

Volume 2: Commercial and Industrial Measures

Final

March 31, 2017

[INTENTIONALLY LEFT BLANK]

Volume 2	: Commercial and Industrial Measures	6
2.1	Agricultural End Use	6
2.1.1	Engine Block Heater for Agricultural Equipment	6
2.2	Appliances End Use	7
2.2.1	Clothes Washer	7
2.2.2	Clothes Dryer	12
2.3	Compressed Air End Use	17
2.3.1	Compressed Air No Loss Condensate Drain	17
2.3.2	Compressed Air Nozzle	20
2.3.3	VSD Air Compressor	23
2.4	Consumer Electronics End Use	26
2.4.1	Advanced Power Strip	26
2.5	Food Service End Use	27
2.5.1	Combination Oven	27
2.5.2	Commercial Steam Cooker	33
2.5.3	Conveyor Oven	38
2.5.4	Fryer	41
2.5.5	Convection Oven	45
2.5.6	Griddle	49
2.5.7	Infrared Charbroiler	53
2.5.8	Infrared Rotisserie Oven	55
2.5.9	Kitchen Demand Ventilation Controls	57
2.5.10	O Rack Oven	60
2.5.1	1 Infrared Salamander Broiler	63
2.5.12	2 Hot Food Holding Cabinet	65
2.5.13	3 Pre-Rinse Spray Valve	68
2.5.14	4 Ice Maker	72
2.5.15	5 Infrared Upright Broiler	73
2.5.16	6 Pasta Cooker	74
2.6	Hot Water End Use	75
2.6.1	Water Heater	75
2.6.2	Low Flow Faucet Aerator	80
2.6.3	Circulator Pump	
2.6.4	Heat Pump Water Heater	
2.6.5	Controls for Central Domestic Hot Water	
2.6.6	Low Flow Showerhead	
267	Hot Water Massura Kit	05

2.6.8	Hot Water Pipe Insulation	96
2.6.9	Ozone Laundry	97
2.6.10	Pool Heater	98
2.6.11	l Pool/Spa Cover	99
2.7	HVAC End Use	100
2.7.1	Boiler	101
2.7.2	Boiler Averaging Controls	104
2.7.3	Boiler Lockout/Reset Controls	106
2.7.4	High Temperature Heating & Ventilating (HTHV) Direct Fired Heater	108
2.7.5	High Turndown Burner for Spacing Heating Boilers	110
2.7.6	Infrared Heaters	112
2.7.7	Small Commercial Programmable Thermostats	114
2.7.8	Steam Trap Replacement or Repair	117
2.7.9	Demand Controlled Ventilation	120
2.7.10) Furnace	124
2.7.11	Advanced RTU Controls	126
2.7.12	2 Electric Chiller	129
2.7.13	Heat Pump Systems	136
2.7.14	Packaged Terminal Air Conditioner (PTAC) and Packaged Terminal Heat 146	Pump (PTHP)
2.7.15	Single-Package and Split System Unitary Air Conditioner	151
2.7.16	5 Boiler/Furnace Tune-up	159
2.7.17	7 Air Source Heat Pump	162
2.7.18	8 Condensing Unit Heater	163
2.7.19	Energy Recovery	164
2.7.20	Furnace/Boiler Tune-Up	165
2.7.21	High Volume Low Speed Fan	166
2.7.22	2 Primary Air Dampers	167
2.7.23	Shut Off Damper for Space Heating Boilers or Furnaces	168
2.7.24	Stack Economizer for Boilers Serving HVAC Loads	169
2.7.25	5 Stack Economizer for Boilers Serving Process Loads	170
2.8	Lighting End Use	171
2.8.1	Compact Fluorescent Lamp	172
2.8.2	Fluorescent Delamping	176
2.8.3	High Performance and Reduced Wattage T8 Fixtures and Lamps	179
2.8.4	LED Bulbs and Fixtures	188
2.8.5	LED Screw Based Omnidirectional Bulb	195

2.8.6	T5 Fixtures and Lamps	200
2.8.7	LED Exit Sign	203
2.8.8	LED Specialty Lamp	207
2.8.9	Lighting Power Density	211
2.8.10	Metal Halide Fixtures and Lamps	222
2.8.11	Occupancy Lighting Sensor Controls	225
2.8.12	Street Lighting	228
2.8.13	Multi-Level Lighting Switch	231
2.8.14	T9 Fixtures and Lamps	232
2.9 N	Aiscellaneous End Use	233
2.9.1	Laptop Computer	233
2.9.2	Computer Power Management Software	236
2.9.3	Heat Pump Pool Heater	239
2.9.4	Computer Server	241
2.9.5	Point of Sale Terminal	243
2.10 N	Notors End Use	244
2.10.1	Motors	244
2.10.2	Pool Pump	248
2.10.3	Pump Optimization	250
2.10.4	Variable Frequency Drives (VFDs) for Process	252
2.10.5	Variable Frequency Drives (VFDs) for HVAC Supply and Return Fans	255
2.11 R	Refrigeration End Use	261
2.11.1	Commercial Solid and Glass Door Refrigerators & Freezers	261
2.11.2	Refrigerated Beverage Vending Machine	264
2.11.3	Door Heater Controls for Cooler or Freezer	267
2.11.4	Electronically Commutated Motors (ECM) for Walk-in and Reach-in Coolers/Freezers	270
2.11.5	Strip Curtain for Walk-in Coolers and Freezers	273
2.11.6	Beverage and Snack Machine Controls	276
2.11.7	Refrigeration Door Gasket Replacement	277
2.12 S	hell End Use	278
2.12.1	Windows	278
2.12.2	Ceiling and Wall Insulation	285
2.12.3	Ceiling Insulation	290

Volume 2: Commercial and Industrial Measures

2.1 Agricultural End Use

2.1.1 Engine Block Heater for Agricultural Equipment

This measure was not characterized for Version 1 of the Missouri Statewide TRM.

2.2 Appliances End Use

2.2.1 Clothes Washer

DESCRIPTION

This measure relates to the installation of a commercial grade clothes washer meeting the ENERGY STAR minimum qualifications. Note it is assumed the DHW and dryer fuels of the installations are known.

This measure was developed to be applicable to the following program types: TOS, NC.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The Commercial grade Clothes washer must meet the ENERGY STAR minimum qualifications (provided in the table below), as required by the program.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is a commercial grade clothes washer meeting the minimum federal baseline as of January 2013¹.

Efficiency Level		Top loading	Front Loading
Baseline	Federal Standard	≥1.6 MEF, ≤8.5 WF	≥2.00 MEF, ≤5.5 WF
Efficient ENERGY STAR		≥2.2 MEF	, ≤4.5 WF

The Modified Energy Factor (MEF) includes unit operation, water heating, and drying energy use, with the higher the value the more efficient the unit; "The quotient of the capacity of the clothes container, divided by the total clothes washer energy consumption per cycle, with such energy consumption expressed as the sum of the machine electrical energy consumption, the hot water energy consumption, and the energy required for removal of the remaining moisture in the wash load."

The Water Factor (WF) indicates the total water consumption of the unit, with the lower the value the less water required; "The quotient of the total weighted per-cycle water consumption for cold wash, divided by the capacity of the clothes washer." 2

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 11 years³.

DEEMED MEASURE COST

The incremental cost is assumed to be \$2004:

LOADSHAPE

Loadshape – Commercial Miscellaneous

¹ See Federal Standard 10 CFR 431.152.

² Definitions provided on the Energy star website.

³ Appliance Magazine, September 2007 as referenced in ENERGY STAR Commercial Clothes Washer Calculator.

⁴ Based on Industry Data 2007 as referenced in ENERGY STAR Commercial Clothes Washer Calculator.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

$$\Delta kWh = \left[\left(Capacity * \frac{1}{MEFbase} * Ncycles \right) * \left(\%CWbase + (\%DHWbase * \%Electric_{DHW}) + \left(\%Dryerbase * \%Electric_{Dryer} \right) \right] - \left[\left(Capacity * \frac{1}{IMEFeff} * Ncycles \right) * \left(\%CWeff + (\%DHWeff * \%Electric_{DHW}) + \left(\%Dryereff * \%Electric_{Dryer} \right) \right]$$

Where:

Capacity = Clothes Washer capacity (cubic feet)

= Actual - If capacity is unknown, assume 3.1 cubic feet ⁵

MEFbase = Modified Energy Factor of baseline unit

	MEFbase			
Efficiency Level	Top loading	Front	Weighted	
		Loading	Average ⁶	
Federal Standard	1.6	2.0	1.7	

MEFeff = Modified Energy Factor of efficient unit

= Actual. If unknown, assume average values provided below.

		MEFeff		
Efficiency Level	Top loading	Front	Weighted	
		Loading	Average	
ENERGY STAR		2.2		

Ncycles = Number of Cycles per year

 $=2190^{7}$

%CW = Percentage of total energy consumption for Clothes Washer operation (different

for baseline and efficient unit – see table below)

⁵ Based on the average clothes washer volume of all units that pass the Federal Standard on the CEC database of commercial Clothes Washer products (accessed on 11/26/2015).

⁶ Weighted average MEF of Federal Standard rating for Front Loading and Top Loading units. Baseline weighting is based upon the relative top front loading percentage of available non-ENERGY STAR commercial products in the CEC database (accessed 11/26/2015) and ENERGY STAR weighting is based on eligible products as of 11/26/2015. The relative weightings are as follows, see more information in "Commercial Clothes Washer Analysis.xlsx":

Efficiency Level	Front	Top
Baseline	37%	63%
ENERGY STAR	99%	1%

⁷ Based on DOE Technical Support Document, 2009; Chapter 8 Life-Cycle Cost and Payback Period Analysis, p 8-15.

%DHW = Percentage of total energy consumption used for water heating (different for

baseline and efficient unit – see table below)

%Dryer = Percentage of total energy consumption for dryer operation (different for

baseline and efficient unit – see table below)

	Percentage of Total Energy Consumption ⁸			
	%CW	%Dryer		
Federal Standard	6.5%	25.9%	67.6%	
ENERGY STAR	3.5%	14.1%	82.4%	

%Electric_{DHW} = Percentage of DHW savings assumed to be electric

DHW fuel	%Electric _{DHW}
Electric	100%
Natural Gas	0%

%Electric_{Drver} = Percentage of dryer savings assumed to be electric

Dryer fuel	%Electric _{Dryer}
Electric	100%
Natural Gas	0%

Using the default assumptions provided above, the prescriptive savings for each configuration are presented below⁹:

	ΔkWH			
Efficiency I and	Electric DHW	Gas DHW	Electric DHW	Gas DHW
Efficiency Level	Electric Dryer	Electric Dryer	Gas Dryer	Gas Dryer
ENERGY STAR	808.2	229.3	725.3	146.5

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

 Δ kWh = Energy Savings as calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $=0.0001379439^{10}$

⁸ The percentage of total energy consumption that is used for the machine, heating the hot water, or by the dryer is different depending on the efficiency of the unit. Values are based on a data provided in the ENERGY STAR Calculator for Commercial Clothes Washers.

⁹ Note that the baseline savings is based on the weighted average baseline MEF (as opposed to assuming Front baseline for Front efficient unit and Top baseline for Top efficient unit). The reasoning is that the support of the program of more efficient units (which are predominately front loading) will result in some participants switching from planned purchase of a top loader to a front loader.

¹⁰ Based on Ameren Missouri 2016 Loadshape for Business Miscellaneous End-Use. Upon inspection and comparison to the Residential clothes washer coincidence factor, this is a reasonable assumption until data becomes available to inform a technology specific coincidence factor. Given that business laundry schedules are likely more variable compared to residential, it follows that less overlap with the system peak hour is possible.

Using the default assumptions provided above, the prescriptive savings for each configuration are presented below:

	$\Delta \mathrm{kW}$			
Efficiency Level	Electric DHW	Gas DHW	Electric DHW	Gas DHW
Efficiency Level	Electric Dryer	Electric Dryer	Gas Dryer	Gas Dryer
ENERGY STAR	0.1115	0.0316	0.1001	0.0202

NATURAL GAS SAVINGS

$$\Delta Therms = \left[\left[\left(Capacity * \frac{1}{IMEFbase} * Ncycles \right) * \left((\%DHWbase * \%Natural Gas_{DHW} * R_eff) + (\%Dryerbase * \%Gas_{Dryer} \%Gas_Dryer) \right) \right] - \left[\left(Capacity * \frac{1}{IMEFeff} * Ncycles \right) * \left((\%DHWeff * \%Gas_{DHW} \%Natural Gas_DHW * R_eff) + (\%Dryereff * \%Gas_{Dryer} \%Gas_Dryer) \right) \right] * Therm_convert$$

Where:

%Gas_{DHW} = Percentage of DHW savings assumed to be Natural Gas

DHW fuel	%Gas _{DHW}
Electric	0%
Natural Gas	100%

R_eff = Recovery efficiency factor

 $=1.26^{11}$

%Gas_{Drver} = Percentage of dryer savings assumed to be Natural Gas

Dryer fuel	%Gas _{Dryer}
Electric	0%
Natural Gas	100%

Therm_convert = Conversion factor from kWh to Therm

= 0.03412

Other factors as defined above.

Using the default assumptions provided above, the prescriptive savings for each configuration are presented below:

	ΔTherms			
Efficiency I evol	Electric DHW	Gas DHW	Electric DHW	Gas DHW
Efficiency Level	Electric Dryer	Electric Dryer	Gas Dryer	Gas Dryer
ENERGY STAR	0.0	24.9	2.8	27.7

¹¹ To account for the different efficiency of electric and Natural Gas hot water heaters (gas water heater: recovery efficiencies ranging from 0.74 to 0.85 (0.78 used), and electric water heater with 0.98 recovery efficiency (http://www.energystar.gov/ia/partners/bldrs lenders raters/downloads/Waste Water Heat Recovery Guidelines.pdf). Therefore a factor of 0.98/0.78 (1.26) is applied.

WATER IMPACT DESCRIPTIONS AND CALCULATION

 $\Delta Water(gallons) = Capacity * (IWFbase - IWFeff) * Ncycles$

Where:

WFbase

= Water Factor of baseline clothes washer

	WFbase			
Efficiency Level	Top loading	Front	Weighted	
	1 op ioading	Loading	Average ¹²	
Federal Standard	8.5	5.5	7.4	

WFeff = Water Factor of efficient clothes washer

= Actual - If unknown assume average values provided below

Using the default assumptions provided above, the prescriptive water savings for each efficiency level are presented below:

	WF			∆Water (gallons per year)
Efficiency Level	Top Loaders	Front Loaders	Weighted Average	Weighted Average
Federal Standard	8.5	5.5	7.4	n/a
ENERGY STAR	4.5			19,874

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-MSC-CLWA-V01-170331

¹² Weighted average MEF of Federal Standard rating for Front Loading and Top Loading units. Baseline weighting is based upon the relative top v front loading percentage of available non-ENERGY STAR commercial product in the CEC database (accessed 11/26/2015) and ENERGY STAR weighting is based on eligible products as of 11/26/2015. The relative weightings are as follows, see more information in "Commercial Clothes Washer Analysis.xlsx":

Efficiency Level	Front	Top
Baseline	37%	63%
ENERGY STAR	99%	1%

2.2.2 Clothes Dryer

DESCRIPTION

This measure is for the installation of a residential clothes dryer, utilized in a commercial setting, meeting the ENERGY STAR criteria. ENERGY STAR qualified clothes dryers save energy through a combination of more efficient drying and reduced runtime of the drying cycle. More efficient drying is achieved through increased insulation, modifying operating conditions such as air flow and/or heat input rate, improving air circulation through better drum design or booster fans, and improving efficiency of motors. Reducing the runtime of dryers through automatic termination by temperature and moisture sensors is believed to have the greatest potential for reducing energy use in clothes dryers¹³. ENERGY STAR provides criteria for both gas and electric clothes dryers.

This measure was developed to be applicable to the following program types: TOS, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

Clothes dryer must meet the ENERGY STAR criteria, as required by the program.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is a clothes dryer meeting the minimum federal requirements for units manufactured on or after January 1, 2015.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 14 years¹⁴.

DEEMED MEASURE COST

Dryer Size	Incremental Cost ¹⁵
Standard	\$75
Compact	\$105

LOADSHAPE

Loadshape - Commercial Miscellaneous

¹³ ENERGY STAR Market & Industry Scoping Report. Residential Clothes Dryers. Table 8. November 2011. http://www.energystar.gov/ia/products/downloads/ENERGY_STAR_Scoping_Report_Residential_Clothes_Dryers.pdf

¹⁴ Based on an average estimated range of 12-16 years. ENERGY STAR Market & Industry Scoping Report. Residential Clothes Dryers. November 2011.

http://www.energystar.gov/ia/products/downloads/ENERGY STAR Scoping Report Residential Clothes Dryers.pdf

¹⁵ Cost based on ENERGY STAR Savings Calculator for ENERGY STAR Qualified Appliances. https://www.energystar.gov/sites/default/files/asset/document/appliance_calculator.xlsx

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

$$\Delta kWh = \left(\frac{Load}{CEFbase} - \frac{Load}{CEFeff}\right) * Ncycles * \%Electric$$

Where:

Load

= The average total weight (lbs) of clothes per drying cycle. If dryer size is unknown, assume standard.

Drver Size	Load (lbs) ¹⁶
Standard	8.45
Compact	3

CEFbase

= Combined energy factor (CEF) (lbs/kWh) of the baseline unit is based on existing federal standards energy factor and adjusted to CEF as performed in the ENERGY STAR analysis¹⁷. If product class unknown, assume electric, standard.

Product Class	CEFbase (lbs/kWh)
Vented Electric, Standard (≥ 4.4 ft³)	3.11
Vented Electric, Compact (120V) (< 4.4 ft ³)	3.01
Vented Electric, Compact (240V) (<4.4 ft ³)	2.73
Ventless Electric, Compact (240V) (<4.4 ft ³)	2.13
Vented Gas	2.84^{18}

CEFeff

= CEF (lbs/kWh) of the ENERGY STAR unit based on ENERGY STAR requirements. 19 If product class unknown, assume electric, standard.

Product Class	CEFeff
Vented or Ventless Electric, Standard (≥ 4.4 ft³)	3.93
Vented or Ventless Electric, Compact (120V) (< 4.4	3.80
Vented Electric, Compact (240V) (< 4.4 ft ³)	3.45
Ventless Electric, Compact (240V) (< 4.4 ft ³)	2.68
Vented Gas	3.48^{20}

 $\underline{https://www.energystar.gov/index.cfm?c=clothesdry.pr_crit_clothes_dryers}$

¹⁶ Based on ENERGY STAR test procedures. https://www.energystar.gov/index.cfm?c=clothesdry.pr_crit_clothes_dryers

¹⁷ ENERGY STAR Draft 2 Version 1.0 Clothes Dryers Data and Analysis

¹⁸ Federal standards report CEF for gas clothes dryers in terms of lbs/kWh. To determine gas savings, this number is later converted to therms.

¹⁹ ENERGY STAR Clothes Dryers Key Product Criteria.

²⁰ Federal standards report CEF for gas clothes dryers in terms of lbs/kWh. To determine gas savings, this number is later converted to therms.

Ncycles

= Number of dryer cycles per year. Use actual data if available. If unknown, refer to the table below.²¹

Application	Cycles per Year
Multi-family	1,074
Laundromat	1,483
On-Premise Laundromat	3,607

%Electric

= The percent of overall savings coming from electricity

= 100% for electric dryers, 5% for gas dryers²²

Using defaults provided above:

	kWh		
Product Class	Multi- family	Laundromat	On-Premise Laundromat
Vented Electric, Standard ($\geq 4.4 \text{ ft}^3$)	608.9	840.7	2044.9
Vented Electric, Compact (120V) (< 4.4 ft ³)	222.5	307.3	747.4
Vented Electric, Compact (240V) (<4.4 ft ³)	246.3	340.1	827.2
Ventless Electric, Compact (240V) (<4.4 ft ³)	310.4	428.7	1042.6
Vented Gas	29.4	40.6	98.7

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

ΔkWh

= Energy Savings as calculated above

CF

= Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $=0.0001379439^{23}$

Using defaults provided above:

	kW		
Product Class	Multi- family	Laundromat	On-Premise Laundromat
Vented Electric, Standard (≥ 4.4 ft ³)	0.0840	0.1160	0.2821

²¹ NOPR analysis for DOE Commercial Clothes Washer standard. Annual use cycles of 1,074 and 1,483 for multi-family and laundromat applications, respectively. https://www.regulations.gov/document?D=EERE-2012-BT-STD-0020-0021. On-premise laundromat cycle average value for dryer cycles in healthcare facility, hotels, drycleaners and laundromats from tests conducted in Nicor Gas Emerging Technology Program's Commercial Dryer Modulation Retrofit Public Project Report.

²² %Electric accounts for the fact that some of the savings on gas dryers comes from electricity (motors, controls, etc). 5% was determined using a ratio of the electric to total savings from gas dryers given by ENERGY STAR Draft 2 Version 1.0 Clothes Dryers Data and Analysis. Value reported in 2015 EPA EnergySTAR appliance calculator.

²³ Based on Ameren Missouri 2016 Loadshape for Business Miscellaneous End-Use. Upon inspection and comparison to the Residential clothes washer coincidence factor, this is a reasonable assumption until data becomes available to inform a technology specific coincidence factor. Given that business laundry schedules are likely more variable compared to residential, it follows that less overlap with the system peak hour is possible.

		kW	
Product Class	Multi- family	Laundromat	On-Premise Laundromat
Vented Electric, Compact (120V) (< 4.4 ft ³)	0.0307	0.0424	0.1031
Vented Electric, Compact (240V) (<4.4 ft ³)	0.0340	0.0469	0.1141
Ventless Electric, Compact (240V) (<4.4 ft ³)	0.0428	0.0591	0.1438
Vented Gas	0.0041	0.0056	0.0136

NATURAL GAS ENERGY SAVINGS

Natural gas savings only apply to ENERGY STAR vented gas clothes dryers.

$$\Delta Therm = \left(\frac{Load}{CEFbase} - \frac{Load}{CEFeff}\right) * Ncycles * Therm_convert * \%Gas$$

Where:

Therm_convert = Conversion factor from kWh to Therm

= 0.03413

%Gas = Percent of overall savings coming from gas

= 0% for electric units and 84% for gas units²⁴

Using defaults provided above:

 Δ Therms = (8.45/2.84 - 8.45/3.48) * Ncycles * 0.03413 * 0.84

	ΔTherms		
Product Class	Multi-family	Laundromat	On-Premise
	Mulu-lallilly		Laundromat
Vented Gas	16.8	23.3	56.6

PEAK GAS SAVINGS

Savings for this measure is assumed to be evenly spread across the year. The Peak Gas Savings is therefore assumed to be:

$$\Delta PeakTherms = \frac{\Delta Therms}{365.25}$$

Where:

 Δ Therms = Therm impact calculated above

365.25 = Days per year

Using defaults provided above:

²⁴ %Gas accounts for the fact that some of the savings on gas dryers comes from electricity (motors, controls, etc). 84% was determined using a ratio of the gas to total savings from gas dryers given by ENERGY STAR Draft 2 Version 1.0 Clothes Dryers Data and Analysis.

	ΔPeakTherms		
Product Class	Multi-family	Laundromat	On-Premise
	Mulu-lalliny	Launuromat	Laundromat
Vented Gas	0.0461	0.0637	0.1549

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-APL-ESDR-V01-170331

2.3 Compressed Air End Use

2.3.1 Compressed Air No Loss Condensate Drain

DESCRIPTION

No-loss condensate drains remove condensate as needed without venting compressed air, resulting in less air demand and better efficiency. Replacement or upgrades of existing no-loss drains are not eligible for this measure.

This measure was developed to be applicable to the following program types: RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is a no-loss condensate drain.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a standard condensate drain (open valve, timer, or both).

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The lifetime of a no-loss condensate drain is assumed to be 13 years.²⁵

DEEMED MEASURE COST

The measure cost is \$700 per drain. 26

LOADSHAPE

Compressed Air

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = CFM_{reduced} * kW_{CFM} * Hours$

Where:

 $CFM_{reduced}$ = Reduced air consumption (CFM) per drain

 $= 3 \text{ CFM}^{27}$

kW_{CFM} = System power demand reduction per reduced air consumption (kw/CFM),

depending on the type of compressor control, see table below²⁸

²⁵ "Measure Life Study," Energy & Resource Solutions (prepared for the Massachusetts Joint Utilities): Table 1-1, 2005.

²⁶ Based on empirical project data from ComEd Comprehensive Compressed Air Study program and VEIC review of pricing data found in CAS Cost Data.xls

²⁷ Reduced CFM consumption is based on a timer drain opening for 10 seconds every 300 seconds as the baseline. See "Industrial System Standard Deemed Saving Analysis.xls"

²⁸ Calculated based on the type of compressor control. This assumes the compressor will be between 40% and 100% capacity before and after the changes to the system demand. See "Industrial System Standard Deemed Saving Analysis.xls"

Compressor Control Type	$\mathrm{kW}_{\mathrm{CFM}}$
Reciprocating - On/off Control	0.184
Reciprocating - Load/Unload	0.136
Screw - Load/Unload	0.152
Screw - Inlet Modulation	0.055
Screw - Inlet Modulation w/ Unloading	0.055
Screw - Variable Displacement	0.153
Screw - VFD	0.178

Hours

- = Compressed air system pressurized hours
- = Use actual hours if known, otherwise assume values in table below:

Shift	Hours
Single shift (8/5)	1976 hours 7 AM – 3 PM, weekdays, minus some
(0/3)	holidays and scheduled down time
	3952 hours
2-shift (16/5)	7AM – 11 PM, weekdays, minus some
	holidays and scheduled down time
	5928 hours
3-shift (24/5)	24 hours per day, weekdays, minus some
	holidays and scheduled down time
	8320 hours
4-shift (24/7)	24 hours per day, 7 days a week minus some
	holidays and scheduled down time

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

 ΔkWh

= Electric energy savings, calculated above

CF

= Summer peak coincidence demand (kW) to annual energy (kWh) factor

= 0.0 for Single Shift operation (due to the fact that operation is not expected during system peak period).

 $= 0.0001379439^{29}$ for all other shifts

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

²⁹ 2016 Ameren Missouri Coincident Peak Demand Factor for Commercial Compressed Air. See reference "Ameren Missouri 2016 Appendix E - End Use Shapes and Coincident Factors.pdf"

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-CPA-NLCD-V01-170331

2.3.2 Compressed Air Nozzle

DESCRIPTION

This measure applies to the replacement of a standard air nozzle with high-efficiency air nozzle used in a compressed air system. High-efficiency air nozzles use the Coandă effect to pull in free air and use significantly less compressed air for blowing off parts or for drying. These nozzles have the added benefits of noise reduction and improved safety in systems with greater than 30 psig.

This measure was developed to be applicable to the following program types: DI, RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is a compressed air nozzle meeting program requirements.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a standard air nozzle.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is 15 years.³⁰

DEEMED MEASURE COST

Incremental measure costs are presented in the following table.³¹

Nozzle Diameter	Measure Cost
1/8"	\$42
1/4"	\$57
5/16"	\$87
1/2"	\$121

LOADSHAPE

Compressed Air

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = (SCFM * SCFM\%Reduced) * kW/CFM * \%Use * Hours$

Where:

SCFM = Air flow through standard nozzle.

³⁰ "Focus on Energy Evaluation - Business Programs: Measure Life Study," Prepared for State of Wisconsin Public Service Commission by PA Consulting Group, August 25, 2009.

³¹ Costs are from EXAIR's website and are an average of nozzles that meet the flow requirements. Models include Atto Super, Pico Super, Nano Super, Micro Super, Mini Super, Super and Large Super nozzles. www.exair.com. Accessed March 20, 2014.

= Actual rated flow at 80 psi, if known. If unknown, use CFM by orifice diameter from table below^{32, 33}.

Orifice Diameter	SCFM
1/8"	21
1/4"	58
5/16"	113
1/2"	280

SCFM%Reduced

= Percent reduction in air loss per nozzle.

= Estimated at $50\%^{34}$

kW/CFM

= System power reduction per air demand (kW/CFM), depending on the type of air compressor; see table below³⁵

Air Compressor Type	ΔkW/CF
Reciprocating – On/off Control	0.18
Reciprocating – Load/Unload	0.14
Screw - Load/Unload	0.15
Screw – Inlet Modulation	0.06
Screw – Inlet Modulation w/	0.06
Screw – Variable Displacement	0.15
Screw - VFD	0.18

%USE

= Percent of the compressor total operating hours that the nozzle is in use

= Custom, or if unknown, assume 5%³⁶

Hours

= Compressed air system pressurized hours

= Use actual hours if known, otherwise assume values in table below:

Shift	Hours
	1976 hours
Single shift (8/5)	7 AM – 3 PM, weekdays, minus some
	holidays and scheduled down time
	3952 hours
2-shift (16/5)	7AM – 11 PM, weekdays, minus some
	holidays and scheduled down time
3-shift (24/5)	5928 hours

³² Review of manufacturer's information

³³ Technical Reference Manual (TRM) for Ohio Senate Bill 221 "Energy Efficiency and Conservation Program" and 09-512-GE-UNC, October 15, 2009. Pgs 170-171

³⁴ Conservative estimate based on average values provided by the Compressed Air Challenge Training Program, Machinery's Handbook 25th Edition, and manufacturers' catalog.

³⁵ Calculated based on the type of compressor control. This assumes the compressor will be between 40% and 100% capacity before and after the changes to the system demand. See "Industrial System Standard Deemed Saving Analysis.xls"

³⁶ Assumes 50% handheld air guns and 50% stationary air nozzles. Manual air guns tend to be used less than stationary air nozzles, and a conservative estimate of 1 second of blow-off per minute of compressor run time is assumed. Stationary air nozzles are commonly more wasteful as they are often mounted on machine tools and can be manually operated resulting in the possibility of a long term open blow situation. An assumption of 5 seconds of blow-off per minute of compressor run time is used.

Shift	Hours
	24 hours per day, weekdays, minus some
	holidays and scheduled down time
	8320 hours
4-shift (24/7)	24 hours per day, 7 days a week minus
	some holidays and scheduled down time

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

 Δ kWh = Electric energy savings, calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

= 0.0 for Single Shift operation (due to the fact that operation is not expected

during system peak period).

 $= 0.0001379439^{37}$ for all other shifts

NATURAL GAS SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE CI-CPA-CNOZ-V01-170331

³⁷ 2016 Ameren Missouri Coincident Peak Demand Factor for Commercial Compressed Air. See reference "Ameren Missouri 2016 Appendix E - End Use Shapes and Coincident Factors.pdf"

2.3.3 VSD Air Compressor

DESCRIPTION

This measure relates to the installation of an air compressor with a variable frequency drive, load/no load controls or variable displacement control. A baseline modulating compressor regulates output by choking off the inlet air, which is not efficient. Efficient compressors use a variable speed drive on the motor to match output to the load. Savings are calculated using representative baseline and efficient demand numbers for compressor capacities according to the facility's load shape, and the number of hours the compressor runs at that capacity. Demand curves are as per DOE data for a Variable Speed compressor versus a Modulating compressor. This measure applies only to an individual compressor ≤ 40 hp.

