Exhibit No.:

Issue(s): Production Cost Model
Witness: Mark J. Peters
Type of Exhibit: Direct Testimony
Sponsoring Party: Union Electric Company

File No.: ER-2021-0240

Date Testimony Prepared: March 31, 2021

MISSOURI PUBLIC SERVICE COMMISSION

FILE NO. ER-2021-0240

DIRECT TESTIMONY

OF

MARK J. PETERS

 \mathbf{ON}

BEHALF OF

UNION ELECTRIC COMPANY

D/B/A AMEREN MISSOURI

St. Louis, Missouri March, 2021

TABLE OF CONTENTS

I.	INTRODUCTION	1
II.	PURPOSE OF TESTIMONY	2
III.	PRODUCTION COST MODELING	3
IV.	PRODUCTION COST MODEL INPUTS	6
V.	REAL-TIME LOAD AND GENERATION DEVIATION ADJUSTMENT	. 11
VI.	PERCENTAGE OF TRANSMISSION COST INCLUDED IN FAC	12

DIRECT TESTIMONY

OF

MARK J. PETERS

FILE NO. ER-2021-0240

1		I. INTRODUCTION
2	Q.	Please state your name and business address.
3	A.	Mark J. Peters, One Ameren Plaza, 1901 Chouteau Avenue, St. Louis,
4	Missouri 631	03.
5	Q.	By whom and in what capacity are you employed?
6	A.	I am employed by Ameren Services Company ("Ameren Services") as a
7	Manager in t	he Corporate Planning Analysis Department, where I am responsible for the
8	supervision a	and guidance of the group responsible for developing fuel budgets, reviewing
9	and updating	g economic dispatch parameters for the generating units owned by Ameren
10	Missouri, ru	inning production cost model studies supporting power plant project-
11	justification	studies, and performing other special studies, including those supporting our
12	rate reviews.	
13	Q.	Please describe your educational and professional background.
14	A.	I received a Bachelor of Arts degree in Liberal Arts & Sciences
15	(Concentration	on in Economics) in August of 1985 from the University of Illinois (Urbana-
16	Champaign).	
17	I beg	an employment with Illinois Power Company in August of 1985, holding a
18	variety of ro	les prior to its acquisition by Ameren Corporation. Since Illinois Power's
19	acquisition,	I have been involved with Ameren's Illinois utility subsidiaries' post-2006

- 1 energy supply acquisition process, the guidance and supervision of a group that provided
- 2 analytical support to the Ameren Missouri trading group, which is now managed by
- 3 Ameren Missouri witness Andrew Meyer, and the guidance of load forecasting and load
- 4 research activities, in addition to my current duties.

II. PURPOSE OF TESTIMONY

Q. What is the purpose of your direct testimony?

- A. The purpose of my direct testimony is to sponsor the determination of the normalized value for the sum of allowable fuel costs plus the cost of net purchased power, which was used by Company witness Mitchell Lansford in determining Ameren Missouri's revenue requirement for this case and in calculating the Net Base Energy Costs ("NBEC") utilized in the Company's Fuel Adjustment Clause ("FAC"). These costs consist of the delivered cost of nuclear fuel, coal, oil, and natural gas associated with producing electricity from the Ameren Missouri generation fleet, plus the variable component of net purchased power.
- Ameren Missouri witness Andrew Meyer is also filing direct testimony to address other FAC components, including net off-system sales revenues which are netted against the costs that I have modeled and used by Mr. Lansford in determining NBEC.
- My testimony will also include the determination of a real-time load and generation deviation adjustment that has been included in the determination of NBEC over the last several Ameren Missouri electric rate reviews and the percentage of transmission costs and revenues to be included in the FAC.

1 Q. Please summarize your testimony and conclusions.

A. Ameren Missouri's normalized annual fuel costs and net purchased power

3 costs were calculated using the PowerSimm production cost model.

4 The normalized annual fuel costs are \$592 million and net purchased power costs

5 are \$20.1 million.

8

9

10

11

13

14

18

19

20

The normalized annual value for the real-time load and generation deviation

7 adjustment is a credit (reduction of cost) of \$5.0 million.

