REPORT 2017012415

GEOTECHNICAL INVESTIGATION FOR LAMBERT COMMUNITY SOLAR PROJECT ON MISSOURI BOTTOM ROAD BRIDGETON, MISSOURI

AMEREN SERVICES St. Louis, Missouri

Prepared by

June 28, 2017

The Professional whose signature and personal seal appear hereon assumes responsibility only for what appears in the attached report and disclaims (pursuant to Section 327.411 RSMo) any responsibility for all other plans, estimates, specifications, reports, or other documents or instruments not sealed by the undersigned Professional relating to or intended to be used for any part or parts of the project to which this report refers.

1055 corporate square drive st. louis, missouri 63132 phone: 314.993.4132 fax: 314.993.4177 www.reitzjens.com

June 28, 2017

Ameren Services 1901 Chouteau Ave., Mail Code 645 St. Louis, Missouri 63103

Attention: Mr. Chad Raley, PMP, P.E.

RE: Report of Geotechnical Investigation for Lambert Community Solar Project, Bridgeton, Missouri

Introduction

This report summarizes our findings and recommendations from the geotechnical investigation which we completed for the planned Lambert Community Solar Project at Lambert St. Louis International Airport, on Missouri Bottom Road in Bridgeton, Missouri. This investigation was done in general accordance with P.O. 791264, dated May 19, 2017, to our Contract Agreement 491572, and our revised proposal dated May 15, 2017. The purpose of this geotechnical investigation was to provide foundation design parameters for the solar arrays. Because the scope of services and level of effort are specific to the needs of this project, the contents of this report may not address items critical to other projects. Therefore, this report is not to be used for other projects or by third parties without Reitz & Jens' written authorization.

Project Description

The 9.5-acre site is located about ¹/₄-mile west of the intersection of Missouri Bottom Road and Lindbergh Boulevard. The site is on the north side of Missouri Bottom Road, as shown in Figure 1. Ameren proposes to install solar panels on the slope and the terrace (shown by the magenta outline in Figure 1). We anticipate that the foundations will consist of partially-embedded, steel piles that will be installed by a hydraulic or impact hammer.

Our findings and recommendations are based in part upon our understanding of this project as described above. Changes or discrepancies in loads, geometry, location, or the scope of the project from the above description should be considered to invalidate our findings and recommendations until we have reviewed the differences and, if necessary, modified our recommendations accordingly.

Site Description

The site has been cleared of trees and apparently re-graded to form a terrace that runs east to west. There is evidence of previous roads across the site, and leading up to a former structure or road near the center of the site just south of the railroad tracks, which is at about el. 700.¹

AASHTO R18 AASHTO National Lab Accreditation

¹ Elevations stated in this report are based upon a Google EarthTM photo with elevation contours furnished by Ameren Services, and are approximate.

Geotechnical Engineering • Water Resources • Construction Engineering & Quality Control • Environmental Restoration & Permitting

Page 2

The northern portion of the site slopes down to the south to a terrace which is at about el. 584 to el. 580. This area was excavated in 2003 to 2004 for the relocation of Missouri Bottom Road, as part of the Airport Expansion and the relocation of U.S. 67. There is an excavated roadway slope from the terrace down to Missouri Bottom Road. The road is at about el. 500 at the west end of the site, rising to el. 565 at the east end. The crest of the southern roadway slope is shown in yellow in Figure 1. The planned area of the solar array is at about el. 570 at the west end, rising to the level of the terrace, and extending down the southern roadway slope. Concrete of an abandoned pavement or foundation is exposed in the vicinity of Boring B-3. Limestone outcrops are visible at the bottom of the slope near Missouri Bottom Road.

There is a structure that houses an emergency generator for Lambert St. Louis International Airport located to the east of the planned project area (see Figure 1).

Reitz & Jens performed a preliminary geotechnical investigation for the expansion of the Lambert St. Louis International Airport in 1998. Three borings made for that investigation were located in the project area. The approximate locations of these borings are shown in Figure 1. The Boring Logs for these borings are included in Appendix A.

Field Investigation

The subsurface investigation consisted of three borings, as shown in Figure 1. The number and locations of borings were selected by Reitz & Jens. The borings were located in the field using hand-held GPS. The elevations of the ground surface at the borings were estimated from the topographic contours in the Google EarthTM aerial photo furnished by Ameren Services. The borings were made on May 31, 2017, by Midwest Drilling, Inc. under a subcontract with Reitz & Jens. The borings were advanced by a 550X drill rig mounted on an all-terrain vehicle and using 4.25-inch O.D. solid stem continuous-flight augers (CFA). The ground water levels were measured in each boring at the end of the day before the borings were backfilled with cuttings. No 24-hours delayed water level readings were made.

Samples of subsurface soils were obtained at about 2.5-foot intervals from 0 to 10 feet, and at 5-foot intervals from 10 to 35 feet. The borings were then continued without sampling until auger refusal occurred or a maximum depth of 60 feet was reached. Samples were taken using either: 1) a hydraulically pushed, 3-inch O.D., thin-wall Shelby tube sampler in general accordance with ASTM D1587; or 2) a 2-inch O.D., split-spoon sampler driven by an automatic Standard Penetration Test (SPT) hammer in conjunction with a SPT, in general accordance with ASTM D1586. The Shelby tube samples were trimmed and then sealed with a tight-fitting plastic cap and duct tape. Loose materials were removed from the upper end of each tube and the length of the recovered sample was measured. The top end of the tube was then sealed with a tight-fitting plastic cap and duct tape. The disturbed split-spoon samples obtained were visually classified in the field and sealed in glass jars to prevent loss of moisture, for later testing in our laboratory. The Shelby tubes were extruded in our lab immediately prior to testing.

Published tests have shown that the blow counts from a SPT using an automatic hammer are about 75% of the blow counts obtained using a manual drop hammer and cathead. Manual hammers have been used to develop correlations between SPT's and soil properties. Therefore, N-values from an automatic hammer typically should

Page 3

Ameren Services Report of Geotechnical Investigation for Lambert Community Solar Project, Bridgeton, Missouri

be increased by about one-third in order to use such correlations. The blow counts and N-values on the individual boring logs have <u>not</u> been corrected for the energy of the automatic SPT hammer (termed " N_{60} ").

Three pocket penetrometer readings were made on each split-spoon sample of cohesive soil, in accordance with Ameren Services' standard request. The pocket penetrometer readings appear on the boring logs. However, split-spoon samples are highly disturbed, so the pocket penetrometer readings have questionable value except perhaps for general soil classification.

The field investigation was completed under the direction of a Reitz & Jens' Registered Geologist or a soils technician, who determined the sampling intervals, termination depths, and logged the borings. The borings were logged in the field based upon cuttings, drilling characteristics and recovered samples. The logs were subsequently modified as appropriate based on laboratory test results. The key and notes for the boring logs are shown in Figure 2-0. The boring logs are included as Figures 2-1, 2-2 and 2-3.

Laboratory Testing

All recovered samples were visually described in general accordance with the ASTM procedures. Index tests performed included water contents and dry density of the Shelby tube samples (ASTM D2216) and an Atterberg liquid and plastic limits test (ASTM D4318). The results of these index tests appear on the boring logs. A single-point Unconsolidated-Undrained (UU) triaxial compression test (ASTM D2850) was performed on the Shelby tube sample from Boring B-3 to determine the undrained shear strength (s_u). The UU-test was run with a confining pressure equal to the existing overburden pressure at the depth of the sample. The results of this test are shown in Figure 3-3.

Consolidated-Undrained triaxial compression tests with pore pressure measurements (ASTM D4767) were performed on the Shelby tube samples from Borings B-1 and B-2 to measure the effective shear strength properties of these soils, which are primarily for slope stability analyses, if requested by Ameren Services. The results of these tests are shown in Figures 3-1 and 3-2.

Summary of Subsurface Conditions

The near-surface soils in all three borings consist of low plastic, silty clays and clayey silts. Boring B-1 revealed about 3 feet of medium-dense clayey silt, followed by firm silty clay to 13.5 feet. Uncorrected N-values in the upper 13.5 feet ranged from 6 to 10 blows per foot (bpf). There is very loose, slightly clayey silt from 13.5 feet to 23.5 feet, with uncorrected N-values of 3 and 5 bpf. From 23.5 feet to 53.5 feet, B-1 revealed stiff silty clay, with uncorrected N-values of 8 to 13 bpf. Boring B-1 encountered very weathered, hard shale from 53.5 feet to 59 feet, where a thin layer of highly weathered limestone was encountered. Auger refusal in unweathered limestone was reached at 59.5 feet (about el. 512). Boring B-1 may be located in an old creek channel, which would explain the stratum of loose silt and the greater depth to rock compared to the other two borings.