This measure was developed to be applicable to the following program types: TOS.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The high efficiency equipment is a compressor ≤ 40 hp with variable speed control.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a modulating compressor with blow down $\leq 40 \text{ hp}$

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

10 years.³⁸

DEEMED MEASURE COST³⁹

Incremental Cost (\$) = (127 x hp_{compressor}) + 1446

Where:

 $hp_{compressor}$ = compressor motor nominal horsepower

LOADSHAPE

Compressed Air

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = 0.9 \text{ x hp}_{compressor} \text{ x HOURS x } (CF_b - CF_e)$

Where:

 ΔkWh = gross customer annual kWh savings for the measure

 $hp_{compressor}$ = compressor motor nominal horsepower

³⁸ Based on data provided by vendors, reference file "VSD compressor lifetime and costs.xls"

³⁹ Based on data provided by vendors, reference file "VSD compressor lifetime and costs.xls"

= compressor motor nominal horsepower to full load kW conversion factor

HOURS = compressor total annual hours of operation. Custom input, if unknown use the following defaults based on shift structure:

Shift	Hours
	1976 hours
Single shift (8/5)	7 AM - 3 PM, weekdays, minus some holidays
	and scheduled down time
	3952 hours
2-shift (16/5)	7AM – 11 PM, weekdays, minus some holidays
	and scheduled down time
	5928 hours
3-shift (24/5)	24 hours per day, weekdays, minus some
	holidays and scheduled down time
	8320 hours
4-shift (24/7)	24 hours per day, 7 days a week minus some
	holidays and scheduled down time

CF_b = baseline compressor factor⁴¹

=0.890

CF_e = efficient compressor ⁴²

=0.705

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

= 0.0 for Single Shift operation (due to the fact that operation is not expected during system peak period).

 $= 0.0001379439^{43}$ for all other shifts

NATURAL GAS ENERGY SAVINGS

N/A

⁴⁰ Conversion factor based on a linear regression analysis of the relationship between air compressor motor nominal horsepower and full load kW from power measurements of 72 compressors at 50 facilities on Long Island. See "BHP Weighted Compressed Air Load Profiles v3.xls".

⁴¹ Compressor factors were developed using DOE part load data for different compressor control types as well as load profiles from 50 facilities employing air compressors less than or equal to 40 hp. "See "BHP Weighted Compressed Air Load Profiles v3.xls" for source data and calculations.

⁴² Compressor factors were developed using DOE part load data for different compressor control types as well as load profiles from 50 facilities employing air compressors less than or equal to 40 hp. "See "BHP Weighted Compressed Air Load Profiles v3.xls" for source data and calculations. The "variable speed drive" compressor factor has been adjusted up from the 0.675 presented in the analysis to 0.705 to account for the additional power draw of the VSD.

⁴³ 2016 Ameren Missouri Coincident Peak Demand Factor for Commercial Compressed Air. See reference "Ameren Missouri 2016 Appendix E - End Use Shapes and Coincident Factors.pdf"

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-MSC-VSDA-V01-170331

2.4 Consumer Electronics End Use

2.4.1 Advanced Power Strip

This measure was not characterized for Version 1 of the Missouri Statewide TRM

2.5 Food Service End Use

2.5.1 Combination Oven

DESCRIPTION

This measure applies to full or half-sized electric ENERGY STAR combination ovens with a pan capacity ≥ 5 and ≤ 20 and to full or half-sized natural gas fired ENERGY STAR combination ovens with a pan capacity ≥ 6 installed in a commercial kitchen. Combination ovens combines the function of hot air convection (convection mode), saturated and superheated steam heating (steam mode), and combination convection/steam mode for moist heating, to perform steaming, baking, roasting, re-thermalizing, and proofing of various food products. ENERGY STAR certified combination ovens are approximately 20% more efficient than standard ovens.

This measure was developed to be applicable to the following program type: TOS.

If applied to other program types, measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be an ENERGY STAR certified combination oven meeting idle energy rate (kW or Btu/hr)) and cooking efficiency (%) limits, as determined by fuel type, operation mode (steam or convection), and pan capacity.

ENERGY STAR Requirements (Version 2.2, Effective October 7, 2015)

Fuel Type	Operation	Idle Rate (Btu/hr for Gas, kW for Electric)	Cooking-Energy Efficiency (%)
Natural Gas	Steam Mode	≤ 200P+6,511	≥ 41
rtaturar Gus	Convection Mode	\leq 150P+5,425	≥ 56
Electric	Steam Mode	\leq 0.133P+0.6400	≥ 55
Electric	Convection Mode	$\leq 0.080P + 0.4989$	≥ 76

Note: P = Pan capacity as defined in Section 1.T of the Commercial Ovens Program Requirements Version 2.2⁴⁴

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new electric or natural gas combination oven that is not ENERGY STAR certified.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years.⁴⁵

DEEMED MEASURE COST

The incremental capital cost for this measure is \$4,300.46

⁴⁴ Pan capacity is defined as the number of steam table pans the combination oven is able to accommodate as per the ASTM F-1495-05 standard specification.

https://www.energystar.gov/sites/default/files/Commercial%20Ovens%20Final%20Version%202.2%20Specification.pdf

⁴⁵ Lifetime from ENERGY STAR Commercial Kitchen Equipment Savings Calculator, which cites reference as "FSTC research on available models, 2009"

https://www.energystar.gov/sites/default/files/asset/document/commercial_kitchen_equipment_calculator.xlsx

⁴⁶ Nicor Gas Energy Efficiency Plan 2011-2014. Revised Plan Filed Pursuant to Order Docket 10-0562, May 27, 2011.

LOADSHAPE

Commercial Electric Cooking

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Custom calculation for an electric combination oven below.⁴⁷

 $\Delta kWh = (\Delta CookingEnergy_{ConvElec} + \Delta CookingEnergy_{SteamElec} + \Delta IdleEnergy_{ConvElec} + \Delta IdleEnergy_{SteamElec}) * Days/1,000$

Where:

 Δ CookingEnergy_{ConvElec} = Difference in cooking energy between baseline and efficient

combination oven in convection mode

 $= FoodCooked_{Elec} * (EFOOD_{ConvElec} / ElecEFF_{ConvBase} -$

 $EFOOD_{ConvElec} / ElecEFF_{ConvEE}) * %Conv$

 Δ CookingEnergy_{SteamElec} = Difference in cooking energy between baseline and efficient

combination oven in steam mode

 $= FoodCooked_{Elec} * (EFOOD_{SteamElec} / ElecEFF_{SteamBase} -$

 $EFOOD_{SteamElec} / ElecEFF_{SteamEE}) * %_{Steam}$

 Δ IdleEnergy_{ConvElec} = Difference in idle energy between baseline and efficient

combination oven in convection mode

 $= ((ElecIDLE_{ConvBase} * ((Hours - FoodCooked_{Elec} / ElecPC_{ConvBase}))))$

* %_{Conv})) - (ElecIDLE_{ConvEE} * ((Hours - FoodCooked_{Elec}

/ElecPC_{ConvEE}) * %_{Conv})))

ΔIdleEnergy_{SteamElec} = Difference in idle energy between baseline and efficient

combination oven in steam mode

= [(ElecIDLE_{SteamBase} * ((Hours – FoodCooked_{Elec}

/ElecPC_{SteamBase}) * %_{Steam})) - (ElecIDLE_{SteamEE} * ((Hours -

FoodCooked_{Elec} /ElecPC_{SteamEE}) * %_{Steam}))]

Days = Annual days of operation

= Custom or if unknown, use 365.25 days per year

1,000 = Wh to kWh conversion factor

Where:

FoodCooked_{Flec} = Food cooked per day for electric combination oven

= Custom, or if unknown, use 200 lbs if P < 15 or 250 lbs if P \ge 15

EFOOD_{ConvElec} = ASTM energy to food for electric combination oven in

convection mode

⁴⁷ Algorithms and assumptions derived from ENERGY STAR Commercial Kitchen Equipment Savings Calculator

=73.2 Wh/lb

ElecEff = Cooking energy efficiency of electric combination oven

= Custom or if unknown, use values from table below

	Base	EE
ElecEFF _{Conv}	72%	76%
ElecEFF _{Steam}	49%	55%

%_{Conv} = Percentage of time in convection mode

= Custom or if unknown, use 50%

EFOOD_{SteamElec} = ASTM energy to food for electric combination oven in steam

mode

= 30.8 Wh/lb

%_{steam} = Percentage of time in steam mode

 $= 1 - \%_{conv}$

 $ElecIDLE_{Base}$ = Idle energy rate (W) of baseline electric combination oven

= Custom or if unknown, use values from table below

Pan Capacity	Convection Mode (ElecIDLE _{ConvBase)}	Steam Mode (ElecIDLE _{SteamBase)}	
< 15	1,320	5,260	
≥ 15	2,280	8,710	

Hours = Average daily hours of operation

= Custom or if unknown, use 12 hours per day

 $ElecPC_{Base}$ = Production capacity (lbs/hr) of baseline electric combination

oven

= Custom of if unknown, use values from table below

Pan Capacity	Convection Mode (ElecPC _{ConvBase})	Steam Mode (ElecPC _{SteamBase)}
< 15	79	126
≥15	166	295

ElecIDLE_{ConvEE} = Idle energy rate of ENERGY STAR electric combination oven in convection mode

= (0.08*P + 0.4989)*1,000

= Production capacity (lbs/hr) of ENERGY STAR electric

combination oven

= Custom of if unknown, use values from table below

EL. IDI E

ElecPC_{EE}

Pan Capacity	Convection Mode (ElecPC _{ConvEE)}	Steam Mode (ElecPC _{SteamEE)}
< 15	119	177
≥ 15	201	349

ElecIDLE_{SteamEE}

= Idle energy rate of ENERGY STAR electric combination oven

in steam mode

= (0.133*P + 0.64)*1,000

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWh * CF$$

Where:

 Δ kWh = Electric energy savings, calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001998949^{48}$

Other variables as defined above.

NATURAL GAS ENERGY SAVINGS

Custom calculation for a gas combination oven below.⁴⁹

$$\Delta Therms = (\Delta CookingEnergy_{ConvGas} + \Delta CookingEnergy_{SteamGas} + \Delta IdleEnergy_{ConvGas} + \Delta IdleEnergy_{SteamGas}) * Days/100,000$$

Where:

 $\Delta CookingEnergy_{ConvGas} = Difference in cooking energy between baseline and efficient$

combination oven in convection mode

 $= FoodCooked_{Gas} * (EFOOD_{ConvGas} / GasEFF_{ConvBase} - EFOOD_{ConvGas} / GasEFF_{ConvBase} - FOOD_{ConvGas} - FOOD_{ConvGas} / GasEFF_{ConvBase} - FOOD_$

GasEFF_{ConvEE}) * %Conv

 Δ CookingEnergy_{SteamGas} = Difference in cooking energy between baseline and efficient

combination oven in steam mode

 $= FoodCooked_{Gas} * (EFOOD_{SteamGas} / GasEFF_{SteamBase} - EFOOD_{SteamGas} / GasEFF_{SteamBase} - FOOD_{SteamGas} / GasEFF_{Steam$

 $GasEFF_{SteamEE}) * %_{Steam}$

ΔIdleEnergy_{ConyGas} = Difference in idle energy between baseline and efficient combination

oven in convection mode

 $= ((GasIDLE_{ConvBase} * ((Hours - FoodCooked_{Gas} / GasPC_{ConvBase}) * \%_{Conv}))$

- $(GasIDLE_{ConvEE} * ((Hours - FoodCooked_{Gas} / GasPC_{ConvEE}) * \%_{Conv})))$

ΔIdleEnergy_{SteamGas} = Difference in idle energy between baseline and efficient combination

oven in steam mode

⁴⁸ 2016 Ameren Missouri Coincident Peak Demand Factor for Commercial Electric Cooking. See reference "Ameren Missouri 2016 Appendix E - End Use Shapes and Coincident Factors.pdf"

⁴⁹ Algorithms and assumptions derived from ENERGY STAR Commercial Kitchen Equipment Savings Calculator

 $= [(GasIDLE_{SteamBase}*((Hours-FoodCooked_{Gas}/GasPC_{SteamBase})*\\ \%_{Steam})) - (GasIDLE_{SteamEE}*((Hours-FoodCooked_{Gas}/GasPC_{SteamEE})*\\ \%_{Steam}))]$

100,000 = Btu to therms conversion factor

Where:

 $FoodCooked_{Gas}$ = Food cooked per day for gas combination oven

= Custom, or if unknown, use 200 lbs if P < 15, 250 lbs if $15 \le P$ 30, or 400

lbs if $P \ge 30$

EFOOD_{ConvGas} = ASTM energy to food for gas combination oven in convection mode

= 250 Btu/lb

GasEff = Cooking energy efficiency of gas combination oven

= Custom or if unknown, use values from table below

	Base	EE
GasEFF _{Conv}	52%	56%
GasEFF _{Steam}	39%	41%

EFOOD_{SteamGas} = ASTM energy to food for gas combination oven in steam mode

= 105 Btu/lb

GasIDLE_{Base} = Idle energy rate (Btu/hr) of baseline gas combination oven

= Custom or if unknown, use values from table below

Pan Capacity	Convection Mode (GasIDLE _{ConvBase)}	Steam Mode (GasIDLE _{SteamBase)}
< 15	8,747	18,656
$15 \le P \ 30$	10,788	24,562
≥30	13,000	43,300

GasPC_{Base} = Production capacity (lbs/hr) of baseline gas combination oven

= Custom of if unknown, use values from table below

Pan Capacity	Convection Mode (GasPC _{ConvBase)}	Steam Mode (GasPC _{SteamBase)}
< 15	125	195
$15 \le P \ 30$	176	211
≥30	392	579

GasIDLE_{ConvEE} = Idle energy rate of ENERGY STAR gas combination oven in

convection mode

= 150*P + 5,425

GasPC_{EE} = Production capacity (lbs/hr) of ENERGY STAR gas combination oven

= Custom of if unknown, use values from table below

Pan Capacity	Convection Mode (GasPC _{ConvEE)}	Steam Mode (GasPC _{SteamEE)}
< 15	124	172
$15 \le P \ 30$	210	277
≥30	394	640

GasIDLE_{SteamEE}

= Idle energy rate of ENERGY STAR gas combination oven in steam mode

= 200*P +6,511

Other variables as defined above.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-FSE-ESCV-V01-170331

2.5.2 Commercial Steam Cooker

DESCRIPTION

This measure applies to electric or natural gas fired ENERGY STAR steam cookers installed in a commercial kitchen. Commercial steam cookers contain compartments where steam energy is transferred to food by direct contact. ENERGY STAR certified steam cookers have shorter cook times, higher production rates, and reduced heat loss due to better insulation and more efficient steam delivery.

This measure was developed to be applicable to the following program types: TOS.

If applied to other program types, measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be an ENERGY STAR certified steam cooker meeting idle energy rate (W or Btu/hr)) and cooking efficiency (%) limits, as determined by fuel type and pan capacity.

ENERGY STAR Requirements (Version 1.2, Effective August 1, 2003)

	Electric Efficiency Requirements		Natural Gas Efficiency	
Pan Capacity	Idle Energy Rate	Cooking	Idle Energy Rate	Cooking
	Idle Energy Rate	Efficiency		Efficiency
3-pan	≤ 400 W		≤ 6,250 Btu/hr	≥ 38%
4-pan	≤ 530 W	> 500/	≤ 8,350 Btu/hr	N/A
5-pan	≤ 670 W	≥ 50%	≤ 10,400 Btu/hr	
6-pan and larger	≤ 800 W		≤ 12,500 Btu/hr	

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new electric or natural gas steam cooker that is not ENERGY STAR certified.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years.⁵⁰

DEEMED MEASURE COST

The incremental capital cost⁵¹ for this measure, listed in the table below, depends on fuel type and pan capacity:

Pan Capacity	Electric Steam Cooker Costs	Natural Gas Steam Cooker Costs
3-pan	\$630	\$260
4-pan	\$1,210	N/A^{52}
5-pan	\$0	\$0
6-pan and larger	\$0	\$870

⁵⁰ Lifetime from ENERGY STAR Commercial Kitchen Equipment Savings Calculator, which cites reference as "FSTC research on available models, 2009"

_

 $http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equipment_calculator.xlsx$

⁵¹ Measure costs from ENERGY STAR Commercial Kitchen Equipment Savings Calculator, which cites reference as "EPA research using AutoQuotes, 2012"

⁵² Although Version 1.2 of the ENERGY STAR specification provides an idle energy rate requirement for 4-pan gas units, currently, there are no 4-pan gas units available. These units were excluded from this measure characterization.

LOADSHAPE

Commercial Electric Cooking

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Custom calculation for an electric steam cooker below, otherwise use deemed value from the table that follows.⁵³

 $\Delta kWh = (\Delta IdleEnergy + \Delta CookingEnergy) * Days/1,000$

Where:

 $\Delta IdleEnergy$ = [(1 - SteamMode) *(IdleRate_{Base} + SteamMode * Production_{Base} * Pans

EFOOD/Eff $_{Base}$) (Hours – FoodCooked/Production $_{Base}$ * Pans)] – [(1 – SteamMode) *(IdleRate $_{ESTAR}$ + SteamMode * Production $_{ESTAR}$ * Pans *EFOOD/Eff $_{ESTAR}$)* (Hours – FoodCooked/Production $_{ESTAR}$ * Pans)]

 Δ CookingEnergy = (FoodCooked * EFOOD/ Eff_{Base}) – (FoodCooked * EFOOD/ Eff_{ESTAR})

Where:

ΔIdleEnergy = Difference in idle energy between baseline and efficient steam cooker

 Δ CookingEnergy = Difference in cooking energy between baseline and efficient steam

cooker

Days = Annual days of operation

= Custom or if unknown, use 365.25 days per year

1,000 = Wh to kWh conversion factor

SteamMode = Time (%) in constant steam mode

= Custom or if unknown, use 40%

IdleRate_{Base} = Idle energy rate (W) of baseline electric steam cooker

 $= 1,100 \text{ W}^{54}$

IdleRate_{ESTAR} = Idle energy rate (W) of ENERGY STAR electric steam cooker

= Custom or if unknown, use value from table below as determined by pan

capacity

Pan Capacity	IdleRate _{ESTAR}
3	400
4	530
5	670
6	800

⁵³ Algorithms and assumptions derived from ENERGY STAR Commercial Kitchen Equipment Savings Calculator

⁵⁴ Idle energy rate for baseline steam cookers is the average of rates provided by ENERGY STAR for steam generator and boiler-based cookers

Pan Capacity	IdleRate _{ESTAR}
10	800

Production_{Base} = Production capacity (lb/hr) per pan of baseline electric steam cooker

= 23.3 lb/hr

Production_{ESTAR} = Production capacity (lb/hr) per pan of ENERGY STAR electric steam

cooker

= Custom or if unknown, use 16.7 lb/hr

Pans = Pan capacity of steam cooker

= Custom or if unknown, use 6 pans

EFOOD = ASTM energy to food

= 30.8 Wh/lb

Eff_{Base} = Cooking efficiency (%) of baseline electric steam cooker⁵⁵

= 28%

Eff_{ESTAR} = Cooking efficiency (%) of ENERGY STAR electric steam cooker

= Custom or if unknown, use 50%

Hours = Average daily hours of operation

= Custom or if unknown, use 12 hours per day

FoodCooked = Food cooked per day (lbs)

= Custom or if unknown, use 100 pounds

Savings for all pan capacities are presented in the table below.

Energy Consumption of Electric Steam Cookers				
Pan Capacity	kWh _{Base}	$\mathbf{kWh}_{\mathbf{ESTAR}}$	Savings (kWh)	
3	18,438.9	7,637.6	10,801.3	
4	23,018.6	9,784.1	13,234.5	
5	27,563.8	11,953.8	15,609.9	
6	32,091.7	14,100.1	17,991.6	
10	50,134.5	21,384.3	28,750.1	
Average	30,249.5	12,972.0	17,277.5	

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWh * CF$$

Where:

 Δ kWh = Electric energy savings, calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

⁵⁵ Cooking efficiency for baseline steam cookers is the average of efficiencies provided by ENERGY STAR Commercial Kitchen Equipment Savings Calculator for steam generator and boiler-based cookers

 $= 0.0001998949^{56}$

Other variables as defined above.

NATURAL GAS ENERGY SAVINGS

Custom calculation for a natural gas steam cooker below, otherwise use deemed value from the table that follows.⁵⁷

 $\Delta Therms = (\Delta IdleEnergy + \Delta CookingEnergy) * Days/100,000$

Where:

 Δ IdleEnergy = [(1 - SteamMode) *(IdleRate_{Base} + SteamMode * Production_{Base} * Pans

EFOOD/Eff_{Base}) (Hours – FoodCooked/Production_{Base} * Pans)] – [(1 – SteamMode) *(IdleRate_{ESTAR} + SteamMode * Production_{ESTAR} * Pans *EFOOD/Eff_{ESTAR})* (Hours – FoodCooked/Production_{ESTAR} * Pans)]

 Δ CookingEnergy = (FoodCooked * EFOOD/ Eff_{Base}) – (FoodCooked * EFOOD/ Eff_{ESTAR})

Where:

= Btu to therms conversion factor

IdleRate_{Base} = Idle energy rate (Btu/hr) of baseline gas steam cooker

 $= 16,500 \text{ Btu/hr}^{58}$

IdleRate_{ESTAR} = Idle energy rate (Btu/hr) of ENERGY STAR gas steam cooker

= Custom or if unknown, use value from table below as determined by pan

capacity

Pan Capacity	IdleRate _{ESTAR}	
3	6,250	
5	10,400	
6	12,500	
10	12,500	

Production Base = Production capacity (lb/hr) per pan of baseline gas steam cooker

= 23.3 lb/hr

Production_{ESTAR} = Production capacity (lb/hr) per pan of ENERGY STAR gas steam cooker

= Custom or if unknown, use 20 lb/hr

= ASTM energy to food

= 105 Btu/lb

Eff_{Base} = Cooking efficiency (%) of baseline gas steam cooker⁵⁹

⁵⁶ 2016 Ameren Missouri Coincident Peak Demand Factor for Commercial Electric Cooking. See reference "Ameren Missouri 2016 Appendix E - End Use Shapes and Coincident Factors.pdf"

⁵⁷ Algorithms and assumptions derived from ENERGY STAR Commercial Kitchen Equipment Savings Calculator

⁵⁸ Idle energy rate for baseline steam cookers is the average of rates provided by ENERGY STAR for steam generator and boiler-

⁵⁹ Cooking efficiency for baseline steam cookers is the average of efficiencies provided by ENERGY STAR for steam generator and boiler-based cookers

= 16.5%

Eff_{ESTAR} = Cooking efficiency (%) of ENERGY STAR gas steam cooker

= Custom or if unknown, use 38%

Other variables as defined above.

Savings for all pan capacities are presented in the table below.

Energy Consumption of Gas Steam Cookers			
Pan Capacity	Therms _{Base}	Therms _{ESTAR}	Savings (Therms)
3	1,301.5	492.8	808.7
5	1,842.1	795.7	1,046.4
6	2,107.2	947.8	1,159.4
10	3,157.4	1,344.5	1,812.9
Average	1,996.0	845.0	1,150.0

WATER IMPACT DESCRIPTIONS AND CALCULATION

Custom calculation below, otherwise use deemed value of 134,412.0 gallons per year. 60 Savings are the same for electric and gas steam cookers.

$$\Delta Water = (WaterUse_{Base} - WaterUse_{ESTAR}) * Hours * Days$$

Where:

WaterUse_{Base} = Water use (gal/hr) of baseline steam cooker

=40 gal/hr

WaterUse_{ESTAR} = Water use (gal/hr) of ENERGY STAR steam cooker⁶¹

= Custom or if unknown, use 9.3 gal/hr

Other variables as defined above

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-FSE-STMC-V01-170331

 $^{^{60}\} Algorithms\ and\ assumptions\ derived\ from\ ENERGY\ STAR\ Commercial\ Kitchen\ Equipment\ Savings\ Calculator$

⁶¹ Water use for ENERGY STAR steam cookers is the average of water use values provided by ENERGY STAR for steam generator, boiler-based, and boilerless cookers

2.5.3 Conveyor Oven

DESCRIPTION

This measure applies to a natural gas fired high efficiency gas conveyor oven installed in a commercial kitchen with a conveyor width greater than 25 inches.

Conveyor ovens are available using four different heating processes: infrared, natural convection with a ceramic baking hearth, forced convection or air impingement, or a combination of infrared and forced convection. Conveyor ovens are typically used for producing a limited number of products with similar cooking requirements at high production rates.

Some manufacturers offer an air-curtain feature at either end of the cooking chamber that helps to keep the heated air inside the conveyor oven. The air curtain operates as a virtual oven wall and helps reduce both the idle energy of the oven and the resultant heat gain to the kitchen.

This measure was developed to be applicable to the following program types: TOS.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be a natural gas conveyor oven with a tested baking energy efficiency > 42% and an idle energy consumption rate < 57,000 Btu/hr utilizing ASTM standard F1817.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new, standard, natural gas conveyor oven.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 17 years.⁶²

DEEMED MEASURE COST

The incremental capital cost for this measure is \$4,731.63

LOADSHAPE

N/A

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 N/A^{64}

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

⁶² Nicor Gas Energy Efficiency Plan 2011-2014. Revised Plan Filed Pursuant to Order Docket 10-0562, May 27, 2011

⁶³ Pacific Gas and Electric Company workpaper PGECOFST117, Commercial Conveyor Ovens, Food Service Equipment Workpaper June 1, 2009.

⁶⁴ There are currently no existing testing or efficiency standards for electric conveyor ovens.

NATURAL GAS ENERGY SAVINGS

Custom calculation is shown below. In instances where site specific information is unavailable for any given variable, the following default values may be used. ⁶⁵ In instances where all defaults are used, the resulting savings are 839.3 therms annually.

 $\Delta Therms = (\Delta PreheatEnergy + \Delta IdleEnergy + \Delta CookingEnergy) * Days/$

100,000

Where:

 Δ PreheatEnergy = NoPreheats * (Preheat_{Base} - Preheat_{EE})

 $\Delta IdleEnergy = (IdleRate_{Base} * (Hours - (FoodCooked/Production_{Base})) - (IdleRate_{EE} * (Hours - (FoodCooked/Production_{Base})))$

(Hours – (FoodCooked/Production_{EE}))

 Δ CookingEnergy = (FoodCooked * EFOOD/ Eff_{Base}) - (FoodCooked * EFOOD/ Eff_{EE})

Where:

Days = Annual days of operation

= Custom or if unknown, use 365.25 days per year

100,000 = Btu to therms conversion factor

NoPreheats = Number of preheats per day

= Custom or if unknown, use 1 preheat per day

 $Preheat_{Base}$ = Preheat energy of baseline oven

= 35,000 Btu

Preheat_{EE} = Preheat energy of efficient oven

= Custom or if unknown, use 18,000 Btu

 $IdleRate_{Base}$ = Idle energy rate of baseline oven

= 70,000 Btu/hr

IdleRate_{EE} = Idle energy rate of efficient oven

= Custom or if unknown, use 57,000 Btu/hr

Hours = Average daily hours of operation

= Custom or if unknown, use 12 hours per day

FoodCooked = Number of pizzas cooked per day

= Custom or if unknown, use 250 pizzas per day

Production_{Base} = Production capacity of baseline oven

= 150 pizzas per hour

Production_{EE} = Production capacity of efficient oven

= Custom or if unknown, use 220 pizzas per hour

EFOOD = ASTM energy to food

⁶⁵ Default values based on the Food Service Technology Center's online Gas Conveyor Oven Life-Cycle Cost Calculator.

= 166 Btu/pizza⁶⁶

 Eff_{Base} = Heavy-load cooking efficiency of baseline oven

= 20%

Eff_{EE} = Heavy-load cooking efficiency of efficient oven

= Custom or if unknown, use 42%

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-FSE-CVOV-V01-170331

⁶⁶ Calibrated value to give results consistent with the Food Service Technology Center's online Gas Conveyor Oven Life-Cycle Cost Calculator. This value is consistent with values found by FSTC experimental testing and values recognized by Energy Star.

2.5.4 Fryer

DESCRIPTION

This measure applies to electric or natural gas fired ENERGY STAR certified fryers installed in a commercial kitchen. ENERGY STAR fryers offer shorter cook times and higher production rates through advanced burner and heat exchanger designs. Fry pot insulation reduces standby losses, resulting in lower idle energy rates. Standard-sized ENERGY STAR fryers are up to 30% more efficient, and large-vat ENERGY STAR fryers are up to 35% more efficient, than standard fryers.

This measure was developed to be applicable to the following program type: TOS.

If applied to other program types, measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be an ENERGY STAR certified fryer meeting idle energy rate (W or Btu/hr)) and cooking efficiency (%) limits, as determined by both fuel type and fryer capacity (standard versus large vat).

ENERGY STAR Requirements (Version 2.0, Effective April 22, 2011)

Fryer Capacity	Electric Efficiency Requirements		Natural Gas Efficiency Requirements	
	Idle Energy Rate	Cooking Efficiency Consumption	Idle Energy Rate	Cooking Efficiency Consumption
Standard Open Deep-Fat Fryer	≤ 1,000 W		≤ 9,000 Btu/hr	
Large Vat Open Deep-Fat Fryer	≤ 1,100 W	≥ 80%	≤ 12,000 Btu/hr	≥ 50%

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new electric or natural gas fryer that is not ENERGY STAR certified.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years.⁶⁷

DEEMED MEASURE COST

The incremental capital cost for this measure is \$210 for standard electric, \$0 for large vat electric, \$0 for standard gas, and \$1,120 for large vat gas fryers.⁶⁸

LOADSHAPE

Commercial Electric Cooking

⁶⁷ Lifetime from ENERGY STAR Commercial Kitchen Equipment Savings Calculator ,which cites reference as "FSTC research on available models, 2009

https://www.energystar.gov/sites/default/files/asset/document/commercial kitchen equipment calculator.xlsx

⁶⁸ Measure costs from ENERGY STAR Commercial Kitchen Equipment Savings Calculator, which cites reference as "EPA research using AutoOuotes, 2012"

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Custom calculation for an electric fryer below, otherwise use deemed value of 952.3 kWh for standard fryers and 2,537.9 kWh for large vat fryers.⁶⁹

 $\Delta kWh = (\Delta IdleEnergy + \Delta CookingEnergy) * Days/1,000$

Where:

 $\Delta IdleEnergy = (ElecIdle_{Base} * (Hours - FoodCooked/ElecPC_{Base})) - (ElecIdle_{ESTAR} * (Hours - FoodCooked/ElecPC_{Base}))$

 $(Hours-FoodCooked/ElecPC_{ESTAR})) \\$

 Δ CookingEnergy = (FoodCooked * EFOOD_{Elec}/ ElecEff_{Base}) - (FoodCooked *

EFOOD_{Elec}/ElecEff_{ESTAR})

Where:

 Δ IdleEnergy = Difference in idle energy between baseline and efficient fryer

 Δ CookingEnergy = Difference in cooking energy between baseline and efficient fryer

Days = Annual days of operation

= Custom or if unknown, use 365.25 days per year

1,000 = Wh to kWh conversion factor

ElecIdle_{Base} = Idle energy rate of baseline electric fryer

= 1,050 W for standard fryers and 1,350 W for large vat fryers

ElecIdle_{ESTAR} = Idle energy rate of ENERGY STAR electric fryer

= Custom or if unknown, use 1,000 W for standard fryers and 1,100 for

large vat fryers

Hours = Average daily hours of operation

= Custom or if unknown, use 16 hours per day for a standard fryer and 12

hours per day for a large vat fryer

FoodCooked = Food cooked per day

= Custom or if unknown, use 150 pounds

ElecPC $_{Base}$ = Production capacity of baseline electric fryer

= 65 lb/hr for standard fryers and 100 lb/hr for large vat fryers

ElecPC_{ESTAR} = Production capacity of ENERGY STAR electric fryer

= Custom or if unknown, use 70 lb/hr for standard fryers and 110 lb/hr for

large vat fryers

 $EFOOD_{Elec}$ = ASTM energy to food

= 167 Wh/lb

⁶⁹ Algorithms and assumptions derived from ENERGY STAR Commercial Kitchen Equipment Savings Calculator

ElecEff_{Base} = Cooking efficiency of baseline electric fryer

= 75% for standard fryers and 70% for large vat fryers

ElecEff_{ESTAR} = Cooking efficiency of ENERGY STAR electric fryer

= Custom or if unknown, use 80% for both standard and large vat fryers

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

 Δ kWh = Electric energy savings, calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001998949^{70}$

Other variables as defined above.