III. PRODUCTION COST MODELING

Q. What is a production cost model?

A. A production cost model is a computer application used to simulate an electric utility's generation system and load obligations. One of the primary uses of our

12 production cost model is to develop production cost estimates used for planning and

decision making, including the development of a normalized level of net energy costs upon

which a utility's revenue requirement can be based.

15 "Net energy costs" as used in this testimony are the normalized values for the sum

of allowable fuel costs, including transportation, plus the cost of net purchased power.

17 These are a subset of the total fuel and net purchased power costs, including transportation

and emissions costs and revenues and net of net off-system sales revenues, which are used

to establish NBEC in the Company's Rider FAC tariff sheets. 1 As noted, the NBEC is

discussed in Mr. Lansford's direct testimony.

¹ There are other components of NBEC that are not produced by the production cost modeling, as discussed by Mr. Meyer and Mr. Lansford in their direct testimonies.

1		

Q. How is PowerSimm used by Ameren Missouri?

- A. PowerSimm is used by Ameren Missouri to model generation output. The
- 4 results of this modeling are used for operational, financial, and regulatory purposes. The
- 5 model's output provides information used in developing budgets and financial forecasts,
- 6 fuel burn projections, emissions estimates, and other generation station project analyses,
- 7 and is used in the preparation of and as evidentiary support for rate reviews, such as this
- 8 one.

9

- Q. What are the major inputs to the PowerSimm model run used for
- 10 calculating a normalized level of net energy costs?
- 11 A. The major inputs are: normalized hourly loads, unit operating
- characteristics, unit availabilities, prices for the primary variable cost components (fuel by
- 13 type and by plant, variable operating and maintenance costs, opportunity cost of
- emissions), and the market price of electrical energy.
- Q. What are the major outputs of the PowerSimm model run used for
- 16 calculating a normalized level of net energy costs?
- 17 A. The major outputs are: generation output by unit expressed in megawatt-
- hours ("MWh"), millions of British thermal units ("MMBtu"), and the cost in dollars; net
- 19 purchases of energy, expressed in both MWh and dollars; and net off-system sales of
- 20 energy, expressed in both MWh and dollars.

Q. Please generally describe how net off-system sales and net purchases of energy are determined by the model.

A. For any given hour, the model increases the generation output for units that have a dispatch cost below the hourly market price for energy and decreases the output for those units whose dispatch cost is above the hourly market price. The model accomplishes this while recognizing the unit operating limits and characteristics, and after the model has determined unit commitment. In this manner, the model determines the output of each generator in MWh for each hour. This output is then compared to the load assumption in MWh for each hour to determine whether there is a net purchase or a net off-system sale for that hour.

In that regard, the model emulates the Company's market settlements with the Midcontinent Independent System Operator, Inc.'s ("MISO") markets. In actual operations, the Company purchases energy for its entire load from the MISO market and separately sells all of the MWhs generated by its generating units into the MISO market.² However, it is my understanding that the Federal Energy Regulatory Commission ("FERC") requires that these amounts be netted against each other for each hour for reporting purposes. This netting results in the recording of either a net off-system sale or a net power purchase for that hour, depending on whether the volume of total sales exceeds total purchases (net off-system sale) or if the volume of total purchases exceeds total sales (net power purchase). A \$1 increase in off-system sales revenue has the same impact on NBEC as a \$1 reduction in purchased power expense (and vice versa).

² The only exception are the MWhs produced by the Atchison wind energy facility, with that power being sold into the Southwest Power Pool's ("SPP") energy market, since Atchison is connected to the transmission system under SPP's functional control. Those power sales are included in off-system sales revenues tracked in the Company's FAC.

