Exhibit No.: Issues: Weather Normalization Witness: Shawn E. Lange Sponsoring Party: MO PSC Staff Type of Exhibit: Direct Testimony Case No.: ER-2006-0314 Date Testimony Prepared: August 8, 2006

MISSOURI PUBLIC SERVICE COMMISSION

UTILITY OPERATIONS DIVISION

DIRECT TESTIMONY

OF

SHAWN E. LANGE

KANSAS CITY POWER & LIGHT COMPANY

CASE NO. ER-2006-0314

Jefferson City, Missouri August 2006

BEFORE THE PUBLIC SERVICE COMMISSION

OF THE STATE OF MISSOURI

In the Matter of the Application of Kansas) City Power & Light Company for) Approval to Make Certain Changes in its) Charges for Electric Service to Begin the) Implementation of Its Regulatory Plan)

Case No. ER-2006-0314

AFFIDAVIT OF SHAWN E. LANGE

STATE OF MISSOURI)) ss COUNTY OF COLE)

Shawn E. Lange, of lawful age, on his oath states: that he has participated in the preparation of the following Direct Testimony in question and answer form, consisting of <u>q</u> pages of Direct Testimony to be presented in the above case, that the answers in the following Direct Testimony were given by him; that he has knowledge of the matters set forth in such answers; and that such matters are true to the best of his knowledge and belief.

Shawn É. Lange

Subscribed and sworn to before me this $\frac{7\pi}{2}$ day of August, 2006. mare NOTARY SEAL Notary Public 2009 My commission expires (hine 1,

1	TABLE OF CONTENTS
2	DIRECT TESTIMONY
3	OF
4	SHAWN E. LANGE
5	KANSAS CITY POWER & LIGHT COMPANY
6	CASE NO. ER-2006-0314
7	
8	EXECUTIVE SUMMARY 2
9	NORMALIZATION OF USAGE 2
10	HOURLY NET SYSTEM LOADS 4
11	NORMAL WEATHER VARIABLES

1	DIRECT TESTIMONY
2	OF
3	SHAWN E. LANGE
4	KANSAS CITY POWER & LIGHT COMPANY
5	CASE NO. ER-2006-0314
6	Q. Please state your name and business address.
7	A. My name is Shawn E. Lange and my business address is Missouri Public
8	Service Commission, P.O. Box 360, Jefferson City, MO 65102.
9	Q. What is your present position with the Missouri Public Service
10	Commission (Commission)?
11	A. I am a Utility Engineering Specialist II in the Engineering Analysis
12	Section, Energy Department, Utility Operations Division.
13	Q. Would you please review your educational background and work
14	experience?
15	A. In December 2002, I received a Bachelor of Science Degree in Mechanical
16	Engineering from the University of Missouri, at Rolla. Since then, I have pursued dual
17	Masters Degrees in Mechanical Engineering at the University of Missouri, at Columbia
18	and Business Administration at William Woods University. I joined the Commission
19	Staff (Staff) in January 2005. I am a registered Engineer-in-Training in the State of
20	Missouri.
21	Q. Have you previously filed testimony before this Commission?
22	A. Yes, I have. A list of the cases in which I have filed testimony can be
23	found in Schedule 1.
	1

1 **EXECUTIVE SUMMARY** 2 Q. Please summarize your direct testimony. 3 In my testimony I recommend that the Commission adopt the Kansas City A. 4 Power & Light Company (KCP&L or Company) weather adjustments to class usage for 5 the weather sensitive rate classes of KCP&L. These adjustments are presented by rate 6 class in Schedule 2. Staff witness Curt Wells will discuss the corresponding adjustments 7 to class revenues based on these adjustments to class usage. These adjustments to class 8 usage were also included in my calculation of hourly generation requirements. 9 Schedule 1 contains a list of cases in which I filed testimony, Schedule 2 contains 10 the adjustments to sales by rate class for KCP&L, Schedule 3 contains adjustments to 11 attain the annual sum of the net-system load, Schedule 4 contains a monthly summary for 12 the normalized net system load for KCP&L, and Schedule 5 contains a list of cases in 13 which Staff's weather normalization method was used in the normalization of net system 14 loads. 15 I also recommend that the Commission adopt the hourly generation requirements 16 that I calculated. Staff witness Leon Bender used these hourly loads in his fuel model to 17 calculate normal fuel and purchase power expenses for the test year. A monthly 18 summary of the normalized net system load for KCP&L is shown on Schedule 4. 19 My testimony ends with a discussion of how I calculated the normal weather 20 variables that I used in the weather normalization of net system loads and why this

22

21

23

NORMALIZATION OF USAGE

Q. Why is it necessary to weather normalize electricity usage?

methodology is appropriate for weather normalization.