NATURAL GAS ENERGY SAVINGS

Custom calculation for a natural gas fryer below, otherwise use deemed value of 507.9 therms/yr for standard fryers and 415.1 therms/yr for large vat fryers.⁷¹

 $\Delta Therms = (\Delta IdleEnergy + \Delta CookingEnergy) * Days/100,000$

Where:

 $\Delta IdleEnergy = (GasIdle_{Base}^* (Hours - FoodCooked/GasPC_{Base})) - (GasIdle_{ESTAR}^*)$

 $(Hours - FoodCooked/GasPC_{ESTAR}))$

 Δ CookingEnergy = (FoodCooked * EFOOD_{Gas}/ GasEff_{Base}) - (FoodCooked *

EFOOD_{Gas}/GasEff_{ESTAR})

Where:

100,000 = Btu to therms conversion factor

 $GasIdle_{Base}$ = Idle energy rate of baseline gas fryer

= 14,000 Btu/hr for standard fryers and 16,000 Btu/hr for large vat fryers

GasIdle_{ESTAR} = Idle energy rate of ENERGY STAR gas fryer

= Custom or if unknown, use 9,000 Btu/hr for standard fryers and 12,000

Btu/hr for large vat fryers

 $GasPc_{Base}$ = Production capacity of baseline gas fryer

= 60 lb/hr for standard fryers and 100 lb/hr for large vat fryers

GasPc_{ESTAR} = Production capacity of ENERGY STAR gas fryer

= Custom or if unknown, use 65 lb/hr for standard fryers and 110 lb/hr for

large vat fryers

 $EFOOD_{Gas}$ = ASTM energy to food

⁷⁰ 2016 Ameren Missouri Coincident Peak Demand Factor for Commercial Electric Cooking. See reference "Ameren Missouri 2016 Appendix E - End Use Shapes and Coincident Factors.pdf"

⁷¹ Algorithms and assumptions derived from ENERGY STAR Commercial Kitchen Equipment Savings Calculator

= 570 Btu/lb

 $GasEff_{Base}$ = Cooking efficiency of baseline gas fryer

= 35% for both standard and large vat fryers

GasEff_{ESTAR} = Cooking efficiency of ENERGY STAR gas fryer

= Custom or if unknown, use 50% for both standard and large vat fryers

Other variables as defined above.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-FSE-ESFR-V01-170331

2.5.5 Convection Oven

DESCRIPTION

This measure applies to either full or half-sized electric ENERGY STAR convection ovens and to half-sized natural gas fired ENERGY STAR convection ovens installed in a commercial kitchen. Convection ovens are general purpose ovens that use fans to circulate hot, dry air over the food surface. ENERGY STAR certified convection ovens are approximately 20% more efficient than standard ovens.

This measure was developed to be applicable to the following program type: TOS.

If applied to other program types, measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be an ENERGY STAR certified convection oven meeting idle energy rate (kW or Btu/hr)) and cooking efficiency (%) limits, as determined by both fuel type and oven capacity (full size versus half size).

ENERGY STAR Requirements (Version 2.2, Effective October 7, 2015)

Oven Consoity	Electric Efficiency Requirements		Natural Gas Efficiency Requirements	
Oven Capacity	Idle Energy Rate	Cooking Efficiency	Idle Energy Rate	Cooking Efficiency
Full Size	≤ 1.60 kW	> 71%	≤ 12,000 Btu/hr	≥ 46%
Half Size	≤ 1.00 kW	≥ /170	N/A	N/A

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new electric or natural gas convection oven that is not ENERGY STAR certified.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years.⁷²

DEEMED MEASURE COST

The incremental capital cost for this measure is \$0.73

LOADSHAPE

Commercial Electric Cooking

⁷² Lifetime from ENERGY STAR Commercial Kitchen Equipment Savings Calculator, which cites reference as "FSTC research on available models, 2009"

 $https://www.energystar.gov/sites/default/files/asset/document/commercial_kitchen_equipment_calculator.xlsx$

⁷³Measure cost from ENERGY STAR which cites reference as "EPA research on available models using AutoQuotes, 2013"

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Custom calculation for an electric convection oven below, otherwise use 1,938.5 kWh for full-size ovens and 192.1 kWh for half-size ovens.⁷⁴

 $\Delta kWh = (\Delta IdleEnergy + \Delta CookingEnergy) * Days/1,000$

Where:

 $\Delta IdleEnergy = (ElecIdle_{Base} * (Hours - FoodCooked/ElecPC_{Base})) - (ElecIdle_{ESTAR} *$

(Hours -FoodCooked/ElecPC_{ESTAR}))

 Δ CookingEnergy = (FoodCooked * EFOOD_{Elec}/ ElecEff_{Base}) - (FoodCooked * EFOOD_{Elec}/

ElecEff_{ESTAR})

Where:

ΔIdleEnergy = Difference in idle energy between baseline and efficient convection oven

ΔCookingEnergy = Difference in cooking energy between baseline and efficient convection

oven

Days = Annual days of operation

= Custom or if unknown, use 365.25 days per year

1,000 = Wh to kWh conversion factor

 $ElecIdle_{Base}$ = Idle energy rate of baseline electric convection oven

= 2,000 W for full-size ovens and 1,030 W for half-size ovens

ElecIdle_{ESTAR} = Idle energy rate of ENERGY STAR electric convection oven

= Custom or if unknown, use 1,600 W for full-size ovens and 1,000 W for

half-size ovens

Hours = Average daily hours of operation

= Custom or if unknown, use 12 hours per day

FoodCooked = Food cooked per day

= Custom or if unknown, use 100 pounds

ElecPC_{Base} = Production capacity of baseline electric convection oven

= 90 lb/hr for full-size ovens and 45 lb/hr for half-size ovens

ElecPC_{ESTAR} = Production capacity of ENERGY STAR electric convection oven

= Custom or if unknown, use 90 lb/hr for full-size ovens and 50 lb/hr for

half-size ovens

 $EFOOD_{Elec}$ = ASTM energy to food for electric convection oven

=73.2 Wh/lb

⁷⁴ Algorithms and assumptions derived from ENERGY STAR Commercial Kitchen Equipment Savings Calculator

ElecEff_{Base} = Cooking efficiency of baseline electric convection oven

= 65% for full-size ovens and 68% for half-size ovens

ElecEff_{ESTAR} = Cooking efficiency of ENERGY STAR electric convection oven

= Custom or if unknown, use 71% for both full-size and half-size ovens

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

 Δ kWh = Electric energy savings, calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001998949^{75}$

Other variables as defined above.

NATURAL GAS ENERGY SAVINGS

Custom calculation for a natural gas convection oven below, otherwise use deemed value of 129.4 therms/yr.⁷⁶

 $\Delta Therms = (\Delta IdleEnergy + \Delta CookingEnergy) * Days/100,000$

Where:

 $\Delta IdleEnergy = (GasIdle_{Base}* (Hours - FoodCooked/GasPC_{Base})) - (GasIdle_{ESTAR}*$

(Hours -FoodCooked/GasPC_{ESTAR}))

 Δ CookingEnergy = (FoodCooked * EFOOD_{Gas}/ GasEff_{Base}) - (FoodCooked * EFOOD_{Gas}/

GasEff_{ESTAR})

Where:

100,000 = Btu to therms conversion factor

GasIdle_{Base} = Idle energy rate of baseline gas convection oven

= 15,100 Btu/hr

GasIdle_{ESTAR} = Idle energy rate of ENERGY STAR gas convection oven

= Custom or if unknown, use 12,000 Btu/hr

GasPC_{Base} = Production capacity of baseline gas convection oven

=83 lb/hr

GasPC_{ESTAR} = Production capacity of ENERGY STAR gas convection oven

= Custom or if unknown, use 86 lb/hr

 $EFOOD_{Gas}$ = ASTM energy to food for gas convection oven

⁷⁵ 2016 Ameren Missouri Coincident Peak Demand Factor for Commercial Electric Cooking. See reference "Ameren Missouri 2016 Appendix E - End Use Shapes and Coincident Factors.pdf"

⁷⁶ Algorithms and assumptions derived from ENERGY STAR Commercial Kitchen Equipment Savings Calculator

= 250 Btu/lb

GasEff_{Base} = Cooking efficiency of baseline gas convection oven

= 44%

GasEff_{ESTAR} = Cooking efficiency of ENERGY STAR gas convection oven

= Custom or if unknown, use 46%

Other variables as defined above.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-FSE-ESCV-V01-170331

2.5.6 Griddle

DESCRIPTION

This measure applies to electric or natural gas fired ENERGY STAR certified griddles installed in a commercial kitchen. ENERGY STAR commercial griddles achieve approximately 10% higher efficiency than standard griddles with strategies such as highly conductive or reflective plate materials and improved thermostatic controls.

This measure was developed to be applicable to the following program type: TOS.

If applied to other program types, measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be a new ENERGY STAR electric or natural gas fired griddle meeting idle energy rate limits as determined by fuel type.

ENERGY STAR Requirements (Version 1.2, Effective May 8, 2009 for natural gas and January 1, 2011 for electric griddles)

Electric Efficiency Requirements		Natural Gas Efficiency Requirements	
Idle Energy Rate	Cooking Efficiency Consumption	Idle Energy Rate	Cooking Efficiency Consumption
$\leq 320 \text{ W/ft}^2$ $\leq 1.00 \text{ kW}$	Reported	\leq 2,650 Btu/hr/ft ² N/A	Reported

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new electric or natural gas fired griddle that is not ENERGY STAR certified.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years.⁷⁷

DEEMED MEASURE COST

The incremental capital cost for this measure is \$0 for an electric griddle and \$360 for a gas griddle.⁷⁸

LOADSHAPE

Commercial Electric Cooking

⁷⁷ Lifetime from ENERGY STAR Commercial Kitchen Equipment Savings Calculator, which cites reference as "FSTC research on available models, 2009"

 $http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equipment_calculator.xlsx$

⁷⁸ Measure costs from ENERGY STAR Commercial Kitchen Equipment Savings Calculator, which cites reference as "EPA research on available models using AutoQuotes, 2012"

http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=COG

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Custom calculation for an electric griddle below, otherwise use deemed value of 1,910.4 kWh.⁷⁹

 $\Delta kWh = (\Delta IdleEnergy + \Delta CookingEnergy) * Days/1,000$

Where:

 $\Delta IdleEnergy = [(ElecIdle_{Base} * Width * Depth) * (Hours - FoodCooked/ElecPC_{Base})] -$

[(ElecIdle_{ESTAR} * Width * Depth) * (Hours – FoodCooked/ElecPC_{ESTAR}))

 Δ CookingEnergy = (FoodCooked * EFOOD_{Elec}/ ElecEff_{Base}) - (FoodCooked * EFOOD_{Elec}/

ElecEff_{ESTAR})

Where:

 Δ IdleEnergy = Difference in idle energy between baseline and efficient griddle

 Δ CookingEnergy = Difference in cooking energy between baseline and efficient griddle

Days = Annual days of operation

= Custom or if unknown, use 365.25 days per year

1,000 = Wh to kWh conversion factor

ElecIdle_{Base} = Idle energy rate of baseline electric griddle

 $= 400 \text{ W/ft}^2$

ElecRate_{ESTAR} = Idle energy rate of ENERGY STAR electric griddle

= Custom or if unknown, use 320 W/ft²

Width = Griddle width

= Custom or if unknown, use 3 feet

Depth = Griddle depth

= Custom or if unknown, use 2 feet

Hours = Average daily hours of operation

= Custom or if unknown, use 12 hours per day

FoodCooked = Food cooked per day

= Custom or if unknown, use 100 pounds

ElecPC_{Base} = Production capacity of baseline electric griddle

=35 lb/hr

ElecPC_{ESTAR} = Production capacity of ENERGY STAR electric griddle

= Custom or if unknown, use 40 lb/hr

 $EFOOD_{Elec}$ = ASTM energy to food

⁷⁹ Algorithms and assumptions derived from ENERGY STAR Commercial Kitchen Equipment Savings Calculator

= 139 Wh/lb

ElecEff_{Base} = Cooking efficiency of baseline electric griddle

= 65%

ElecEff_{ESTAR} = Cooking efficiency of ENERGY STAR electric griddle

= Custom or if unknown, use 70%

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

 ΔkWh = Electric energy savings, calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $=0.0001998949^{80}$

Other variables as defined above.

NATURAL GAS ENERGY SAVINGS

Custom calculation for a natural gas griddle below, otherwise use deemed value of 131.4 therms.⁸¹

 $\Delta Therms = (\Delta IdleEnergy + \Delta CookingEnergy) * Days/100,000$

Where:

 $\Delta Idle Energy \hspace{1cm} = \left[GasIdle_{Base} * \left(Width * Depth \right) * \left(Hours - FoodCooked/GasPC_{Base} \right) \right] - \\$

[GasIdle_{ESTAR} * (Width * Depth) * (Hours – FoodCooked/GasPC_{ESTAR}))

 Δ CookingEnergy = (FoodCooked * EFOOD_{Gas}/ GasEff_{Base}) - (FoodCooked * EFOOD_{Gas}/

GasEff_{ESTAR})

Where:

100,000 = Btu to therms conversion factor

GasIdle_{Base} = Idle energy rate of baseline gas griddle

 $= 3,500 \text{ Btu/hr/ft}^2$

GasIdle_{ESTAR} = Idle energy rate of ENERGY STAR gas griddle

= Custom or if unknown, use 2,650 Btu/hr/ft²

GasPC_{Base} = Production capacity of baseline gas griddle

= 25 lb/hr

GasPC_{ESTAR} = Production capacity of ENERGY STAR gas griddle

= Custom or if unknown, use 45 lb/hr

 $EFOOD_{Gas}$ = ASTM energy to food

= 475 Btu/lb

⁸⁰ 2016 Ameren Missouri Coincident Peak Demand Factor for Commercial Electric Cooking. See reference "Ameren Missouri 2016 Appendix E - End Use Shapes and Coincident Factors.pdf"

⁸¹ Algorithms and assumptions derived from ENERGY STAR Commercial Kitchen Equipment Savings Calculator

GasEff_{Base} = Cooking efficiency of baseline gas griddle

= 32%

GasEff_{ESTAR} = Cooking efficiency of ENERGY STAR gas griddle

= Custom or if unknown, use 38%

Other variables as defined above.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-FSE-ESGR-V01-170331

2.5.7 Infrared Charbroiler

DESCRIPTION

This measure applies to new natural gas fired charbroilers that utilize infrared burners installed in a commercial kitchen. Charbroilers cook food in a grid placed over a radiant heat source. Infrared broilers move heat faster and carry a higher heat intensity than non-infrared broilers.

This measure was developed to be applicable to the following program types: TOS.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be a new natural gas charbroiler with infrared burners and an efficiency rating that meets the minimum standards according to utility program requirements.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new natural gas charbroiler without infrared burners.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years. 82

DEEMED MEASURE COST

The incremental capital cost for this measure is \$2,200.83

LOADSHAPE

N/A

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

NATURAL GAS ENERGY SAVINGS

Custom calculation is shown below, followed by a table of default values that may be used when a given variable is unknown.

 $\Delta Therms = (\Delta PreheatEnergy + \Delta CookingEnergy) * Days/100,000$

Where:

⁸² Lifetime recognized by the Food Service Technology Center, as indicated in the online Gas Broiler Life-Cycle Cost Calculator.

⁸³Nicor Gas Energy Efficiency Plan 2011-2014. Revised Plan Filed Pursuant to Order Docket 10-0562

 Δ PreheatEnergy = Difference in preheating energy between baseline and infrared

charbroiler

= NoPreheats * (Preheat_{Base} – Preheat_{EE})

ΔCookingEnergy = Difference in cooking energy between baseline and infrared charbroiler

= $(InputRate_{Base} - InputRate_{EE}) * Hours$

Days = Annual days of operation

100,000 = Btu to therms conversion factor

NoPreheats = Number of preheats per day

 $\begin{aligned} & \text{Preheat}_{\text{Base}} & = \text{Preheat energy requirement of baseline charbroiler [Btu]} \\ & \text{Preheat}_{\text{EE}} & = \text{Preheat energy requirement of infrared charbroiler [Btu]} \\ & \text{InputRate}_{\text{Base}} & = \text{Cooking energy input rate of baseline charbroiler [Btu/hr]} \end{aligned}$

InputRate_{EE} = Cooking energy input rate of infrared charbroiler [Btu/hr]

= Total average daily hours of operation minus 0.3 hours to account for preheating time [hr]. E.g. if the charbroiler is on average turned on at 12PM and shut off at 12AM, (12 - 0.3) or 11.7 hours is used in the

algorithm.

In instances where site specific information is unavailable for any given variable, the following default values (based on charbroiler width) may be used.⁸⁴ In instances where all defaults are used, the resulting savings are shown as Default in the table below.

Variable	Charbroiler Width				
	2 Foot	3 Foot	4 Foot	5 Foot	6 Foot
Days	365.25	365.25	365.25	365.25	365.25
Preheat _{Base}	32,000 Btu	48,000 Btu	64,000 Btu	80,000 Btu	96,000 Btu
Preheat _{ESTAR}	27,000 Btu	40,500 Btu	54,000 Btu	67,500 Btu	81,000 Btu
NoPreheats	1	1	1	1	1
InputRate _{Base}	64,000 Btu/hr	96,000 Btu/hr	128,000 Btu/hr	160,000 Btu/hr	192,000 Btu/hr
InputRateEE	48,000 Btu/hr	72,000 Btu/hr	96,000 Btu/hr	120,000 Btu/hr	144,000 Btu/hr
Hours	11.7 hr/day	11.7 hr/day	11.7 hr/day	11.7 hr/day	11.7 hr/day
Default	702.0 therms	1053.0 therms	1404.0 therms	1755.0 therms	2106.0 therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

Hours

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-FSE-IRCB-V01-170331

⁸⁴ Default values based on the Food Service Technology Center's online Gas Broiler Life-Cycle Cost Calculator.

2.5.8 Infrared Rotisserie Oven

DESCRIPTION

This measure applies to new natural gas fired high efficiency rotisserie ovens utilizing infrared burners and installed in a commercial kitchen. Rotisserie ovens are designed for batch cooking, with individual spits arranged on a rotating wheel or drum within an enclosed cooking cavity. Infrared ovens move heat faster and carry a higher heat intensity than non-infrared ovens.

This measure was developed to be applicable to the following program types: TOS.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be a new natural gas rotisserie oven with infrared burners and an efficiency rating that meets the minimum standards according to utility program requirements.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new natural gas rotisserie oven without infrared burners.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years.85

DEEMED MEASURE COST

The incremental capital cost for this measure is \$2,700.86

LOADSHAPE

N/A

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

NATURAL GAS ENERGY SAVINGS

Custom calculation is shown below. In instances where site specific information is unavailable for any given variable, the following default values may be used. In instances where all defaults are used, the resulting savings are 187.2 therms annually.

$$\Delta Therms = \frac{InputRate_{EE}}{3} * Duty * Hours / 100,000$$

⁸⁵Measure life consistent with other food service equipment lifetimes as reported by the Food Service Technology Center.

⁸⁶Incremental cost from Nicor Gas Energy Efficiency Plan 2011-2014. Revised Plan Filed Pursuant to Order Docket 10-0562, May 27, 2011

Where:

InputRate_{EE} = Energy input rate of infrared rotisserie oven (Btu/hr)

= Custom of if unknown, use 37,500 Btu/hr⁸⁷

Note: the difference between baseline and efficient energy input rates can be simplified when efficient rotisseries are assumed to have 75% of the energy input requirement as baseline. If InputRate_{BASE} = InputRate_{EE} / .75 then the term becomes [(InputRate_{EE} / .75) - InputRate_{EE}] which can be factored and simplified to [InputRate_{EE} / 3]

Duty = Duty cycle of rotisserie oven (%)

= Custom or if unknown, use 60% 88

Hours = Typical annual operating hours of rotisserie oven

= Custom or if unknown, use 2,496 hours⁸⁹

100.000 = Btu to therms conversion factor

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-FSE-IROV-V01-170331

⁸⁷ Infrared energy input rate calculated based on baseline energy input rate of 50,000 Btu/hr, the median rated energy input for rotisserie ovens from FSTC Oven Technology Assessment, Table 7.2. Input energy rates of infrared rotisseries are assumed to be 75% of that of baseline, consistent with infrared charbroilers.

⁸⁸ Duty cycle from Food Service Technology Center Oven Technical Assessment, Table 7.2

⁸⁹ Typical operating hours based on oven operating schedule of 8 hours per day, 6 days per week, 52 weeks per year, provided in Food Service Technology Center Oven Technical Assessment, Table 7.2

2.5.9 Kitchen Demand Ventilation Controls

DESCRIPTION

This measure related to the installation of commercial kitchen demand ventilation controls that vary the kitchen ventilation exhaust and make-up airflow based on cooking load and/or time of day.

This measure was developed to be applicable to the following program types: TOS, RF. For TOS applications, ASHRAE 90.1 and local codes should be applied to situations where hood exhaust rates exceed 5,000 cfm. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be a control system that varies the exhaust rate of kitchen ventilation (exhaust and makeup air fans) based on the energy and effluent output from the cooking appliances (i.e., the more heat and smoke/vapors generated, the more ventilation needed). This involves installing a new temperature sensor in the hood exhaust collar and/or an optic sensor on the end of the hood that sense cooking conditions which allows the system to automatically vary the rate of exhaust to what is needed by adjusting the fan speed accordingly.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is kitchen ventilation system that has constant speed, continuously operating ventilation motor(s).

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 15 years.90

DEEMED MEASURE COST

The capital cost for this measure is proportional to the rated horsepower of the exhaust motor(s), based on installation classification:

Measure Cost = $HP_{exhaust} * Cost_{HP}$

Where:

 $HP_{exhaust}$ = total rated horsepower of the exhaust motor(s)

 $Cost_{HP}$ = cost per horsepower as listed in the table below

Measure Category	Incremental Cost91, \$/HP
Retrofit	\$1,988
Time of Sale	\$994

LOADSHAPE

Commercial Ventilation

⁹⁰ Pacific Gas & Electric Company Work Paper PGECOFST116 Demand Ventilation Controls Revision # 1, June 1, 2009.

⁹¹ Pacific Gas & Electric Company Work Paper PGECOFST116 Demand Ventilation Controls Revision # 1, June 1, 2009.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Fan energy savings:

$$\Delta kWh = HP_{exhaust} * (0.76 kW/HP^{92}) * Hours * Days$$

Where:

Hours = Average daily hours of operation. If unknown, assume 12 hours.

Days = Annual days of operation. If unknown assume 365.25 days.

Other variables as defined above.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

Exhaust and makeup air fans are expected to operate at their maximum during regular meal periods. As the peak coincident demand period falls near dinner time, there are no expected peak demand savings associated with this measure.

NATURAL GAS ENERGY SAVINGS

For applications where 100% make-up air is tempered, annual gas savings attributed to heating can be estimated as:

$$\Delta$$
Therms = CFM * HP_{exhaust}* Hours/24 * Q * /(Eff_{heat} * 100,000)

Where:

CFM = average airflow reduction for the system, per rated horsepower of exhaust motor(s).

= custom input, or 448 cfm/HP⁹³ if unknown.

Q = Annual heating energy required (tabulated values represenent continuous operation) to heat kitchen make-up air, Btu/cfm dependent on location⁹⁴:

Zone	Q, Btu/cfm
Fort Madison	136,416
Lincoln	152,258
Cape Girardeau	116,666
Kaiser	119,824
Knob Noster	124,716
Kansas City	140,920
St Louis	125,363

⁹² Normalized demand savings per rated HP of exhaust motor. Pacific Gas & Electric Company Work Paper PGECOFST116 Demand Ventilation Controls Revision # 1, June 1, 2009

⁹³ Based on data presented in Pacific Gas & Electric Company Work Paper PGECOFST116 Demand Ventilation Controls Revision # 1, June 1, 2009. See workbook KDVC.xlsx for derivation.

⁹⁴ Assuming a base temperature of 65. It is assumed that kitchens often separate dedicated 100% outdoor air make up units and kitchen staff prefer to have outside air heated to 65 degrees. See workbook KDVC.xlsx for derivation.

Eff_{heat} = Heating efficiency of unit supplying make-up air.

= actual if known, otherwise assume 80% 95

100,000 = conversion from Btu to Therm

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-FSE-VENT-V01-170331

-

⁹⁵ IECC code minimum thermal efficiency requirements for a warm air duct furnace.

2.5.10 Rack Oven

DESCRIPTION

This measure applies to natural gas fired ENERGY STAR certified rack oven (either single or double rack) installed in a commercial kitchen.

This measure was developed to be applicable to the following program types: TOS.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be an ENERGY STAR certified gas rack oven meeting idle energy rate (Btu/hr)) and baking-energy efficiency (%) qualification criteria, as determined by oven capacity.

ENERGY STAR Requirements (Version 2.2, Effective October 7, 2015)

Oven Capacity	Total Energy Idle Energy	Baking-Energy Efficiency
Single Rack	≤ 25,000 Btu/hr	≥ 48%
Double Rack	≤ 30,000 Btu/hr	≥ 52%

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new natural gas rack oven that is not ENERGY STAR certified.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years.⁹⁶

DEEMED MEASURE COST

The incremental capital cost for this measure is \$4933.00 for a single rack oven and \$5187.00 for a double rack.⁹⁷

LOADSHAPE

N/A

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 N/A^{98}

⁹⁶ Lifetime recognized by the Food Service Technology Center, as indicated in the online Gas Rach Oven Life-Cycle Cost Calculator.

⁹⁷ Pacific Gas and Electric Company workpaper PGECOFST109, Commercial Rack Ovens, Food Service Equipment Workpaper June 1, 2009.

⁹⁸ Energy Star and the Food Service Technology Center do not yet rate or certify electric rack ovens.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

NATURAL GAS ENERGY SAVINGS

Custom calculation is shown below, followed by a table of default values that may be used when a given variable is unknown.

 $\Delta Therms = (\Delta PreheatEnergy + \Delta IdleEnergy + \Delta CookingEnergy) *$

Days/100,000

Where:

 Δ PreheatEnergy = NoPreheats * (Preheat_{Base} - Preheat_{ESTAR})

 $\Delta IdleEnergy = (GasIdle_{Base}* (Hours - FoodCooked/GasPC_{Base})) - (GasIdle_{ESTAR} *$

(Hours -FoodCooked/GasPC_{ESTAR}))

 Δ CookingEnergy = FoodCooked * EFOOD_{Gas} * (1/ GasEff_{Base} - 1/ GasEff_{ESTAR})

Where:

 Δ PreheatEnergy = Difference in preheating energy between baseline and efficient rack

oven

ΔIdleEnergy = Difference in idle energy between baseline and efficient rack oven

 Δ CookingEnergy = Difference in heavy-load cooking energy between baseline and efficient

rack oven

Days = Annual days of operation

100,000 = Btu to therms conversion factor

NoPreheats = Number of preheats per day

 $Preheat_{Base} = Preheat \ energy \ requirement \ of \ baseline \ rack \ oven \ [Btu]$

Preheat_{ESTAR} = Preheat energy requirement of efficient rack oven [Btu]

GasIdle_{Base} = Idle energy rate of baseline gas rack oven [Btu/hr]

GasIdle_{ESTAR} = Idle energy rate of ENERGY STAR gas rack oven [Btu/hr]

Hours = Average daily hours of operation [hr]

GasPC_{Base} = Production capacity of baseline gas rack oven [lbs/hr]

GasPC_{ESTAR} = Production capacity of ENERGY STAR gas rack oven [lbs/hr]

FoodCooked = Mass of food cooked daily in the rack oven [lbs]

 $EFOOD_{Gas}$ = Energy transfer to food for gas rack oven

 $= 226 \text{ Btu/lbs}^{99}$

GasEff_{Base} = Heavy-load cooking efficiency of baseline gas rack oven [%]

GasEff_{ESTAR} = Heavy-load cooking efficiency of ENERGY STAR gas rack oven [%]

⁹⁹ Calibrated value to give results consistent with the Food Service Technology Center's online Gas Rack Oven Life-Cycle Cost Calculator. This value is consistent with values found by FSTC experimental testing and values recognized by Energy Star.

In instances where site specific information is unavailable for any given variable, the following default values may be used. ¹⁰⁰ In instances where all defaults are used, the resulting savings are 1096.4 therms and 2315.8 therms for single rack and double rack ovens respectively.

Variable	Single Rack	Double Rack
Days	365.25	365.25
Preheat _{Base}	50,000 Btu	100,000 Btu
Preheat _{ESTAR}	44,000 Btu	85,000 Btu
NoPreheats	1	1
GasIdle _{Base}	43,000 Btu/hr	65,000 Btu/hr
GasIdle _{ESTAR}	25,000 Btu/hr	30,000 Btu/hr
Hours	12 hr/day	12 hr/day
GasPC _{Base}	130 lb/hr	250 lb/day
GasPC _{ESTAR}	140 lb/hr	280 lb/day
FoodCooked	600 lb/day	1200 lb/day
GasEff _{Base}	30%	30%
GasEffestar	48%	52%

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-FSE-ESCV-V01-170331

¹⁰⁰ Default values based on the Food Service Technology Center's online Gas Rack Oven Life-Cycle Cost Calculator.