1		IV. PRODUCTION COST MODEL INPUTS
2	Q.	What load data assumptions were used in the PowerSimm model run
3	used for cale	culating a normalized level of net fuel costs?
4	A.	We used normalized hourly loads, including applicable losses, developed
5	from the act	ual loads for the test year of January 1, 2020 through December 31, 2020.
6	Given that the	ne test year has 366 days and true up period only has 365 days, a leap day
7	adjustment w	vas made to remove 1/29th of the February, 2020 loads from the results.
8	Q.	Were other model results similarly adjusted for the output?
9	A.	Yes. A similar adjustment was made to the results for fuel cost, purchased
10	power cost, a	and off-system sales revenue.
11	Q.	What operational data assumptions were used in the PowerSimm
12	model run u	sed for calculating a normalized level of net energy costs?
13	A.	Operational data assumptions reflecting the characteristics of the generating
14	units were us	sed for this purpose, including: unit input/output curve, which calculates the
15	fuel input rec	quired for a given level of generator output; unit minimum and maximum load
16	levels; ramp	rates; minimum up and down times; unit commit status; identification of
17	specific fuel	used for startup and generation, including the ratio of those fuels if more than
18	one for a giv	ren unit; and fuel blending. Schedule MJP-D1 lists the operational data used
19	for this revie	w.
20	Q.	Are there any changes of note in the unit operating characteristics
21	included in	the PowerSimm model as compared to the modeling submitted in the
22	Company's	last electric rate review?
23	Α.	Yes.

1	We have removed the must run unit commitment status for the Labadie, Rush Island
2	and Sioux coal fired generating units, thus allowing the model to place these units in reserve
3	shutdown.
4	Additionally, unit ramp rates, heat rates and minimum load levels were updated to

Additionally, unit ramp rates, heat rates and minimum load levels were updated to reflect current operating practice.

We also normalized the hourly purchase volumes under the Pioneer Prairie power purchase agreement ("PPA") using the same methodology that we used to normalize the output of the Keokuk and Osage Energy Centers. This methodology is consistent with the methodology proposed by Staff Witness Shawn Lange, in File No. ER-2016-0179.

Finally, our modeling reflects the addition of the High Prairie and Atchison Renewable Energy Centers, as well as the removal of Meramec combustion turbine generator ("CTG") 1 and CTG 2, (the former due to retirement, and the latter as a result of being placed in suspended status with the MISO).

Q. What unit availability data assumptions were used in the PowerSimm model run used for calculating a normalized level of net energy costs?

A. Unit availability data assumptions were developed to annualize planned outages, unplanned outages and de-ratings. Planned outages are major unit outages that are scheduled in advance. The length of the scheduled outage depends on the type of work being performed. Planned outage intervals vary due to factors such as type of unit, unplanned outage rates during the maintenance interval, and plant modifications. A normalized planned outage length was used for this rate review, as reflected in Schedule MJP-D2. The lengths of the planned outage assumptions, except for the Callaway Energy Center, are based on a six-year average of actual planned outages that occurred between

- 1 January 1, 2015 and December 31, 2020. The outage assumption for the Callaway Energy
- 2 Center was based on an annualized average of the four most recent re-fueling outages:
- 3 numbers 21 through 24.

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

4 In addition to the length of the planned outage, the time period when the planned

5 outage occurs is also important. The planned outage schedule assumption used in modeling

6 Ameren Missouri's generation with the PowerSimm model in this proceeding is shown in

Schedule MJP-D3. This assumption was developed in consideration of historical practices

and market prices, whereby such outages are generally scheduled in the spring and fall,

when the negative financial consequences of removing a unit from service are lower.

Unplanned outages are short outages when a unit is completely off-line, which are not scheduled in advance. These outages typically last from one to seven days and occur between the planned outages. Unplanned outages by definition are unforeseen events whose timing cannot be predicted, and thus are modeled as random events. The normalized unplanned outage rate assumption for this proceeding is based on a six-year average of unplanned outages that occurred between January 1, 2015 and December 31, 2020, and is reflected in Schedule MJP-D4.

A unit de-rate occurs when a generating unit cannot reach its maximum output due to operational considerations. The magnitude of the de-rating varies based on the operating issues involved. As with the unplanned outage assumption, these are unforeseen events whose timing cannot be predicted, and thus are modeled as random events. The de-rate assumption used in this case is based on a six-year average of de-rates that occurred between January 1, 2015 and December 31, 2020, and is reflected in Schedule MJP-D5.