1 A. Electricity use is very sensitive to weather conditions. Because of the high saturation of air conditioning and the presence of significant electric space heating in 2 3 KCP&L's Missouri service territories, the magnitude and shape of KCP&L's load is 4 directly related to daily temperatures. The weather during the test year differed from 5 normal conditions. The months of January and February 2005 were warmer than normal. 6 The warmer than normal temperatures resulted in decreased energy consumption due to 7 lower than normal heating usage. The months of June through September 2005 were 8 warmer than normal. These warmer than normal temperatures resulted in increased 9 energy consumption due to higher than normal cooling usage.

Q. Did you independently perform a weather impact analysis on hourly class
load data to determine the appropriate weather response functions?

12 A. No, I did not perform a complete independent weather impact analysis on 13 hourly class load data. However, I did review both KCP&L's weather normalization process and its resulting weather normalization. The methodology used by KCP&L 14 15 contained the most important characteristics of Staff's weather normalization process; 16 e.g., the use of daily load research data to determine non-linear class responses to 17 weather, the incorporation of different base usage parameters for different times of the 18 year, normal weather variables calculated using Staff's ranking method described below, 19 and "clean" billing usage.

As a check of the resulting weather adjustments, I compared them to the independent net system weather normalization that I conducted, which is described later in this testimony. I compared the magnitude and direction of the adjustments of the class usage to the magnitude and direction of the net system input.

1	From	this review, I determined that KCP&L's weather adjustment to class sales
2	was reasonat	ble for the Staff to use in both normalization of revenues and for the
3	calculation of	hourly generation requirements.
4	Q.	Did Staff use KCP&L's weather adjustment to sales?
5	A.	Yes, all but the Large Power (LP) weather normalization was adopted and
6	used in creati	ng the hourly generation requirements.
7	Q.	Why did you not include the weather adjustments to the LP class?
8	А.	I performed a study on KCP&L's hourly class loads to determine which
9	classes were	weather sensitive, and from this study I determined that the LP class was not
10	significantly	weather sensitive.
11	Q.	How did you determine which rate classes were weather sensitive?
12	А.	KCP&L supplied hourly class load data for the time period dating October
13	1, 2004 throu	gh December 31, 2005. The hourly loads were plotted against mean daily
14	temperature t	o ascertain the weather sensitivity of each class.
15	Q.	Which classes were deemed to be weather sensitive?
16	А.	The rate classes that were deemed to be weather sensitive were the
17	Residential (I	RES), Small General Service (SGS), Medium General Service (MGS), and
18	Large Genera	l Service (LGS) classes.
19	Q.	Were weather adjustments made to non-Missouri usage?
20	А.	Yes, non-Missouri usage was weather normalized using the same method
21	used for Miss	ouri usage.
22		HOURLY NET SYSTEM LOADS
23	Q.	What is hourly net system load?
		4

1	A. Hourly net system load is the hourly electric supply necessary to meet the
2	energy demands of the company's customers and the company's own internal needs. It is
3	net of (i.e., does not include) station use, which is the electricity requirement of the
4	company's generating plants. The hourly loads used in my analysis of the test year
5	January 2005 through December 2005 were provided to Staff in response to Data Request
6	number 13 and the supplements to this request. I also used hourly load data submitted
7	monthly by KCP&L in compliance with the Commission's rule 4 CSR 240-3.190 to cross
8	check and correct errors that were found in the data request response.
9	Q. Did Staff perform an independent evaluation of the weather normalized
10	net system load that KCP&L calculated?
11	A. Yes.
12	Q. What method did Staff use to perform this evaluation?
13	A. The Staff used the weather normalization procedure that was developed by
14	the Economic Analysis Department of the Commission in 1988. The process is described
15	in detail in the document "Weather Normalization of Electric Loads, Part A: Hourly Net
16	System Loads" (November 28, 1990), written by Dr. Michael Proctor, Manager of the
17	Economic Analysis Department.
18	Q. Briefly summarize the process you used.
19	A. In order to reflect normal weather, daily peak and average loads are
20	adjusted independently, but using the same methodology. Independent adjustments are
21	necessary because average loads respond differently to weather than peak loads.
22	Daily average load is calculated as the daily energy divided by twenty-four hours
23	and the daily peak is the maximum hourly load for the day. Separate regression models

1 estimate both a base component, which is allowed to fluctuate across time, and a weather sensitive component, which measures the response to daily fluctuations in weather for 2 3 daily average loads and peak loads. The regression parameters, along with the difference 4 between normal and actual cooling and heating measures, are used to calculate weather 5 adjustments to both the average and peak loads for each day. The adjustments for each 6 day are added respectively to the actual average and peak loads for each day. The 7 starting point for allocating the weather normalized daily peak and average loads to the 8 hours is the actual hourly loads. A unitized load curve is calculated for each day as a 9 function of the actual peak and average loads for that day. The corresponding weather 10 normalized daily peak and average loads, along with the unitized load curves, are used to 11 calculate weather normalized hourly loads.