2.5.11 Infrared Salamander Broiler

DESCRIPTION

This measure applies to new natural gas fired high efficiency salamander broilers utilizing infrared burners installed in a commercial kitchen. Salamander broilers are medium-input overfired broilers that are typically mounted on the backshelf of a range. Infrared broilers move heat faster and carry a higher heat intensity than non-infrared broilers.

This measure was developed to be applicable to the following program types: TOS.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be a new natural gas fired salamander broiler with infrared burners and an efficiency rating that meets the minimum standards according to utility program requirements.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new natural gas fired salamander broiler without infrared burners.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years. ¹⁰¹

DEEMED MEASURE COST

The incremental capital cost for this measure is \$1,000.102

LOADSHAPE

N/A

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

NATURAL GAS ENERGY SAVINGS

Custom calculation is shown below. In instances where site specific information is unavailable for any given variable, the following default values may be used. In instances where all defaults are used, the resulting savings are 168.2 therms annually.

$$\Delta Therms = \frac{InputRate_{EE}}{3} * Duty * Hours / 100,000$$

¹⁰¹Measure life consistent with other food service equipment lifetimes as reported by the Food Service Technology Center.

¹⁰²Incremental cost from Nicor Gas Energy Efficiency Plan 2011-2014. Revised Plan Filed Pursuant to Order Docket 10-0562, May 27, 2011

Where:

InputRate_{EE} = Rated energy input rate of infrared salamander broiler (Btu/hr)

= Custom or if unknown, use 28,875 Btu/hr¹⁰³

Note: the difference between baseline and efficient energy input rates can be simplified when efficient salamander broilers are assumed to have 75% of the energy input requirement as baseline. If InputRate_{BASE} = InputRate_{EE} / .75 then the term becomes [(InputRate_{EE} / .75) - InputRate_{EE}] which can be factored and simplified to [InputRate_{EE} / 3]

Duty = Duty cycle of salamander broiler (%)

= Custom or if unknown, use 70% 104

Hours = Typical operating hours of salamander broiler

= Custom or if unknown, use 2,496 hours¹⁰⁵

100,000 = Btu to therms conversion factor

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-FSE-IRBL-V01-170331

¹⁰³ Infrared energy input rate calculated based on baseline energy input rate of 38,500 Btu/hr, the median rated energy input for salamander broilers from FSTC Broiler Technology Assessment, Table 4.3. Input energy rates of infrared salamander broilers are assumed to be 75% of that of baseline, consistent with infrared charbroilers.

¹⁰⁴ Duty cycle from Food Service Technology Center Broiler Technical Assessment, Table 4.3

¹⁰⁵ Typical operating hours based on broiler operating schedule of 8 hours per day, 6 days per week, 52 weeks per year, provided in Food Service Technology Center Broiler Technical Assessment, Table 4.3

2.5.12 Hot Food Holding Cabinet

DESCRIPTION

This measure applies to electric ENERGY STAR certified hot food holding cabinets (HFHCs) installed in a commercial kitchen. ENERGY STAR HFHCs achieve approximately 70% higher efficiency than standard models by incorporating better insulation which reduces heat loss, offers better temperature uniformity within the cabinet from top to bottom, and keeps the external cabinet cooler. In addition, many certified HFHCs may include additional energy saving devices such as magnetic door gaskets, auto-door closures, or dutch doors.

This measure was developed to be applicable to the following program types: TOS.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be a new ENERGY STAR electric HFHC meeting idle energy rate limits as determined by product interior volume.

ENERGY STAR Requirements (Version 2.0, Effective October 1, 2011)

Interior Volume (ft³)	Idle Energy Consumption Rate (W)
0 < V < 13	≤ 21.5 V
$13 \le V \le 28$	\leq 2.0 V + 254.0
28 ≤ V	\leq 3.8 V + 203.5

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new electric HFHC that is not ENERGY STAR certified.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years. 106

DEEMED MEASURE COST

The incremental capital cost for this measure is \$0.107

LOADSHAPE

Commercial Electric Cooking

¹⁰⁶ Lifetime from ENERGY STAR Commercial Kitchen Equipment Calculator, which cites reference as "FSTC research on available models, 2009."

¹⁰⁷ Measure cost from ENERGY STAR Commercial Kitchen Equipment Calculator, which cites reference as "EPA research using AutoQuotes, 2012."

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Custom calculation below.108

 $\Delta kWh = (IdleRate_{Base} - IdleRate_{EE}) * Hours * Days/1,000$

 $IdleRate_{Base}$ = Idle energy rate (W) of baseline HFHC

=40 * V

Where:

V = Interior volume (ft³) of new HFHC

= Custom

IdleRate_{ESTAR} = Idle energy rate (W) of ENERGY STAR HFHC

= See table below for idle energy rates based on interior volume

Interior Volume (ft³)	Idle Energy Consumption Rate (W)
0 < V < 13	21.5 * V
$13 \le V \le 28$	(2.0 * V) + 254.0
28 ≤ V	(3.8 * V) + 203.5

Hours = Average daily hours of operation

= Custom or if unknown, use 15 hours per day

Days = Annual days of operation

= Custom or if unknown, use 365.25 days per year

1,000 = Wh to kWh conversion factor

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

 Δ kWh = Electric energy savings, calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001998949^{109}$

Other variables as defined above.

¹⁰⁸ Algorithms and assumptions derived from Commercial Kitchen Equipment Calculator.

^{109 2016} Ameren Missouri Coincident Peak Demand Factor for Commercial Electric Cooking. See reference "Ameren Missouri 2016 Appendix E - End Use Shapes and Coincident Factors.pdf"

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-FSE-HFHC-V01-170331

2.5.13 Pre-Rinse Spray Valve

DESCRIPTION

Pre-rise valves use a spray of water to remove food waste from dishes prior to cleaning in a dishwasher. More efficient spray valves use less water, thereby reducing water consumption, water heating cost, and waste water (sewer) charges. Pre-rinse spray valves include a nozzle, squeeze lever, and dish guard bumper. The primary impacts of this measure are water savings. Reduced hot water consumption saves either natural gas or electricity, depending on the type of energy the hot water heater uses.

This measure was developed to be applicable to the following program types: TOS, RF, and DI. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the new or replacement pre-rinse spray nozzle must use less than 1.6 gallons per minute.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment will vary based on the delivery method and is defined below:

Time of Sale	Retrofit, Direct Install
The baseline equipment is assumed	Actual existing flow rates should be used when possible. If unknown, baseline
to be 1.6 gallons per minute. The	can be assumed to be 2.23 gallons per minute. 110 If existing pre-rinse spray
Energy Policy Act (EPAct) of 2005	valve flow rate is unknown, then existing pre-rinse spray valve must have been
sets the maximum flow rate for pre-	installed prior to 2006. The Energy Policy Act (EPAct) of 2005 sets the
rinse spray valves at 1.6 gallons per	maximum flow rate for pre-rinse spray valves at 1.6 gallons per minute at 60
minute at 60 pounds per square inch	pounds per square inch of water pressure when tested in accordance with ASTM
of water pressure when tested in	F2324-03. This performance standard went into effect January 1, 2006.
accordance with ASTM F2324-03.	However, field data shows that not all nozzles in use have been replaced with
This performance standard went	the newer flow rate nozzle. Products predating this standard can use up to five
into effect January 1, 2006.	gallons per minute.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 5 years¹¹¹

DEEMED MEASURE COST

When available, the actual cost of the measure should be used. If unknown, a default value of \$92.90¹¹² may be assumed.

LOADSHAPE

Commercial Electric Cooking

¹¹⁰ Verification measurements taken at 195 installations showed average pre flowrates of 2.23 gallons per minute. IMPACT AND PROCESS EVALUATION FINAL REPORT for CALIFORNIA URBAN WATER CONSERVATION COUNCIL 2004-5 PRE-RINSE SPRAY VALVE INSTALLATION PROGRAM (PHASE 2) (PG&E Program # 1198-04; SoCalGas Program 1200-04) ("CUWCC Report", Feb 2007)

¹¹¹Consistent with Ameren Missouri and KCPL TRM assumptions.

¹¹²Average of costs recognized by Ameren Missouri (\$85.8) and KCPL (\$100).

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS (NOTE WATER SAVINGS MUST FIRST BE CALCULATED)

 Δ kWH = Δ Gallons * 8.33 * 1 * (Tout - Tin) * (1/EFF_Elec) /3,413

Where:

ΔGallons = amount of water saved as calculated below in Water Impact Calculation

8.33 = specific mass in pounds of one gallon of water (lbm/gal)

1 = Specific heat of water: 1 Btu/lbm/°F

Tout = Water Heater Outlet Water Temperature

= custom, otherwise assume $Tin + 70^{\circ}F$ temperature rise from Tin^{113}

Tin = Inlet Water Temperature

= custom, otherwise assume 57.9F ¹¹⁴

EFF_Elec = Efficiency of electric water heater supplying hot water to pre-rinse spray valve

=custom, otherwise assume 97% 115

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

 Δ kWh = Electric energy savings, calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001998949^{116}$

NATURAL GAS ENERGY SAVINGS

 Δ Therms = Δ Gallons * 8.33 * 1 * (Tout - Tin) * (1/EFF_Gas) /100,000

Where (new variables only):

EFF_Gas = Efficiency of gas water heater supplying hot water to pre-rinse spray valve

= custom, otherwise assume 80% 117

¹¹³If unknown, assume a 70 degree temperature rise from Tin per Food Service Technology Center calculator assumptions to account for variations in mixing and water heater efficiencies

¹¹⁴ Using 40" deep soil temp as a proxy at Powell Gardens SCAN site. Average by month of available data from 3/28/02–10/11/14: 12 month average is 57.898. http://www.wcc.nrcs.usda.gov/nwcc/site?sitenum=2061

¹¹⁵This efficiency value is based on IECC 2012/2015 performance requirement for electric resistant water heaters rounded without the slight adjustment allowing for reduction based on size of storage tank.

¹¹⁶ 2016 Ameren Missouri Coincident Peak Demand Factor for Commercial Electric Cooking. See reference "Ameren Missouri 2016 Appendix E - End Use Shapes and Coincident Factors.pdf"

¹¹⁷ IECC 2012/2015, Table C404.2, Minimum Performance of Water-Heating Equipment

WATER IMPACT CALCULATION

 Δ Gallons = (FLObase - FLOeff) * 60 * HOURSday * DAYSyear

Where:

FLObase

= Base case flow in gallons per minute (Gal/min). Use actual when appropriate if available, otherwise assume:

Time of Sale	Retrofit, Direct Install
1.6 gal/min ¹¹⁸	2.23 gal/min ¹¹⁹

FLOeff

= Efficient case flow in gallons per minute (Gal/min). Use actual flow rate of installed equipment if known, otherwise assume:

Time of Sale	Retrofit, Direct Install
1.06 gal/min ¹²⁰	1.06 gal/min ¹²¹

60 = Minutes per hour

HOURSday

= Hours per day that the pre-rinse spray valve is used at the site, custom, otherwise¹²²:

Application	Hours/day
Small, quick- service restaurants	1
Medium-sized casual dining restaurants	1.5
Large institutional establishments with cafeteria	3

DAYSyear

= Days per year pre-rinse spray valve is used at the site, custom, otherwise 312 days/yr based on assumed 6 days/wk x 52 wk/yr = 312 day/yr.

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

¹¹⁸The baseline equipment is assumed to be 1.6 gallons per minute. The Energy Policy Act (EPAct) of 2005 sets the maximum flow rate for pre-rinse spray valves at 1.6 gallons per minute at 60 pounds per square inch of water pressure when tested in accordance with ASTM F2324-03. This performance standard went into effect January 1, 2006. www1.eere.energy.gov/femp/pdfs/spec_prerinsesprayvavles.pdf.

¹¹⁹ Verification measurements taken at 195 installations showed average pre flowrates of 2.23 gallons per minute. IMPACT AND PROCESS EVALUATION FINAL REPORT for CALIFORNIA URBAN WATER CONSERVATION COUNCIL 2004-5 PRE-RINSE SPRAY VALVE INSTALLATION PROGRAM (PHASE 2) (PG&E Program # 1198-04; SoCalGas Program 1200-04) ("CUWCC Report", Feb 2007)

¹²⁰1.6 gallons per minute used to be the high efficiency flow, but more efficient spray valves are available ranging down to 0.64 gallons per minute per Federal Energy Management Program which references the Food Services Technology Center web site with the added note that even more efficient models may be available since publishing the data. The average of the nozzles listed on the FSTC website is 1.06.

¹²¹1.6 gallons per minute used to be the high efficiency flow, but more efficient spray valves are available ranging down to 0.64 gallons per minute per Federal Energy Management Program which references the Food Services Technology Center web site with the added note that even more efficient models may be available since publishing the data. The average of the nozzles listed on the FSTC website is 1.06.

¹²² Hours primarily based on PG& E savings estimates, algorithms, sources (2005), Food Service Pre-Rinse Spray Valves.

MEASURE CODE: CI-FSE-SPRY-V01-170331

2.5.14 Ice Maker

This measure was not characterized for Version 1 of the Missouri Statewide TRM.

2.5.15 Infrared Upright Broiler

2.5.16 Pasta Cooker

2.6 Hot Water End Use

2.6.1 Water Heater

DESCRIPTION

This measure applies to the purchase and installation of a new gas-fired storage or tankless water heater meeting program efficiency requirements in place of a unit meeting minimum federal standards, in a commercial building.

This measure was developed to be applicable to the following program types: TOS, NC.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be a new gas-fired storage or tankless water heater meeting program efficiency requirements.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is assumed to be a new, gas-fired storage or tankless water heater meeting the minimum federal efficiency standards. 123

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 13 years for a gas storage water heater and 20 years for a gas tankless water heater.¹²⁴

DEEMED MEASURE COST

The full install cost and incremental capital cost for this measure is dependent on the type of water heater, as listed below. 125 Actual costs should be used where available.

Equipment Type	Category	Full Install Cost	Incremental Cost
Gas Storage Water Heaters	Baseline	\$799	N/A
≤ 75,000 Btu/hr, ≥20 gal and ≤55 gal	Efficient	\$1,055	\$256
	0.80 Et	\$4,886	N/A
	0.83 Et	\$5,106	\$220
	0.84 Et	\$5,299	\$413
Gas Storaga Water Hasters	0.85 Et	\$5,415	\$529
Gas Storage Water Heaters > 75,000 Btu/hr	0.86 Et	\$5,532	\$646
> 75,000 Btu/III	0.87 Et	\$5,648	\$762
	0.88 Et	\$5,765	\$879
	0.89 Et	\$5,882	\$996
	0.90 Et	\$6,021	\$1,135

¹²³ Federal standards for ≤75,000 Btu/hr storage water heaters and <200,000 Btu/hr tankless water heaters are from 10 CFR §430.32(d). All other standards are from 10 CFR §431.110.

¹²⁴ Database for Energy-Efficiency Resources (DEER), "DEER2014 EUL Table Update," California Public Utilities Commission, February 4, 2014. Lifetime for gas storage heaters is average of lifetimes for commercial and residential storage water heaters.

¹²⁵ Cost information is based upon data from "2010-2012 WA017 Ex Ante Measure Cost Study Draft Report", Itron, February 28, 2014. See "NR HW Heater WA017 MCS Results Matrix - Volume I_August2016.xls" for more information.

Equipment Type	Category	Full Install Cost	Incremental Cost
Gas Tankless Water Heaters	Baseline	\$593	N/A
>50,000 Btu/hr and <200,000 Btu/hr	Efficient	\$1,103	\$510
Gas Tankless Water Heaters	Baseline	\$1,148	N/A
≥200,000 Btu/hr	Efficient	\$1,427	\$278

LOADSHAPE

N/A

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

NATURAL GAS ENERGY SAVINGS

$$\Delta Therms = (1/EF_{Base} - 1/EF_{EE}) * (HotWaterUse_{Gallon} * \gamma Water * (T_{Out} - T_{In}) * 1.0)/100,000$$

Where:

 EF_{Base}

= Efficiency of baseline water heater according to federal standards, expressed as Energy Factor (EF) or Thermal Efficiency (E_t)

= See table below

Equipment Type	Size Category	Federal Standard Minimum Efficiency
Gas Storage Water Heaters	≥20 gal and ≤55 gal	0.675 – (0.0015 * Rated Storage Volume in Gallons)
≤ 75,000 Btu/hr	>55 gal and ≤100	0.8012 – (0.00078 * Rated Storage Volume in
	gal	Gallons)
Gas Storage Water Heaters > 75,000 Btu/hr	< 4000 Btu/h/gal	80% E_t Standby Loss: $(Q/800 + 110\sqrt{V})$
Gas Tankless Water Heaters >50,000 Btu/hr and <200,000 Btu/hr	< 4000 Btu/h/gal and <2 gal tank	0.82 – (0.0019 * Rated Storage Volume in Gallons)
Gas Tankless Water Heaters ≥200,000 Btu/hr	≥ 4000 Btu/h/gal and <10 gal tank	80% E _t
Gas Tankless Water Heaters ≥200,000 Btu/hr	≥ 4000 Btu/h/gal and ≥10 gal tank	80% E_t Standby Loss: $(Q/800 + 110\sqrt{V})$

 EF_{EE}

= EF of efficient water heater expressed as Energy Factor (EF) or Thermal Efficiency (E_t)

= Actual

HotWaterUse_{Gallon} = Estimated annual hot water consumption (gallons)

- = Actual if possible to provide reasonable custom estimate. If not, two methodologies are provided to develop an estimate:
- 1. Consumption per water heater capacity
 - = Consumption/cap * Capacity

Where:

Consumption/cap = Estimate of consumption per gallon of tank capacity, dependent on building type: 126

Building Type	Consumption/cap
Grocery, Convenience Store, and	803
Restaurant	803
Lodging, Hospital, and Multifamily	630
Health Clinic, Church, Warehouse	433
Education, Office, and Retail	594
Industrial	558
Agriculture	558
Average Non Residential	558

Capacity = Capacity of hot water heater in gallons = Actual¹²⁷

2. Consumption by facility size¹²⁸

Building Type	Gallons hot water per unit per day	Unit	Units/1000 ft ²	Days per year	Gallons/1000 ft² floor area
Small Office	1	person	2.3	250	575
Large Office	1	person	2.3	250	575
Fast Food Rest	0.7	meal/day	784.6	365	200,458
Sit-Down Rest	2.4	meal/day	340	365	297,840
Retail	2	employee	1	365	730
Grocery	2	employee	1.1	365	803
Warehouse	2	employee	0.5	250	250

¹²⁶ Based on Cadmus analysis. Annual hot water usage in gallons based on CBECS (2003) consumption data for West North Central (removed outliers of 1,000 kBtu/hr or less) to calculate hot water usage. Annual hot water gallons per tank size gallons based on the tank sizing methodology found in ASHRAE 2011 HVAC Applications. Chapter 50 Service Water Heating. Demand assumptions (gallons per day) for each building type based on ASHRAE Chapter 50 and "Technology Data Characterizing Water Heating in Commercial Buildings: Application to End Use Forecasting," Lawrence Berkeley National Library, December 1995. VEIC considers these values to be relatively conservative estimates that may benefit from future evaluation.

 ¹²⁷ If the replaced unit is a tankless water heater, an estimate of the required storage tank capacity for the application is required.
 128 Technology Data Characterizing Water Heating in Commercial Buildings: Application to End Use Forecasting," Lawrence Berkeley National Library, December 1995.

Building Type	Gallons hot water per unit per day	Unit	Units/1000 ft ²	Days per year	Gallons/1000 ft² floor area
Elementary School	0.6	person	9.5	200	1,140
Jr High/High	1.8	person	9.5	200	3,420
School					
Health	90	patient	3.8	365	124,830
Motel	20	room	5	365	36,500
Hotel	14	room	2.2	365	11,242
Other	1	employee	0.7	250	175

 γ Water = Specific weight of water

= 8.33 pounds per gallon

 T_{Out} = Unmixed tank outlet water temperature

= custom, otherwise assume 125°F ¹²⁹

 T_{In} = Incoming water temperature from well or municipal system

 $=57.898^{\circ}F^{130}$

1.0 = Heat capacity of water (1 Btu/lb* $^{\circ}$ F)

100,000 = Conversion factor from Btu to therms

Additional Standby Loss Savings

Gas storage water heaters with an input rating >75,000 Btu/hr and gas tankless water heaters with an input rating $\ge 200,000$ Btu/hr and storage capacity ≥ 10 gallons can claim additional savings due to lower standby losses.

$$\Delta Therms_{Standby} = \frac{(SL_{base} - SL_{eff}) * 8,766}{100,000}$$

Where:

 SL_{base} = Standby loss of baseline water heater

 $= Q/800 + 110\sqrt{V}$

Where

Q =Nameplate input rating in Btu/hr

V = Rated volume in gallons

SL_{eff} = Nameplate standby loss of new water heater, in BTU/hr

8,766 = Hours per year

¹²⁹ Ideally, the actual set point of the water heater should be used. If not available, 125 degrees is provided as an estimate of unmixed output temperature. While plumbing code generally limits temperatures at the end use, it typically does not limit the water heater system, which can be anywhere in the range 120 -201 degrees. For applications such as laundry and dishwashing, health and safety regulations may require water to be initially heated to higher temperatures. Since temperature setpoints can vary widely, market, program, or site-specific data should be used whenever possible.

¹³⁰ Using 40" deep soil temp as a proxy at Powell Gardens SCAN site. Average by month of available data from 3/28/02–10/11/14: 12 month average is 57.898. http://www.wcc.nrcs.usda.gov/nwcc/site?sitenum=2061

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-HWE-GWHT-V01-170331

2.6.2 Low Flow Faucet Aerator

DESCRIPTION

This measure relates to the direct installation of a low flow faucet aerator in a commercial building. Expected applications include small business, office, restaurant, or motel. For multifamily or senior housing, the residential low flow faucet aerator should be used.

This measure was developed to be applicable to the following program types, DI.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be an energy efficient faucet aerator, for bathrooms rated at 1.5 gallons per minute (GPM) or less, or for kitchens rated at 2.2 GPM or less. Savings are calculated on an average savings per faucet fixture basis.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is assumed to be a standard bathroom faucet aerator rated at 2.25 GPM or more, or a standard kitchen faucet aerator rated at 2.75 GPM or more.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 9 years. 131

DEEMED MEASURE COST

The incremental cost for this measure is \$8¹³² or program actual

LOADSHAPE

Commercial Electric DHW

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Note these savings are *per* faucet retrofitted¹³³.

 $\Delta kWh = \text{\%ElectricDHW} * ((GPM_base - GPM_low)/GPM_base) * Usage * EPG_electric * ISR$

Where:

_

 $^{^{131}\} Table\ C-6,\ Measure\ Life\ Report,\ Residential\ and\ Commercial/Industrial\ Lighting\ and\ HVAC\ Measures,\ GDS\ Associates,\ June\ 2007.\ "http://neep.org/uploads/EMV%20Forum/EMV%20Studies/measure_life_GDS%5B1%5D.pdf"$

¹³² Direct-install price per faucet assumes cost of aerator and install time. (2011, Market research average of \$3 and assess and install time of \$5 (20min @ \$15/hr)

¹³³ This algorithm calculates the amount of energy saved per aerator by determining the fraction of water consumption savings for the upgraded fixture. Due to the distribution of water consumption by fixture type, as well as the different number of fixtures in a building, several variables must be incorporated.

%ElectricDHW = proportion of water heating supplied by electric resistance heating

DHW fuel	%Electric_DHW
Electric	100%
Fossil Fuel	0%
Unknown	43% 134

GPM_base = Average flow rate, in gallons per minute, of the baseline faucet "as-used"

= 1.2^{135} or custom based on metering studies¹³⁶

GPM_low = Average flow rate, in gallons per minute, of the low-flow faucet aerator

"as-used"

= 0.94¹³⁷ or custom based on metering studies¹³⁸

Usage = Estimated usage of mixed water (mixture of hot water from water heater

line and cold water line) per faucet (gallons per year)

= If data is available to provide a reasonable custom estimate it should be used, if not use the following defaults (or substitute custom information in

to the calculation):

Building Type	Gallons hot water per unit per day ¹³⁹ (A)	Unit	Estimated % hot water from Faucets (B)	Multiplier 141 (C)	Unit	Days per year (D)	Annual gallons mixed water per faucet (A*B*C*D)
Small Office	1	person	100%	10	employees per faucet	250	2,500
Large Office	1	person	100%	45	employees per faucet	250	11,250
Fast Food Rest	0.7	meal/day	50%	75	meals per faucet	365	9,581
Sit-Down Rest	2.4	meal/day	50%	36	meals per faucet	365	15,768

¹³⁴ Default assumption for unknown fuel is based on EIA Commercial Building Energy Consumption Survey (CBECS) 2012 for Midwest North Central Region, see 'HC8.9 Water Heating in Midwest Region.xls'. If utilities have specific evaluation results providing a more appropriate assumption for buildings in a particular market or geographical area, then they should be used.

¹³⁵ Representative baseline flow rate for kitchen and bathroom faucet aerators from sources 1, 2, 3, and 4. This accounts for all

¹³⁵ Representative baseline flow rate for kitchen and bathroom faucet aerators from sources 1, 2, 3, and 4. This accounts for all throttling and differences from rated flow rates. The most comprehensive available studies did not disaggregate kitchen use from bathroom use, but instead looked at total flow and length of use for all faucets. This makes it difficult to reliably separate kitchen water use from bathroom water use.

¹³⁶ Measurement should be based on actual average flow consumed over a period of time rather than a onetime spot measurement for maximum flow. Studies have shown maximum flow rates do not correspond well to average flow rate due to occupant behavior which does not always use maximum flow.

¹³⁷ Average retrofit flow rate for kitchen and bathroom faucet aerators from sources 1, 2, 3, and 4. This accounts for all throttling and differences from rated flow rates. Assumes all kitchen aerators at 2.2 gpm or less and all bathroom aerators at 1.5 gpm or less. The most comprehensive available studies did not disaggregate kitchen use from bathroom use, but instead looked at total flow and length of use for all faucets. This makes it difficult to reliably separate kitchen water use from bathroom water use. It is possible that programs installing low flow aerators lower than the 2.2 gpm for kitchens and 1.5 gpm for bathrooms will see a lower overall average retrofit flow rate.

¹³⁸ Measurement should be based on actual average flow consumed over a period of time rather than a onetime spot measurement for maximum flow. Studies have shown maximum flow rates do not correspond well to average flow rate due to occupant behavior which does not always use maximum flow.

¹³⁹ Table 2-45 Chapter 49, Service Water Heating, 2007 ASHRAE Handbook, HVAC Applications.

¹⁴⁰ Estimated based on data provided in Appendix E; "Waste Not, Want Not: The Potential for Urban Water Conservation in California"; http://www.pacinst.org/reports/urban usage/appendix e.pdf

¹⁴¹ Based on review of the Illinois plumbing code (Employees and students per faucet). Retail, grocery, warehouse and health are estimates. Meals per faucet estimated as 4 bathroom and 3 kitchen faucets and average meals per day of 250 (based on California study above) -250/7 = 36. Fast food assumption estimated.

Building Type	Gallons hot water per unit per day ¹³⁹ (A)	Unit	Estimated % hot water from Faucets (B)	Multiplier 141 (C)	Unit	Days per year (D)	Annual gallons mixed water per faucet (A*B*C*D)
Retail	2	employee	100%	5	employees per faucet	365	3,650
Grocery	2	employee	100%	5	employees per faucet	365	3,650
Warehouse	2	employee	100%	5	employees per faucet	250	2,500
Elementary School	0.6	person	50%	50	students per faucet	200	3,000
Jr High/High School	1.8	person	50%	50	students per faucet	200	9,000
Health	90	patient	25%	2	Patients per faucet	365	16,425
Motel	20	room	25%	1	faucet per room	365	1,825
Hotel	14	room	25%	1	faucet per room	365	1,278
Other	1	employee	100%	20	employees per faucet	250	5,000

EPG_electric = Energy per gallon of mixed water used by faucet (electric water heater) = (8.33 * 1.0 * (WaterTemp - SupplyTemp)) / (RE_electric * 3412) = (8.33 * 1.0 * (90 - 57.9)) / (0.98 * 3412)= 0.0800 kWh/gal8.33 = Specific weight of water (lbs/gallon) 1.0 = Heat Capacity of water (btu/lb-F) WaterTemp = Assumed temperature of mixed water $= 90F^{142}$ SupplyTemp = Assumed temperature of water entering building $= 57.9F^{143}$ RE_electric = Recovery efficiency of electric water heater $=98\%^{144}$ 3412 = Converts Btu to kWh (Btu/kWh) **ISR** = In service rate of faucet aerators

=Assumed to be 1.0

Temperature cited from SBW Consulting, Evaluation for the Bonneville Power Authority, 1994, http://www.bpa.gov/energy/n/reports/evaluation/residential/faucet_aerator.cfm. This is a variable that would benefit from further evaluation.

¹⁴³ Using 40" deep soil temp as a proxy at Powell Gardens SCAN site. Average by month of available data from 3/28/02–10/11/14: 12 month average is 57.898. http://www.wcc.nrcs.usda.gov/nwcc/site?sitenum=2061

¹⁴⁴ Electric water heater have recovery efficiency of 98%: http://www.ahrinet.org/ARI/util/showdoc.aspx?doc=576

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWh * CF$$

Where:

 ΔkWh = calculated value above on a per faucet basis

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

= Dependent on building type¹⁴⁵

Building Type	CF
Large Office	0.0001405396
Medium Office	0.0001186835
Small Office	0.0001446684
Primary School	0.0000610947
Secondary School	0.0000722371
Supermarket	0.0001759313
Quick Service Restaurant	0.0001291312
Full Service Restaurant	0.0001177535
Hospital	0.0000895687
Outpatient Health Care	0.0000016674
Small Hotel - Building	0.0000536005
Large Hotel - Building	0.0000761000
Midrise Apartment - Building	0.0001238342
Nonresidential Average	0.0000642678

FOSSIL FUEL IMPACT DESCRIPTIONS AND CALCULATION

ΔTherms = %FossilDHW * ((GPM_base - GPM_low)/GPM_base) * Usage * EPG_gas * ISR

Where:

%FossilDHW = proportion of water heating supplied by fossil fuel heating

DHW fuel	%Fossil_DHW
Electric	0%
Fossil Fuel	100%
Unknown	57% ¹⁴⁶

EPG_gas = Energy per gallon of mixed water used by faucet (gas water heater) $= (8.33 * 1.0 * (WaterTemp - SupplyTemp)) / (RE_gas * 100,000)$ = 0.00772 Therm/gal

Where:

¹⁴⁵ Based on modeling work using building prototypes as a basis.

¹⁴⁶ Default assumption for unknown fuel is based on EIA Commercial Building Energy Consumption Survey (CBECS) 2012 for Midwest North Central Region, see 'HC8.9 Water Heating in Midwest Region.xls'. If utilities have specific evaluation results providing a more appropriate assumption for buildings in a particular market or geographical area, then they should be used.

RE_gas = Recovery efficiency of gas water heater

 $=67\%^{147}$

100,000 = Converts Btus to Therms (Btu/Therm)

Other variables as defined above.

