Exhibit No.: Issue: Weather Normalization, Customer Growth, Other Revenue Normalization Witness: George M. McCollister Type of Exhibit: Direct Testimony Sponsoring Party: Kansas City Power & Light Company Case No.: ER-2012-0174 Date Testimony Prepared: February 27, 2012

MISSOURI PUBLIC SERVICE COMMISSION

CASE NO.: ER-2012-0174

DIRECT TESTIMONY

OF

GEORGE M. McCOLLISTER

ON BEHALF OF

KANSAS CITY POWER & LIGHT COMPANY

Kansas City, Missouri February 2012

DIRECT TESTIMONY

OF

GEORGE M. McCOLLISTER

Case No. ER-2012-0174

- 1 Q: Please state your name and business address.
- A: My name is George M. McCollister, Ph.D. My business address is 1200 Main Street,
 Kansas City, Missouri 64105.
- 4 Q: By whom and in what capacity are you employed?
- 5 A: I am the Manager of Market Assessment at Kansas City Power & Light Company
 6 ("KCP&L" or the "Company").

7 Q: Please describe your education, experience and employment history.

8 A: I earned three degrees from the University of California at San Diego: a Bachelor of Arts
9 degree in mathematics and chemistry, a Master of Arts degree in mathematics, and a
10 Ph.D. in economics. My specialties in the economics Ph.D. program were
11 microeconomics and econometrics.

12 I previously was employed at three electric and natural gas utilities. I was 13 employed as an Energy Economist at Pacific Gas and Electric Company where I was 14 responsible for developing end-use models of electric and natural gas sales and for 15 analyzing responses to energy-use surveys of our customers. I next was employed as a 16 Senior Forecast Analyst at San Diego Gas and Electric Company where I developed 17 models of customer choice, energy sales, and system reliability. I also was employed by 18 UtiliCorp United, Inc. as the Forecast Leader, where I was responsible for end-use 19 forecasting in integrated resource plans, budget forecasts, weather normalization,

1 variance analysis, and or statistical analysis. I also have been employed by several 2 consulting firms that specialized in regulated industries, including Resource Management International and Spectrum Economics, Inc. The majority of my consulting projects 3 4 focused on energy forecasting issues and modeling for electric and natural gas utilities. 5 **O**: Have you previously testified in a proceeding at the Missouri Public Service Commission ("MPSC" or "Commission") or before any other utility regulatory 6 7 agency? 8 Yes, I have testified before the MPSC, the Oklahoma Corporation Commission, the A: 9 Kansas Corporation Commission, and the Public Utilities Commission in Colorado. 10 What is the purpose of your testimony? **O**: 11 I am sponsoring several normalizations to monthly Kilowatt-hour ("kWh") sales and A: 12 peak loads in Schedules GMM-1 through GMM-3. 13 What normalizations are you making to kWh sales and peak loads? **Q**: 14 A: Both monthly and hourly kWh sales are adjusted to reflect normal weather conditions. 15 This is called a weather adjustment. KWh sales are further adjusted for customer growth 16 that occurs between the test year and the true-up date, and for customers who were 17 switched from one rate to another during or after the test year. These customers are 18 known as rate switchers. 19 What adjustment did you make for rate switchers? **Q**: 20 A: Each year a small percentage of customers are switched from their current tariff to 21 another that is expected to reduce their electric bills. We adjusted kWh sales for the 22 Large Power tariff for customers that switched into or out of this tariff. The customer 23 growth adjustment accounted for rate switchers in the other tariffs.

1

Q: What adjustment did you make for customer growth?

2 A: For each month in the test year, the weather-normalized sales per customer was 3 multiplied by the number of customers projected for the true-up date. This adjustment is 4 made to weather-normalized sales to the Residential, Small General Service ("GS"), 5 Medium GS, and Large GS classes. When the numbers become available, I will revise 6 this adjustment using the actual number of customers as of the true-up date. Sales to 7 Large Power customers are adjusted by plotting each customer's month kWh sales and 8 looking for any changes in sales that appear to be or are known to be permanent. If any 9 such changes are identified, sales during the test year are adjusted to reflect the change. 10 The adjustments for growth to Large Power sales will be revised using the most current 11 data when the Staff requests an update to our initial filing and again for the true up.