Boring B-2 revealed about 8.5 feet of clayey silt, with uncorrected N-values of 6 and 7 bpf, over firm silty clay to 14 feet. There stiff, lows plastic clay from 14 feet to 26.5 feet, with uncorrected N-values of 7 and 16 bpf. From 26.5 feet to 37.5 feet is stiff to very stiff, weathered clayey shale, with uncorrected N-values of 17 and 9 bpf.

Page 4

Boring B-2 encountered weathered limestone at 37.5 feet, and auger refusal on unweathered limestone at 39 feet (about el. 545).

Boring B-3 revealed about 6 feet of stiff silty clay, the upper 3 feet of which may be compacted fill. From 6 feet to 10 feet is medium-dense clayey silt. The UU-test on the sample at 8 to 10 feet measured an undrained shear strength (s_u) of 1330 psf. From 10 feet to 28.5 feet is loose clayey silt, with uncorrected N-values of 3 to 5 bpf. From 28.5 feet to 47 feet is firm, very silty clay. Boring B-3 encountered weathered clayey shale from 47 feet to the bottom of the boring at 60 feet.

Ground water was encountered at 16 feet deep in Boring B-1. The ground water level rose to 11 feet deep (about el. 560) after 4 hours. The ground water level in B-2 rose to 26 feet deep (about el. 558) after 2 hours. Ground water was first observed at 27.5 feet in B-3 (about el. 562), and the boring was immediately backfilled. The depth of ground water will vary seasonally and with precipitation.

IBC Seismic Site Classification

The Seismic Site Class is based on the 2009 International Building Code (IBC). We analyzed the site profile using the average properties in the top 100 feet in accordance with Section 1613.5.5; using the average N60 for cohesionless layers (average N_{ch}) and the average s_u for cohesive layers. We used the maximum s_u of 5000 psf for the shale and limestone. The Site Classification based on IBC 2009 is "D" based upon the average s_u . However, the non-plastic clayey silt from 10 to 28.5 feet in Boring B-3 results in an average N_{ch} less than 15 bpf; so, Site Classification is "E", which governs. There is essentially no risk of liquefaction. We did not analyze the risk of slope instability for a seismic event.

Design of Driven Steel Pipe Piles

The abandoned pavements and observed abandoned concrete slabs or foundations on the site would be obstructions for the installation of driven piles. The surface of the site probably will need to be stripped in places to uncover and remove obstructions.

The partially-embedded steel piles supporting the solar panels will be subject to lateral loads as well as vertical loads, in particular uplift. We recommend the following parameters for input to the LPILE 2016 program for lateral load analyses for piles up to 35 feet deep.

	R_1	De	epth	Effective		Uniaxial			р-у
	D-1	(f	eet)	Unit	Undrained	Compressive	Strain	Friction	Modulus
				Weight	Cohesion	Strength	Factor	Angle	k
Stratum	LPILE Soil Type	Тор	Bottom	(pcf)	(psf)	(psi)	E50	(deg)	(pci)
Freeze-Thaw	Soft Clay	0	2.5	115	1	-	0.023	-	-
Clayey SILT	Silt (c-phi)	2.5	4	115	100	-	0.023	30	100
Silty CLAY	Soft Clay	4	11	120	1,000	-	0.010	-	-
Silty CLAY	Soft Clay	11	14	58	1,000	-	0.010	-	-
Clayey SILT	Silt (c-phi)	14	24	58	100	_	0.023	30	100
Silty CLAY	Soft Clay	24	35	60	1,700	-	0.008	-	-

Ameren Services	
Report of Geotechnical Investigation for	
Lambert Community Solar Project, Bridgeton, Misson	uri

	B-2	De	epth	Effective		Uniaxial	<i>a</i> .		р-у
		(1	eet)	Unit	Undrained	Compressive	Strain	Friction	Modulus
				Weight	Cohesion	Strength	Factor	Angle	k
Stratum	LPILE Soil Type	Тор	Bottom	(pcf)	(psf)	(psi)	E50	(deg)	(pci)
Freeze-Thaw	Soft Clay	0	2.5	115	1	-	0.023	-	-
Clayey SILT	Silt (c-phi)	2.5	8	115	100	-	0.023	30	100
Silty CLAY	Soft Clay	8	24	120	1,200	-	0.008	-	-
CLAY/Shale	Stiff Clay w/o F.W.	24	35	120	2,000	-	0.006	-	-
	P 3	De	epth	Effective		Uniaxial			р-у
	D- 3	(f	eet)	Unit	Undrained	Compressive	Strain	Friction	Modulus
				Weight	Cohesion	Strength	Factor	Angle	k
Stratum	LPILE Soil Type	Тор	Bottom	(pcf)	(psf)	(psi)	E50	(deg)	(pci)
Freeze-Thaw	Soft Clay	0	2.5	115	1	-	0.023	-	-
Silty CLAY	Soft Clay	2.5	10	115	1,200	-	0.008	-	-
Clayey SILT	Silt (c-phi)	10 28.5		115	100	_	0.023	30	100
Silty CLAY	Soft Clay	28.5	35	120	900	_	0.010	_	_

Cycles of freeze-thaw and desiccation will often create cracking in the soil and a gap between the top of the pile and the surrounding soil. Therefore, the cohesive or undrained shear strength of the surface soil should be neglected in the LPILE analyses in the freeze-thaw or desiccation zone, which is assumed to be 2.5 feet deep in the St. Louis area. The weight of the soil in the top 2.5 feet should still be entered into LPILE. We suggest using the "Soft Clay" soil type in the freeze-thaw zone, with an s_u of 1 psf and a E_{50} of 0.023. The slope of the ground surface in the direction of loading must be entered into the LPILE analysis.

For the design for axial loads, we used the API Method for driven small diameter pipe piles. We recommend the following design values for ultimate side load transfer (f_s) and ultimate end bearing (q_p):

Boring 1											
Depth (ft)	f _s (ksf)	q _p (ksf)									
0-3	0.07										
4-13	0.5	9									
14-23	0.4	12-16									
24-30	0.9	13									

Design Parameters for Axial Load Capacity for Drive Pipe Piles

Boring 2 and 3											
Depth (ft)	f _s (ksf)	q _p (ksf)									
0-5	0-0.2										
6-14	0.2-0.5	10									
15-18	0.3	10									
19-23	0.6-0.80	10									
24-29	0.8-1.0	24									
30	0.8	7									

We combined the design parameters for Borings B-2 and B-3, to simplify the design. The design parameters for Boring B-1 should be used for piles in the vicinity of B-1 up to midway between B-1 and B-2. Where two values are shown in the above tables, the f_s or q_p varies linearly over the corresponding depths. These design parameters are for calculating the ultimate capacity of the pile. An appropriate factor of safety must be applied for the load case. The values for f_s may be used for uplift.

Page 5

REITZ & JENS, INC.

Ameren Services Report of Geotechnical Investigation for Lambert Community Solar Project, Bridgeton, Missouri

Page 6

Corrosion Potential for Steel Piles

Three samples of the subsurface soils were selected and were delivered to PDC Laboratories in St. Louis for pH and resistivity testing, to determine the corrosive potential of the soils. The results from PDC are included in Appendix B. The values of pH ranged from 7.64 to 8.49. The values of resistivity ranged from 20,000 to 32,000 ohm-cm. Based upon the results of the pH and resistivity testing, and following the flowcharts in section 6.12 of the FHWA design manual "Design and Construction of Driven Pile Foundations – Volume 1", the risk of corrosion on driven steel piles is low. The chloride and sulfates contents of the soil samples were not measured.

Fill Materials and Placement

We are not aware that significant earthwork is planned for this site. The following are general guidelines for placement of fill, if required. The existing soils may be used for fill if the soil does not contain roots or other similar organic matter, trash, frozen material, chemical contamination, or rock or concrete fragments larger than 6 inches in the maximum dimension.