1	Q. What fuel data assumptions were used in the PowerSimm model run
2	used for calculating a normalized level of net energy costs?
3	A. Ameren Missouri's units burn four general types of fuel: nuclear fuel, coal
4	natural gas (including landfill gas), and oil. The specific fuels (and the applicable ratio of
5	those fuels if more than one) used by each generating unit for both normal generation and
6	unit startup are identified in the model, and an incremental and average cost assumption is
7	developed for each. The incremental cost assumptions are used by the model in its dispatch
8	logic—determining when and at what output level a specific unit should run. Average costs
9	represent the accounting costs incurred for the fuel consumed by generation and are used
10	to calculate the fuel cost for each generating unit:
11	• The natural gas and oil price assumptions are based on the average daily spot
12	market prices for the 36-month period ending December 31, 2020;
13	• The nuclear fuel cost assumption is based on the average nuclear fuel cost
14	associated with Callaway Refuel 24;
15	The incremental coal cost assumptions are based on the average spot market prices.
16	for the 36-month period ending December 31, 2020; and
17	• The average (accounting) coal cost assumptions reflect coal and transportation
18	costs based upon coal and transportation prices that will be effective as of
19	September 30, 2021.
20	We have not included a cost assumption for landfill gas, as those costs represent
21	Renewable Energy Standard ("RES") compliance costs and are accounted for in the RES
22	cost re-base operations and maintenance expense portion of the revenue requirement.

1	Q.	What market price of energy assumptions were used in the PowerSimm
2	model run us	sed for calculating a normalized level of net energy costs?
3	A.	The model was run using average hourly energy prices for the 36-month
4	period ending	September 30, 2021. The development of these prices is discussed in Mr.
5	Meyer's testin	nony.
6	Q.	Are there costs and revenues other than those established by the
7	PowerSimm	production cost model which should be considered in the determination
8	of NBEC?	
9	A.	Yes. In addition to the real-time load and generation deviation adjustment
10	discussed be	low, there are other costs and revenues that should be considered in
11	determining	NBEC, which are addressed in Mr. Meyer's and Mr. Lansford's direct
12	testimonies.	
13	Q.	Please list the items that are modeled in PowerSimm that should be
14	trued-up usin	ng data as of the end of the anticipated true-up date in this rate review.
15	A.	The following PowerSimm input assumptions should be updated as of the
16	applicable tru	e-up date:
17	• Amere	en Missouri's retail kilowatt-hour ("kWh") sales and distribution line losses;
18	• Coal,	nuclear, natural gas, and oil costs;
19	• Unit a	vailability factors;
20	• Energ	y prices; and
21	• Know	n and measurable changes to unit operating characteristics, if any.

23

1 V. REAL-TIME LOAD AND GENERATION DEVIATION ADJUSTMENT 2 Please describe the purpose of the real-time load and generation Q. 3 deviation adjustment. 4 The real-time load and generation deviation adjustment is intended to A. 5 capture the difference in revenue (or expense) between the production cost model (which 6 is a day-ahead only model) and the operation of the MISO market, which has both a dayahead and real-time component. 7 8 Q. Please describe how the real-time load and generation deviation was 9 calculated. 10 A. The deviation was calculated in a manner consistent with what was used in 11 File No. ER-2019-0335, Ameren Missouri's last rate review, using data for the 36 months 12 ending December 31, 2020. Consistent with past practice, the combustion turbine 13 generators ("CTGs") and the Taum Sauk Energy Center were excluded, as were Meramec 14 Energy Center Units 1 & 2, for the period following their conversion to natural gas. I 15 recommend that this calculation be updated as part of the true-up process. 16 Q. What is the rationale for excluding the CTGs, Taum Sauk, and 17 Meramec Units 1 & 2? 18 A. The CTGs are excluded due to the high number of reliability starts required 19 by the MISO that occur separately from the economic dispatch process, and for which they 20 receive Revenue Sufficiency Guarantee Make-Whole Payments. 21 The Taum Sauk Energy Center is excluded from the calculation due to the manner

in which these generating units are offered and cleared in the MISO market. As a pumped

hydroelectric unit, the incremental cost basis for generating at the Taum Sauk facility is

- 1 the cost of purchasing energy from the MISO market at the applicable Taum Sauk CpNode³
- 2 to pump water back up into the reservoir. Neither MISO market operations nor settlements
- 3 consider this pumping energy to constitute load that could be cleared as part of Ameren
- 4 Missouri's load in the day-ahead market. Rather, MISO considers pumping energy to
- 5 constitute "negative generation" at the facility. Negative generation cannot be offered or
- 6 cleared in the day-ahead market. As a result, pumping energy is only cleared in the real-
- 7 time market. It is not possible to determine what pumping cost would have been had Taum
- 8 Sauk's output exactly matched its day-ahead award in any given hour.
- 9 Meramec Units 1 & 2 were excluded given their limited number of hours of
- operation following their conversion to natural gas.