12

Q: What is the purpose of making a weather adjustment?

A: Abnormal weather can increase or decrease a utility company's revenues, fuel costs, and
rate of return. Therefore, revenues and expenses are typically adjusted to reflect normal
weather when these are used to determine a company's future electric rates. These
adjustments are made by first adjusting kWh sales and hourly loads and then using these
results to adjust revenues and fuel costs. Weather normalized sales and peak loads are
also used to allocate costs between different rate groups.

19

Q: What method was used to weather-normalize kWh sales?

A: Our method was based on load research ("LR") data, which was derived by measuring
hourly loads for a sample of KCP&L's customers representing the Residential, Small GS,
Medium GS, Large GS, and Large Power classes. The hourly loads were grossed up by

the ratio of the number of customers for each of these classes divided by the numbersampled.

In the first step, the hourly loads for the sample were calibrated to the annual billed sales of all customers in each class. The ratio of the billed sales divided by the sum of the hourly loads was multiplied by the load in each hour.

In the second step, the hourly loads were estimated for lighting tariffs and the
loads for all tariffs, including sales for resale, were grossed up for losses and compared to
Net System Input ("NSI"). The difference between this sum and the NSI then was
allocated back to the LR data in proportion to the hourly precisions that were estimated
for the load research data.

In the third step, regression analysis was used to model the hourly loads for each
tariff. These models included a piecewise linear temperature response function of a twoday weighted mean temperature.

In the fourth step, this temperature response function was used to compute daily
weather adjustments as the difference between loads predicted with normal weather and
loads predicted with actual weather. Normal weather was derived using spreadsheets
provided by the MPSC Staff. The normal weather represents average weather conditions
over the 1981-2010 time period.

In the fifth step, the daily weather adjustments were split into hourly adjustmentsand these were added to NSI to weather-normalize that series.

In the sixth step, the daily weather adjustments were split into billing months based on the percentage of sales on each billing cycle and the meter reading schedule for

4

the test year period. These weather adjustments then are summed by billing month and
added to billed kWh sales to weather-normalize that data.

In my direct testimony, I am using the regression results from the previous rate case to compute the weather adjustments because the load research data was not available for the test year in time for me to use it. When the Staff requests an update to our filing, I will update the regression models using the load research data for the test year and the 12 months prior to the test year as we typically do in a rate case.

8 Q: What are the results of these normalizations?

9 A: Schedule GMM-1 shows the adjustments for each normalization on kWh sales. Schedule
10 GMM-2 shows weather-normalized customer annualized monthly peaks by class, and
11 Schedule GMM-3 shows weather-normalized customer annualized loads by class at the
12 time of the monthly system peak load.

- 13 Q: Does that conclude your testimony?
- 14 A: Yes, it does.

BEFORE THE PUBLIC SERVICE COMMISSION OF THE STATE OF MISSOURI

In the Matter of Kansas City Power & Light Company's Request for Authority to Implement A General Rate Increase for Electric Service

Case No. ER-2012-0174

AFFIDAVIT OF GEORGE M. McCOLLISTER

)

STATE OF MISSOURI)) ss COUNTY OF JACKSON

George M. McCollister, being first duly sworn on his oath, states:

1. My name is George M. McCollister. I work in Kansas City, Missouri, and I am employed by Kansas City Power & Light Company as Manager of Market Assessment.

2. Attached hereto and made a part hereof for all purposes is my Direct Testimony five (5) on behalf of Kansas City Power & Light Company consisting of

pages, having been prepared in written form for introduction into evidence in the abovecaptioned docket.

3. I have knowledge of the matters set forth therein. I hereby swear and affirm that my answers contained in the attached testimony to the questions therein propounded, including any attachments thereto, are true and accurate to the best of my knowledge, information and belief.

Jer M. M. C. C. L. T. George M. McCollister

Subscribed and sworn before me this 27m day of February, 2012.