Fill materials should be placed in uniform, horizontal lifts, and compacted in systematic coverages of the entire lift. The thickness of the loose lift (prior to compaction) should not exceed 12 inches where large, self-propelled compaction equipment can be used. In confined areas, where manual compactors are required, the lift thickness should not exceed 6 inches prior to compaction.

The compaction characteristics of fine-grain soils, such as clays or clayey silts, are dependent upon water content. For these materials, the water content should be adjusted prior to compaction, either by sprinkling additional water, or by scarifying, discing and drying to lower the water content. Normally, the soils on site will have to be dried prior to compaction.

Where fill is placed below footings, slabs or pavements, the fill should be compacted to a dry unit weight equal to at least 90 percent of the maximum dry unit weight determined by the modified Proctor method (ASTM D1557). Fill in other areas may be compacted to 85 percent of the maximum dry unit weight.

Analyses of Existing Slopes

Analyses of the stability of the existing slopes were not included in our Scope of Services for this investigation. However, since the solar array will be constructed on the roadway slope and close to the top of the slope, we recommend analyses of the long-term stability of the slope, including seismic analysis. We made the borings to 60 feet deep or to auger refusal to obtain information on the soil stratification and top of rock for such slope stability analyses. Also, the effective shear strength properties from the CU-tests are intended primarily for slope stability analyses. If Ameren requests such analyses, then we will need accurate topographic data to construct the models.

Construction Observation and Testing

All phases of the foundation- and soils-related construction should be tested and documented by Reitz & Jens to verify that subsurface conditions anticipated are, in fact, those found during construction. These quality control services are part of the geotechnical design process. We recommend pile load tests, both for axial compression

REITZ & JENS, INC.

Ameren Services Report of Geotechnical Investigation for Lambert Community Solar Project, Bridgeton, Missouri

and tension. The number of pile load tests will depend upon the number of production piles. We would like to work with Ameren Services to develop the pile load testing plan and to assist in evaluating the results.

Limitations of this Report

The recommendations presented in this report include our judgment of possible significant variations in subsurface conditions. Non-uniform conditions, however, often cannot be determined by the procedures described. We recommend that a contingency fund be budgeted to accommodate such possible variations.

Closure

We welcome any questions or comments that you may have regarding this preliminary report or any other soilsrelated aspects of the project. We appreciate the opportunity to continue our close working relationship with Ameren Services.

Sincerely, REITZ & JENS, Inc.

ouse, P.E. bal

Email: <u>jfouse@reitzjens.com</u> Cell phone: 314-852-1110

The following attachments complete this report:

Figure 1	Boring Location Plan
Figure 2-0	Key to Boring Log
Figures 2-1 to 2-3	Individual Boring Logs
Figure 3-1	Results of CU-Test from Boring B-1
Figure 3-2	Results of CU-Test from Boring B-2
Figure 3-3	Results of UU-Test from Boring B-3
Appendix A Appendix B	Logs of Borings from Airport Expansion, 1998 Results of PDC Laboratory Analyses

Copies submitted: 2

Page 7

Boring Completed May 2017
 Boring for Airport Expansion

Ameren Lambert Community Solar Project PLAN OF SITE AND APPROXIMATE LOCATIONS OF BORINGS

REITZ & JENS, INC.

Figure 1

KEY TO BORING LOGS

Symbol	Description	Symbol	Description
KEY TO S	SOIL SYMBOLS	__	Boring continues
	Low plastic Clayey SILT (ML)	•	Moisture content (%)
	Low plastic Silty CLAY/ Clayey SILT (CL-ML)		N-value from Standard Penetration
	High plastic Clay or very		Test, ASTM D-1586 (blows/ft)
	Shale with Limestone fragments		Shear strength from Pocket Penetrometer (tsf)
	Very Weathered LIMESTONE	SOIL SAI	MPLERS
	Inorganic, non-plastic SILT (ML)		2-in. O.D. Split-Spoon
	Low plastic CLAY (CL)	ŀ	3-in. O.D. Shelby Tube
	Very Weathered Shale or high plastic Shaley CLAY (CH)		
	Weathered Limestone and Shale with high plastic Clay		
MISCELL	ANEOUS SYMBOLS		
	Water table during drilling		
▼ =	Delayed Reading of Water table		

Notes:

1. Borings were made on May 31, 2017, by Midwest Drilling, Inc., under subcontract with Reitz & Jens. The borings were advanced with a CME 550X ATV-mounted drill rig using 4.25-inch solid continuous-flight augers (CFA). The borings were backfilled with cuttings at the end of the day.

2. Borings were located by Reitz & Jens using a hand-held GPS. The elevations of the borings were estimated based upon a Google Earth aerial photo with approximate elevation contours provided by Ameren Services.

3. The borings were logged in the field by a Reitz & Jens' registered geologist or qualified soils technician, based upon the recovered samples, cuttings and drilling characteristics. Samples were transported to Reitz & Jens' lab for testing. Field logs were revised, if needed, based upon laboratory classification and testing.

4. Stratification lines shown on the logs represent approximate soil boundaries; actual changes in strata may be gradual or occur between samples.

<u>REITZ & JENS, INC.</u> CONSULTING ENGINEERS **BORING LOG B-1** Lambert Community Solar Project LOCATION: See Figure 1 **Bridgeton**, Missouri **ELEVATION: 571** DATUM: NAVD88 **CLIENT:** Ameren Services DATE DRILLED: 05-31-2017 SHEAR STRENGTH, tsf DES. DRY UNIT WEIGHT (PCF) BLOWS PER 6 INCHES RQD= ROCK QUALITY DE ♦ TV 🛆 QU/2 🔳 PP 🗆 SV PERCENT RECOVERY MOISTURE CONTENT PERCENT BY WEIGHT 2 3 1 STANDARD PENETRATION TEST N-VALUE (BLOWS PER LAST FOOT) MATERIAL DESCRIPTION **WATER TABLE GRAPHIC LOG** SAMPLE TYPE ОЕРТН (FEET) ELEVATION • MOISTURE CONTENT, % 0 % FINES (SILTS & CLAYS) PL | 1 11 0 Clayey SILT (ML), dark brown, medium-570 dense, moist, with trace fine roots and 6 5-6-4 24.3 crushed limestone Silty CLAY (CL-ML), brown, firm, moist, 100 3-2-4 26.5 with lignite and trace limonite 5 565 Becoming mottled gray/brown 83 2-3-3 28.0 100 10 560 💻 SILT (ML), gray, very loose, very moist, 100 2-1-2 32.5 with trace carbon 15 555 ≚ Becoming loose, slightly clayey, moist 100 2-2-3 27.1 $20 \cdot$ 550 Silty CLAY (CL-ML), gray, stiff, very silty, 100 4 - 4 - 623.3moist 25 545 Becoming less silty, blue-gray & olive 100 3-3-5 27.230 - 540 DRILLER: Midwest Drilling WATER LEVELS: DURING DRILLING 16 FEET STRATIFICATION LINES ARE N BORING DRY AT COMPLETION OF DRILLING METHOD: 4.25" CFA APPROXIMATE SOIL BOUNDARIES TYPE OF SPT HAMMER: AT <u>11</u> FEET AFTER <u>4</u> HOURS Automatic ONLY; ACTUAL CHANGES MAY BE AT _____ FEET AFTER _____ HOURS GRADUAL OR MAY OCCUR BETWEEN HAMMER EFFICIENCY (%): SAMPLES. INSTALLED AT ____ FEET LOGGED BY: D. Binz PIEZOMETER:

Figure 2-1 Sheet 1 of 2

<u>REITZ & JENS, INC.</u> CONSULTING ENGINEERS **BORING LOG B-2** Lambert Community Solar Project LOCATION: See Figure 1 **Bridgeton**, Missouri ELEVATION: 584 DATUM: NAVD88 **CLIENT:** Ameren Services DATE DRILLED: 05-31-2017 SHEAR STRENGTH, tsf DES. DRY UNIT WEIGHT (PCF) BLOWS PER 6 INCHES RQD= ROCK QUALITY DE ♦ TV 🛆 QU/2 🔳 PP 🗆 SV PERCENT RECOVERY MOISTURE CONTENT PERCENT BY WEIGHT 2 1 3 STANDARD PENETRATION TEST N-VALUE (BLOWS PER LAST FOOT) MATERIAL DESCRIPTION **WATER TABLE GRAPHIC LOG** SAMPLE TYPE **DEPTH (FEET)** ELEVATION • MOISTURE CONTENT, % 0 % FINES (SILTS & CLAYS) PL | ↓ LL 0 Clayey SILT (ML), brown, loess, loose, moist 100 2 - 3 - 326.7580 100 25.5 2 - 3 - 35 1003-3-4 23.7 575 Silty CLAY (CL-ML), brown, firm, moist 100 2 - 3 - 424.410 570 100 25.03-3-4 CLAY (CL), tan/brown, firm, moist, trace 15 lignite, silt and sand 565 100 20 Becoming very stiff with lignite and 560 100 4 - 7 - 921.6 limonite 25 Clayey SHALE, yellow/brown/gray, very stiff, moist 555 83 4-7-10 23.4 30 DRILLER: Midwest Drilling WATER LEVELS: DURING DRILLING _36 FEET STRATIFICATION LINES ARE METHOD: N BORING DRY AT COMPLETION OF DRILLING 4.25" CFA APPROXIMATE SOIL BOUNDARIES TYPE OF SPT HAMMER: AT <u>26</u> FEET AFTER <u>2</u> HOURS Automatic ONLY; ACTUAL CHANGES MAY BE AT _____ FEET AFTER _____ HOURS HAMMER EFFICIENCY (%): GRADUAL OR MAY OCCUR BETWEEN SAMPLES. INSTALLED AT ____ FEET LOGGED BY: D. Binz PIEZOMETER:

Figure 2-2 Sheet 1 of 2

REITZ & JENS, INC. CONSULTING ENGINEERS Lambert Community Solar Project Example 1

BOF	RING	LOG	B-2

Lar	nber	t C	omn	nu	nit	y Solar Project	-		
) DES.		SHEAR STRENGTH, tsf
					εRΥ		HES HES	토봈	
		ш	0		COVE	MATERIAL DESCRIPTION		VEIC	STANDARD PENETRATION TEST
EET	N	LABL	CLOC	ΤΥΡΙ	TRE		T WE	ZE CC	▲ N-VALUE (BLOWS PER LAST FOOT)
L) H	VATI	TER -	APHIC	APLE	CEN			STUF	MOISTURE CONTENT, %
DEF	ELE	.WA	GR/	SAN	PEF		DR) BLC RQI	MOI	
-	_								
-	-								
-	_		H						
-	- 550		H		50	Becoming stiff	4-4-5	27.4	
35 -	-	_	H	\square					
-	_	Ť	\square						
-	_						_		
	-					LIMESTONE, weathered			
40 -	- 545 -					Boring terminated at auger refusal on			
	_					limestone at 39'-0"			
-	_								
-	_								
-	- 540								
45 -	_								
-	_								
-	-								
-	-								
-	- 535								
50 -	-								
	_								
	_								
	- 530								
55 -	-								
-	_								
-	_								
-	_								
-	- 525								
60 -	-								
-	_								
	-								
	-								
	- 520								
65 -	_								
	_								
	_								

REITZ & JENS, INC. **BORING LOG B-3** Lambert Community Solar Project LOCATION: See Figure 1 **Bridgeton**, Missouri **ELEVATION: 590** DATUM: NAVD88 **CLIENT:** Ameren Services DATE DRILLED: 05-31-2017 SHEAR STRENGTH, tsf DES. DRY UNIT WEIGHT (PCF) BLOWS PER 6 INCHES RQD= ROCK QUALITY DE ♦ TV △ QU/2 ■ PP 🗆 SV PERCENT RECOVERY MOISTURE CONTENT PERCENT BY WEIGHT 2 3 1 STANDARD PENETRATION TEST N-VALUE (BLOWS PER LAST FOOT) MATERIAL DESCRIPTION **VATER TABLE GRAPHIC LOG** SAMPLE TYPE DEPTH (FEET) ELEVATION • MOISTURE CONTENT, % 0 % FINES (SILTS & CLAYS) PL + LL 40 0 590 Silty CLAY (CL-ML), brown, stiff, dry, with trace fine roots (possible fill in top 3 feet) 39 17.5 5-6-6 Becoming firm, moist and more plastic 100 4-3-4 23.4 5 - 585 Clayey SILT (ML), brown, loose, moist 100 3-3-4 27.8with lignite Becoming medium-dense or stiff 92 94.3 27.8 - 580 10 -Becoming very loose and very moist 78 2-1-2 32.5 +57515 -Becoming gray-brown, loose. moist, with 67 3-2-3 27.2 lignite and limonite 20 -- 570 With limonite, iron stains 100 2 - 2 - 327.0+56525 -Silty CLAY (CL-ML), light brown, firm, 100 2-2-3 29.3 very silty, moist 30 -+560DRILLER: Midwest Drilling WATER LEVELS: DURING DRILLING 27.5 FEET STRATIFICATION LINES ARE METHOD: 4.25" CFA N BORING DRY AT COMPLETION OF DRILLING APPROXIMATE SOIL BOUNDARIES FEET AFTER HOURS TYPE OF SPT HAMMER: Automatic AT ONLY; ACTUAL CHANGES MAY BE AT _____ FEET AFTER GRADUAL OR MAY OCCUR BETWEEN HAMMER EFFICIENCY (%): HOURS SAMPLES. LOGGED BY: D. Binz PIEZOMETER: INSTALLED AT ____ FEET

Figure 2-3 Sheet 1 of 2

Ŕ

REITZ & JENS, INC.

BORING LOG B-3

Lar	nber	t C	omn	nu	nity	v Solar Project														
							S.					S	HE	AR :	STR	REN	GTH	I, tsf		
					≿		Y DE	┝┍╘		Ζ	2 QI	U/2		P	Ρ	[⊐ s	V	\diamond	ΤV
					VER				-		<u>от</u>	1				2		3		.
Ē	-	BLE	90	Ä	ECC	MATERIAL DESCRIPTION	VEIG K QU	CON S €		▲	ST. N-\	AN VAI	LUE	RD (Bl		NE I NS F	PER	LAS	TES ST FC	DOT)
EI (FEI	NOL	R TAI	HC L	ЦЦ	NTF		S PE				мс	פור	THE		201		ΝТ	0/_		
HE	EVA.	ATEF	RPF	MPL	RCE		l n % l = 0	DIST IRCE		5	% I	FIN	IES	(SII	LTS	3 & (CLA	∕₀ YS)		
ä	Ш	Ň	G	Ś	ä		222	ž č	-	Ρ	L -								<u> </u>	LL
	-											20	<u>)</u>		4			<u> </u>) 	
-	-																			
-	-																			
-	-			7	100	Becoming, brown, more silty, firm, with	2-3-3	28.7			-		,	•						
35 -	- 555			\vdash		trace lignite				_		+								
-	-																			
-	-																			
-	-									-										
-	-														-					
40 -	- 550											-			_	H	+		++	
-	-																			
-	-																			
-	-																		-	
	-																		-	
45 -	- 545									_		-								
_	_																			
	_						-													
	-					Clayey SHALE, weathered				_										
	-																			
50 -	- 540									_									_	
-	-					with rock fragments														
	-																			
	-		11																	
	_																			
55 -	- 535																			
	-																			
	_																			
	_																			
	-																			
60 -	- 530						4											<u> </u>		
	-					Boring terminated in shale at 60'-0"														
	-																			
	-											Ħ	_					=		
	-																			
65-	- 525																			
	- 525																			
	_																			
	_												_							