12 This process includes many checks and balances, which are included in the 13 spreadsheets that are used. In addition, the analyst is required to examine the data at 14 several points in the process.

As a check of my analysis, I also compared the results of my analysis to
KCP&L's updated net system weather normalization. The sum of the annual weather
normalization adjustments in my independent study were within 0.18 percent of
KCP&L's updated net system weatherization. This is within the margin of error for any
weather normalization methodology.

20

Q. Has this process been used in other general rate cases?

A. Yes, this process has been used in several general rate cases that have
come before this Commission. Please refer to Schedule 5 for a list of these cases.

23

Q. What data was used in this process?

1	A. Actual hourly net system loads for the time period from July 1, 2004
2	through December 31, 2005 were provided by KCP&L. The actual daily weather
3	variables from the NOAA Kansas City International Airport (KCI) weather station were
4	used. I calculated the normal weather variables using a method developed by the Staff in
5	1991. The process is described in the document <u>"Weather Normalization of Electric</u>
6	Loads, Demonstration: Calculation of Weather Normals," October 25, 1991 and
7	summarized in the next section of my testimony.
8	Q. Were modifications made to the test year weather normalized hourly net
9	system loads to account for Staff adjustments to test year usage?
10	A. Yes. I adjusted the weather-normalized hourly net system loads to be
11	consistent with the Staff's weather-normalized, annualized test year usage.
12	Q. How were the hourly loads adjusted to account for the annual adjustments
13	to usage?
14	A. I applied the appropriate adopted class loss factor, to adjust Staff's
15	annualization adjustment and growth adjustment provided to me by Staff witness Kim
16	Bolin. The Company usage was also adjusted using the adopted annual system loss
17	factor. For more information on the system loss factor, see Staff witness Erin Maloney's
18	testimony. The loss adjusted annualization adjustment, growth adjustment, and Company
19	use was then added to the adopted weather normalized class loads, which included losses.
20	This produces an annual sum of the hourly net system loads that equals the adjusted test
21	year usage, plus losses, and is consistent with normalized revenues. A table showing
22	each of these adjustments to attain the annual requirement of the net-system hours is
23	shown in Schedule 3. A monthly summary of the adjusted loads is shown on Schedule 4.

1

Q. Which Staff witnesses used your hourly-normalized net system loads?

A. Staff witness Leon Bender used the test year hourly normalized system loads in developing test year fuel and purchased power expense. Staff witness Erin Maloney used the annual requirement of the net system hours in developing her jurisdictional energy allocator.

6

7

NORMAL WEATHER VARIABLES

Q. What did you use to represent normal weather in these calculations?

A. The normal weather used in both the normalization of class usage and
hourly net system loads was calculated using Staff's ranking method and daily weather
values for the time period January 1, 1971 through December 31, 2000. Staff's ranking
method estimates daily normal values, which range from the temperature value that is
"normally" the hottest to the temperature value that is "normally" the coldest.

Using ranked normals is important in estimating fuel and purchased power expense because these expenses are greatly impacted by daily weather extremes. Since every year has days with extreme temperatures, the daily normals should also contain extremes. The ranking method that was used estimates normal extremes.

17

Q. How are the daily normals derived?

A. The daily normal variables are calculated by ranking the temperatures in each year of the history. These temperatures are then averaged by rank, not by the day of the year. This results in the normal extreme being the average of the most extreme temperatures in each year of the history. The second extreme normal variable is based on the average of the second most extreme day of each year and so forth. The normal variables calculated from this ranking are then assigned to the days in the test year based

- on the rankings of the actual temperatures in the year and the month of the year that rank
 typically occurs in. This assignment results in as small a weather normalization
 adjustment to the hourly loads on each day as is possible for a given annual adjustment.
 Q. Does this conclude your direct testimony?
- 5

A. Yes, it does.

Testimony of Shawn E. Lange

Direct Testimony

ER-2005-0436	(Aquila Inc.)
ER-2006-0315	(Empire District Electric Company)

Rebuttal Testimony

ER-2005-0436	(Aquila Inc.)
ER-2006-0315	(Empire District Electric Company)

Surrebuttal Testimony

ER-2005-0436

(Aquila Inc.)