11 VI. PERCENTAGE OF TRANSMISSION COST INCLUDED IN FAC

- Q. With respect to transmission charges recorded in Account 565 and
- 13 transmission revenues recorded in Account 456.1, have you determined what portion
- of these charges should be included in the determination of NBEC used to determine
- 15 the Base Factors ("BF") in Rider FAC?
- 16 A. Yes. I have determined that amount to be 1.87%. Those amounts excluded
- 17 from the calculation of NBEC and BF should be included in base rates.
- 18 Q. Is this the same percentage that should be utilized to determine the
- 19 portion of total transmission charges to be included in the FAC in any given period?
- A. Yes.

³ A CpNode or Commercial Pricing Node, is a component of the MISO commercial model used to schedule and settle market activity at a specified location.

1 Q. How was the 1.87% determined?

- A. 1.87% is the result obtained by dividing the total MWh of net purchased
- 3 power in the production cost model run for this case by the total load assumption used in
- 4 that model. This calculation is consistent with that utilized in the true up for Case No. ER-
- 5 2014-0258, and the true up in each rate review since.
- 6 Q. Does this complete your direct testimony?
- 7 A. Yes, it does.

BEFORE THE PUBLIC SERVICE COMMISSION OF THE STATE OF MISSOURI

In the Matter of Union Elected/b/a Ameren Missouri's Ta Its Revenues for Electric Se	riffs to Adjust)))	Case No. ER-2021-0240						
AFFIDAVIT OF MARK J. PETERS									
STATE OF MISSOURI)								
CITY OF ST. LOUIS) ss)								
Mark J. Peters, being first du	ly sworn on his	oath, states:							
My name is Mark J.	Peters, and on l	nis oath decl	are that he is of sound mind and lawful						
age; that he has prepared the	foregoing <i>Direct</i>	t Testimony;	and further, under the penalty of perjury,						
that the same is true and correct to the best of my knowledge and belief.									
			Mark J. Peters x J. Peters						

Sworn to me this 29th day of March, 2021.