Appendix A

LOGS OF BORINGS FROM AIRPORT EXPANSION, 1998 BORINGS MB-D, MB-E AND MB-F

1998 April 3, Printed: Date

Reitz & Jens, Inc. Consulting Engineers

BORING LOG

				_											
PSA	904					BOR	ING NUN	MBER: MB-D							
PRE	LIMIN	JAR	Y	GE	OTECHNICAL SURVEY	LOC	ATION:	N-10	65006, E-854816						
CIT	Y OF S	5 T. I	C	JUI	S	ELE\	ATION:	586.	.7 DATUM: USGS						
DAT	E DRI	LLED) :	2/8	8/98	FIGL	JRE: A-36 SHEET 2 OF 2								
							SCF)		SHEAR STRENGTH, tsf						
				VERY			GHT (INCHE	VTEN'	∆ QU/2 ■ PP L] 9 1 2 3						
(Lig	z	106	TΥPE	RECO	MATERIAL DESCRIPTI	ON		₩ B V CO B	STANDARD PENETRATION T	EST					
TH (F	VATIO	VPHIC	APLE	CENT			Y UNI	ISTUR	MOISTURE CONTENT, %	-001)					
DEP	ELE	GR/	SAN	<u>ل</u>			BLC	M.	PL	LL					
		Ν													
-	-	TH	7	100	SILTY CLAY, reddish brown wi	th lignite	2-3-3	28.6							
-	- 555				medium to stiff, moist to wet	nginic,	• • • • • • • • • • • • • • • • • • • •								
-	-	HH			(Residual) (CL)										
1	_	1H													
35 -			7	100			3-3-4	28.4							
	- 550	HH	Η				<i></i>								
_		ЮH													
-	_	H													
40 -	L	KI		1.00			3-5-4	 27 A							
-	- 545	KK (L	100			÷-C-Ç	4•1•7							
-															
-	-	H/	1												
45 -	- 	ťH													
~	540		L	100	CLAY, yellow brown, grey, and r	eddish	4-5-7	21.3							
-		\bigvee	$\left \right $		(Residual) (CH)										
-		\mathbb{V}	1						· · · · · · · · · · · · · · · · · · ·						
50 -	-				CLAYEY SHALE, grey and yell	ow				·····					
	-		ł	94	brown, with traces of fine sand, h (Residual) (CH)	ard,dry	19-44-30	14.2		≜					
	- 535				AUGER REFUSAL AT 51.1'										
	-		ļ					-							
55 -															
55	ł														
	- 530														
60	-														
~ Uo		ļ			THE STRATIFICATION LINES REPRESENT APPROX BOUNDARIES: ACTUAL STRATIFICATION MAY BE	GRADUAL		1							
DRILL	ER:	LAYNI	ΕW	ESTE	<u>RN</u>	WAT	TER LEVELS:		NG DRILLING 29 FEET BORING DRY AT COMPLETION OF	DRILLING					
METH	IOD:4	1/2" HC	DLL	.0W A	UGER			AT FEET AFTER HOURS							
LOGGED BY: DAN BINZ					2	PIEZ	OMETER:	INST	ALLED AT FEET	-					

File: LAMBERT Date Limited: April 3, 1998

DATUM: USGS

SHEAR STRENGTH, tsf

2

MOISTURE CONTENT, %

40

1

SHEET

20

△ QU/2 I PP

OF 2

🗆 sv

- LL

3

60

THE STRATIFICATION LINES REPRESENT APPROXIMATE SOIL BOUNDARIES: ACTUAL STRATIFICATION MAY BE GRADUAL WATER LEVELS: DURING DRILLING DRY FEET **DRILLER:** LAYNE WESTERN Y BORING DRY AT COMPLETION OF DRILLING 40.7 FEET AFTER 24 HOURS METHOD: 4 1/2" HOLLOW AUGER AT FEET AFTER HOURS AT PIEZOMETER: INSTALLED AT FEET LOGGED BY: DAN BINZ

April 3, Date Printed: LAMBERT je i

Reitz & Jens, Inc. Consulting Engineers

BORING LOG

PSA	904					BOR	ING NUN	IBER: MB-E									
PRE	LIMIN		Y	GE	OTECHNICAL SURVEY	LUCATION: N-1065196, E-854293											
CH	IUrz) .	20	UL.	5	ELE	ATION:	ATION: 597.6 DATUM: USGS									
DAT	E DRI	DRILLED: 2/4/98 FIGURE: A-37 SHEET 2 OF							SHEET 2 OF 2								
				~			(PCF)	52	A OU/2 ■ PP □ SV								
				OVER			INCF	WEIGI	1 2 3								
FEET)	NO	901 0	TYPE	T REC	MATERIAL DESCRIPTI	ON	PER 6	IRE C	STANDARD PENETRATION TEST								
EPTH (EVAT	APHI	AMPLE	RCEN			RY UN	ERCEN	MOISTURE CONTENT, %								
Ö	<u> </u>	5	7S	8			08	2a	PL								
_	-	ĺμ		100			2-3-5	26.3									
	565	HH															
_	- 505	KI K			CLAY, brown, yellow brown, with	h grey,											
35 -	}	\mathbb{Z}			high plastic, with some gravel, sti (Residual) (CH)	ff,moist		••••									
-		$\langle \rangle$	7	100			5-5-10	25.7									
-	560	V/															
-	- 500	\mathbb{Z}															
- 40 -	}	\square			SHALEY CLAY, grey with yello	w											
40	-	\mathbb{V}	7	100	stiff, moist (Residual) (CH)	very	4-6-10	27.7									
	-	\mathbb{V}	Π														
-	- 333	\mathbb{Z}															
-	 -				AUGER REFUSAL AT 43.6'												
45	-						:										
-	-																
-	- 550																
	- -																
50	-																
	-																
	- 545							•									
	-																
55 -																	
	540																
	- -						ļ										
60 -					THE STRATIFICATION LINES REPRESENT APPROXI BOUNDARIES: ACTUAL STRATIFICATION MAY BE	MATE SOIL GRADUAL											
DRILL	ER:	LAYNI	E WI	ESTE	RN	WATER LEVELS: DURING DRILLING DRY FEET Y BORING DRY AT COMPLETION OF DRILL											
METH	IOD:4	1/2" HO	LLC	OW A	UGER			AT _	40.7 FEET AFTER 24 HOURS								
LOGG	ED BY:	C	DAN	BINZ	2	PIEZ	OMETER:	AI INSTA	ALLED AT FEET								

Reitz & Jens, Inc.