WATER IMPACT DESCRIPTIONS AND CALCULATION

 Δ gallons = ((GPM base - GPM_low)/GPM_base) * Usage * ISR

Variables as defined above

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

SOURCES USED FOR GPM ASSUMPTIONS

Source ID	Reference
1	2000, Mayer, Peter, William DeOreo, and David Lewis. Seattle Home Water Conservation
1	Study. December 2000.
	2003, Mayer, Peter, William DeOreo. Residential Indoor Water Conservation Study.
2	Aquacraft, Inc. Water Engineering and Management. Prepared for East Bay Municipal Utility
	District and the US EPA. July 2003.
2	2011, DeOreo, William. Analysis of Water Use in New Single Family Homes. By Aquacraft.
3	For Salt Lake City Corporation and US EPA. July 20, 2011.
	2008, Schultdt, Marc, and Debra Tachibana. Energy related Water Fixture Measurements:
4	Securing the Baseline for Northwest Single Family Homes. 2008 ACEEE Summer Study on
	Energy Efficiency in Buildings.

MEASURE CODE: CI-HW-LFFA-V01-170331

⁻

¹⁴⁷ Review of AHRI Directory suggests range of recovery efficiency ratings for new Gas DHW units of 70-87%. Average of existing units is estimated at 75%. Commercial properties are more similar to MF homes than SF homes. MF hot water is often provided by a larger commercial boiler. This suggests that the average recovery efficiency is somewhere between a typical central boiler efficiency of .59 and the .75 for single family home. An average is used for this analysis by default.

2.6.3 Circulator Pump

DESCRIPTION

Demand control recirculation pumps seek to reduce inefficiency by combining control via temperature and demand inputs, whereby the controller will not activate the recirculation pump unless both (a) the recirculation loop return water has dropped below a prescribed temperature (e.g. $100^{\circ}F$) and (b) a CDHW demand is sensed as water flow through the CDHW system.

This measure was developed to be applicable to the following program types: TOS, RF, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

Re-circulating pump shall cycle on based on (a) the recirculation loop return water dropping below a prescribed temperature (e.g. 100°F) and (b) a CDHW demand is sensed as water flow through the CDHW system.

DEFINITION OF BASELINE EQUIPMENT

The base case for this measure category is an existing, un-controlled recirculation pump on a gas-fired Central Domestic Hot Water System.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The effective useful life is 15 years 148.

DEEMED MEASURE COST

The assumed measure cost is \$1,200 per pump¹⁴⁹.

LOADSHAPE

Commercial Electric Hot Water – Multifamily

Algorithm

CALCULATION OF ENERGY SAVINGS

Savings shown are per pump.

ELECTRIC ENERGY SAVINGS

Deemed at 651 kWh¹⁵⁰.

¹⁴⁸ Benningfield Group. (2009). *PY 2009 Monitoring Report: Demand Control for Multifamily Central Domestic Hot Water.* Folsom, CA: Prepared for Southern California Gas Company, October 30, 2009.

¹⁴⁹ Gas Technology Institute. (2014). *1003: Demand-based domestic hot water recirculation Public project report.* Des Plaines, IL: Prepared for Nicor Gas, January 7, 2014.

¹⁵⁰ Based on results from the Nicor Gas Emerging Technology Program study, this value is the average kWh saved per pump. Note this value does not reflect savings from electric units but electrical savings from gas-fired units.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

Summer coincident peak demand savings are expected to be negligible.

NATURAL GAS SAVINGS

 Δ Therms = 55.9 * number of dwelling units¹⁵¹

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-HWE-DHWC-V01-170331

¹⁵¹ Based on results from the Nicor Gas Emerging Technology Program study, this value is the average therms saved per dwelling unit.

2.6.4 Heat Pump Water Heater

DESCRIPTION

This measure applies to the installation of a heat pump water heater (HPWH) in place of a standard electric water heater in a commercial building. Savings are presented dependent on the heating system installed in the building due to the impact of the heat pump water heater on the heating and cooling loads.

This measure was developed to be applicable to the following program types: TOS, NC.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be a heat pump water heater meeting program efficiency requirements.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is assumed to be a new, electric storage water heater meeting federal minimum efficiency standards. 152

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 13 years. 153

DEEMED MEASURE COST

Actual costs should be used where available. Incremental capital costs are presented in the table below for heat pump water heaters with energy factors (EF) of 2.0 and 2.4 and rated volumes of 40 gallons and 50 gallons, respectively.¹⁵⁴

EF	Rated Volume (gal)	Incremental Cost
2.0	40	\$1,340.30
2.4	50	\$1,187.58

For larger heat pump water heaters, incremental capital costs are presented in the table below based on heating capacity. 155

Heating Capacity (MBtu/hr)	Incremental Cost
10-50	\$4,000.00
>50-100	\$7,000.00
>100-300	\$10,000.00
>300-500	\$14,000.00

 $^{^{152}}$ Federal standards for ≤55 gallon and ≤12 kW storage water heaters are from 10 CFR §430.32(d). Federal standards for >120 gallon and>12 kW storage water heaters are from 10 CFR §431.110. Since the federal standard effectively requires a heat pump water heater for residential electric storage water heaters >55 gallons and ≤120 gallons, this measure excludes those units. 153 2010 Residential Heating Products Final Rule Technical Support Document, U.S. DOE, Table 8.7.2.

¹⁵⁴ Cost information is based upon data from "2010-2012 WA017 Ex Ante Measure Cost Study Draft Report", Itron, February 28, 2014. See "NR HW Heater WA017 MCS Results Matrix - Volume I August2016.xls" for more information.

¹⁵⁵ Costs for larger heat pump water heaters are from 2017 Michigan Energy Measures Database.xlsx and are based on heat pump water heaters with a COP ≥3.0.

Heating Capacity (MBtu/hr)	Incremental Cost
>500	\$18,000.00

LOADSHAPE

Commercial Water Heating

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

$$\Delta kWh = \left(\frac{(1/EF_{BASE} - 1/EF_{EE}) * HotWaterUse_{Gallon} * \gamma Water * (T_{Out} - T_{In}) * 1.0)}{3,412}\right) + kWh_cool - kWh_heat$$

Where:

EF_{BASE}

= Efficiency of baseline water heater according to federal standards, expressed as Energy Factor (EF) or Thermal Efficiency (E_t)

= See table below

Equipment Type	Size Category	Federal Standard Minimum Efficiency
HPWH ≤12 kW	≤55 gallon	EF: $0.96 - (0.0003 * rated volume in gallons)$
HPWH >12kW	>120 gallon	E _t : 98% ¹⁵⁶

 EF_{EE} = EF of heat pump water heater

= Actual

HotWaterUse_{Gallon}

= Estimated annual hot water consumption (gallons)

= Actual if possible to provide reasonable custom estimate. If not, two methodologies are provided to develop an estimate:

1. Consumption per water heater capacity

= Consumption/cap * Capacity

Where:

Consumption/cap

= Estimate of consumption per gallon of tank capacity,

dependent on building type:¹⁵⁷

¹⁵⁶ Efficiency of baseline water heaters >120 gallons based on search of electric storage water heaters >120 gallons available on AHRI directory.

¹⁵⁷ Based on Cadmus analysis. Annual hot water usage in gallons based on CBECS (2003) consumption data for West North Central (removed outliers of 1,000 kBtu/hr or less) to calculate hot water usage. Annual hot water gallons per tank size gallons based on the tank sizing methodology found in ASHRAE 2011 HVAC Applications. Chapter 50 Service Water Heating. Demand assumptions (gallons per day) for each building type based on ASHRAE Chapter 50 and "Technology Data Characterizing Water Heating in Commercial Buildings: Application to End Use Forecasting," Lawrence Berkeley National Library, December 1995. VEIC considers these values to be relatively conservative estimates that may benefit from future evaluation.

Building Type	Consumption/cap
Grocery, Convenience Store, and Restaurant	803
Lodging, Hospital, and Multifamily	630
Health Clinic, Church, Warehouse	433
Education, Office, and Retail	594
Industrial	558
Agriculture	558
Average Non Residential	558

Capacity = Capacity of hot water heater in gallons

= Actual

2. Consumption by facility size¹⁵⁸

Building Type	Gallons hot water per unit per day	Unit	Units/1000 ft ²	Days per year	Gallons/1000 ft² floor area
Small Office	1	person	2.3	250	575
Large Office	1	person	2.3	250	575
Fast Food Rest	0.7	meal/day	784.6	365	200,458
Sit-Down Rest	2.4	meal/day	340	365	297,840
Retail	2	employee	1	365	730
Grocery	2	employee	1.1	365	803
Warehouse	2	employee	0.5	250	250
Elementary School	0.6	person	9.5	200	1,140
Jr High/High School	1.8	person	9.5	200	3,420
Health	90	patient	3.8	365	124,830
Motel	20	room	5	365	36,500
Hotel	14	room	2.2	365	11,242
Other	1	employee	0.7	250	175

 γ Water = Specific weight of water

= 8.33 pounds per gallon

 T_{OUT} = Tank temperature

= Actual, if unknown assume 125°F ¹⁵⁹

-

¹⁵⁸ Technology Data Characterizing Water Heating in Commercial Buildings: Application to End Use Forecasting," Lawrence Berkeley National Library, December 1995.

¹⁵⁹ Ideally, the actual set point of the water heater should be used. If not available, 125 degrees is provided as an estimate of unmixed output temperature. While plumbing code generally limits temperatures at the end use, it typically does not limit the water heater system, which can be anywhere in the range 120 -201 degrees. For applications such as laundry and dishwashing, health and safety regulations may require water to be initially heated to higher temperatures. Since temperature setpoints can vary widely, market, program, or site-specific data should be used whenever possible.

 T_{IN} = Incoming water temperature from well or municipal system

 $=57.898^{\circ}F^{160}$

1.0 = Heat capacity of water (1 Btu/lb* $^{\circ}$ F)

= Conversion factor from Btu to kWh

kWh_cool = Cooling savings from conversion of heat in building to water heat 161

$$= \left[\frac{\left(\left(1 - \frac{1}{EF_{EE}}\right) * HotWaterUse_{Gallon} * \gamma Water * (T_{OUT} - T_{IN}) * 1.0\right) * LF * 53\% * LM}{COP_{COOL} * 3412}\right]$$

* %Cool

Where:

LF = Location Factor

= 1.0 for HPWH installation in a conditioned space

= 0.5 for HPWH installation in an unknown location ¹⁶²

= 0.0 for installation in an unconditioned space

= Portion of reduced waste heat that results in cooling savings 163

 COP_{COOL} = COP of central air conditioner

= Actual

LM = Latent multiplier to account for latent cooling demand

= Dependent on location: 164

Climate Zone (City based upon)	LM
North East (Fort Madison, IA)	5.1
North West (Lincoln, NE)	3.5
South East (Cape Girardeau, MO)	4.5
South West (Kaiser, MO)	3.7
St Louis, MO	3.0
Kansas City, MO	4.0
Average/Unknown (Knob Noster)	3.2

%Cool = Percentage of buildings with central cooling

¹⁶⁰ Using 40" deep soil temp as a proxy at Powell Gardens SCAN site. Average by month of available data from 3/28/02–10/11/14: 12 month average is 57.898. http://www.wcc.nrcs.usda.gov/nwcc/site?sitenum=2061

¹⁶¹ This algorithm calculates the heat removed from the air by subtracting the heat pump water heater electric consumption from the total water heating energy delivered. This is then adjusted to account for location of the heat pump unit and the coincidence of the waste heat with cooling requirements, the efficiency of the central cooling, and latent cooling demands.

¹⁶² Professional judgment.

¹⁶³ Based on 193 days where CDD 65>0, divided by 365,25, CDD days determined from TMY data with a base temp of 65°F.

¹⁶⁴ The Latent Multiplier is used to convert the sensible cooling savings calculated to a value representing sensible and latent cooling loads. The values are derived from the methodology outlined in Infiltration Factor Calculation Methodology by Bruce Harley, Senior Manager, Applied Building Science, CLEAResult 11/18/2015 and is based upon an 8760 analysis of sensible and total heat loads using hourly climate data.

Home	%Cool
Cooling	100%
No Cooling	0%

kWh_heat

= Heating cost from conversion of heat in building to water heat (dependent on heating fuel)

$$= \left(\frac{\left(\left(1 - \frac{1}{EF_{EE}}\right) * \textit{HotWaterUse}_{\textit{Gallon}} * \gamma \text{Water} * (T_{OUT} - T_{IN}) * 1.0\right) * LF * 43\%}{COP_{HEAT} * 3412}\right)$$

* %ElectricHeat

Where:

= Portion of reduced waste heat that results in increased heating

load¹⁶⁵

COP_{HEAT} = Actual. Note: electric resistance heating and heat pumps will

have an efficiency greater than or equal to 100%

%ElectricHeat = Percentage of buildings with electric heat

Heating fuel	%ElectricHeat
Electric	100%
Natural Gas	0%

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = kWh * CF$$

Where:

kWh = Electric energy savings, as calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001811545^{166}$

NATURAL GAS SAVINGS

$$\Delta Therms = -\left(\frac{\left(\left(1 - \frac{1}{EF_{EE}}\right)* HotWaterUse_{Gallon} * \gamma Water * (T_{OUT} - T_{IN}) * 1.0\right) * LF * 53\%}{\eta Heat * 100,000}\right) * \%GasHeat$$

Where:

 ¹⁶⁵ Based on 157 days where HDD 60>0, divided by 365.25. HDD days determined from TMY data with a base temp of 60°F.
 ¹⁶⁶ 2016 Ameren Missouri Coincident Peak Demand Factor for Commercial Water Heating. See reference "Ameren Missouri 2016 Appendix E - End Use Shapes and Coincident Factors.pdf"

 Δ Therms = Heating cost from conversion of heat in building to water heat for buildings with

natural gas heat¹⁶⁷

100,000 = Conversion factor from Btu to therms

 η Heat = Efficiency of heating system

= Actual

%GasHeat = Percentage of buildings with gas heat

Heating Fuel	%GasHeat
Electric	0%
Gas	100%

Other factors as defined above

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-HWE-HPWH-V01-170331

¹⁶⁷ This is the additional energy consumption required to replace the heat removed from the building during the heating season by the heat pump water heater. The variable kWh_heating (electric resistance) is that additional heating energy for a building with electric resistance heat (COP 1.0). This formula converts the additional heating kWh for an electric resistance building to the MMBtu required in a natural gas heated building, applying the relative efficiencies.

2.6.5 Controls for Central Domestic Hot Water

2.6.6 Low Flow Showerhead

2.6.7 Hot Water Measure Kit

2.6.8 Hot Water Pipe Insulation

2.6.9 Ozone Laundry

2.6.10 Pool Heater

2.6.11 Pool/Spa Cover

2.7 HVAC End Use

Table: Effective Full Load Heating and Cooling Hours, by building type.

	Whitema (Av		Lincoln,	NE (NW)	Fort Mac (N		Kaiser	· (SW)	Cape Gi (S	rardeau E)	St L	ouis	Kansa	as City
Building Type	Heating	Cooling	Heating	Cooling	Heating	Cooling	Heating	Cooling	Heating	Cooling	Heating	Cooling	Heating	Cooling
Dunuing Type	EFLH	EFLH	EFLH	EFLH	EFLH	EFLH	EFLH	EFLH	EFLH	EFLH	EFLH	EFLH	EFLH	EFLH
Large Office	1039	1846	1141	1756	1088	1539	997	1918	861	1784	988	1869	1056	1792
Medium Office	649	1350	740	1245	728	1146	567	1412	528	1323	645	1386	708	1325
Small Office	946	1114	1030	1041	1029	975	926	1165	769	1082	893	1159	989	1097
Warehouse	991	415	1201	380	1227	357	1189	457	851	391	1059	433	1207	400
Stand-alone Retail	1012	1000	1125	903	1139	808	968	1076	891	965	994	986	1036	946
Strip Mall	1030	970	1124	884	1148	794	984	1044	905	944	1001	956	1039	916
Primary School	806	1019	892	958	898	852	798	1155	666	1016	785	1195	840	971
Secondary School	719	812	803	724	867	677	754	911	603	800	712	873	779	779
Supermarket	1279	875	1367	800	1405	672	1330	902	1120	837	1248	846	1344	820
Quick Service Restaurant	1233	1013	1414	916	1513	819	1316	1127	1025	973	1262	1035	1387	970
Full Service Restaurant	1367	1119	1499	1014	1655	952	1442	1234	1156	1114	1380	1124	1473	1059
Hospital	3388	3318	3205	3055	3467	2733	3891	3448	2913	3312	3170	3413	3372	3215
Outpatient Health Care	3203	3113	3261	2834	3150	2627	3128	3217	3001	3109	3013	3265	3164	2994
Small Hotel - Building	602	2247	697	2097	760	1914	620	2386	436	2304	575	2277	669	2207
Large Hotel - Building	1656	2148	1472	2016	1980	1916	1943	2369	1202	2186	1551	2363	1692	2155
Midrise Apartment - Building	1462	1132	1599	1028	1710	901	1590	1214	1208	1085	1433	1171	1580	1090
C&I Average ¹⁶⁸	1067	1018	1196	937	1217	865	1118	1085	910	996	1060	1053	1164	986

¹⁶⁸ See Volume 1 for details on modeling calculations and assumptions.cek

2.7.1 Boiler

DESCRIPTION

This measure applies to the installation of a high-efficiency, gas-fired steam or hot water boiler in a commercial or multifamily space. High-efficiency boilers achieve gas savings through the use of a sealed combustion chamber and multiple heat exchangers that remove a significant portion of the waste heat from flue gasses. Because multiple heat exchangers are used to remove waste heat from the escaping flue gasses, some of the flue gasses condense and must be drained.

This measure was developed to be applicable to the following program type: TOS.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be a new boiler that is used 80% or more for space heating instead of process heating. Boiler annual fuel utilization efficiency (AFUE), thermal efficiency (E_T), or combustion efficiency (E_C) ratings must meet the minimum standards according to utility program requirements.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new boiler with an AFUE, E_T , or E_C rating that meets minimum federal energy efficiency standards.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 26.5 years for hot water gas-fired boilers and 23.6 years for steam gas-fired boilers.¹⁶⁹

DEEMED MEASURE COST

The incremental capital cost for this measure depends on boiler type (hot water or steam), capacity, and efficiency, as listed in the table below.¹⁷⁰

Incremental Costs for Hot Water Boilers					
Boiler Capacity	Efficiency	Incremental Equipment Cost (Per Unit)			
	83% AFUE	\$16			
	84% AFUE	\$31			
<300,000 Btu/hr	85% AFUE	\$187			
<500,000 Btu/III	90% AFUE	\$776			
	92% AFUE	\$1,126			
	96% AFUE	\$3,899			
>200,000 Pr <2,500,000 Dty/br	81% E _T	\$856			
≥300,000 & ≤2,500,000 Btu/hr	82% E _T	\$1,779			

¹⁶⁹ Average lifetime from Technical Support Document: Energy Efficiency Program for Consumer Products and Commercial and Industrial Equipment: Residential Boilers. U.S. Department of Energy, December 22, 2015.

¹⁷⁰ For boilers with input <300,000 Btu/hr, incremental costs are from Technical Support Document: Energy Efficiency Program for Consumer Products and Commercial and Industrial Equipment: Residential Boilers. U.S. Department of Energy, December 22, 2015. For boilers ≥300,000 Btu/hr, incremental costs are from Technical Support Document: Energy Efficiency Program for Consumer Products and Commercial and Industrial Equipment: Commercial Packaged Boilers. U.S. Department of Energy, March 4, 2016.

Incremental Costs for Hot Water Boilers		
Boiler Capacity	Efficiency	Incremental Equipment Cost (Per Unit)
	84% E _T	\$4,261
	85% E _T	\$5,532
	93% E _T	\$15,788
	95% E _T	\$16,529
	99% E _T	\$22,036
>2,500,000 Btu/hr	83% E _C	\$5,467
	84% E _C	\$11,967
	85% E _C	\$19,040
	94% E _C	\$73,087
	97% E _C	\$82,242

Incremental Costs for Steam Boilers		
Boiler Capacity	Efficiency Category	Incremental Equipment Cost (Per Unit)
<300,000 Btu/hr	82% AFUE	\$40
	83% AFUE	\$319
≥300,000 & ≤2,500,000 Btu/hr	78% E _T	\$790
	79% E _T	\$1,644
	80% E _T	\$2,567
	81% E _T	\$3,565
	83% E _T	\$5,810
>2,500,000 Btu/hr	78% E _T	\$2,371
	79% E _T	\$4,878
	80% E _T	\$7,529
	81% E _T	\$10,332
	82% E _T	\$13,296
	84% E _T	\$19,743

LOADSHAPE

N/A

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

NATURAL GAS ENERGY SAVINGS

$$\Delta Therms = \frac{EFLH * Capacity * \left(\frac{EFF_{EE} - EFF_{Base}}{EFF_{Base}}\right)}{100.000}$$

Where:

EFLH = Equivalent full load hours for heating

= See table at the beginning of section 2.7 HVAC End Use. A custom value may

also be used.

Capacity = Nominal heating input capacity (Btu/hr) of efficient boiler

= Actual

EFF_{EE} =Efficiency rating of high efficiency boiler

= Actual

 EFF_{Base} = Efficiency rating of baseline boiler

= See tables below.¹⁷¹ Baseline efficiency depends on boiler type (hot water or

steam) and capacity.

Federal Standards for Hot Water Boilers		
Boiler Capacity	Efficiency Rating	
<300,000 Btu/hr	82% AFUE	
≥300,000 & ≤2,500,000 Btu/hr	80% E _T	
>2,500,000 Btu/hr	82% E _c	

Federal Standards for Steam Boilers		
Boiler Capacity	Efficiency Rating	
<300,000 Btu/hr	80% AFUE	
All except natural draft ≥300,000 & ≤2,500,000 Btu/hr	79% E _T	
Natural draft ≥300,000 & ≤2,500,000 Btu/hr	77% E _T	
All except natural draft >2,500,000 Btu/hr	79% E _T	
Natural draft >2,500,000 Btu/hr	77% E _T	

= Factor to convert Btus to therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-HVC-BOIL-V01-170331

¹⁷¹ For boilers with input <300,000 Btu/hr, efficiency standards are from 10 CFR 431.87. For boilers ≥300,000 Btu/hr, efficiency standards are from 10 CFR 430.32.

2.7.2 Boiler Averaging Controls

DESCRIPTION

Also known as "ALM" or Advanced Load Monitoring controls, this measure derives energy savings by dynamically managing boiler operation through use of a microprocessor controller augmenting existing boiler controls. The ALM monitors and records boiler cycling data including water temperature data that reduces the boiler from firing for a period of time to limit cycling losses during perceived low-load conditions. The ALM controller works with hydronic heating systems with "primary/secondary" or single loop piping arrangements by monitoring primary loop temperatures. When the boiler aquastat calls for heat, the ALM controller may delay this firing by up to 15 minutes depending on temperature data. The ALM controller does not activate a standby boiler, nor does it stop a firing boiler. Rather, it limits cycling losses by temporarily and dynamically lowering the boiler firing temperature resulting in lengthening of boiler firing times or lengthening time between firing cycles. Savings are proportional to the boiler's oversizing and configuration of the building distribution system. The ALM is compatible with existing controls including multistage/modulating combustion and existing OTR. Features such as envelope and pipe insulation improvements may increase the savings potential. At this time, ALM controllers are not compatible with central steam boilers because they monitor temperatures only, with no pressure data collected by the unit.¹⁷²

This measure was developed to be applicable to the following program types: RF.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify the boiler(s) must be retrofitted to incorporate an ALM control system.

DEFINITION OF BASELINE EQUIPMENT

The baseline is a hot water boiler system without ALM controls.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is 20 years. 173

DEEMED MEASURE COST

As a retrofit measure, the actual installed cost should be used for screening purposes. If unknown, a cost of \$7,700¹⁷⁴ can be used for screening purposes.

LOADSHAPE

N/A

¹⁷² Description as well as definition of baseline equipment sourced by a manufacturer of ALM device.

¹⁷³ The Brooklyn Union Gas Company, High Efficiency Heating and Water and Controls, Gas Energy Efficiency Program Implementation Plan.

¹⁷⁴ Building America Case Study: Advanced boiler Load Monitoring Controllers, Chicago, Illinois (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

NATURAL GAS ENERGY SAVINGS

 Δ Therms = B_{input} * SF * EFLH_{heating} /(100,000)

Where:

B_{input} = Boiler Input Capacity (Btu/hr)

= actual input capacity of existing boiler

SF = Savings factor

= 10% 175 or custom input if it can be substantiated

EFLH_{heating} = See table at the beginning of section 2.7 HVAC End Use. A custom value may

also be used.

100,000 = conversion from Btu to therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-HVC-SBAC-V01-170331

¹⁷⁵ Field Test of Boiler Primary Loop Controller, U.S. DOE Building Technology Office, Energy Efficiency & Renewable Energy, September 2014. Of the case studies presented, the lowest annualized savings was chosen as a default savings factor to acknowledge that ALM controllers are an emerging technology with limited research. Savings are anticipated to be proportional with how much boilers are oversized, but additional research and evaluation is needed to confirm this relationship.

2.7.3 Boiler Lockout/Reset Controls

DESCRIPTION

This measure relates to improving combustion efficiency by adding controls to non-residential building space heating hot water boilers to vary the boiler entering water temperature relative to heating load as a function of the outdoor air temperature to save energy. Energy is saved by increasing the temperature difference between the water temperature entering the boiler in the boiler's heat exchanger and the boiler's burner flame temperature. The flame temperature remains the same while the water temperature leaving the boiler decreases with the decrease in heating load due to an increase in outside air temperature. A lockout temperature is also set to prevent the boiler from turning on when it is above a certain temperature outdoors.

This measure was developed to be applicable to the following program types: Retrofit. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

Natural gas customer adding boiler reset controls capable of resetting the boiler supply water temperature in an inverse linear fashion with outdoor air temperature. Boiler lockout temperatures should be set at this time as well, to turn the boiler off when the temperature goes above an appropriate setpoint.

DEFINITION OF BASELINE EQUIPMENT

Existing hot water boiler without boiler reset controls, any size with constant hot water flow.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is 20 years 176

DEEMED MEASURE COST

The cost of this measure is \$612¹⁷⁷

LOADSHAPE

N/A

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

¹⁷⁶CLEAResult references the Brooklyn Union Gas Company, High Efficiency Heating and Water and Controls, Gas Energy Efficiency Program Implementation Plan.

¹⁷⁷ Nexant. Questar DSM Market Characterization Report. August 9, 2006.

NATURAL GAS ENERGY SAVINGS

 Δ Therms = B_{input} * SF * EFLH_{heating} /(100,000)

Where:

B_{input} = Boiler Input Capacity (Btu/hr)

= actual input capacity of existing boiler

SF = Savings factor

 $=8\%^{178}$ or custom

EFLH_{heating} = See table at the beginning of section 2.7 HVAC End Use. A custom value may

also be used.

100,000 = conversion from Btu to therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-HVC-BLRC-V01-170331

¹⁷⁸ Savings factor is the estimate of annual gas consumption that is saved due to adding boiler reset controls. The CLEAResult uses a boiler tuneup savings value derived from Xcel Energy "DSM Biennial Plan-Technical Assumptions," Colorado. Focus on Energy uses 8%, citing multiple sources. Vermont Energy Investment Corporation's boiler reset savings estimates for custom projects further indicate 8% savings estimate is better reflection of actual expected savings.

2.7.4 High Temperature Heating & Ventilating (HTHV) Direct Fired Heater

DESCRIPTION

High Temperature Heating & Ventilating (HTHV) Direct Fired Heaters are a newly classified technology class of products that are capable of providing heating, ventilation and de-stratification solutions for commercial and industrial applications. Using high pressure blowers, HTHV heaters draw 100% outside air, combust fuel in the airstream, and then direct the heated air at high velocities into the space. With airfuel ratios typically 50 times the stoichiometric requirement, complete combustion results in emissions that consist primarily of water vapor and carbon dioxide.

This measure was developed to be applicable to the following program types: TOS, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

A 100% Outside Air, non-recirculating direct-fired gas heater capable of greater than 140 degree temperature rise and greater than 150 degree discharge temperature, with fully modulating temperature controls to meet both ventilation and space heating requirements. To qualify for this measure the installed equipment must be a HTHV direct fired natural gas heater.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a standard indirect-fired unit natural gas heater. Additionally, the HTHV heater is assumed to replace a separate make-up air unit that would have been required to meet space ventilation requirements.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 20 years. 179

DEEMED MEASURE COST

The incremental capital cost for this measure¹⁸⁰, based on rated input capacity, is assumed to be \$0.007428 / Btu/hr.

LOADSHAPE

N/A

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

N/A. Although HTHV heaters require more powerful supply fans than a traditional indirect-fired baseline unit and consequently consume more electricity, this measure assumes that the HTHV heater also replaces the need for a separate make-up air unit that would require fan energy that is assumed to equal that of the HTHV unit. Thus, no electric impact is assumed.

¹⁷⁹Measure life based upon service records of a HTHV manufacturer for comparable condensing unit heaters.

¹⁸⁰ Calculated from incremental costs outlined in DOE publication "Field Demonstration of High-Efficiency Gas Heaters," October 2014.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

NATURAL GAS ENERGY SAVINGS

 Δ Therms = H_{input} * SF * EFLH_{heating} /(100,000)

Where:

H_{input} = Infrared Heater Input Capacity (Btu/hr)

= actual input capacity of incentived unit

SF = Savings factor

= 15% ¹⁸¹ or custom input if it can be substantiated

EFLH_{heating} = See table at the beginning of section 2.7 HVAC End Use. A custom value may

also be used.

100,000 = conversion from Btu to therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-HVC-HTHV-V01-170331

 $^{^{181}}$ Savings factor is the resultant of (0.92/0.8) - 1 = 0.15; where 0.92 is the efficiency of the HTHV heater, taken to be 0.92 which represents the LHV of natural gas, appropriate for direct firing applications; and 0.8 is the efficiency of the baseline unit heater, as per DOE Commercial Warm Air Furnace Standard DOE 10 CFR, Part 431.

2.7.5 High Turndown Burner for Spacing Heating Boilers

DESCRIPTION

This measure applies to the retrofit of non-residential, boilers equipped with burners that have a turndown higher than 10:1. Turndown is the ratio of the high firing rate to the low firing rate. When boilers are subjected to loads below the low firing rate, the boiler must cycle on/off to meet load requirements. A higher turndown ratio reduces burner startups, provides better load control, saves wear-and-tear on the burner, and reduces purge-air requirements, resulting in a higher overall energy efficiency. The default values provided by the following algorithm assume that boiler(s) are used predominantly for space heating. Custom inputs should be derived for instances where they supply process heating.

This measure was developed to be applicable to the following program type: RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the efficient equipment must be a non-residential boiler with a burner turndown higher than 10:1. 182

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is assumed to be a non-residential boiler with a burner turndown of 6:1183 or lower.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years. 184

DEEMED MEASURE COST

The deemed installed measure cost including labor is approximately \$3,800/MMBtu/hr. 185

LOADSHAPE

N/A

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

¹⁸² Safe turndown for high-performance gas-fired boilers from Understanding Fuel Savings in the Boiler Room. ASHRAE, December 2008.