KANSAS CITY POWER & LIGHT COMPANY Case No. ER-2006-0314 Actual and Weather Normalized Sales (kWh) * Jan-Dec 2005 RES-Residential (Missouri Jurisdiction)

Billing Month	Actual	Weather Norm	Weather Adj	% Weather Adj
Jan-05	238,143,185	243,725,635	5,582,450	2.34%
Feb-05	174,495,180	187,520,147	13,024,966	7.46%
Mar-05	176,255,986	176,159,592	(96,394)	-0.05%
Apr-05	143,652,898	143,686,272	33,374	0.02%
May-05	177,895,225	173,491,339	(4,403,886)	-2.48%
Jun-05	277,578,143	258,745,412	(18,832,731)	-6.78%
Jul-05	345,859,906	343,153,302	(2,706,604)	-0.78%
Aug-05	311,905,100	293,761,075	(18,144,025)	-5.82%
Sep-05	246,669,809	207,367,748	(39,302,061)	-15.93%
Oct-05	177,217,602	164,054,053	(13,163,549)	-7.43%
Nov-05	181,304,360	190,304,523	9,000,164	4.96%
Dec-05	249,943,510	247,000,619	(2,942,891)	-1.18%
Total	2,700,920,904	2,628,969,717	(71,951,186)	-2.66%

* Includes losses

KANSAS CITY POWER & LIGHT COMPANY Case No. ER-2006-0314 Actual and Weather Normalized Sales (kWh) * Jan-Dec 2005 Small General Service--SGS (Missouri Jurisdiction)

Billing Month	Actual	Weather Norm	Weather Adj	% Weather Adj
Jan-05	44,260,875	44,715,700	454,824	1.03%
Feb-05	34,827,830	35,908,613	1,080,783	3.10%
Mar-05	36,590,004	36,741,811	151,808	0.41%
Apr-05	32,202,573	31,945,939	(256,634)	-0.80%
May-05	37,150,460	36,667,980	(482,480)	-1.30%
Jun-05	44,484,665	42,956,270	(1,528,395)	-3.44%
Jul-05	51,199,643	50,988,224	(211,419)	-0.41%
Aug-05	49,668,738	48,248,408	(1,420,330)	-2.86%
Sep-05	44,232,935	40,831,301	(3,401,634)	-7.69%
Oct-05	36,218,323	34,976,926	(1,241,397)	-3.43%
Nov-05	36,236,695	36,661,648	424,954	1.17%
Dec-05	41,946,517	41,704,950	(241,568)	-0.58%
Total	489,019,258	482,347,770	(6,671,488)	-1.36%

* Includes losses

KANSAS CITY POWER & LIGHT COMPANY Case No. ER-2006-0314 Actual and Weather Normalized Sales (kWh) * Jan-Dec 2005 Medium General Service--MGS (Missouri Jurisdiction)

Billing Month	Actual	Weather Norm	Weather Adj	% Weather Adj
Jan-05	83,892,669	84,211,589	318,920	0.38%
Feb-05	70,913,122	71,812,499	899,376	1.27%
Mar-05	79,049,385	79,402,116	352,730	0.45%
Apr-05	76,594,629	75,851,532	(743,097)	-0.97%
May-05	85,727,123	84,860,978	(866,145)	-1.01%
Jun-05	99,520,052	96,865,909	(2,654,143)	-2.67%
Jul-05	111,535,906	111,185,336	(350,570)	-0.31%
Aug-05	109,233,068	106,867,402	(2,365,666)	-2.17%
Sep-05	99,088,540	93,282,915	(5,805,626)	-5.86%
Oct-05	84,049,085	81,916,901	(2,132,183)	-2.54%
Nov-05	76,417,946	76,262,738	(155,208)	-0.20%
Dec-05	83,159,444	82,989,106	(170,339)	-0.20%
Total	1,059,180,969	1,045,509,019	(13,671,950)	-1.29%

* Includes losses

KANSAS CITY POWER & LIGHT COMPANY Case No. ER-2006-0314 Actual and Weather Normalized Sales (kWh) * Jan-Dec 2005 Large General Service--LGS (Missouri Jurisdiction)