BORING LOG

PSA 894 BORING NUMBER: MB-F PRELIMINARY GEOTECHNICAL SURVEY CITY OF ST. LOUIS LOCATION: N-1065314, E-853575 DATE DRILLED: 2/16/98 FIGURE: A-38 SHEET 1 OF 2 Building and monte in the standing and monte intermediation stiff, wet SHEET 1 OF 2 Building and monte intermediation stiff, wet Standard penetration stiff, wet Standard penetration stiff, wet Building and monte intermediation stiff, molti Standard penetration stiff, molti Standard penetration stiff, wet Standard penetration Standard penetration stiff, molti Location stiff, molti Standard penetration Standard penetration stiff, molti Standard penetration Standard															
PRELIMINARY GEOTECHNICAL SURVEY CITY OF ST. LOUIS LOCATION: N-1005314, E-835373 DATE DRILLED: 2/16/98 ELEVATION: 576.9 DATUM: USGS FIGURE: A-38 SHEET 1 OF 2 State DRILLED: 2/16/98 MATERIAL DESCRIPTION SHEET 1 OF 2 State DRILLED: 2/16/98 MATERIAL DESCRIPTION SHEET 1 OF 2 State DRILLED: 2/16/98 MATERIAL DESCRIPTION SHEET 1 OF 2 State DRILLED: 2/16/98 MATERIAL DESCRIPTION SHEET 1 OF 2 State DRILLED: 2/16/98 MATERIAL DESCRIPTION SHEET 1 OF 2 State DRILLED: 2/16/98 MATERIAL DESCRIPTION SHEET 1 OF 2 State DRILLED: 2/16/98 MATERIAL DESCRIPTION SHEET 1 OF 2 State DRILLED: 2/16/98 State DRILLED: 2/18/17, grey and brown, with light end limonite, medium stiff, moist NOTOPECONTENT N NOTOPECONTENT N 10 State DRILLED: 2/100 SHEET 1/100 SHEET 1/100 SHEET 1/100 SHEET 1/100 10 State DRILLED: 2/100 SHEET 1/100 SHEET 1/100 SHEET 1/100 SHEET 1/100 SHEET 1/100 SHEET 1/100 SHEET 1/100 </td <td colspan="6">PSA 904</td> <td>BOR</td> <td colspan="8">BORING NUMBER: MB-F</td>	PSA 904						BOR	BORING NUMBER: MB-F							
Charles of the Uods ELEVATION: 576.9 DATUM: USGS DATE DRILLED: 2/16/98 FIGURE: A-38 SHEET 1 OF 2 Image: State of the Uod State of the Uo	PRE	PRELIMINARY GEOTECHNICAL SURVEY					LOCATION: N-1065314 , E-853575								
DATE DRILLED: 2/16/98 FIGURE: A-38 SHEET 1 OF 2 is is </td <td colspan="6">CIT I OF 51, LOUIS</td> <td>ELE\</td> <td>ATION:</td> <td>576.</td> <td>9 DATUM: USGS</td>	CIT I OF 51, LOUIS						ELE\	ATION:	576.	9 DATUM: USGS					
Bernold State A OUZ P O SV 1 2 3	DATE DRILLED: 2/16/98						FIGL	JRE: A-3	3	SHEET 1 OF 2					
Build Build MATERIAL DESCRIPTION Build 1 2 3 1 1 2 3 1 2 3 3 1 2 2 3 1 2 3 1 2 2 3 1 2 3 1 2 2 3 1 2 3 1 2 2 3 1 2 3 1 2 2 3 1 2 3 1 2 2 3 1 2 3 1 2 2 3 1 2 3 1 2 2 3 1					≿		ES CE		NH:	∆ QU/2 ■ PP □ SV					
B B B B COMPTENDING B STANDAUG PREFERATION TEST 0 -	_			ш	COVEF			NIT WEIGHT 5 PER 6 INCI	WEIG	1 2 3					
E S E B B Comparison Compar	(FEET	NOI	1010	E TYPI	IT REC				URE C NT BY	STANDARD PENETRATION TEST					
0 0	EPTH	EPTH ERCEN						DRY U BLOW:	PERCE	MOISTURE CONTENT, %					
0		ш		5	-					20 40 60					
575 CLAYEY SLT, grey and brown, with lignite and limonic, medium stiff, wet (Eolian) (CL) 5 98 10 98 550 100 565 100 566 100 567 100 568 100 569 100 560 100 561 100 562 100 563 100 564 100 565 100 560 100 561 100 562 100 563 100 564 100 565 100 566 100 567 100 SILTY CLAY, grey and brown, with traces of fine sand, lighter and limonite, stiff, moist (Residual) (CL) 100 SILTY CLAY, grey and brown, with traces of fine sand, lighter and limonite, (Residual) (CL) 100 SILTY CLAY, grey and brown, with traces of fine sand, lighter and limonite, (Residual) (CL) 100 SILTY CLAY, grey and brown, with traces of fine sand, lighter and limonite, (Residual) (CL) 100 SILTY CLAY, grey and brown, with t	0 -					8" TOPSOIL	•••••								
10 100 5 570 10 100 565 100 10 100 565 100 11 100 550 100 550 100 555 100 555 100 555 100 555 100 555 100 555 100 555 100 555 100 550 100 551 100 100 SILTY CLAY grey, medium stiff, moist 1-2-3 28.0 1-2-3 28.0 20 550 100 SILTY CLAY, grey and brown, with traces of fine sand, lignite and limonite, (Residual) (CL) 100 SILTY CLAY, grey and brown, with traces of fine sand, lignite and limonite, (Residual) (CL) 100 SILTY CLAY, grey and brown, with traces of fine sand, lignite and limonite, (Residual) (CL) 100 SILTY CLAY, grey and brown, with traces of fine sand, lignite and limonite, (Residual) (CL) 100 SILTY CLAY, grey and brown, with traces of fine sand, lignite and limonit	-	-	111			CLAYEY SILT, grey and brown	with								
5 -570 98 10 -565 10 -565 15 -560 16 100 -565 100 560 100 -565 100 10 1-2-3 20 -565 100 SILTY CLAY, grey, medium stiff, moist 1-2-3 28.4 1-2-3 28.4 100 SILTY CLAY, grey, medium stiff, moist 1-2-3 28.0 25 -550 100 SILTY CLAY, grey and brown, with traces of fine sand, lignite and limonite, stiff, moist (Residual) (CL) 30	_	- 3/3	Ш			lignite and limonite, medium stiff (Eolian) (CL)	f,wet								
5	-	-	HH												
10 570 98 10 565 100 100 565 100 15 100 560 100 560 100 550 100 100 1-2-3 20 100 550 100 100 SILTY CLAY, grey, medium stiff, moist (Residual) (CL) 1-2-3 28.0 20 100 555 100 SILTY CLAY, grey and brown, with traces of fine sand, lignite and limonite, stiff, moist (Residual) (CL) 1-2-3 20 100 100 SILTY CLAY, grey and brown, with traces of fine sand, lignite and limonite, stiff, moist (Residual) (CL) 1-2-4 24.5 4 30 Image: Statistic ADDUAL STREEMERS APPROXMARE SOLE 1-2-4 24.5 4 30 Image: Statistic ADDUAL STREEMERS APPROXMARE SOLE 1-2-4	5 -	-	KH												
10 570 100 565 100 15 560 10 565 10 100 555 100 100 1-2-3 20 100 555 100 SILTY CLAY, grey, medium stiff, moist (Residual) (CL) 1-2-3 28.4 25 100 SILTY CLAY, grey and brown, with traces of fine sand, lignite and limonite, stiff, moist (Residual) (CL) 100 SILTY CLAY, grey and brown, with traces of fine sand, lignite and limonite, stiff, moist (Residual) (CL) 100 Its STRATECATION LAWS REPRESENT APPROXIMATE SOLL 1100 Its STRATECATION LAWS REPRESENT APPROXIMATE SOLL 1100 Its STRATECATION LAWS REPRESENT APPROXIMATE SOLL 1100 Its STRATECATION LAWS REPRESENT APPROXIMATE SOLL 1101 Its STRATECATION LAW REPRESENT APPROXIMATE SOLL 11010 Its STRATECATION LAW REPRESENT APPROXIM	-				98			89.4	30.3	, da a la seconda da compositiva da compositiva da compositiva da compositiva da compositiva da compositiva da La seconda da compositiva da compositiva da compositiva da compositiva da compositiva da compositiva da composit					
10 565 100 15 100 560 100 550 100 555 100 555 100 555 100 SILTY CLAY, grey, medium stiff, moist (Residual) (CL) 1-2-3 28.4 1-2-3 28.4 1-2-3 28.4 1-2-3 28.4 1-2-3 28.4 1-2-3 28.4 1-2-3 28.4 1-2-3 28.4 1-2-3 28.4 1-2-3 28.4 1-2-3 28.4 1-2-3 28.4 1-2-3 28.4 1-2-3 28.0 1-2-3 28.0 1-2-4 24.5 1-2-4 24.5 1-2-4 24.5 1-2-4 24.5 1-2-4 24.5 1-2-4 24.5 1-2-4 24.5 1-2-4 24.5 1-2-4 24.5 1-2-4 24.5 1-2-4	-	- 570	HH		· · <i>· ·</i> ·										