Input / Output Curve #1

								7111	Jut / Ou	tput cui v	C # 1
						<u>Minimum</u>	_				
				Ramp	<u>Minimum</u>	<u>Down</u>					
	<u> Minimum -</u>	12 Month Avg	Must	Rate	Up Time	<u>Time</u>					
Unit Name	Net MW	Net MW	<u>Run</u>	MW/Hr	<u>Hours</u>	<u>Hours</u>	Primary Fuel Type	<u>EDF</u>	<u>A</u>	<u>B</u>	<u>C</u>
Callaway	1,190	1,217	Yes			6	Nuclear	1.000		9.961	
Labadie 1	200	607	No	480	72	72	PRB Coal	0.983	721.4	8.087	0.00100
Labadie 2	200	607	No	480	72	72	PRB Coal	0.983	743.9	8.346	0.00056
Labadie 3	240	607	No	480	72	72	PRB Coal	0.983	596.5	8.177	0.00122
Labadie 4	240	607	No	480	72	72	PRB Coal	0.983	552.0	8.460	0.00100
Rush 1	170	602	No	300	72	72	PRB Coal	1.039	523.0	8.513	0.00045
Rush 2	200	602	No	240	72	72	PRB Coal	1.039	813.4	7.549	0.00123
Sioux 1	200	415	No	240	72	72	PRB Coal	1.070	514.8	8.429	0
Sioux 2	200	415	No	240	72	72	PRB Coal	1.070	533.7	8.505	0
Meramec 1	20	122	No	90	24	24	Natural Gas	1.000	179.4	9.362	0.00700
Meramec 2	20	122	No	90	24	24	Natural Gas	1.000	179.4	9.362	0.00700
Meramec 3	115	263	No	120	120	24	PRB Coal	0.981	525.8	8.371	0.00543
Meramec 4	100	345	No	120	120	48	PRB Coal	0.981	298.0	9.085	0.00181
Audrain CT 1	62	82	No		2	2	Natural Gas	1.000	164.7	10.116	0.00000
Audrain CT 2	62	82	No		2	2	Natural Gas	1.000	164.7	10.116	0.00000
Audrain CT 3	62	82	No		2	2	Natural Gas	1.000	164.7	10.116	0.00000
Audrain CT 4	62	82	No		2	2	Natural Gas	1.000	164.7	10.116	0.00000
Audrain CT 5	62	82	No		2	2	Natural Gas	1.000	164.7	10.116	0.00000
Audrain CT 6	62	82	No		2	2	Natural Gas	1.000	164.7	10.116	0.00000
Audrain CT 7	62	82	No		2	2	Natural Gas	1.000	164.7	10.116	0.00000
Audrain CT 8	62	82	No		2	2	Natural Gas	1.000	164.7	10.116	0.00000
Fairgrounds CT	60	60	No		2	1	Oil	1.000	179.0	7.692	0.02409
Goose Creek CT 1	50	81	No		2	2	Natural Gas	1.000	259.1	8.603	_
Goose Creek CT 2	50	81	No		2	2	Natural Gas	1.000	259.1	8.603	_
Goose Creek CT 3	50	81	No		2	2	Natural Gas	1.000	259.1	8.603	_
Goose Creek CT 4	50	81	No		2	2	Natural Gas	1.000	259.1	8.603	_
Goose Creek CT 5	50	81	No		2	2	Natural Gas	1.000	259.1	8.603	_
Goose Creek CT 6	50	81	No		2	2	Natural Gas	1.000	259.1	8.603	_
Kinmundy CT 1	77	112	No		2	4	Natural Gas	1.000	269.6	7.099	0.01300
Kinmundy CT 2	77	112	No		2	4	Natural Gas	1.000	269.6	7.099	0.01300
Meramec CT 1											
Meramec CT 2											
Mexico CT	60	60	No		1	1	Oil	1.000	193.9	5.896	0.05235
Moberly CT	60	60	No		1	1	Oil	1.000	175.3	7.014	0.03814
Moreau CT	60	60	No		1	1	Oil	1.000	144.5	9.061	0.00758
Peno Creek CT 1	51	51	No		1	1	Natural Gas	1.000	117.8	8.268	_
Peno Creek CT 2	51	51	No		1	1	Natural Gas	1.000	117.8	8.268	_
Peno Creek CT 3	51	51	No		1	1	Natural Gas	1.000	117.8	8.268	_
Peno Creek CT 4	51	51	No		1	1	Natural Gas	1.000	117.8	8.268	_
Pinkneyville CT 1	42	42	No		1	1	Natural Gas	1.000	91.1	7.330	_
Pinkneyville CT 2	42	42	No		1	1	Natural Gas	1.000	91.1	7.330	_
, -											