¹⁸³ Typical turndown for gas-fired boilers from Understanding Fuel Savings in the Boiler Room. ASHRAE, December 2008.

¹⁸⁴ Measure life from the 2013-2015 Triennial Plan for the Minnesota Electric and Natural Gas Conservation Improvement Program. Xcel Energy, June 2, 2012.

¹⁸⁵ Average of capital costs for burner repair/upgrade from Available and Emerging Technologies for Reducing Greenhouse Gas Emissions from Industrial, Commercial, and Institutional Boilers. EPA Office of Air and Radiation, October 2010.

NATURAL GAS SAVINGS

$$\Delta Therms = \frac{EFLH * Capacity * \%Save}{100,000}$$

Where:

EFLH = Equivalent full load hours for heating

= See table at the beginning of section 2.7 HVAC End Use. A custom value may

also be used.

Capacity = Nominal heating input capacity (Btu/hr) of existing boiler

= Actual

%Save = Reduction in gas consumption (%) as a result of high turndown burner

installation

= Custom or if unknown, assume 4% 186

= Factor to convert Btus to therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-HVC-HTBC-V01-170331

¹⁸⁶ Average of savings assumptions for burner repair/upgrade from Available and Emerging Technologies for Reducing Greenhouse Gas Emissions from Industrial, Commercial, and Institutional Boilers. EPA Office of Air and Radiation, October 2010 and for modulating burners from 2013-2015 Triennial Plan for the Minnesota Electric and Natural Gas Conservation Improvement Program. Xcel Energy, June 2, 2012.

2.7.6 Infrared Heaters

DESCRIPTION

This measure applies to natural gas fired low-intensity infrared heaters with an electric ignition. This measure includes replacement of failed or working standard indirect-fired heating systems within existing commercial and industrial buildings with natural gas fired infrared heaters, as well as installation of infrared heaters in new buildings. Low-intensity heaters have an enclosed flame. When heat is called for, the air/fuel mixture is combusted in a burner control box and the hot gases are forced through steel radiant tubing by an internal blower. The hot gasses heat the tubing assembly, which emit a portion of the energy as infrared energy. This infrared energy is directed toward the floor by highly polished reflectors that sit atop the tubing assembly. Infrared energy is absorbed by the floor, machinery, or anything else in its path, which in turn re-radiate this heat to create a comfort zone at the floor level.

This measure was developed to be applicable to the following program types: Time of Sale, New Construction. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be a low-intensity infrared natural gas heater with an electric ignition.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a standard indirect-fired unit natural gas heater.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 15 years¹⁸⁷

DEEMED MEASURE COST

The incremental capital cost for this measure is as follows, based on size category¹⁸⁸

Size Category	Incremental Cost
Up to 50,000 BTUh	\$469.97
> 50,000 BTUh up to 150,000 BTUh	\$421.74
> 150,000 BTUh up to 175,000 BTUh	\$380.40
Greater than 175,000 BTUh	\$352.84

LOADSHAPE

N/A

COINCIDENCE FACTOR

N/A

¹⁸⁷Focus on Energy Evaluation, Business Programs: Measure Life Study, August 25, 2009.

¹⁸⁸Incremental Cost Study Phase Four Final Report, Northeast Energy Efficiency Partnerships, June 15, 2015

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

NATURAL GAS ENERGY SAVINGS

 Δ Therms = H_{input} * SF * EFLH_{heating} /(100,000)

Where:

H_{input} = Infrared Heater Input Capacity (Btu/hr)

= actual input capacity of incentived unit

SF = Savings factor

= 17.6% ¹⁸⁹ or custom input if it can be substantiated

EFLH_{heating} = Equivalent Full Load Hours for heating are provided in section HVAC End Use.

A custom value may also be used.

100,000 = conversion from Btu to therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-HVC-IRHT-V01-170331

¹⁸⁹ Although infrared heaters do not achieve savings by delivering heat more efficiently (i.e., equipment efficiencies are similar to conventional baseline unit heaters), savings from less stratification as well as more "targeted" heating means that comfort can be achieved with a 15% reduction in heat load (Minimum load reduction cited in 2008 ASHRAE® HANDBOOK: Heating, Ventilating, and Air-Conditioning SYSTEMS AND EQUIPMENT, Inch-Pound Edition, Chapter 15, pg. 15.1, "Energy Conservation," 2008, American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., 1791 Tullie Circle N.E., Atlanta, GA 30329, U.S.A.). Accordingly, the savings factor is calculated as (1/0.85 – 1). Savings may be greater and are dependent on proper heater layout design.

2.7.7 Small Commercial Programmable Thermostats

DESCRIPTION

This measure characterizes the energy savings from the installation of a new Programmable Thermostat for reduced heating energy consumption through temperature set-back during unoccupied or reduced demand times. This measure is limited to small businesses as defined by programs ¹⁹⁰, as they have smaller HVAC systems that are similar to residential HVAC systems and may be controlled by a simple manual adjustment thermostat. Mid- to large-sized businesses will typically have a building automation system or some other form of automated HVAC controls. This measure is only appropriate for single zone heating systems. Custom calculations are required for savings for programmable thermostats installed in multi-zone systems.

This measure was developed to be applicable to the following program types: RF, DI.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The criteria for this measure are established by replacement of a manual-only temperature control with one that has the capability to adjust temperature set-points according to a schedule without manual intervention.

DEFINITION OF BASELINE EQUIPMENT

For new thermostats the baseline is a non-programmable thermostat requiring manual intervention to change the temperature set-point.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life of a programmable thermostat is assumed to be 8 years¹⁹¹ based upon equipment life only¹⁹².

DEEMED MEASURE COST

Actual material and labor costs should be used if the implementation method allows. If unknown, the capital cost for this measure is assumed to be \$181¹⁹³.

LOADSHAPE

Commercial Cooling

 $^{^{190}}$ The square footage of the small office prototype building modeled in is 7,500 sf.

¹⁹¹ Table 1, HVAC Controls, Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, 2007

¹⁹² Future evaluation is strongly encouraged to inform the persistence of savings to further refine measure life assumption. As this characterization depends heavily upon a large scale but only 2-year study of the energy impacts of programmable thermostats, the longer term impacts should be assessed.

¹⁹³ Based upon Nicor, Illinois Rider 30 Business EER Program Database, Paid Rebates with Programmable Thermostat Installation Costs, Program to Date as of January 11, 2013. If Missouri average costs are available, they should be used.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

$$\Delta kWh = \frac{Sqft * Savings Factor * PF}{EER(exist)}$$

Where:

Sqft = square footage of building controlled by thermostat

EER(exist) = efficiency rating of existing cooling equipment EER (btu hr/W)

Savings Factor $= 0.578 \text{ kWh/sf-yr}^{194}$

PF = Persistence Factor to account for thermostat being placed on hold,

reset or bypassed.

= Actual if provided in program evaluation, else assume 50% ¹⁹⁵

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

NATURAL GAS ENERGY SAVINGS

$$\Delta Therms \ = \frac{Sqft * Savings Factor * PF}{100 * AFUE(exist)}$$

Where:

Sqft = square footage of building controlled by thermostat

AFUE (exist) = efficiency rating of existing heating equipment (AFUE), in decimal

form.

= converts kBtu to therms, 1 therm = 100 kBtu

Savings Factor = $9.940 \text{ kBtu/sf-yr}^{196}$

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

¹⁹⁴ Cooling Savings Factors for the programmable thermostat are calculated as the savings in annual building load divided by the square footage of the small office prototype building (5,500 sf).

¹⁹⁵ This factor is based on consideration of the findings from a number of evaluations, including Sachs et al, "Field Evaluation of Programmable Thermostats", US DOE Building Technologies Program, December 2012, p35; "low proportion of households that ended up using thermostat-enabled energy saving settings"

http://apps1.eere.energy.gov/buildings/publications/pdfs/building_america/field_eval_thermostats.pdf%20, and Meier et al., "Usability of residential thermostats: Preliminary investigations", Lawrence Berkeley National Laboratory, March 2011, p1;

[&]quot;The majority of occupants operated thermostats manually, rather than relying on their programmable features and almost 90% of respondents reported that they rarely or never adjusted the thermostat to set a weekend or weekday program. Photographs of thermostats were collected in one on-line survey, which revealed that about 20% of the thermostats displayed the wrong time and that about 50% of the respondents set their programmable thermostats on "long term hold" (or its equivalent)." http://eec.ucdavis.edu/files/Usability_of_residential_thermostats.pdf

¹⁹⁶ Heating Savings Factors for the programmable thermostat are calculated as the savings in annual building load divided by the square footage of the prototype building (5,500 sf) and converted to kBtu.

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-HVC-PROG-V01-170331

2.7.8 Steam Trap Replacement or Repair

DESCRIPTION

This measure applies to the repair or replacement of faulty steam traps on HVAC steam distribution systems. Faulty steam traps allow excess steam to escape, wasting the energy used to generate steam and increasing the amount of steam generated. The measure is applicable to steam systems in commercial, industrial, and multifamily buildings.

This measure was developed to be applicable to the following program type: RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is a repaired, rebuilt, or replaced steam trap.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a faulty steam trap that needs to be repaired, rebuilt, or replaced as confirmed by a steam trap survey. No minimum leak rate is required.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The life of this measure is 6 years¹⁹⁷

DEEMED MEASURE COST

Measure cost depends on customer (commercial or industrial) and maximum steam system operating pressure (psig).

Steam System	Total Installed Cost (per Steam Trap) ¹⁹⁸
Commercial (all operating pressures)	\$177
Industrial, ≤ 15 psig	\$280
Industrial, $> 15 \le 30$ psig	\$300
Industrial, $> 30 \le 125 \text{ psig}$	\$323
Industrial, $> 125 \le 200 \text{ psig}$	\$415
Industrial, $> 200 \le 250 \text{ psig}$	\$275
Industrial, > 250 psig	Custom

LOADSHAPE

N/A

¹⁹⁷Measure life from Work Paper: Steam Traps Revision #1. Resource Solutions Group, August 2011.

¹⁹⁸Steam trap costs from Work Paper: Steam Traps Revision #1. Resource Solutions Group, August 2011. Measure cost includes installation cost of \$100 per trap, from Implement a Sustainable Steam-Trap Management Program, America Institute of Chemical Engineers, January 2014.

Algorithm

CALCULATION OF SAVINGS

ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

NATURAL GAS SAVINGS

 $\Delta Therms = LeakRate \ x \ H_{vap} \ x \ Hours_{Heat} \ x \ \% Leak / EFF_{Heat} \ /100,000$

Where:

LeakRate = Average steam loss rate (lb/hr) per leaking trap

 $= 24.24 \text{ x } (P_{Inlet} + 14.7) \text{ x } D^2 \text{ x } \% \text{Adjust}$

Where:

= Constant from Napier's equation (lb/(hr-psia-in²)

 P_{Inlet} = Steam trap inlet pressure (psig)

= Actual

14.7 = Atmospheric pressure (psia)

D = Diameter of steam trap orifice (in)

= Actual

% Adjust = Adjustment factor (%) to reduce the maximum theoretical steam flow to

the average steam flow

 $=50\%^{199}$

 H_{vap} = Heat of vaporization of steam (Btu/lb)

= Use values from table below, based on steam trap inlet pressure (psig)²⁰⁰

P _{Inlet} (psig)	H _{vap} (Btu/lb)
2	966
5	960
10	952
15	945
20	939
25	934
30	929
40	926
50	912

¹⁹⁹ Enbridge adjustment factor, from Work Paper: Steam Traps Revision #1. Resource Solutions Group, August 2011.

²⁰⁰ Heat of vaporization values from Steam Tables, Power Plant Service, Inc.

P _{Inlet} (psig)	H _{vap} (Btu/lb)
60	905
70	898
80	892
90	886
100	880
110	875
120	871
125	868
130	866
140	862
150	857
160	853
180	845
200	834
225	829
250	820

Hours_{Heat} = Custom entry, annual operating hours of steam plant

%Leak = Percentage of leaking or blow-through steam traps

= 1.0 when applied to the replacment of an individual leaking trap. If a number of steam traps are replaced and the system has not been audited, %Leak is applied to reflect the assumed percentage of steam traps that were actually leaking and in need of replacement. Use 27% for commercial customers and 16% for industrial

customers. 201

 EFF_{Heat} = Boiler efficiency (%)

= Custom or if unknown assume 71.9% AFUE.²⁰²

= Factor to convert Btus to therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-HVC-STRE-V01-170331

²⁰¹ % Leak values from Work Paper: Steam Traps Revision #1. Resource Solutions Group, August 2011.

²⁰² Average nameplate efficiencies of all existing boilers in Ameren, IL PY3-PY4 (2010-2012).

2.7.9 Demand Controlled Ventilation

DESCRIPTION

Demand control ventilation (DCV) automatically adjusts building ventilation rates based on occupancy. DCV is part of a building's ventilation system control strategy. It may include hardware, software, and controls as an integral part of a building's ventilation design. Active control of the ventilation system provides the opportunity to reduce heating and cooling energy use.

The primary component is a control sensor to communicate either directly with the economizer or with a central computer. The component is most typically a carbon dioxide (CO₂) sensor, occupancy sensor, or turnstile counter. This measure is modeled to assume night time set backs are in operation and minimum outside air is being used when the building is unoccupied.

This measure was developed to be applicable to the following program types: RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment condition is defined by new CO₂ sensors installed on return air systems where no other sensors were previously installed. Additionally, commissioned control logic and installed hardware must be capable of reducing ventilation rates based on sensor input. For heating savings, this measure does not apply to any system with terminal reheat (constant volume or variable air volume). For terminal reheat system a custom savings calculation should be used.

DEFINITION OF BASELINE EQUIPMENT

The base case for this measure is a space with no demand control capability. The current code minimum for outside air (OA) is 17 CFM per occupant (ASHRAE 62.1) which is the value assumed in this measure.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The deemed measure life is 10 years. 203

DEEMED MEASURE COST

As a retrofit measure, the actual cost of installation should be used for screening. Costs should include the hardware and labor costs to install the sensors. Additional purchase and installation costs for any other component of the DCV system that was not previously existing should also be included.

LOADSHAPE

Commercial Ventilation

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

For facilities heated by natural gas, cooling savings are:

 $^{^{203}}$ Based on CO₂ sensor estimated life, determined through conversations with contractors to have a minimum lifetime of 10 years. It is recommended that they are part of a normal preventive maintenance program, as calibration is an important part of extending useful life. Although they are not subject to mechanical failure, they can fall out of tolerance over time.

$$\Delta kWh = SQFT_{cond}/1000 * SF_{cooling}$$

For facilities heated by heat pumps, heating and cooling savings are:

$$\Delta kWh = SQFT_{cond}/1000 * SF_{cooling} + SQFT_{cond}/1000 * SF_{Heat\ HP}$$

For facilities heated by electric resistance heating and cooling savings are:

$$\Delta kWh \ = SQFT_{cond}/1000 \ * \ SF_{cooling} + \ SQFT_{cond}/1000 \ * \ SF_{Heat \ ER}$$

Where:

 $SQFT_{cond}$ = Square footage of conditioned space commissioned with DCV

SF_{cooling} = Cooling Savings Factor, including cooling and fan energy savings

SF_{Heat HP} = Heating Savings factor for facilities heated by Heat Pump (HP)

SF_{Heat ER} = Heating Savings factor for facilities heated by Electric Resistance (ER)

All Savings Factors are based on building type and weather zone, as listed in the following tables:²⁰⁴

	SF _{cooling} (kWh/1000 SqFt)						
Building Type	North East (Fort Madison, IA)	North West (Lincoln, NE)	South East (Cape Girardeau, MO)	South West (Kaiser, MO)	St Louis, MO	Kansas City, MO	Average/Un known (Knob Noster, MO)
Office - Low-rise	475	533	535	634	649	555	579
Office - Mid-rise	448	502	504	597	611	523	545
Office - High-rise	468	525	527	624	639	547	570
Religious Building	567	635	639	756	774	662	690
Restaurant	561	629	632	748	765	655	683
Retail - Department Store	654	734	737	873	893	764	797
Retail - Strip Mall	399	447	449	532	544	466	486
Convenience Store	631	708	711	842	862	737	769
Elementary School	353	395	397	470	481	412	430
High School	340	382	384	454	465	398	415
College/University	442	495	498	589	603	516	538
Healthcare Clinic	384	431	433	513	525	449	468
lodging	605	679	682	808	827	707	738
Manufacturing	500	560	563	666	682	584	609
Special Assembly Auditorium	476	534	536	635	650	556	580

		SF Heat HP (kWh/1000 SqFt)					
Building Type	North East (Fort Madison, IA)	North West (Lincoln, NE)	South East (Cape Girardeau, MO)	South West (Kaiser, MO)	St Louis, MO	Kansas City, MO	Average/Un known (Knob Noster, MO)
Office - Low-rise	171	191	145	151	156	176	159
Office - Mid-rise	114	128	97	100	104	117	106
Office - High-rise	154	172	130	135	140	158	143

²⁰⁴ Energy savings factors were calculated using weather data and methodology consistent with ASHRAE standards. Savings are calculated on an annual basis for each given weather zone in Missouri. Original energy savings for DCV were developed for Illinois utilizing standards, inputs and approaches as set forth by ASHRAE 62.1 and 90.1. These savings factors were then translated into Missouri-specific values using adjustment factors based on differences in heating and cooling degree hours. See DCV savings factors v1.xlsx for derivation.

-

	SF Heat HP (kWh/1000 SqFt)						
Building Type	North East (Fort Madison, IA)	North West (Lincoln, NE)	South East (Cape Girardeau, MO)	South West (Kaiser, MO)	St Louis, MO	Kansas City, MO	Average/Un known (Knob Noster, MO)
Religious Building	1,118	1,248	945	983	1,018	1,149	1,036
Restaurant	799	892	675	702	727	821	740
Retail - Department Store	277	310	234	244	252	285	257
Retail - Strip Mall	184	205	155	161	167	189	170
Convenience Store	134	150	114	118	122	138	125
Elementary School	475	531	402	418	433	488	440
High School	465	519	393	409	423	478	431
College/University	923	1,031	780	812	840	949	856
Healthcare Clinic	331	370	280	291	301	340	307
lodging	157	175	132	138	143	161	145
Manufacturing	122	136	103	107	111	125	113
Special Assembly Auditorium	1,335	1,490	1,128	1,173	1,215	1,371	1,236

	SF Heat ER (kWh/1000 SqFt)						
Building Type	North East (Fort Madison, IA)	North West (Lincoln, NE)	South East (Cape Girardeau, MO)	South West (Kaiser, MO)	St Louis, MO	Kansas City, MO	Average/Unk nown (Knob Noster, MO)
Office - Low-rise	514	574	434	452	468	528	476
Office - Mid-rise	343	383	290	301	312	352	318
Office - High-rise	461	515	390	406	420	474	428
Religious Building	3,354	3,744	2,835	2,948	3,053	3,446	3,108
Restaurant	2,396	2,675	2,025	2,106	2,181	2,462	2,220
Retail - Department Store	832	929	703	731	757	855	771
Retail - Strip Mall	551	615	465	484	501	566	510
Convenience Store	403	450	341	354	367	414	374
Elementary School	1,426	1,592	1,205	1,253	1,298	1,465	1,321
High School	1,395	1,557	1,179	1,226	1,270	1,433	1,292
College/University	2,770	3,093	2,341	2,435	2,521	2,846	2,567
Healthcare Clinic	993	1,109	839	873	904	1,020	920
lodging	470	525	397	413	428	483	436
Manufacturing	365	408	309	321	332	375	338
Special Assembly Auditorium	4,004	4,470	3,384	3,519	3,644	4,114	3,709

SUMMER COINCIDENT PEAK DEMAND SAVINGS

Energy savings from DCV occurs when occupancy levels are below design levels. Given that occupancy patterns may not always be predictable and the general expectation is that the coincident peak demand period will coincide with periods of highest occupancy, no peak demand savings should be assumed to result from this DCV measure. In instances where peak demand savings can be substantiated, a custom analysis should be used.

NATURAL GAS SAVINGS

 $\Delta Therms = SQFT_{cond}/1000 * SF_{Heat Gas}$

Where:

SF_{Heat Gas} = Savings factor for facilities heated by natural gas, as listed in the following table:

		SF _{Heat Gas} (Therm/1000 sq ft)						
Building Type	North East (Fort Madison, IA)	North West (Lincoln, NE)	South East (Cape Girardeau , MO)	South West (Kaise r, MO)	St Louis, MO	Kansas City, MO	Average/Unknown (Knob Noster, MO)	
Office - Low-rise	22	24	19	19	20	23	20	
Office - Mid-rise	15	16	12	13	13	15	14	
Office - High-rise	20	22	17	17	18	20	18	
Religious Building	143	160	121	126	130	147	133	
Restaurant	102	114	86	90	93	105	95	
Retail - Department Store	35	40	30	31	32	36	33	
Retail - Strip Mall	23	26	20	21	21	24	22	
Convenience Store	17	19	15	15	16	18	16	
Elementary School	61	68	51	53	55	62	56	
High School	60	66	50	52	54	61	55	
College/University	118	132	100	104	108	121	109	
Healthcare Clinic	42	47	36	37	39	44	39	
lodging	20	22	17	18	18	21	19	
Manufacturing	16	17	13	14	14	16	14	
Special Assembly Auditorium	171	191	144	150	155	175	158	

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-HVC-DCV-V01-170331

2.7.10 Furnace

DESCRIPTION

This measure applies to the installation of a high-efficiency, gas furnace in a commercial or multifamily space. High-efficiency gas furnaces achieve savings through the use of a sealed, super insulated combustion chamber, more efficient burners, and multiple heat exchangers that remove a significant portion of the waste heat from the flue gasses. Because multiple heat exchangers are used to remove waste heat from the escaping flue gasses, most of the flue gasses condense and must be drained.

This measure was developed to be applicable to the following program type: TOS.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be a new furnace with an annual fuel utilization efficiency (AFUE) or thermal efficiency (E_T) rating that meets the minimum standards according to utility program requirements.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new furnace with an AFUE or E_T rating that meets minimum federal energy efficiency standards.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 19 years.²⁰⁵

DEEMED MEASURE COST

The incremental capital cost for this measure depends on furnace efficiency and capacity, as listed in the table below.²⁰⁶

Furance Capacity	Efficiency	Incremental Equipment Cost (Per Unit)	Incremental Total Installed Cost (Per Unit)
	90% AFUE	\$163.16	\$477.93
<225,000 Btu/hr	92% AFUE	\$179.19	\$493.96
<223,000 Btu/III	95% AFUE	\$313.45	\$628.22
	98% AFUE	\$505.76	\$820.53
≥225,000 Btu/hr	92% E _T	\$1,371.96	\$1,752.75

LOADSHAPE

N/A

²⁰⁵ Average of 15-year lifetime from Residential Heating and Cooling Systems Initiative Description. Consortium for Energy Efficiency, May 28, 2015 and 23-year lifetime from Technical Support Document: Energy Efficiency Program for Consumer Products and Commercial and Industrial Equipment: Commercial Warm Air Furnaces. U.S. Department of Energy, December 15, 2015.

²⁰⁶ For furnaces with input <225,000 Btu/hr, incremental costs are from Technical Support Document: Energy Efficiency Program for Consumer Products and Commercial and Industrial Equipment: Residential Furnaces. U.S. Department of Energy, February 10, 2015. For furnaces ≥225,000 Btu/hr, incremental costs are from Technical Support Document: Energy Efficiency Program for Consumer Products and Commercial and Industrial Equipment: Commercial Warm Air Furnaces. U.S. Department of Energy, December 15, 2015.

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

NATURAL GAS ENERGY SAVINGS

$$\Delta Therms = \frac{EFLH * Capacity * \left(\frac{EFF_{EE} - EFF_{Base}}{EFF_{Base}}\right)}{100,000}$$

Where:

EFLH = Equivalent full load hours for heating

= See table at the beginning of section 2.7 HVAC End Use. A custom value may

also be used.

Capacity = Nominal heating input capacity (Btu/hr) of efficient furnace

= Actual

 EFF_{EE} = Efficiency rating of high efficiency furnace

= Actual

 EFF_{Base} = Efficiency rating of baseline furnace

= 80% AFUE for furnaces <225,000 Btu/hr²⁰⁷ and 85% E_T for furnaces \ge 225,000

Btu/hr²⁰⁸

= Factor to convert Btus to therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-HVC-FRNC-V01-170331

²⁰⁷ Federal efficiency standard for furnaces <225,000 Btu/hr from 10 CFR 430.32 is 80% AFUE.

²⁰⁸ Federal efficiency standard for furnaces ≥225,000 Btu/hr from 10 CFR 431.77 is 85% E_T.

2.7.11 Advanced RTU Controls

DESCRIPTION

A traditional packaged HVAC rooftop unit uses a zone thermostat to control the operation of the compressor or the gas furnace, depending on whether the zone thermostat is calling for cooling or heating. Under a conventional control scheme, the compressor or furnace is cycled on or off to maintain the zone thermostat set point with the supply fan operating continuously (when the building is occupied) to provide sufficient ventilation air and provide comfort heating and cooling for the space. The supply-fan speed is typically not capable of modulation, so it supplies constant air volume under all modes of operations.

Modulating the supply fan in conjunction with demand controlled ventilation (DCV) can reduce both heating/cooling energy and fan energy requirements. This measure describes the energy savings realized by retrofitting traditional RTUs with advanced controllers that enable integrated air-side economization, supply-fan speed control (by installing a variable speed drive), and demand-controlled ventilation.

This measure is applicable to the following program types: RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

A traditional RTU retrofitted and commissioned with advanced controls that allow for modulation of supply fan speed in conjunction with demand controlled ventilation (DCV).

DEFINITION OF BASELINE EQUIPMENT

Packaged heating and cooling equipment with constant speed supply fans providing ventilation at the design rate at all times when the fan is operating and when the building is occupied.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life for HVAC application is 15 years²⁰⁹.

DEEMED MEASURE COST

As a retrofit measure, actual costs should be specified when available. Default measure costs are listed below based on RTU supply fan horsepower rating:²¹⁰

Supply Fan ²¹¹ Size (hp)	Controller	Installation Labor	Total Retrofit Cost
1	\$2,200	\$750	\$2,950
2	\$2,600	\$750	\$3,350
3	\$3,500	\$750	\$4,250
5	\$4,000	\$750	\$4,750
7.5	\$4,142	\$750	\$4,892

LOADSHAPE

Commercial VFD - Supply fans

²⁰⁹ Consistent with other HVAC variable speed drive lifetimes.

²¹⁰ Advanced Rooftop Control (ARC) Retrofit: Field-Test Results, PNNL-22656. U.S. Department of Energy, July 2013.

²¹¹ Interpolation may be used to estimate controller cost for motor sizes not listed.

Algorithm

CALCULATION OF SAVINGS

Although advanced RTUs controls can enable operating strategies that result in heating and cooling savings, field testing has shown variable results (in some instances increased heating/cooling energy consumption has been observed). Field testing has suggested that upwards of 90% of total energy savings can be attributed to reduced fan energy requirements, and therefore the following savings estimates are limited to those relating to fan energy consumption.

ELECTRIC ENERGY SAVINGS

 ΔkWh = $P_{sf} * SF * Hours_{fan}$

Where:

 $P_{\rm sf}$ = Nominal horsepower of supply fan motor

SF = Fan energy savings factor²¹² (kWh/hour/horsepower)

= 0.558

Hours $_{fan}$ = Annual operating hours for fan motor based on building type.

Default hours are provided for HVAC applications which vary by building type²¹³. When available, actual hours should be used, especially in instances where RTU operation is seasonal.

	_
	Total
Building Type	Fan Run
	Hours
Large Office	6753
Medium Office	6968
Small Office	6626
Warehouse	6263
Stand-alone Retail	6679
Strip Mall	6687
Primary School	5906
Secondary School	6702
Supermarket	6900
Quick Service Restaurant	7679
Full Service Restaurant	7664
Hospital	8760
Outpatient Health Care	8760
Small Hotel - Building	8760
Large Hotel - Building	8760
Midrise Apartment -	8728
Building	0,20
Nonresidential Average	6773

²¹² Based on average field testing results outlined in Advanced Rooftop Control (ARC) Retrofit: Field-Test Results, PNNL-22656. U.S. Department of Energy, July 2013. Savings factors were consistent across the capacity range. See "RTU Control Savings.xlsx" for additional details.

²¹³ Hours per year are estimated using the modeling results and represent the total number of hours the fans are operating for heating, cooling and ventilation for each building type.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

 Δ kWh = As calculated above.

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001248516^{214}$

NATURAL GAS ENERGY SAVINGS

If fossil fuel impacts are expected, a custom analysis should be used to support them.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: NR-HVC-ARTU-V01-170331

MO-TRM-2017_Vol. 2_March 31, 2017_Final

²¹⁴ Developed from datasets produced from the Northeast Energy Efficiency Partnerships Variable Speed Drive Loadshape Project. See supporting workbook "VSD HVAC Pump Savings.xlsx" for derivation.

2.7.12 Electric Chiller

DESCRIPTION

This measure involves the installation of a new electric chiller meeting the efficiency standards presented below. This measure could relate to the replacement of an existing unit at the end of its useful life, or the installation of a new system in an existing building (i.e. time of sale). Only single-chiller applications should be assessed with this methodology. The characterization is not suited for multiple chillers projects or chillers equipped with variable speed drives (VSDs), for which a custom analysis should be used to establish savings.

This measure was developed to be applicable to the following program types: TOS, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to exceed the efficiency requirements defined by the program.

DEFINITION OF BASELINE EQUIPMENT

In order for this characterization to apply, the baseline equipment is assumed to meet the efficiency requirements set forth by local jurisdictions. In most cases, this will be some version of International Energy Conservation Code (IECC). Depending on the version, this will correspond to the requirements defined within Table 503.2.3(7) in the case of IECC 2009 or Table 403.2.3(7) in the case of either IECC 2012 or the IECC 2015.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 20 years ²¹⁵.

DEEMED MEASURE COST

The incremental capital cost for this measure is provided below²¹⁶.

Air cooled, electrically operated (\$/ton)								
Capacity (tons)	< 9.9 EER	9.9 EER and < 10.2 EER	10.2 EER and < 10.52 EER	10.52 EER and greater				
< 50	\$229	\$457	\$701	\$838				
>= 50 and < 100	\$114	\$229	\$350	\$419				
>= 100 and <150	\$76	\$152	\$234	\$279				
>= 150 and < 200	\$47	\$93	\$143	\$171				
>= 200	\$23	\$47	\$71	\$85				

Water cooled, electrically operated, positive displacement (rotary screw and scroll) (\$/ton)						
Capacity (tons)	> 72 72 and >		.68 and >.64 kW/ton	.64 kW/ton and less		
< 50	\$76	\$126	n/a	n/a		

²¹⁵ 2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05, "Effective/Remaining Useful Life Values", California Public Utilities Commission, December 16, 2008.