10 565 100 15 100 560 100 550 100 555 100 555 100 555 100 SILTY CLAY, grey, medium stiff, moist (Residual) (CL) 12-3 28.4 12-3 28.4 12-3 28.4 100 SILTY CLAY, grey, medium stiff, moist (Residual) (CL) 12-3 28.0 12-3 28.0 12-4 24.5 12-4 24.5 12-4 24.5 12-4 24.5 12-4 24.5 12-4 24.5 12-4 24.5 12-4 24.5 12-4 24.5 12-4 24.5 12-4 24.5 12-4 24.5 12-4 24.5 12-4 24.5 12-4 24.5 12-5 100 12-4 24.5 12-5 100 100 100	-	ĺ	1H												
100 1-2-3 28.8 100 15 100 1-2-3 28.4 100 560 100 1-2-3 28.4 100 550 100 StLTY CLAY, grey, medium stiff, moist (Residual) (CL) 1-2-3 28.0 100 555 100 StLTY CLAY, grey and brown, with traces of fine sand, lignite and limonite, stiff, moist (Residual) (CL) 1-2-3 28.0 100 25 100 StLTY CLAY, grey and brown, with traces of fine sand, lignite and limonite, stiff, moist (Residual) (CL) 1-2-4 24.5 100 30 The STRATEFICATION LINES REPRESENT APPROXIMATE BOL BUMDAREE: ACTUAL STRATEFICATION MAY BE GRADUAT. DURING DRILLING 24.5 FEET 30 The STRATEFICATION LINES REPRESENT APPROXIMATE BOL BUMDAREE: ACTUAL STRATEFICATION MAY BE GRADUAT. DURING DRILLING 24.5 FEET 30 The STRATEFICATION LINES REPRESENT APPROXIMATE BOL BUMDAREE: ACTUAL STRATEFICATION MAY BE GRADUAT. DURING DRILLING 24.5 FEET 30 The STRATEFICATION LINES REPRESENT APPROXIMATE BOL BORING DRV AT COMPLETION OF DRILLING AT FEET AFTER HOURS METHOD: 4 1/2" HOLLOW AUGER THE STRATEFIC ATTER HOURS THE STRATEFIC ATTER HOURS LOGGED BY: <td< td=""><td>10 -</td><td>] }-</td><td>W</td><td>L</td><td></td><td></td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td>· • · · · <i>·</i> • ·</td><td></td></td<>	10 -] }-	W	L				· · · · · · · · · · · · · · · · · · ·	· • · · · <i>·</i> • ·						
- 565 - 565 15 - 560 - 560 - 560 20 - 560 - 555 - 560 100 SILTY CLAY, grey, medium stiff, moist (Residual) (CL) 1-2-3 28.4 25 - 555 25 - 550 100 SILTY CLAY, grey and brown, with tracs of fine sand, lignite and limonite, stiff, moist (Residual) (CL) 30 - 550 DRILLER: LAYNE WESTERN DRILLER: LAYNE WESTERN METHOD: 4 1/2* IIOLLOW AUGER LOGGED BY: DAN BINZ PIEZOMETER: INSTALLED AT PIEZOMETER: INSTALLED AT	-	- -	H/	7	100			1-2-3	28.8						
15 560 20 550 20 555 100 SILTY CLAY, grey, medium stiff, moist (Residual) (CL) 1-2-3 28.4 1-2-3 28.4 1-2-3 28.4 1-2-3 28.4 1-2-3 28.4 1-2-3 28.4 1-2-3 28.4 1-2-3 28.4 1-2-3 28.0 1-2-3 28.0 1-2-3 28.0 1-2-3 28.0 1-2-3 28.0 1-2-3 28.0 1-2-3 28.0 1-2-4 24.5 1-2-4 24.5 1-2-4 24.5 1-2-4 24.5 1-2-4 24.5 1-2-4 24.5 1-2-4 24.5 1-2-4 24.5 1-2-4 24.5 1-2-4 24.5 1-2-4 24.5 1-2-4 24.5 1-2-4 24.5 1-2-4 24.5	-	- 565	KK												
15 100 560 100 SILTY CLAY, grey, medium stiff, moist 1-2-3 28.4 100 SILTY CLAY, grey, medium stiff, moist 1-2-3 28.4 100 SILTY CLAY, grey, medium stiff, moist 1-2-3 28.4 1-2-3 28.4 1-2-3 28.4 1-2-3 28.4 1-2-3 28.0 1-2-3 28.0 1-2-3 28.0 1-2-3 28.0 1-2-3 28.0 1-2-3 28.0 1-2-3 28.0 1-2-3 28.0 1-2-3 28.0 1-2-3 28.0 1-2-4 24.5 1-2-4 24.5 1-2-4 24.5 1-2-4 24.5 1-2-4 24.5 1-2-4 24.5 1-2-4 24.5 1-2-4 24.5 1-2-4 24.5 1-2-4 24.5 1-2-5 1-2-4 1-2-4 24.5 </td <td>-</td> <td>-</td> <td>H</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-	-	H	1											
10 100 -560 100 -555 100 -555 100 -555 100 -555 100 -555 100 SILTY CLAY, grey, medium stiff, moist (Residual) (CL) 1-2-3 28.4 1-2-3 28.4 1-2-3 28.4 -555 100 SILTY CLAY, grey and brown, with traces of fine sand, lignite and limonite, stiff, moist (Residual) (CL) 1-2-3 30 -550 DRILLER: LAYNE WESTERN 0	15 -		H	1											
20 560 20 555 100 SILTY CLAY, grey, medium stiff, moist (Residual) (CL) 1-2-3 28.0 25 550 100 SILTY CLAY, grey and brown, with traces of fine sand, lignite and limonite, stiff, moist (Residual) (CL) 30 THE STRATE/CATION LINES REPRESENT APPROXIMATE SOL 31 THE STRATE/CATION LINES REPRESENT APPROXIMATE SOL 32 THE STRATE/CATION LINES REPRESENT APPROXIMATE SOL 33 THE STRATE/CATION LINES REPRESENT APPROXIMATE SOL 34 THE STRATE/CATION LINES REPRESENT APPROXIMATE SOL	1.5	ł		V	100			1-2-3	28.4						
20	.	- 560	H	$\left - \right $	↓			·····							
20		÷	K												
20 - <		+				SILTY CLAY, grey, medium stif	f,moist								
25 SILTY CLAY, grey and brown, with traces of fine sand, lignite and limonite, stiff, moist (Residual) (CL) 1-2-4 24.5 4 30 THE STRATERCATION LINES REPRESENT APPROXIMATE SOIL 30 1-2-4 24.5 4 DRILLER: LAYNE WESTERN WATER LEVELS: DURING DRILLING 24.5 FEET METHOD: 4 1/2" HOLLOW AUGER AT FEET AFTER HOURS HOURS LOGGED BY: DAN BINZ PIEZOMETER: INSTALLED AT FEET	20 -	Ţ		7	100	(Residual) (CL)		1-2-3	28.0						
25		- 555	H	Ł	-										
25		+	K	1											
25		-													
- 550 stiff, moist (Residual) (CL) 30 THE STRATIFICATION LINES REPRESENT APPROXIMATE SOIL BOUNDARIES: ACTUAL STRATIFICATION MAY BE GRADUAL DRILLER: LAYNE WESTERN METHOD: 4 1/2" HOLLOW AUGER LOGGED BY: DAN BINZ DAN BINZ PIEZOMETER:	25 -		H	7	100	SILTY CLAY, grey and brown, traces of fine sand, lignite and lin	monite,	1-2-4	24.5						
30 THE STRATIFICATION LINES REPRESENT APPROXIMATE SOIL 30 THE STRATIFICATION LINES REPRESENT APPROXIMATE SOIL BOUNDARIES: ACTUAL STRATIFICATION MAY BE GRADUAL. DRILLER: LAYNE WESTERN WATER LEVELS: DURING DRILLING DRILLER: LAYNE WESTERN METHOD: 4 1/2" HOLLOW AUGER LOGGED BY: DAN BINZ PIEZOMETER: INSTALLED AT		- 550	H	1	-	stiff, moist (Residual) (C1)									
30		-	1H												
30 The STRATIFICATION LINES REPRESENT APPROXIMATE SOIL BOUNDARIES: ACTUAL STRATIFICATION MAY BE GRADUAL DRILLER: LAYNE WESTERN WATER LEVELS: DURING DRILLING 24.5 FEET METHOD: 4 1/2" HOLLOW AUGER LOGGED BY: DAN BINZ DAN BINZ PIEZOMETER:		+	H	1											
DRILLER: LAYNE WESTERN WATER LEVELS: DURING DRILLING 24.5 FEET METHOD: 4 1/2" HOLLOW AUGER METHOD: 4 1/2" HOLLOW AUGER METHOD: AT FEET AFTER HOURS LOGGED BY: DAN BINZ DAN BINZ PIEZOMETER: INSTALLED AT FEET	30 -	+	<u>hradi</u>	1		THE STRATIFICATION LINES REPRESENT APPROX BOUNDARIES: ACTUAL STRATIFICATION MAY BI	IMATE SOIL E GRADUAL	L							
METHOD: 4 1/2" HOLLOW AUGER AT FEET AFTER HOURS AT FEET AFTER HOURS AT FEET AFTER HOURS AT FEET AFTER HOURS PIEZOMETER: INSTALLED AT	DRILL	DRILLER: LAYNE WESTERN					WAT	TER LEVELS:		NG DRILLING 24.5 FEET BORING DRY AT COMPLETION OF DRILLING					
LOGGED BY:DAN BINZPIEZOMETER: INSTALLED ATFEETHOURS	METH	METHOD: 4 1/2" HOLLOW AUGER						AT FEET AFTER							
	LOGO	ED BY:	1	DA	N BIN	Z	PIEZ	OMETER:		AT FEET AFTER HOURS NSTALLED AT FEET					