Input / Output Curve #1

									,	-p	
						<u>Minimum</u>					
				Ramp	<u>Minimum</u>	Down					
	<u> Minimum -</u>	12 Month Avg	Must	Rate	<u>Up Time</u>	<u>Time</u>					
<u>Unit Name</u>	Net MW	Net MW	<u>Run</u>	MW/Hr	<u>Hours</u>	<u>Hours</u>	Primary Fuel Type	<u>EDF</u>	<u>A</u>	<u>B</u>	<u>C</u>
Pinkneyville CT 3	42	42	No		1	1	Natural Gas	1.000	91.1	7.330	-
Pinkneyville CT 4	42	42	No		1	1	Natural Gas	1.000	91.1	7.330	-
Pinkneyville CT 5	39	39	No		1	1	Natural Gas	1.000	174.0	6.584	-
Pinkneyville CT 6	39	39	No		1	1	Natural Gas	1.000	174.0	6.584	-
Pinkneyville CT 7	39	39	No		1	1	Natural Gas	1.000	174.0	6.584	-
Pinkneyville CT 8	39	39	No		1	1	Natural Gas	1.000	174.0	6.584	-
Raccoon Creek CT 1	42	82	No		2	2	Natural Gas	1.000	286.2	8.327	-
Raccoon Creek CT 2	42	82	No		2	2	Natural Gas	1.000	286.2	8.327	-
Raccoon Creek CT 3	54	82	No		2	2	Natural Gas	1.000	286.2	8.327	-
Raccoon Creek CT 4	42	82	No		2	2	Natural Gas	1.000	286.2	8.327	-
Venice CT 2	52	52	No		1	1	Natural Gas	1.000	120.8	7.835	_
Venice CT 3	130	178	No		2	4	Natural Gas	1.000	535.0	5.155	0.01288
Venice CT 4	130	178	No		2	4	Natural Gas	1.000	535.0	5.155	0.01288
Venice CT 5	77	112	No		2	4	Natural Gas	1.000	230.0	10.043	-
Verlies of 6		112	140		_	7	Natarar Gas	1.000	250.0	10.013	
Maryland Hts (Fred Weber)	10	8.0	Yes		1	1	Landfill Gas	1.000		13.653	
Ofallon	Modeled using										
Lambert	Modeled using										
BJC	Modeled using										
High Prairie	Modeled using	, ,									
Atchison	Modeled using	g fixed profile									
Osage	Modeled using	g fixed profile									
Keokuk	Modeled using										
Taum Sauk 1		200	No				Pumped Storage				
Taum Sauk 2		200	No				Pumped Storage				

Note: #1 Input Output equation: mmbtu = (A + B x Pnet + C x Pnet^2) x EDF, where Pnet = Net power level

NORMALIZED PLANNED OUTAGES

Actual	2015 <u>(hrs)</u>	2016 <u>(hrs)</u>	2017 <u>(hrs)</u>	2018 <u>(hrs)</u>	2019 <u>(hrs)</u>	2020 <u>(hrs)</u>	Total <u>(hrs)</u>	Total <u>(days)</u>	Total (annualized days)
Labadie 1		160		169	2,215		2,544		
Labadie 2		757		70	2,137		2,964		
Labadie 3	1,217	7	1,207	2,724			5,155		
Labadie 4		1,873					1,873		
Labadie 1-4							12,536	522	87
Meramec 1		284		218			502		
Meramec 2		377		213			590		
Meramec 1-2							1,092	46	8
Meramec 3			432	1,218	2,406		4,055	169	28
Meramec 4			1,673	2,503	312	390	4,878	203	34
Rush Island 1	875			2,026		664	3,565		
Rush Island 2		2,355		455		536	3,346		
Rush 1-2							6,910	288	48
Sioux 1	987	2,378				1,724	5,090		
Sioux 2	460		1,947			639	3,047		
Sioux 1-2							8,137	339	57

Callaway

Refuel 21 Refuel 22 Refuel 23 Refuel 24 Average	PO Days 38.52 60.04 47.59 79.32 56.37
RC PO Year	PO Days
12/18	37.58

^{*} Annualized Refuel Outage Length = Avg Days / Refuel Outage x 2/3

		Sun		2 0 2	0				2	0 2 0				
		Jan	Feb	Mar	APR		MAY	JUN	JUL	AUG	SEP	Oct	Nov	Dec
Mws		5 12 19 26	2 9 16 23	1 8 15 22	29 5 12	9 26 3	3 10 17 24	31 7 14 21	28 5 12 19 26	2 9 16 23	30 6 13 20 27	4 7 14 21 28	5 12 19 26	2 9 16 23 30
	CAL 1										Cal	laway 1		
	RUSH 1											Rus	sh 1	
	RUSH 2													
	LAB 1			Labadie 1										
	LAB 2													
	LAB 3													
	LAB 4													
	SX 1				Sioux	1								
	SX 2													
	MER 1											M1		
	MER 2						_							
	MER 3				Mer 3									
	MER 4						Mer 4							
		5 12 19 26	2 9 16 23	1 8 15 22	29 5 12	9 26 3	10 17 24	31 7 14 21	28 5 12 19 26			4 7 14 21 28	5 12 19 26	2 9 16 23 30
		Jan	Feb	Mar	APR		MAY	JUN	JUL	AUG	SEP	Oct	Nov	Dec