_

²¹⁶ NEEP Incremental Cost Study (ICS) Final Report – Phase 2, January 2013.

Water cooled, electrically operated, positive displacement (rotary screw and scroll) (\$/ton)							
Capacity (tons) > .72 kW/ton .68 and .64 kW/ton and .68 kW/ton .64 kW/ton .68 kW/ton .64 kW/ton .68 kW							
>= 50 and < 100	\$38	\$63	n/a	n/a			
>= 100 and < 150	\$25	\$42	n/a	n/a			
>= 150 and < 200	\$0	\$61	\$122	\$183			
>= 200	\$0	\$31	\$61	\$92			

Water cooled, electrically operated, positive displacement (reciprocating)								
(\$/ton)								
Canacity (tana) > .60 .60 and > .58 .58 kw/ton								
Capacity (tons)	kW/ton	kW/ton	less					
< 100	\$73	\$110	\$183					
>= 100 and <150	\$49	\$73	\$122					
>= 150 and <200	\$37	\$55	\$92					
>= 200 and < 300	\$61	\$91	\$152					
>= 300	\$30	\$46	\$76					

LOADSHAPE

Commercial Cooling (by Building Type)

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWH = TONS * ((IPLVbase) - (IPLVee)) * EFLH$

Where:

TONS = chiller nominal cooling capacity in tons (note: 1 ton = 12,000 Btu/hr)

= Actual installed

IPLV_{base} = efficiency of baseline equipment expressed as Integrated Part Load

Value(kW/ton). Chiller units are dependent on chiller type. See 'Chiller Units, Convertion Values' and 'Baseline Efficiency Values by Chiller Type' and

Capacity in the Reference Tables section.

IPLV_{ee}²¹⁷ = efficiency of high efficiency equipment expressed as Integrated Part Load Value

 $(kW/ton)^{218}$

= Actual installed

²¹⁷ Integrated Part Load Value is a seasonal average efficiency rating calculated in accordance with ARI Standard 550/590. It may be calculated using any measure of efficiency (EER, kW/ton, COP), but for consistency, it is expressed in terms of IPLV here.

²¹⁸ Can determine IPLV from standard testing or looking at engineering specs for design conditions. Standard data is available from AHRnetI.org. http://www.ahrinet.org/

EFLH = Equivalent Full Load Hours for cooling are provided in section 3.3 HVAC End Use.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWH * CF$

Where:

 Δ kWH = Annual electricity savings, as calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor for Cooling (dependent on building type) ²¹⁹

Building Type	CF
Large Office	0.0006428016
Medium Office	0.0009793854
Small Office	0.0011136865
Warehouse	0.0022840432
Stand-alone Retail	0.0013148378
Strip Mall	0.0013203011
Primary School	0.0011165551
Secondary School	0.0014275540
Supermarket	0.0015717641
Quick Service Restaurant	0.0012226485
Full Service Restaurant	0.0011453635
Hospital	0.0002431707
Outpatient Health Care	0.0003596174
Small Hotel - Building	0.0005445289
Large Hotel - Building	0.0005787040
Midrise Apartment - Building	0.0012319283
Nonresidential Average ²²⁰	0.0014502908

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

REFERENCE TABLES

Chillers Ratings- Chillers are rated with different units depending on equipment type as shown below

Equipment Type	Unit
Air cooled, electrically operated	EER
Water cooled, electrically operated,	kW/ton
positive displacement (reciprocating)	, • • • •

²¹⁹Summer peak coincidence demand (kW) to annual energy (kWh) factor. Calculated using modeling results and Ameren Missouri coincident peak demand methodology. See Volume 1 and modeling submittals for additional information. ²²⁰ For weighting factors, see HVAC variable table in section 3.3.

Equipment Type	Unit
Water cooled, electrically operated,	
positive displacement (rotary screw and	kW/ton
scroll)	

In order to convert chiller equipment ratings to IPLV the following relationships are provided

kW/ton = 12 / EER

 $kW/ton = 12 / (COP \times 3.412)$

COP = EER / 3.412

COP = 12 / (kW/ton) / 3.412

EER = 12 / kW/tonEER = COP x 3.412

Baseline Efficiency Values by Chiller Type and Capacity:

Note: Efficiency requirements depend on the path (Path A or Path B) that the building owner has chosen to meet compliance requirements. For air cooled and absorption chillers, Path A should be assumed. For water cooled chillers, the building owner should be consulted and the relevant path used for calculations. When unknown, Path A should be used.

2009 IECC Baseline Efficiency Values by Chiller Type and Capacity

TABLE 503.2.3(7) WATER CHILLING PACKAGES, EFFICIENCY REQUIREMENTS*

		WATER CHIL	BEFORE 1/1/2010		AS OF 1/1/2010 ^c				
					PAT	на	PAT	нв	
EQUIPMENT TYPE	SIZE CATEGORY	UNITS	FULL LOAD	IPLV	FULL LOAD	IPLV	FULL LOAD	IPLV	TEST PROCEDURE ^b
	< 150 tons	EER			≥ 9.562	≥ 12.500	NAd	NAd	
Air-cooled chillers	≥ 150 tons	EER	≥ 9.562	≥ 10.416	≥ 9.562	≥ 12.750	NAd	NAd	
Air cooled without condenser, electrical operated	All capacities	EER	≥ 10.586	≥ 11.782	be rated with comply with	Air-cooled chillers without condensers must be rated with matching condensers and comply with the air-cooled chiller efficiency requirements			
Water cooled, electrically operated, reciprocating	All capacities	kW/ton	≤ 0.837	≤ 0.696		g units must co ve displaceme			
	< 75 tons	kW/ton			≤ 0.780	≤ 0.630	≤0.800	≤ 0.600	
Water cooled,	≥ 75 tons and < 150 tons	kW/ton	≤ 0.790	≤ 0.676	≤ 0.775	≤ 0.615	≤0.790	≤ 0.586	AHRI
electrically operated, positive displacement	≥ 150 tons and < 300 tons	kW/ton	≤ 0.717	≤ 0.627	≤ 0.680	≤ 0.580	≤0.718	≤ 0.540	550/590
	≥ 300 tons	kW/ton	≤ 0.639	≤ 0.571	≤ 0.620	≤ 0.540	≤0.639	≤ 0.490	
	< 150 tons	kW/ton	≤ 0.703	≤ 0.669					
Water cooled,	≥ 150 tons and < 300 tons	kW/ton	≤ 0.634	≤ 0.596	≤ 0.634	≤ 0.596	≤0.639	≤ 0.450	
electrically operated, centrifugal	≥ 300 tons and < 600 tons	kW/ton	≤ 0.576	≤ 0.549	≤ 0.576	≤ 0.549	≤0.600	≤ 0.400	
	≥ 600 tons	kW/ton	≤ 0.576	≤ 0.549	≤ 0.570	≤ 0.539	≤0.590	≤ 0.400	
Air cooled, absorption single effect	All capacities	COP	≥ 0.600	NRe	≥ 0.600	NRe	NAd	NAd	
Water-cooled, absorption single effect	All capacities	COP	≥ 0.700	NRe	≥ 0.700	NRe	NAd	NAd	AHRI560
Absorption double effect, indirect-fired	All capacities	COP	≥ 1.000	≥ 1.050	≥ 1.000	≥ 1.050	NAd	NAd	
Absorption double effect, direct fired	All capacities	COP	≥ 1.000	≥ 1,000	≥ 1,000	≥ 1,000	NAd	NAd	

For SI: 1 ton = 907 kg, 1 British thermal unit per hour = 0.2931 W

a. The chiller equipment requirements do not apply for chillers used in ICMT-temperature applications where the design leaving fluid temperature is < 40°F.

b. Section 12 contains a complete specification of the referenced test procedure, including the referenced year VETSIOTI of the test procedure.

c. Compliance with this standard can be obtained by meeting the minimum requirements of Path A or B. However, both the full load and IPLV must be met to fulfill
the requirements of Path A or B.

d. NA means that this requirement is not applicable and cannot be used for compliance.

2012 IECC Baseline Efficiency Values by Chiller Type and Capacity

TABLE C403.2.3(7) MINIMUM EFFICIENCY REQUIREMENTS: WATER CHILLING PACKAGES*

			BEFORE	1/1/2010	10 AS OF		AS OF 1/1/2010 ^b		
					PAT	PATH B PATH B			
EQUIPMENT TYPE	SIZE CATEGORY	UNITS	FULL LOAD	IPLV	FULL LOAD	IPLV	FULL LOAD	IPLV	TEST PROCEDURE ^c
Air-cooled chillers	< 150 tons	EER	≥ 9.562	≥10.4	≥ 9.562	≥ 12.500	NA	NA	
All-cooled chillers	≥ 150 tons	EER	2 9.302	16	≥ 9.562	≥ 12.750	NA	NA	
Air cooled without condenser, electrical operated	All capacities	EER	≥ 10.586	≥ 11.782	ers shall l densers a	Air-cooled chillers without condens- ers shall be rated with matching con- densers and comply with the air-cooled chiller efficiency requirements			
Water cooled, electrically operated, reciprocating	All capacities	kW/ton	≤ 0.837	≤ 0.696	water coo	ating units oled positiv v requirem	ve displace		
	< 75 tons	kW/ton			≤ 0.780	≤ 0.630	≤ 0.800	≤ 0.600	1
Water cooled, electrically operated, post-	≥ 75 tons and < 150 tons	kW/ton	≤ 0.790	≤ 0.676	≤ 0.775	≤ 0.615	≤ 0.790	≤ 0.586	AHRI 550/590
tive displacement	≥ 150 tons and < 300 tons	kW/ton	≤ 0.717	≤0.627	≤ 0.680	≤ 0.580	≤ 0.718	≤ 0.540	330/330
	≥ 300 tons	kW/ton	≤ 0.639	≤ 0.571	≤ 0.620	≤ 0.540	≤ 0.639	≤ 0.490	
	< 150 tons	kW/ton	≤ 0.703	≤ 0.669					
Water cooled, electrically operated,	≥ 150 tons and < 300 tons	kW/ton	≤ 0.634	≤ 0.596	≤ 0.634	≤ 0.596	≤ 0.639	≤ 0.450	
centrifugal	≥ 300 tons and < 600 tons	kW/ton	≤ 0.576	≤ 0.549	≤ 0.576	≤ 0.549	≤ 0.600	≤ 0.400	
	≥ 600 tons	kW/ton	≤ 0.576	≤ 0.549	≤ 0.570	≤ 0.539	≤ 0.590	≤ 0.400	
Air cooled, absorption single effect	All capacities	COP	≥ 0.600	NR	≥0.600	NR	NA	NA	
Water cooled, absorption single effect	All capacities	COP	≥ 0.700	NR	≥0.700	NR	NA	NA	AHRI 560
Absorption double effect, indirect fired	All capacities	COP	≥ 1.000	≥ 1.050	≥ 1.000	≥ 1.050	NA	NA	Ariki 300
Absorption double effect, direct fired	All capacities	COP	≥ 1.000	≥1.000	≥ 1.000	≥ 1.000	NA	NA	

For SI: 1 ton = 3517 W, 1 British thermal unit per hour = 0.2931 W, $^{\circ}$ C = [($^{\circ}$ F) - 32]/1.8.

NA = Not applicable, not to be used for compliance; NR = No requirement.

a. The centrifugal chiller equipment requirements, after adjustment in accordance with Section C403.2.3.1 or Section C403.2.3.2, do not apply to chillers used in low-temperature applications where the design leaving fluid temperature is less than 36°F. The requirements do not apply to positive displacement chillers with leaving fluid temperatures less than or equal to 32°F. The requirements do not apply to absorption chillers with design leaving fluid temperatures less than 40°F.

b. Compliance with this standard can be obtained by meeting the minimum requirements of Path A or B. However, both the full load and IPLV shall be met to fulfill the requirements of Path A or B.

c. Chapter 6 of the referenced standard contains a complete specification of the referenced test procedure, including the referenced year version of the test procedure.

2015 IECC Baseline Efficiency Values by Chiller Type and Capacity

TABLE C403.2.3(7)
WATER CHILLING PACKAGES – EFFICIENCY REQUIREMENTS^{A, b, d}

EQUIPMENT TYPE	SIZE CATEGORY	UNITS	BEFORE	1/1/2015	AS OF	1/1/2015	TEST		
EQUIPMENT TYPE	SIZE CATEGORY	UNITS	Path A	Path B	Path A	Path B	PROCEDURE		
	< 150 Tons		≥ 9.562 FL	NA	≥ 10.100 FL	≥ 9.700 FL			
Air-cooled chillers	~ 150 Tolls	EER	≥ 12.500 IPLV	NA.	≥ 13.700 IPLV	≥ 15,800 IPLV			
Au-cooled chillers	≥ 150 Tons	(Btu/W)	≥ 9.562 FL	NA°	≥ 10.100 FL	≥ 9.700 FL			
	2 150 1005		≥ 12.500 IPLV	I.A.	≥ 14.000 IPLV	≥ 16.100 IPLV			
Air cooled without condenser, electrically operated	All capacities	EER (Btu/W)			ondenser shall b plying with air- equirements.				
	< 75 Tons		≤ 0.780 FL	≤ 0.800 FL	≤ 0.750 FL	≤ 0.780 FL	Ī		
	< /3 Tolls		≤ 0.630 IPLV	≤ 0.600 IPLV	≤ 0.600 IPLV	≤ 0.500 IPLV	Ī		
	≥ 75 tons and < 150 tons	Ī	≤ 0.775 FL	≤ 0.790 FL	≤ 0.720 FL	≤ 0.750 FL			
	2 /3 tous and < 130 tous		≤0.615 IPLV	≤ 0.586 IPLV	≤ 0.560 IPLV	≤ 0.490 IPLV	Ī		
Water cooled, electrically operated positive	≥ 150 tons and < 300 tons	kW/ton	≤ 0.680 FL	≤0.718 FL	≤ 0.660 FL	≤0.680 FL	İ		
displacement	2 150 tons and < 500 tons	KW/ton	≤ 0.580 IPLV	≤ 0.540 IPLV	≤ 0.540 IPLV	≤ 0.440 IPLV	Ī		
	≥ 300 tons and < 600 tons	İ	≤ 0.620 FL	≤0.639 FL	≤ 0.610 FL	≤ 0.625 FL	AHRI 550/		
	≥ 500 tons and < 600 tons		≤0.540 IPLV	≤ 0.490 IPLV	≤ 0.520 IPLV	≤ 0.410 IPLV	590		
	≥ 600 tons		≤ 0.620 FL	≤0.639 FL	≤ 0.560 FL	≤ 0.585 FL			
			≤0.540 IPLV	≤ 0.490 IPLV	≤ 0.500 IPLV	≤ 0.380 IPLV			
	< 150 Tons		≤ 0.634 FL	≤ 0.639 FL	≤ 0.610 FL	≤ 0.695 FL	İ		
		< 150 10hs		≤ 0.596 IPLV	≤ 0.450 IPLV	≤ 0.550 IPLV	≤ 0.440 IPLV	İ	
	> 150 arms and < 200 arms	İ	≤ 0.634 FL	≤ 0.639 FL	≤ 0.610 FL	≤ 0.635 FL	İ		
	≥ 150 tons and < 300 tons	2 130 ions and < 300 ions		≤0.596 IPLV	≤ 0.450 IPLV	≤ 0.550 IPLV	≤ 0.400 IPLV	İ	
Water cooled, electrically	≥ 300 tons and < 400 tons	≥ 300 tons and < 400 tons	≥ 300 tons and < 400 tons	kW/ton	≤ 0.576 FL	≤0.600 FL	≤ 0.560 FL	≤ 0.595 FL	İ
operated centrifugal				KW/ton	≤0.549 IPLV	≤ 0.400 IPLV	≤ 0.520 IPLV	≤ 0.390 IPLV	İ
	≥ 400 tons and < 600 tons	İ	≤ 0.576 FL	≤0.600 FL	≤ 0.560 FL	≤ 0.585 FL	İ		
	2 400 tons and < 600 tons		≤0.549 IPLV	≤ 0.400 IPLV	≤ 0.500 IPLV	≤ 0.380 IPLV	İ		
	> con T	İ	≤ 0.570 FL	≤0.590 FL	≤ 0.560 FL	≤ 0.585 FL	İ		
	≥ 600 Tons		≤0.539 IPLV	≤ 0.400 IPLV	≤ 0.500 IPLV	≤ 0.380 IPLV	İ		
Air cooled, absorption, single effect	All capacities	COP	≥ 0.600 FL	NA°	≥ 0.600 FL	NA°			
Water cooled absorption, single effect	All capacities	COP	≥ 0.700 FL	NA°	≥ 0.700 FL	NA°			
Absorption, double effect, indirect fired	All capacities	COP	≥ 1.000 FL ≥ 1.050 IPLV	NA°	≥ 1.000 FL ≥ 1.050 IPLV	NA°	AHRI 560		
Absorption double effect direct fired	All capacities	COP	≥ 1.000 FL ≥ 1.000 IPLV	NA°	≥ 1.000 FL ≥ 1.050 IPLV	NA°			

a. The requirements for centrifugal chiller shall be adjusted for nonstandard rating conditions in accordance with Section C403.2.3.1 and are only applicable for
the range of conditions listed in Section C403.2.3.1. The requirements for air-cooled, water-cooled positive displacement and absorption chillers are at
standard rating conditions defined in the reference test procedure.
 b. Both the full-load and IPLV requirements shall be met or exceeded to comply with this standard. Where there is a Path B, compliance can be with either Path

MEASURE CODE: NR-HVC-CHIL-V01-170331

A or Path B for any application.

NA means the requirements are not applicable for Path B and only Path A can be used for compliance.
 FL represents the full-load performance requirements and IPLV the part-load performance requirements.

2.7.13 Heat Pump Systems

DESCRIPTION

This measure applies to the installation of high-efficiency air cooled, water source, ground water source, and ground source heat pump systems. This measure could apply to replacing an existing unit at the end of its useful life, or installation of a new unit in a new or existing building.

This measure was developed to be applicable to the following program types: TOS, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to be a high-efficiency air cooled, water source, ground water source, or ground source heat pump system that exceeds the energy efficiency requirements specified by the building code applicable to local jurisdiction. This may be a version of the 2009, 2012 or 2015 International Energy Conservation Code (IECC) or ASHRAE 90.1 standard.

DEFINITION OF BASELINE EQUIPMENT

In order for this characterization to apply, the baseline equipment is assumed to be a standard-efficiency air cooled, water source, ground water source, or ground source heat pump system that meets the energy efficiency requirements of local building code. The rating conditions for the baseline and efficient equipment efficiencies must be equivalent.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 15 years.²²¹

DEEMED MEASURE COST

For analysis purposes, the incremental capital cost for this measure is assumed as \$100 per ton for air-cooled units. The incremental cost for all other equipment types should be determined on a site-specific basis.

LOADSHAPE

Commercial Heat Pump (by building type)

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

For units with cooling capacities less than 65 kBtu/hr:

 $\Delta kWh = Annual kWh Savings_{cool} + Annual kWh Savings_{heat}$

Annual kWh Savings_{cool} = $(kBtu/hr_{cool}) * [(1/SEERbase) - (1/SEERee)] * EFLH_{cool}$ Annual kWh Savings_{heat} = $(kBtu/hr_{heat}) * [(1/HSPFbase) - (1/HSPFee)] * EFLH_{heat}$

MO-TRM-2017_Vol. 2_March 31, 2017_Final

²²¹Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, Inc., June 2007.

²²² Based on a review of TRM incremental cost assumptions from Vermont, Wisconsin, and California.

For units with cooling capacities equal to or greater than 65 kBtu/hr:

 $\Delta kWh = Annual kWh Savings_{cool} + Annual kWh Savings_{heat}$

Annual kWh Savings_{cool} = $(kBtu/hr_{cool}) * [(1/EERbase) - (1/EERee)] * EFLH_{cool}$

Annual kWh Savings_{heat} = $(kBtu/hr_{heat})/3.412 * [(1/COPbase) - (1/COPee)] *$

EFLH_{heat}

Where:

kBtu/hr_{cool} = capacity of the cooling equipment in kBtu per hour (1 ton of cooling capacity

equals 12 kBtu/hr).

= Actual installed

SEERbase =Seasonal Energy Efficiency Ratio of the baseline equipment

= SEER from tables below, if applicable code is based onIECC, or custom input

as necessary.

SEERee = Seasonal Energy Efficiency Ratio of the energy efficient equipment.

= Actual installed

EFLH_{cool} = Equivalent Full Load Hours for cooling are provided in section 2.7 HVAC End

Use.

HSPFbase = Heating Seasonal Performance Factor of the baseline equipment

= HSPF from tables below, if applicable code is based on IECC, or custom input

as necessary.

HSPFee = Heating Seasonal Performance Factor of the energy efficient equipment.

= Actual installed. If rating is COP, HSPF = COP * 3.413

EFLH_{heat} = heating mode equivalent full load hours are provided in section 2.7 HVAC End

Use.

EERbase = Energy Efficiency Ratio of the baseline equipment

= EER from tables below, based on the applicable IECC. For air-cooled units < 65 kBtu/hr, assume the following conversion from SEER to EER for calculation of

peak savings:223

 $EER = (-0.02 * SEER^2) + (1.12 * SEER)$

EERee = Energy Efficiency Ratio of the energy efficient equipment. For air-cooled units

< 65 kBtu/hr, if the actual EERee is unknown, assume the conversion from SEER

to EER as provided above.

= Actual installed

 $kBtu/hr_{heat}$ = capacity of the heating equipment in kBtu per hour.

= Actual installed

3.412 = Btu per Wh.

COPbase = coefficient of performance of the baseline equipment

²²³ Based on Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder. Note this is appropriate for single speed units only.

= COP from tables below, based on the applicable IECC. If rating is HSPF, COP

= HSPF / 3.413

COPee = coefficient of performance of the energy efficient equipment.

= Actual installed

Minimum Efficiency Requirements: 2009 IECC

TABLE 503.2.3(2)
UNITARY AIR CONDITIONERS AND CONDENSING UNITS, ELECTRICALLY OPERATED, MINIMUM EFFICIENCY REQUIREMENTS

EQUIPMENT TYPE	SIZE CATEGORY	SUBCATEGORY OR RATING CONDITION	MINIMUM EFFICIENCyb	TEST PROCEDURE ³	
		Split system	13.0 SEER		
	< 65,000 Btu/h ^a	Single package	13.0 SEER		
	≥ 65,000 Btu/h and < 135,000 Btu/h	Split system and single package	10.1 EERc (before Jan 1, 2010) 11.0 EERc (as of Jan 1, 2010)	AHRI210/240	
Air cooled, (Cooling mode)	≥ 135,000 Bttu/h and < 240,000 Bttu/h	Split system and single package	9.3 EERc (before Jan 1, 2010) 10.6 EERc (as of Jan 1, 2010)		
	≥ 240,000 Btu/h	Split system and single package	9.0 EERc 9.2 IPLYc (before Jan 1, 2010) 9.5 EERc 9.2 IPLYc (as of Jan 1, 2010)	AHRI 340/360	
Through-the-Wall	and one Purdic	Split system	10.9 SEER (before Jan 23, 2010) 12.0 SEER (as of Jan 23,2010)	AHRI210/240	
(Air cooled, cooling mode)	< 30,000 Btu/h ^d	Single package	10.6 SEER (before Jan 23, 2010) 12.0 SEER (as of Jan 23,2010)	AFIRIZ1U/24U	
	< 17,000 Btu∕h	86°F entering water	11.2 EER	AHRI/ASHRAE 13256-1	
Water Source (Cooling mode)	≥ 17,000 Btu/h and < 135,000 Btu/h	86°F entering water	12.0 EER	AHRIASHRAE 13256-1	
Groundwater Source (Cooling mode)	< 135,000 Btu∕h	59°F entering water	16.2 EER	AHRI/ASHRAE 13256-1	
Ground source (Cooling mode)	< 135,000 Btu∕h	77°F entering water	13.4 EER	AHRI/ASHRAE 13256-1	
	< 65.000 Btu∕hª	Split system	7.7 HSPF		
	(Cooling capacity)	Single package	7.7 HSPF]	
Air cooled (Heating mode)	≥ 65,000 Btu/h and < 135,000 Btu/h (Cooling capacity)	47°F db/43°F wb Outdoor air	3.2 COP (before Jan 1, 2010) 3.3 COP (as of Jan 1, 2010)	AHRI210/240	
	≥ 135,000 Btu/h (Cooling capacity)	47°F db/43°F wb Outdoor air	3.1 COP (before Jan 1, 2010) 3.2 COP (as of Jan 1, 2010)	AHRI 340/360	

TABLE 503.2.3(2)-continued UNITARY AIR CONDITIONERS AND CONDENSING UNITS, ELECTRICALLY OPERATED, MINIMUM EFFICIENCY REQUIREMENTS

		Olino, ELECTRICATEET OF E		
EQUIPMENT TYPE	SIZE CATEGORY	SUBCATEGORY OR RATING CONDITION	MINIMUM EFFICIENCyb	TEST PROCEDURE®
Through-the-wall (Air cooled, heating mode)		Split System	7.1 HSPE (before Jan 23, 2010) 7.4 HSPF (as of Jan 23,2010)	
	<30,000 Btu/h	Single package	7.0 HSPF (before Jan 23, 2010) 7.4 HSPF (as of Jan 23,2010)	AHRI210/240
Water source (Heating mode)	< 135,000 Btu/h (Cooling capacity)	68°F entering water	4.2 COP	AHRI/ASHRAE 13256-1
Groundwater source (Heating mode)	< 135,000 Btu/h (Cooling capacity)	50°F entering water	3.6 COP	AHRI/ASHRAE 13256-1
Ground source (Heating mode)	< 135,000 Btu/h (Cooling capacity)	32°F entering water	3.1 COP	AHRI/ASHRAE 13256-1

For SI: $^{\circ}C = [(OF) - 32]/1.8$, 1 British thermal unit per hour = 0.2931 W

db = dry-bulb temperature, of, wb = wet-bulb temperature, oF.

a. Chapter 6 contains a complete specification of the referenced test procedure, including the referenced year version of the test procedure.

b. IPLVs and Part load rating conditions are only applicable to equipment with capacity modulation.

c. Deduct 0.2 from the required EERs and IPLVs for units with a heating section other than electric resistance heat.

d. Single-phase air-cooled heat pumps = 65,000 Btu/h are regulated by the National Appliance Energy Conservation Act of 1987 (NAECA), SEER and HSPF values are those set by NAECA.

Minimum Efficiency Requirements: 2012 IECC

TABLE C403.2.3(2) MINIMUM EFFICIENCY REQUIREMENTS: ELECTRICALLY OPERATED UNITARY AND APPLIED HEAT PUMPS

ELECTRICALLY OPERATED UNITARY AND APPLIED HEAT PUMPS								
E CATEGORY	HEATING SECTION TYPE	SUBCATEGORY OR RATING CONDITION	MINIMUM EFFICIENCY	TEST PROCEDURE*				
< 65,000 Btu/h ^b	All	Split System	13.0 SEER	AHRI 210/240				
		Single Packaged	13.0 SEER					
≤ 30,000 Btu/h ^b	All	Split System	13.0 SEER					
		Single Packaged	13.0 SEER					
5,000 Btu/h ^b	All	All Split System						
000 Btu/h and	Electric Resistance (or None)	Split System and Single Package	11.0 EER 11.2 IEER	AHRI 340/360				
< 135,000 Btu/h	All other	Split System and Single Package	10.8 EER 11.0 IEER					
.000 Btu/h and	Electric Resistance (or None)	Split System and Single Package	10.6 EER 10.7 IEER					
< 240,000 Btu/h	All other	Split System and Single Package	10.4 EER 10.5 IEER					
≥ 240,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	9.5 EER 9.6 IEER					
	All other	Split System and Single Package	9.3 EER 9.4 IEER					
7,000 Btu/h	All	86°F entering water	11.2 EER					
000 Btu/h and 5,000 Btu/h	All	86°F entering water	12.0 EER					
000 Btu/h and 35,000 Btu/h	All	86°F entering water	12.0 EER	ISO 13256-1				
< 135,000 Btu/h	All	59°F entering water	16.2 EER]				
	All	77°F entering water	13.4 EER					
< 135,000 Btu/h	All	86°F entering water	10.6 EER	ISO 13256-2				
		59°F entering water	16.3 EER					
35,000 Btu/h	All	77°F entering fluid	12.1 EER					
< 65,000 Btu/h ^b	_	Split System	7.7 HSPF					
	_	Single Package	7.7 HSPF	1				
≤ 30,000 Btu/h ^b (cooling capacity)	_	Split System	7.4 HSPF	AHRI 210/240				
	_	Single Package	7.4 HSPF					
5,000 Btu/h ^b	_	Split System	6.8 HSPF]				
	5,000 Btu/hb 5,000 Btu/hb 5,000 Btu/h 5,000 Btu/h 0,000 Btu/h 40,000 Btu/h 40,000 Btu/h 7,000 Btu/h 000 Btu/h 35,000 Btu/h 35,000 Btu/h 35,000 Btu/h 35,000 Btu/h 35,000 Btu/h 5,000 Btu/h	5,000 Btu/h 5,000 Btu/h All Electric Resistance (or None) All other Electric Resistance (or None) All other Electric Resistance (or None) All other Electric Resistance (or None) All other	Split System	Split System 13.0 SEER				

(continued)

TABLE C403.2.3(2)—continued MINIMUM EFFICIENCY REQUIREMENTS: ELECTRICALLY OPERATED UNITARY AND APPLIED HEAT PUMPS

EQUIPMENT TYPE	SIZE CATEGORY	HEATING SECTION TYPE	SUB-CATEGORY OR RATING CONDITION	MINIMUM EFFICIENCY	TEST PROCEDURE	
Air cooled (heating mode)	≥ 65,000 Btu/h and < 135,000 Btu/h (cooling capacity)	1_	47°F db/43°F wb Outdoor Air	3.3 COP		
			17°F db/15°F wb Outdoor Air	2.25 COP	AHRI 340/360	
	≥ 135,000 Btu/h (cooling capacity)	-	47°F db/43°F wb Outdoor Air	3.2 COP		
			17°F db/15°F wb Outdoor Air	2.05 COP		
Water source (heating mode)	< 135,000 Btu/h (cooling capacity)	_	68°F entering water	4.2 COP	ISO 13256-1	
Ground water source (heating mode)	< 135,000 Btu/h (cooling capacity)	-	50°F entering water	3.6 COP		
Ground source (heating mode)	< 135,000 Btu/h (cooling capacity)	_	32°F entering fluid	3.1 COP		
Water-source water to water (heating mode)	< 135,000 Btu/h (cooling capacity)	1-	68°F entering water	3.7 COP		
		_	50°F entering water	3.1 COP	ISO 13256-2	
Ground source brine to water (heating mode)	< 135,000 Btu/h (cooling capacity)	_	32°F entering fluid	2.5 COP		

For SI: 1 British thermal unit per hour = 0.2931 W, "C = [("F) - 32]/1.8.

a. Chapter 6 of the referenced standard contains a complete specification of the referenced test procedure, including the reference year version of the test procedure.

b. Single-phase, air-cooled air conditioners less than 65,000 Btu/h are regulated by NAECA. SEER values are those set by NAECA.