Billing				
Month	Actual	Weather Norm	Weather Adj	% Weather Adj
Jan-05	198,457,168	200,605,738	2,148,571	1.08%
Feb-05	166,181,524	171,935,661	5,754,138	3.46%
Mar-05	176,125,515	177,990,891	1,865,376	1.06%
Apr-05	166,623,436	165,581,816	(1,041,621)	-0.63%
May-05	182,514,661	181,273,226	(1,241,435)	-0.68%
Jun-05	201,562,669	197,316,713	(4,245,956)	-2.11%
Jul-05	218,239,614	217,698,108	(541,506)	-0.25%
Aug-05	222,262,338	218,622,894	(3,639,444)	-1.64%
Sep-05	201,682,775	191,989,683	(9,693,092)	-4.81%
Oct-05	182,247,327	178,895,217	(3,352,110)	-1.84%
Nov-05	177,040,396	178,071,299	1,030,903	0.58%
Dec-05	201,052,053	199,987,505	(1,064,549)	-0.53%
Total	2,293,989,475	2,279,968,750	(14,020,725)	-0.61%

* Includes losses

KANSAS CITY POWER & LIGHT COMPANY COMPONENTS OF ANNUAL NET SYSTEM INPUT ER-2006-0314

	Energy (kwh)	Large Customer	Normalization for	Additional kWh	Total KCP&L
	w/losses	Annualizations	Weather	from Cust Growth	Normalized kWh
Mo Retail	9,048,186,068	35,091,217	(106,330,915)	28,648,206	9,005,594,576
Non-Mo Retail	6,741,261,990	4,187,176	(108,604,842)	105,733,693	6,742,578,016
Wholesale	143,054,274	-	(1,534,262)	-	141,520,012
Company Use	24,871,625	-	-	-	24,871,625
NSI	15,957,373,958	39,278,393	(216,470,019)	134,381,898	15,914,564,230

KANSAS CITY POWER & LIGHT COMPANY ER-2006-0314 Net System Load Normalized for 2005*

	Monthly Usage (MWh)			Monthly Peaks (MW)				Load Factor		
Month	Actual	Normal	Adj	% Adj	Actual	Normal	Adj	% Adj	Actual	Normal
Jan-05	1,338,971	1,379,281	40,310	3.01%	2,313	2,429	116	5.01%	0.78	0.76
Feb-05	1,103,395	1,169,739	66,344	6.01%	2,186	2,357	171	7.81%	0.75	0.74
Mar-05	1,161,632	1,186,278	24,646	2.12%	2,003	2,110	107	5.33%	0.78	0.76
Apr-05	1,071,849	1,081,204	9,355	0.87%	2,042	2,003	(39)	-1.89%	0.73	0.75
May-05	1,211,826	1,209,008	(2,818)	-0.23%	2,615	2,697	82	3.15%	0.62	0.60
Jun-05	1,510,784	1,484,150	(26,634)	-1.76%	3,338	3,332	(6)	-0.17%	0.63	0.62
Jul-05	1,707,780	1,725,145	17,365	1.02%	3,512	3,559	47	1.34%	0.65	0.65
Aug-05	1,652,949	1,631,836	(21,113)	-1.28%	3,426	3,440	14	0.41%	0.65	0.64
Sep-05	1,424,219	1,326,252	(97,967)	-6.88%	3,007	2,977	(30)	-0.99%	0.66	0.62
Oct-05	1,184,197	1,157,812	(26,385)	-2.23%	2,754	2,175	(579)	-21.03%	0.58	0.72
Nov-05	1,148,311	1,182,293	33,982	2.96%	2,209	2,276	67	3.04%	0.72	0.72
Dec-05	1,369,276	1,381,566	12,290	0.90%	2,563	2,573	10	0.38%	0.72	0.72
Annual	15,885,189	15,914,564	29,375	0.18%	3,512	3,559	47	1.34%	0.52	0.51
Summer	6,295,732	6,167,383	(128,349)	-2.04%	3,512	3,559	47	1.34%	0.61	0.59
Other	9,589,457	9,747,181	157,724	1.64%	2,754	2,697	(57)	-2.05%	0.60	0.62

* Normalized for weather, growth, large customers, and including losses

Cases in Which Staff's Weather Normalization Method Was Used in the Normalization of Net System Loads

EO-87-175	ER-94-163	EM-2000-292
EO-90-101	ER-94-174	ER-2001-299
EO-90-138	ER-95-279	ER-2001-672
ER-93-37	ER-97-81	EC-2002-1
ER-93-41	EM-97-575	ER-2002-424
EO-93-351	ER-2004-0034	ER-2004-0570
ER-2005-0436	ER-2006-0315	