578	Dec 899	Total 4,602	
Degree Days NOAA							Jul 1							NOAA
Degree Days NOAA Normal	1,034	790	581	300	100	8	Jul 1 1 1 1	1	62	248	578	899	4,602	100%
Degree Days NOAA Normal 30 years	1,034 1,035	790 782	581 589	300	100	8	1	1 2	62 52	248 249	578 570	899 911	4,602 4,590	100%
NOAA Normal 30 years 20 years	1,034 1,035 964	790 782 746	581 589 588	300 292 291	100 98 92	9 9	1 1	1 2 2	62 52 52	248 249 250	578 570 569	899 911 902	4,602 4,590 4,466	100% 100% 97%

1 Q. WHAT SHOULD BE DERIVED FROM THESE TABLES?

- 2 A. One can conclude that in the short run, the cooling degree days are higher than the
- long term average and that the heating degree days are lower in the short run than
- 4 the long term average.

5 Q. WHAT WEATHER STATISTIC HAS EMPIRE USED IN THE

6 DEVELOPMENT OF ITS REQUEST IN THIS CASE?

- 7 A. Empire has chosen to use the NOAA normals in its normal weather calculations.
- 8 The Company has done so based on no other reason than the consistent historical
- 9 use of this methodology by both the Company and the Commission Staff in
- 10 previous rate cases.

11 Q. WHAT IMPACT CAN THE USE OF THIS WEATHER STATISTIC HAVE

ON FUEL AND PURCHASED POWER EXPENSE IN A RATE CASE?

JAYNA R. LONG SUPPLEMENTAL DIRECT TESTIMONY

1	A.	Generally, as normal temperatures increase so will normalized sales, revenue and
2		fuel and energy costs. The normalized sales levels will be used to determine the
3		level of fuel and purchased power needed by the utility company. This results in
4		the matching of normalized fuel and purchased power expense to normalized
5		revenues.
6	Q.	WHAT WEATHER STATISTIC DOES THE COMPANY RECOMMEND
7		THE COMMISSION RELY ON TO DEVELOP THE REVENUE
8		REQUIREMENT IN THIS RATE CASE?
9	A.	Empire recommends the continued use of the NOAA weather statistic at this time.
10		This would maintain the consistency of the weather method used to develop the
11		Empire revenue requirement. In addition, the continued use of this weather
12		statistic would maintain the relationship of the Empire normalized weather
13		calculation with those of other utilities in Missouri.
14	Q.	DOES THIS CONCLUDE YOUR SUPPLEMENTAL DIRECT
15		TESTIMONY?
16	A.	Yes.