File: LAMBERT Date Printed: April 3, 1998

File: LAMBERT Date Printed: April 3, 1998

Appendix B

RESULTS OF ANALYSES BY PDC LABORATORIES

June 06, 2017

Christopher Cook Reitz & Jens, Inc. 1055 Corporate Square Drive St. Louis, MO 63132

Dear Christopher Cook:

Please find enclosed the analytical results for the sample(s) the laboratory received on **5/31/17 2:05 pm** and logged in under work order **7055186**. All testing is performed according to our current TNI certifications unless otherwise noted. This report cannot be reproduced, except in full, without the written permission of PDC Laboratories, Inc.

If you have any questions regarding your report, please contact your project manager. Quality and timely data is of the utmost importance to us.

PDC Laboratories, Inc. appreciates the opportunity to provide you with analytical expertise. We are always trying to improve our customer service and we welcome you to contact the Vice President, John LaPayne with any feedback you have about your experience with our laboratory.

Sincerely,

ofan Shull

Roxann Shull Client Services Supervisor (314) 432-0550 rshull@pdclab.com

PDC Laboratories, Inc.

3278 North Highway 67 Florissant, MO 63033 (800) 333-3278

ANALYTICAL RESULTS

Sample: 7055186-01 Name: Lambert Solar Proj Alias: B-1 Depth 10	ect			Sample Receiv Matrix:	ed: 05/31/17 ed: 05/31/17 Solid	7 09:45 7 14:05	
Parameter	Result	Unit	Qualifier	Analyzed	Analyst	Method	
General Chemistry - PIA							
Solids - total solids (TS)	79	%		06/02/17 12:55	KLA	SM 2540G*	
General Chemistry - STL							
рН	8.49	pH Units	н	06/02/17 09:00	SCI	SW 9045	
Resistivity	0.027	MOhm-cm		06/01/17 15:35	MEG	SM 2510B*	
Sample: 7055186-02				Sample	ed: 05/31/17	' 11:15	
Name: Lambert Solar Proj	ect			Receiv	ed: 05/31/17	7 14:05	
Alias: B-2 Depth 20				Matrix:	Solid		
Parameter	Result	Unit	Qualifier	Analyzed	Analyst	Method	
General Chemistry - PIA							
Solids - total solids (TS)	84	%		06/02/17 12:55	KLA	SM 2540G*	
General Chemistry - STL							
pH	8.1	pH Units	н	06/02/17 09:00	SCI	SW 9045	
Resistivity	0.032	MOhm-cm		06/01/17 15:35	MEG	SM 2510B*	
Sample: 7055186-03				Sample	ed: 05/31/17	7 13:05	
Name: Lambert Solar Proj	ect			Receiv	ed: 05/31/17	' 14:05	
Alias: B-3 Depth 30				Matrix:	Solid		
Parameter	Result	Unit	Qualifier	Analyzed	Analyst	Method	
General Chemistry - PIA							
Solids - total solids (TS)	78	%		06/02/17 12:55	KLA	SM 2540G*	
General Chemistry - STL							
рН	7.64	pH Units	н	06/02/17 09:00	SCI	SW 9045	
Resistivity	0.020	MOhm-cm		06/01/17 15:35	MEG	SM 2510B*	

PDC Laboratories, Inc.

3278 North Highway 67 Florissant, MO 63033 (800) 333-3278

NOTES

Specific method revisions used for analysis are available upon request.

<u>Memos</u>

Resistivity method modified for soil sample with a 10% slurry

Certifications

CHI - McHenry, IL

TNI Accreditation for Drinking Water, Wastewater, Hazardous and Solid Wastes Fields of Testing through IL EPA Lab No. 100279 Illinois Department of Public Health Bacteriological Analysis in Drinking Water Approved Laboratory Registry No. 17556

PIA - Peoria, IL

TNI Accreditation for Drinking Water, Wastewater, Hazardous and Solid Wastes Fields of Testing through IL EPA Lab No. 100230 Illinois Department of Public Health Bacteriological Analysis in Drinking Water Approved Laboratory Registry No. 17553 Drinking Water Certifications: Iowa (240); Kansas (E-10338); Missouri (870) Wastewater Certifications: Arkansas (88-0677); Iowa (240); Kansas (E-10338) Hazardous/Solid Waste Certifications: Arkansas (88-0677); Iowa (240); Kansas (E-10338)

- SPMO Springfield, MO USEPA DMR-QA Program
- STL St. Louis, MO

TNI Accreditation for Wastewater, Hazardous and Solid Wastes Fields of Testing through KS Lab No. E-10389 Illinois Department of Public Health Bacteriological Analysis in Drinking Water Approved Laboratory Registry No. 171050 Drinking Water Certifications: Missouri (1050) Missouri Department of Natural Resources

* Not a TNI accredited analyte

Qualifiers

H Test performed after the expiration of the appropriate regulatory/advisory maximum allowable hold time.

Man Shull

PAGE ____OF___

PDC Laboratories, Inc. – St. Louis 3278 N. Highway 67 (Lindbergh) Florissant, MO 63033

www.pdclab.com www.environmetrics.net

CHAIN OF CUSTODY RECORD Phone (314) 432-0550 or (314) 921-4488

Fax (314) 432-4977 or (314) 921-4494

(Instructions/Sample Acceptance Policy on Reverse)

Page 4 of 4

ALL SHADED AREAS MUST BE COMPLETED BY CLIEN	IT (PLEASE PRINT)
---	-------------------

1) REITZFI/EWS	PROJECT NUMBI	R P.O.N	P. O. NUMBER	MEANS SHIPPED		3		LYSIS REQUESTED	4 (FOR LAB USE ONLY)
ADDRESS 55 LORPORATE Square DR	214 993	1132 743	UMBER 5-4177	EMAIL ADD	RESS				
CITY St LUVIS MO STATE 63132	DAN B	142	8 - ² 1	MATRIX TYPE WW-WASTEWAT DW-DRINKING V GW-GROUND W	IS: TER VATER VATER		イン		LAB PROJ.#
CONTACT PERSON Christophen Court	SAMPLER'S SIGNATURE	2Brb		NAS-SOLID L'CHT-LEACHATE NAL-NONAQUEC SOIL-SOILS	bus	¥	Posil		PROJ. MGR.:
2 SAMPLE DESCRIPTION AS YOU WANT ON REPORT	DATE COLLECTED	TIME COLLECTED	SAMPLE T GRAB C	YPE MATRIX OMP TYPE	Bottle Count	Q	Cop		REMARKS
LAMBERT SOLAR PROJECT	5/3//17	94(AM				X	X		
B-1 NEpt5 10	3					-			_
13-2 BEDty 20	5/31/17	11:15 AI	R I			X	X		
B-3 Napth 30	5/31/17	195Pr	1	_		X	X		
	1.2.								
5 TURNAROUND TIME (RUSH TAT IS SUBJECT TO PDC LABS API 5 NORMAL (8-10 Bus. Days) PUSH (5 Bus. Days) Fastrak _{TM} (3 Bus. E 0 DATE DUE RESULTS BY E-MAIL FAX PHONE CALL PHONE/FAX# IF DIF	PROVAL AND SUR Days) 1-2 Bus. Day	CHARGE) s Same Day	The sample that the lab range of 0. regardless 6	e temperature will o notify you, before 1-6.0°C. By not in of the sample ten	be measure e proceeding itialing this a nperature.	d upon with an irea, you	receipt a alysis, it allow t	at the lab. By initialing this area, you f the sample temperature is outside he lab to proceed with analytical tem 	u request e of the sting
7 CALINGUISHED BUTSIGRUTTURE)	TIME	RECEIVED	y Rai	in	DATE 5-31-1-1	19C	IME	8 COMMENTS	S:(FOR LAB USE ONLY)
RELECTIONED BY (SIGNATURE)	DATE TIME	RECEIVED	BY:		DATE	T	IME	SAMPLE TEMPERATURE UPON RECE CHILL PROCESS STARTED PRIOR TO	
RELINQUISHED BY: (SIGNATURE)		RECEIVED	BY:		DATE	T T		SAMPLES(S) RECEIVED ON ICE PROPER BOTTLES RECEIVED IN GOC BOTTLES FILLED WITH ADEQUATE VC	
RELINQUISHED BY: (SIGNATURE)	DATE TIME	RECEIVED	BY:	-un stra	DATE	T	IME	EXCLUDES RECEIVED WITHIN HOLD T (EXCLUDES TYPICAL FIELD PARAMET DATE AND TME TAKEN FROM SAMPLI	INTE(S) TERS) E BOTTOM

Thank you for using PDC Laboratories, Inc. Locations in Peoria, IL; St. Louis, MO; and Springfield, MO