Cal 1 9/26/20 1:00 AM

37.6 Days 902 Hours

11/2/20 2:52 PM

Rush 1 10/27/20 1:00 AM 48.0 Days

12/14/20 12:44 AM

4/11/20 1:00 AM Mer 3

28.2 Days

5/9/20 4:53 AM

Mer 4 5/9/20 1:00 AM

33.9 Days 6/11/20 9:58 PM

3/5/20 1:00 AM Lab 1

87.1 Days 5/31/20 2:16 AM

4/11/20 1:00 AM Sx 1

56.5 Days 6/6/20 1:07 PM

10/27/20 1:00 AM 7.6 Days Mer 1

11/3/20 3:03 PM

Normalized Unplanned Outage Rates - Full Outages

							Weigted
	<u> 2015</u>	<u>2016</u>	<u>2017</u>	<u>2018</u>	<u>2019</u>	<u> 2020</u>	Average
Callaway 1	1.3%	0.0%	4.4%	0.0%	0.2%	6.1%	1.8%
Labadie 1	2.6%	10.5%	5.4%	3.9%	1.8%	2.5%	4.6%
Labadie 2	6.5%	6.6%	7.6%	6.4%	7.0%	2.7%	6.1%
Labadie 3	7.7%	13.7%	7.6%	8.5%	2.9%	5.8%	7.7%
Labadie 4	3.8%	3.4%	5.7%	5.9%	7.1%	11.1%	6.3%
Meramec 1	15.6%	25.2%	0.0%	35.5%	43.4%	2.0%	21.8%
Meramec 2	11.0%	26.8%	55.1%	61.6%	71.9%	33.1%	35.1%
Meramec 3	35.8%	23.8%	24.9%	43.5%	73.3%	56.9%	40.4%
Meramec 4	26.8%	34.7%	27.7%	17.6%	35.8%	33.6%	29.4%
Rush Island 1	3.4%	5.2%	5.9%	7.6%	8.5%	6.4%	6.1%
Rush Island 2	7.7%	5.8%	6.6%	1.3%	9.9%	4.5%	6.0%
Sioux 1	19.0%	19.8%	12.4%	17.5%	14.7%	17.0%	16.5%
Sioux 2	16.5%	9.5%	12.0%	6.8%	46.1%	8.0%	16.9%

Normalized Derating

						Weighted		
	<u>2015</u>	<u>2016</u>	<u> 2017</u>	<u> 2018</u>	<u> 2019</u>	<u> 2020</u>	<u>Average</u>	
Callaway 1	1.0%	1.5%	1.6%	0.4%	1.4%	0.5%	1.0%	
Labadie 1	2.7%	1.7%	4.2%	2.1%	2.8%	3.0%	2.8%	
Labadie 2	2.6%	1.6%	1.8%	1.6%	5.9%	1.7%	2.4%	
Labadie 3	3.7%	2.9%	2.1%	2.9%	2.0%	3.6%	2.9%	
Labadie 4	7.4%	3.9%	1.8%	1.3%	5.0%	3.0%	3.7%	
Meramec 1	1.9%	0.3%	0.0%	0.0%	0.0%	0.0%	0.9%	
Meramec 2	3.9%	1.5%	0.0%	13.8%	36.5%	25.0%	11.5%	
Meramec 3	6.2%	5.3%	0.5%	0.5%	26.4%	81.9%	13.1%	
Meramec 4	18.3%	0.8%	8.5%	9.4%	27.0%	81.2%	15.0%	
Rush Island 1	2.9%	4.9%	4.0%	2.8%	2.8%	1.9%	3.3%	
Rush Island 2	6.5%	14.2%	1.8%	1.7%	2.5%	0.8%	4.2%	
Sioux 1	1.4%	0.5%	1.2%	0.5%	1.3%	4.3%	1.3%	
Sioux 2	0.6%	3.0%	4.8%	0.2%	2.1%	2.7%	2.1%	