Public

My commission expires: Fub. 4 2015

NICOLE A. WEHRY
Notary Public - Notary Seal
State of MISSOUD
a standard for lackeon COURTV
AL. Commission Evalues' Fenniary 04, 6010
Commission Number: 11391200
Commission

ADJUSTMENTS TO MONTHLY BILLED SALES OF KCP&L MISSOURI

NORMALIZATIONS TO MONTHLY MWH SALES

	Weather Adjustments to Monthly Billed Sales												August 2012		
														Customer	Total
Tariff	Oct-10	Nov-10	Dec-10	Jan-11	Feb-11	Mar-11	Apr-11	May-11	Jun-11	Jul-11	Aug-11	Sep-11	Test Year	Growth	Adjustments
Residential	3,484	5,341	-414	-10,345	-15,171	-4,676	-1,179	-3,190	-16,383	-40,682	-36,827	915	-119,127	-16,593	-135,720
Small GS	-201	104	-36	-862	-1,304	-440	-92	197	-686	-2,605	-2,304	311	-7,917	-137	-8,055
Medium GS	-385	-228	-84	-784	-1,191	-512	-99	353	-1,544	-5,913	-5,399	323	-15,463	-3,004	-18,467
Large GS	-379	297	-107	-4,594	-7,057	-2,150	-352	755	-1,956	-7,716	-7,027	502	-29,784	-17,624	-47,408
Large Power	-694	-427	50	25	-116	-6	17	197	-1,941	-5,072	-2,647	1,621	-8,995	-18,279	-27,274
Total	1,825	5,086	-590	-16,559	-24,838	-7,786	-1,704	-1,689	-22,510	-61,988	-54,204	3,672	-181,285	-55,638	-236,923

WEATHER NORMALIZED MONTHLY PEAK LOADS (MW)

	WEATHE	R NORM		MONTHL	YPEAK	LOADS V	VITH CU	ISTOMEI	R GROW	TH THR	OUGH A	UGUST 2	2012 (MW)
Tariff	Jan-10	Feb-10	Mar-10	Apr-10	May-10	Jun-10	Jul-10	Aug-10	Sep-10	Oct-10	Nov-10	Dec-10	2010
Residential	595	508	454	363	552	788	885	825	700	408	483	610	885
Small GS	84	81	73	74	91	102	97	105	87	70	74	86	105
Medium GS	177	180	167	194	209	257	250	246	229	194	164	176	257
Large GS	402	403	361	362	388	424	424	429	419	359	351	428	429
Large Power	295	292	282	299	325	343	364	353	335	327	298	276	364
Street Lights	17	17	17	17	17	17	17	17	17	17	17	17	17
Traffic Signals	0	0	0	0	0	0	0	0	0	0	0	0	0
Area Lights	4	4	4	4	4	4	4	4	4	4	4	4	4

Note: These numbers include losses.

WEATHER NORMALIZED MONTHLY COINCIDENT PEAK LOADS (MW)

	WEATHER	NORMALI	ZED MON	THLY COI	NCIDENT	PEAK LOA	ADS WITH	I CUSTON	/IER GROV	VTH THRO	DUGH A U	GUST 201	2 (MW)
Tariff	Jan-10	Feb-10	Mar-10	Apr-10	May-10	Jun-10	Jul-10	Aug-10	Sep-10	Oct-10	Nov-10	Dec-10	2010
Residential	595	466	454	278	499	711	741	786	680	353	483	610	741
Small GS	63	66	55	72	91	92	97	93	85	70	54	63	97
Medium GS	142	154	135	177	187	256	238	221	214	180	137	131	238
Large GS	350	391	290	333	353	389	418	361	378	325	289	301	418
Large Power	273	284	254	278	318	334	362	321	326	315	248	223	362
Street Lights	17	0	15	0	0	0	0	0	0	0	17	17	0
Traffic Signals	0	0	0	0	0	0	0	0	0	0	0	0	0
Area Lights	4	0	3	0	0	0	0	0	0	0	4	4	0
Total Retail	1,444	1,361	1,207	1,138	1,447	1,783	1,857	1,782	1,683	1,244	1,233	1,349	1,857

Note: These numbers include losses.