Minimum Efficiency Requirements: 2015 IECC

TABLE C403.2.3(2) MINIMUM EFFICIENCY REQUIREMENTS: ELECTRICALLY OPERATED UNITARY AND APPLIED HEAT PUMPS

EQUIPMENT TYPE	SIZE CATEGORY	HEATING SECTION TYPE	SUBCATEGORY OR RATING CONDITION	MINIMUM EFFICIENCY		TEST PROCEDURE*
				Before 1/1/2016	As of 1/1/2016	PROCEDURE-
Air cooled (cooling mode)	< 65,000 Btu/h ^b	All	Split System	13.0 SEER°	14.0 SEER°	AHRI 210/240
			Single Package	13.0 SEER°	14.0 SEER°	
Through-the-wall, air cooled	≤ 30.000 Btu/h ^b	A11	Split System	12.0 SEER	12.0 SEER	
	2 50,000 Blain		Single Package	12.0 SEER	12.0 SEER	
Single-duct high-velocity air cooled	< 65,000 Btu/hb	A11	Split System	11.0 SEER	11.0 SEER	
	≥ 65,000 Btu/h and	Electric Resistance (or None)	Split System and Single Package	11.0 EER 11.2 IEER	11.0 EER 12.0 IEER	AHRI 340/360
	< 135,000 Btu/h	All other	Split System and Single Package	10.8 EER 11.0 IEER	10.8 EER 11.8 IEER	
Air cooled	≥ 135.000 Btu/h and	Electric Resistance (or None)	Split System and Single Package	10.6 EER 10.7 IEER	10.6 EER 11.6 IEER	
(cooling mode)	< 240,000 Btu/h	All other	Split System and Single Package	10.4 EER 10.5 IEER	10.4 EER 11.4 IEER	
	≥ 240,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	9.5 EER 9.6 IEER	9.5 EER 10.6 IEER	
		All other	Split System and Single Package	9.3 EER 9.4 IEER	9.3 EER 9.4 IEER	
	< 17,000 Btu/h	A11	86°F entering water	12.2 EER	12.2 EER	
Water to Air: Water Loop (cooling mode)	≥ 17,000 Btu/h and < 65,000 Btu/h	All	86°F entering water	13.0 EER	13.0 EER	ISO 13256-1
	≥ 65,000 Btu/h and < 135,000 Btu/h	All	86°F entering water	13.0 EER	13.0 EER	
Water to Air: Ground Water (cooling mode)	< 135,000 Btu/h	All	59°F entering water	18.0 EER	18.0 EER	ISO 13256-1
Brine to Air: Ground Loop (cooling mode)	< 135,000 Btu/h	A11	77°F entering water	14.1 EER	14.1 EER	ISO 13256-1
Water to Water: WaterLoop (cooling mode)	< 135,000 Btu/h	A11	86°F entering water	10.6 EER	10.6 EER	
Water to Water: Ground Water (cooling mode)	< 135,000 Btu/h	A11	59°F entering water	16.3 EER	16.3 EER	ISO 13256-2
Brine to Water: Ground Loop (cooling mode)	< 135,000 Btu/h	A11	77°F entering fluid	12.1 EER	12.1 EER	

(continued)

TABLE C403.2.3(2)—continued MINIMUM EFFICIENCY REQUIREMENTS: ELECTRICALLY OPERATED UNITARY AND APPLIED HEAT PUMPS

EQUIPMENT TYPE	SIZE CATEGORY	HEATING SECTION TYPE	SUBCATEGORY OR RATING CONDITION	MINIMUM EFFICIENCY		TEST
				Before 1/1/2016	As of 1/1/2016	PROCEDURE*
Air cooled (heating mode)	< 65,000 Btu/h ^b	_	Split System	7.7 HSPF°	8.2 HSPF°	AHRI 210/240
		_	Single Package	7.7 HSPF°	8.0 HSPF°	
Through-the-wall,	≤ 30,000 Btu/h ^b	_	Split System	7.4 HSPF	7.4 HSPF	
(air cooled, heating mode)	(cooling capacity)	_	Single Package	7.4 HSPF	7.4 HSPF	
Small-duct high velocity (air cooled, heating mode)	< 65,000 Btu/h ^b	_	Split System	6.8 HSPF	6.8 HSPF	
Air cooled (heating mode)	≥ 65,000 Btu/h and <135,000 Btu/h (cooling capacity)		47°F db/43°F wb outdoor air	3.3 COP	3.3 COP	AHRI 340/360
			17°F db/15°F wb outdoor air	2.25 COP	2.25 COP	
	≥ 135,000 Btu/h (cooling capacity)		47°F db/43°F wb outdoor air	3.2 COP	3.2 COP	
		_	17°F db/15°F wb outdoor air	2.05 COP	2.05 COP	
Water to Air: Water Loop (heating mode)	< 135,000 Btu/h (cooling capacity)	_	68°F entering water	4.3 COP	4.3 COP	
Water to Air: Ground Water (heating mode)	< 135,000 Btu/h (cooling capacity)	_	50°F entering water	3.7 COP	3.7 COP	ISO 13256-1
Brine to Air: Ground Loop (heating mode)	< 135,000 Btu/h (cooling capacity)	_	32°F entering fluid	3.2 COP	3.2 COP	
Water to Water: Water Loop (heating mode)	< 135,000 Btu/h (cooling capacity)	_	68°F entering water	3.7 COP	3.7 COP	
Water to Water: Ground Water (heating mode)	< 135,000 Btu/h (cooling capacity)	_	50°F entering water	3.1 COP	3.1 COP	ISO 13256-2
Brine to Water: Ground Loop (heating mode)	< 135,000 Btu/h (cooling capacity)	_	32°F entering fluid	2.5 COP	2.5 COP	

For SI: 1 British thermal unit per hour = 0.2931 W, $^{\circ}\text{C} = [(^{\circ}\text{F}) - 32]/1.8$.

a. Chapter 6 contains a complete specification of the referenced test procedure, including the reference year version of the test procedure.

b. Single-phase, air-cooled air conditioners less than 65,000 Btu/h are regulated by NAECA. SEER values are those set by NAECA.

c. Minimum efficiency as of January 1, 2015.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWH_{Cool} * CF$

Where:

 Δ kWH = Annual cooling electricity savings, as calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor for Heat Pumps (dependent on building type) ²²⁴

Building Type	CF
Large Office	0.0005949335
Medium Office	0.0007141166
Small Office	0.0008816990
Warehouse	0.0017984768
Stand-alone Retail	0.0011112306
Strip Mall	0.0011419467
Primary School	0.0008128325
Secondary School	0.0009185823
Supermarket	0.0010479242
Quick Service Restaurant	0.0010283106
Full Service Restaurant	0.0008649553
Hospital	0.0003912869
Outpatient Health Care	0.0003484427
Small Hotel - Building	0.0004721181
Large Hotel - Building	0.0004774161
Midrise Apartment - Building	0.0009200272
Nonresidential Average	0.0011441445

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-HVC-HPSY-V01-170331

²²⁴Summer peak coincidence demand (kW) to annual energy (kWh) factor. Calculated using modeling results and Ameren Missouri coincident peak demand methodology. See Volume 1 and modeling submittals for additional information.

2.7.14 Packaged Terminal Air Conditioner (PTAC) and Packaged Terminal Heat Pump (PTHP)

DESCRIPTION

A PTAC is a packaged terminal air conditioner that cools and provides heat through an electric resistance heater (heat strip). A PTHP is a packaged terminal heat pump. A PTHP uses its compressor year round to heat or cool. In warm weather, it efficiently captures heat from inside a space and pumps it outside for cooling. In cool weather, it captures heat from outdoor air and pumps it into a space, adding heat from electric heat strips as necessary to provide heat.

This measure characterizes:

- a) Time of Sale: the purchase and installation of a new efficient PTAC or PTHP.
- b) Early Replacement: the early removal of an existing PTAC or PTHP from service, prior to its natural end of life, and replacement with a new efficient PTAC or PTHP unit. Savings are calculated between existing unit and efficient unit consumption during the remaining life of the existing unit, and between new baseline unit and efficient unit consumption for the remainder of the measure life. The measure is only valid for non-fuel switching installations for example replacing a cooling only PTAC with a PTHP can currently not use the TRM.

This measure was developed to be applicable to the following program types: TOS, NC, EREP.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to be PTACs or PTHPs that exceed baseline efficiencies.

DEFINITION OF BASELINE EQUIPMENT

Time of Sale: the baseline conditions is provided in the Federal Baseline reference table provided below.

Early Replacement: the baseline is the existing PTAC or PTHP for the assumed remaining useful life of the unit and the new baseline as defined above for the remainder of the measure life.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 15 years²²⁵

Remaining life of existing equipment is assumed to be 5 years²²⁶

DEEMED MEASURE COST

Time of Sale: The incremental capital cost for this equipment is estimated to be \$84/ton.²²⁷

Early Replacement: The measure cost is the full cost of removing the existing unit and installing a new one. The actual program cost should be used. If unknown assume \$1,047 per ton²²⁸.

²²⁵ Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, Inc., June 2007 ²²⁶Standard assumption of one third of effective useful life.

²²⁷ DEER 2008. This assumes that baseline shifts between IECC versions carries the same incremental costs. Values should be verified during evaluation

²²⁸ Based on DCEO – IL PHA Efficient Living Program data.

The assumed deferred cost (after 5 years) of replacing existing equipment with new baseline unit is assumed to be \$1,039 per ton²²⁹. This cost should be discounted to present value using the utilities' discount rate.

LOADSHAPE

Commercial Cooling (by Building Type)

Commercial Electric Heat (by Building Type)

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Electric savings for PTACs and PTHPs should be calculated using the following algorithms

ENERGY SAVINGS

Time of Sale:

PTAC ΔkWh^{230} = Annual kWh Savings_{cool}

PTHP Δ kWh = Annual kWh Savings_{cool +} Annual kWh Savings_{heat}

Annual kWh Savings_{cool} = $(kBtu/hr_{cool}) * [(1/EERbase) - (1/EERee)] * EFLH_{cool}$

Annual kWh Savings_{heat} = $(kBtu/hr_{heat})/3.412 * [(1/COPbase) - (1/COPee)] * EFLH_{heat}$

Early Replacement:

 $\Delta kWh \ for \ remaining \ life \ of \ existing \ unit \ (1^{st} \ 5 years) \\ \hspace{0.5cm} = \hspace{0.5cm} Annual \hspace{0.5cm} kWh \hspace{0.5cm} Savings_{cool} \hspace{0.5cm} {}_{+} \hspace{0.5cm} Annual \hspace{0.5cm} kWh \\$

Savingsheat

Annual kWh Savings_{cool} = $(kBtu/hr_{cool}) * [(1/EERexist) - (1/EERee)] * EFLH_{cool}$

Annual kWh Savings_{heat} = $(kBtu/hr_{heat})/3.412 * [(1/COPexist) - (1/COPee)] * EFLH_{heat}$

 Δ kWh for remaining measure life (next 10 years) = Annual kWh Savings_{cool +} Annual kWh

Savingsheat

Annual kWh Savings_{cool} = $(kBtu/hr_{cool}) * [(1/EERbase) - (1/EERee)] * EFLH_{cool}$

Annual kWh Savings_{heat} = $(kBtu/hr_{heat})/3.412 * [(1/COPbase) - (1/COPee)] * EFLH_{heat}$

Where:

kBtu/hr_{cool} = capacity of the cooling equipment in kBtu per hour (1 ton of cooling capacity

equals 12 kBtu/hr).

= Actual installed

EFLH_{cool} = Equivalent Full Load Hours for cooling are provided in section 2.7 HVAC End

Use:

EFLH_{heat}= Equivalent Full Load Hours for heating are provided in section 2.7 HVAC End Use

²²⁹ Based on subtracting TOS incremental cost from the DCEO data and incorporating inflation rate of 1.91%.

²³⁰ There are no heating efficiency improvements for PTACs since although some do provide heating, it is always through electric resistance and therefore the COPbase and COPee would be 1.0.

EERexist = Energy Efficiency Ratio of the existing equipment

= Actual. If unknown assume 8.1 EER²³¹

EERbase = Energy Efficiency Ratio of the baseline equipment.

= see the table below for requirements where local code is based onIECC.Content is based on tables 503.3.3(3) (IECC 2009) and C403.2.3(3) (IECC 2012, 2015): Minimum Efficiency Reguirements: Electrically operated packaged terminal air conditioners, packaged terminal heat pumps. An alternate, custom input may be necessary for jurisdictions recognizing alternative code.

Equipment Type	IECC 2009 Minimum Efficiency	IECC 2012 Minimum Efficiency	IECC 2015 Minimum Efficiency
PTAC (Cooling mode)	12.5 - (0.213 .	13.8 – (0.300 x	14.0 – (0.300 x
New Construction	Cap/1000) EER	Cap/1000) EER	Cap/1000) EER
PTAC (Cooling mode)	10.9 - (0.213 .	10.9 – (0.213 x	10.9 – (0.213 x
Replacements	Cap/1000) EER	Cap/1000) EER	Cap/1000) EER
PTHP (Cooling mode)	12.3 - (0.213 .	14.0 – (0.300 x	14.0 – (0.300 x
New Construction	Cap/1000) EER	Cap/1000) EER	Cap/1000) EER
PTHP (Cooling mode)	10.8 - (0.213 .	10.8 – (0.213 x	10.8 – (0.213 x
Replacements	Cap/1000) EER	Cap/1000) EER	Cap/1000) EER
PTHP (Heating mode)	3.2 - (0.026 .	3.2 - (0.026 x)	3.2 - (0.026 x)
New Construction	Cap/1000) COP	Cap/1000) COP	Cap/1000) COP
PTHP (Heating mode)	2.9 - (0.026 .	2.9 - (0.026 x)	2.9 - (0.026 x)
Replacements	Cap/1000) COP	Cap/1000) COP	Cap/1000) COP

"Cap" = The rated cooling capacity of the project in Btu/hr. If the units capacity is less than 7000 Btu/hr, use 7,000 Btu/hr in the calculation. If the unit's capacity is greater than 15,000 Btu/hr, use 15,000 Btu/hr in the calculations.

Replacement unit shall be factory labeled as follows "MANUFACTURED FOR REPLACEMENT APPLICATIONS ONLY; NOT TO BE INSTALLED IN NEW CONSTRUCTION PROJECTS", Replacement efficiencies apply only to units with existing sleeves less than 16 inches (406mm) in height and less than 42 inches (1067 mm) in width.

EERee = Energy Efficiency Ratio of the energy efficient equipment. For air-cooled units

< 65 kBtu/hr, if the actual EERee is unknown, assume the following conversion from SEER to EER for calculation of peak savings²³²: $EER = (-0.02 * SEER^2) +$

(1.12 * SEER)

= Actual installed

kBtu/hr_{heat} = capacity of the heating equipment in kBtu per hour.

= Actual installed

3.412 = Btu per Wh.

²³¹ Estimated using the IECC building energy code up until year 2003 (p107;

https://law.resource.org/pub/us/code/ibr/icc.iecc.2000.pdf) and assuming a 1 ton unit; EER = 10 - (0.16 * 12,000/1,000) = 8.1.

²³² Based on Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder. Note this is appropriate for single speed units only.

COPexist = coefficient of performance of the existing equipment

= Actual. If unknown assume 1.0 COP for PTAC units and 2.6 COP²³³ for PTHPs.

COPbase = coefficient of performance of the baseline equipment; see table above for values.

COPee = coefficient of performance of the energy efficient equipment.

= Actual installed

SUMMER COINCIDENT PEAK DEMAND SAVINGS

Time of Sale:

$$\Delta kW = \Delta kWH_{cool} * CF$$

Early Replacement:

 Δ kW for remaining life of existing unit (1st 5years)

 $\Delta kW = \Delta kW H_{cool(1st \ 5 \ years)} * CF$

ΔkW for remaining measure life (next 10 years)

 $\Delta kW = \Delta kWH_{cool(next\ 10\ years)} * CF$

Where:

 Δ kWH_{cool} = Annual cooling electricity savings, as calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor for Cooling (dependent on building type) ²³⁴

Building Type CF Large Office 0.0006428016 Medium Office 0.0009793854 Small Office 0.0011136865 Warehouse 0.0022840432 Stand-alone Retail 0.0013148378 Strip Mall 0.0013203011 Primary School 0.0011165551 Secondary School 0.0014275540 Supermarket 0.0015717641 **Ouick Service Restaurant** 0.0012226485 Full Service Restaurant 0.0011453635 Hospital 0.0002431707 Outpatient Health Care 0.0003596174 Small Hotel - Building 0.0005445289 Large Hotel - Building 0.0005787040 Midrise Apartment - Building 0.0012319283 Nonresidential Average 0.0014502908

²³³Estimated using the IECC building energy code up until year 2003 (p107;

https://law.resource.org/pub/us/code/ibr/icc.iecc.2000.pdf) and assuming a 1 ton unit; COP = 2.9 - (0.026 * 12,000/1,000) = 2.6

²³⁴Summer peak coincidence demand (kW) to annual energy (kWh) factor. Calculated using modeling results and Ameren Missouri coincident peak demand methodology. See Volume 1 and modeling submittals for additional information.

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-HVC-PTAC-V01-170331

2.7.15 Single-Package and Split System Unitary Air Conditioner

DESCRIPTION

This measure promotes the installation of high-efficiency unitary air-, water-, and evaporatively cooled air conditioning equipment, both single-package and split systems. Air conditioning (AC) systems are a major consumer of electricity and systems that exceed baseline efficiencies can save considerable amounts of energy. This measure could apply to the replacement of an existing unit at the end of its useful life or the installation of a new unit in a new or existing building.

This measure was developed to be applicable to the following program types: TOS, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to be a high-efficiency air, water-, or evaporatively cooled air conditioner that exceeds the energy efficiency requirements specified by the building code applicable to local jurisdiction. This may be a version of the 2009, 2012 or 2015 International Energy Conservation Code (IECC) or ASHRAE 90.1 standard.

DEFINITION OF BASELINE EQUIPMENT

In order for this characterization to apply, the baseline equipment is assumed to be a standard-efficiency air-, water, or evaporatively cooled air conditioner that meets the energy efficiency requirements of local building code. The rating conditions for the baseline and efficient equipment efficiencies must be equivalent.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 15 years. 235

DEEMED MEASURE COST

The incremental capital cost for this measure is assumed to be \$100 per ton. ²³⁶

LOADSHAPE

Commercial Cooling (by Building Type)

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

For units with cooling capacities less than 65 kBtu/hr:

$$\Delta$$
kWH = (kBtu/hr) * [(1/SEERbase) – (1/SEERee)] * EFLH

For units with cooling capacities equal to or greater than 65 kBtu/hr:

$$\Delta kWH = (kBtu/hr) * [(1/EERbase) - (1/EERee)] * EFLH$$

²³⁵ Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, Inc., June 2007.

²³⁶ Based on a review of TRM incremental cost assumptions from Vermont, Wisconsin, and California. This assumes that baseline shift from between IECC versions carries the same incremental costs. Values should be verified during evaluation

11/	hara	
W	nere	

kBtu/hr = capacity of the cooling equipment actually installed in kBtu per hour (1 ton of

cooling capacity equals 12 kBtu/hr)

SEERbase = Seasonal Energy Efficiency Ratio of the baseline equipment

= SEER values from tables below, if applicable code is based on IECC, or custom

input as necessary.

SEERee = Seasonal Energy Efficiency Ratio of the energy efficient equipment (actually

installed)

EERbase = Energy Efficiency Ratio of the baseline equipment

= EER values from tables below, if applicable code is based onIECC, or custom input as necessary.. (For air-cooled units < 65 kBtu/hr, assume the following conversion from SEER to EER for calculation of peak savings:²³⁷ EER = (-0.02 *

 $SEER^{2}$) + (1.12 * SEER))

EERee = Energy Efficiency Ratio of the energy efficient equipment. For air-cooled units

< 65 kBtu/hr, if the actual EERee is unknown, assume the conversion from SEER

to EER for calculation of peak savings as above).

= Actual installed

EFLH = Equivalent Full Load Hours for cooling are provided in section 2.7 HVAC End

Use

²³⁷ Based on Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder. Note this is appropriate for single speed units only.

2009 IECC Minimum Efficiency Requirements

TABLE 503.2.3(1)

UNITARY AIR CONDITIONERS AND CONDENSING UNITS, ELECTRICALLY OPERATED, MINIMUM EFFICIENCY REQUIREMENTS

EQUIPMENT TYPE	SIZE CATEGORY	SUBCATEGORY OR RATING CONDITION	MINIMUM EFFICIENCY	TEST PROCEDURE
EQUIFMENT TIPE	SIZE CATEGORT	Split system	13.0 SEER	TEST PROCEDURE
	< 65,000 Btu/hd	Single package	13.0 SEER	
	≥ 65,000 Btu/h and < 135,000 Btu/h	Split system and single package	10.3 EERc (before Jan 1, 2010) 11.2 EERc (as of Jan 1, 2010)	AHRI210/240
	≥ 135,000 Btu/h and < 240,000 Btu/h	Split system and single package	9.7 EERc (before Jan 1, 2010) 11.0 EERc (as of Jan 1, 2010)	
Air conditioners, Air cooled	≥ 240,000 Btu/h and < 760,000 Btu/h	Split system and single package	9.5 EERc 9.7 IPLYc (before Jan 1, 2010) 10.0 EERc 9.7 IPLyg (as of Jan 1, 2010)	AHRI 340/360
	≥ 760,000 Btu/h	Split system and single package	9.2 EERc 9.4 IPLYc (before Jan 1, 2010) 9.7 EERc 9.4 IPLYc (as of Jan 1, 2010)	
Through-the-wall,	< 30,000 Btu/h ^d	Split system	10.9 SEER (before Jan 23, 2010) 12.0 SEER (as of Jan 23,2010)	AHRI210/240
Air cooled	,	Single package	10.6 SEER (before Jan 23, 2010) 12.0 SEER (as of Jan 23,2010)	
	< 65,000 Btu/h	Split system and single package	12.1 EER	
Air conditioners, Water and evaporatively cooled	≥ 65,000 Btu/h and < 135,000 Btu/h	Split system and single package	11.5 EERe	AHRI210/240
	≥ 135,000 Btu/h and < 240,000 Btu/h	Split system and single package	11.0 EERe	AHRI 340/360
	≥ 240,000 Btu/h		11.5 EERe	

For SI: 1 British thermal unit per hour = 0.2931 W

a. Chapter 6 contains a complete specification of the referenced test procedure, including the referenced year WTSIOTH of the test procedure.

b. 1PLVs are only applicable to equipment with capacity modulation.

c. Deduct 0.2 from the required EERs and 1PLVs for units with a heating section other than electric resistance heat.

d. Single-phase air-cooled air conditioners < 65,000 Btulh are regulated by the National Appliance Energy Conservation Act of 1987 (NAECA); SEER values are those set by NAECA.</p>

2012 IECC Minimum Efficiency Requirements

TABLE C403.2.3(1) MINIMUM EFFICIENCY REQUIREMENTS: ELECTRICALLY OPERATED UNITARY AIR CONDITIONERS AND CONDENSING UNITS

		HEATING	SUBCATEGORY OR		FFICIENCY	TEST
EQUIPMENT TYPE	SIZE CATEGORY	SECTION TYPE	RATING CONDITION	Before 6/1/2011	As of 6/1/2011	PROCEDURE*
Air conditioners,	< 65.000 Btu/hb	All	Split System	13.0 SEER	13.0 SEER	
air cooled	< 65,000 Bul/n	All	Single Package	13.0 SEER	13.0 SEER	1
Through-the-wall	≤ 30.000 Btu/h ^b	A 11	Split system	12.0 SEER	12.0 SEER	AHRI
(air cooled)	≤ 30,000 Btil/h°	All	Single Package	12.0 SEER	12.0 SEER	210/240
Small-duct high-velocity (air cooled)	< 65,000 Btu/h ^b	All	Split System	10.0 SEER	10.0 SEER	Ī
	≥ 65,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	11.2 EER 11.4 IEER	11.2 EER 11.4 IEER	
	and < 135,000 Btu/h	All other	Split System and Single Package	11.0 EER 11.2 IEER	11.0 EER 11.2 IEER	Ī
	≥ 135,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	11.0 EER 11.2 IEER	11.0 EER 11.2 IEER	Ī
Air conditioners,	and < 240,000 Btu/h	All other	Split System and Single Package	10.8 EER 11.0 IEER	10.8 EER 11.0 IEER	AHRI
air cooled	≥ 240,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	10.0 EER 10.1 IEER	10.0 EER 10.1 IEER	340/360
	and < 760,000 Btu/h	All other	Split System and Single Package	9.8 EER 9.9 IEER	9.8 EER 9.9 IEER	
	≥ 760,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	9.7 EER 9.8 IEER	9.7 EER 9.8 IEER	
		All other	Split System and Single Package	9.5 EER 9.6 IEER	9.5 EER 9.6 IEER	1
	< 65,000 Btu/h ^b	All	Split System and Single Package	12.1 EER 12.3 IEER	12.1 EER 12.3 IEER	AHRI 210/240
	≥ 65,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	11.5 EER 11.7 IEER	12.1 EER 12.3 IEER	
	< 135,000 Btu/h	All other	Split System and Single Package	11.3 EER 11.5 IEER	11.9 EER 12.1 IEER	
	≥ 135,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	11.0 EER 11.2 IEER	12.5 EER 12.7 IEER	
Air conditioners, water cooled	< 240,000 Btu/h	All other	Split System and Single Package	10.8 EER 11.0 IEER	12.3 EER 12.5 IEER	AHRI
	≥ 240,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	11.0 EER 11.1 IEER	12.4 EER 12.6 IEER	340/360
	and All other	All other	Split System and Single Package	10.8 EER 10.9 IEER	12.2 EER 12.4 IEER	
	≥ 760.000 Btu/h	Electric Resistance (or None)	Split System and Single Package	11.0 EER 11.1 IEER	12.0 EER 12.4 IEER	1
	≥ 100,000 Bu/h	All other	Split System and Single Package	10.8 EER 10.9 IEER	12.0 EER 12.2 IEER	1

(continued)

TABLE C403.2.3(1)—continued MINIMUM EFFICIENCY REQUIREMENTS: ELECTRICALLY OPERATED UNITARY AIR CONDITIONERS AND CONDENSING UNITS

EQUIPMENT TYPE	SIZE CATEGORY	HEATING	SUB-CATEGORY OR	MINIMUM E	FFICIENCY	TEST
EQUIPMENT TIPE	SIZE CATEGORY	SECTION TYPE	RATING CONDITION	Before 6/1/2011	As of 6/1/2011	PROCEDURE ^a
	< 65,000 Btu/h ^b	All	Split System and Single Package	12.1 EER 12.3 IEER	12.1 EER 12.3 IEER	AHRI 210/240
	≥ 65,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	11.5 EER 11.7 IEER	12.1 EER 12.3 IEER	
	< 135,000 Btu/h	All other	Split System and Single Package	11.3 EER 11.5 IEER	11.9 EER 12.1 IEER	
	≥ 135,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	11.0 EER 11.2 IEER	12.0 EER 12.2 IEER	
Air conditioners, evaporatively cooled	< 240,000 Btu/h	All other	Split System and Single Package	10.8 EER 11.0 IEER	11.8 EER 12.0 IEER	AHRI
	≥ 240,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	11.0 EER 11.1 IEER	11.9 EER 12.1 IEER	340/360
	< 760,000 Btu/h	All other	Split System and Single Package	10.8 EER 10.9 IEER	12.2 EER 11.9 IEER	
	≥ 760,000 Btu/h Electric Resistance (or None) All other		Split System and Single Package	10.0 EER 11.1 IEER	11.7 EER 11.9 IEER	
		Split System and Single Package	10.8 EER 10.9 IEER	11.5 EER 11.7 IEER		
Condensing units, air cooled	≥ 135,000 Btu/h			10.1 EER 11.4 IEER	10.5 EER 14.0 IEER	
Condensing units, water cooled	≥ 135,000 Btu/h			13.1 EER 13.6 IEER	13.5 EER 14.0 IEER	AHRI 365
Condensing units, evaporatively cooled	≥ 135,000 Btu/h			13.1 EER 13.6 IEER	13.5 EER 14.0 IEER	

For SI: 1 British thermal unit per hour = 0.2931~W.

a. Chapter 6 of the referenced standard contains a complete specification of the referenced test procedure, including the reference year version of the test procedure.

b. Single-phase, air-cooled air conditioners less than 65,000 Btu/h are regulated by NAECA. SEER values are those set by NAECA.

2015 IECC Minimum Efficiency Requirements

MINIMUM EFFICIENCY REQUIREMENTS: ELECTRICALLY OPERATED UNITARY AIR CONDITIONERS AND CONDENSING UNITS

EQUIPMENT TYPE	SIZE CATEGORY		SUBCATEGORY OR	MINIMUM E	FFICIENCY	TEST
EGUIPMENT TIPE	SIZE CATEGORY	SECTION TYPE	RATING CONDITION	Before 1/1/2016	As of 1/1/2016	PROCEDURE
Air conditioners,	< 65,000 Btu/h	All	Split System	13.0 SEER	13.0 SEER	
air cooled	~ 05,000 Bitu'll	All .	Single Package	13.0 SEER	14.0 SEER°	1
Through-the-wall	≤ 30,000 Btu/h ^b	All	Split system	12.0 SEER	12.0 SEER	AHRI
(air cooled)	2 30,000 Bru/h	All	Single Package	12.0 SEER	12.0 SEER	210/240
Small-duct high-velocity (air cooled)	< 65,000 Btu/h ^b	All	Split System	11.0 SEER	11.0 SEER	
	≥ 65,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	11.2 EER 11.4 IEER	11.2 EER 12.8 IEER	
	< 135,000 Btu/h	All other	Split System and Single Package	11.0 EER 11.2 IEER	11.0 EER 12.6 IEER	1
	≥ 135,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	11.0 EER 11.2 IEER	11.0 EER 12.4 IEER	1
Air conditioners,	< 240,000 Btu/h	All other	Split System and Single Package	10.8 EER 11.0 IEER	10.8 EER 12.2 IEER	AHRI
air cooled	≥ 240,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	10.0 EER 10.1 IEER	10.0 EER 11.6 IEER	340/360
	< 760,000 Btu/h	All other	Split System and Single Package	9.8 EER 9.9 IEER	9.8 EER 11.4 IEER	
	≥ 760,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	9.7 EER 9.8 IEER	9.7 EER 11.2 IEER	
		All other	Split System and Single Package	9.5 EER 9.6 IEER	9.5 EER 11.0 IEER	1
	< 65,000 Btu/h ^b	All	Split System and Single Package	12.1 EER 12.3 IEER	12.1 EER 12.3 IEER	AHRI 210/240
	≥ 65,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	12.1 EER 12.3 IEER	12.1 EER 13.9 IEER	
	< 135,000 Btu/h ≥ 135,000 Btu/h	All other	Split System and Single Package	11.9 EER 12.1 IEER	11.9 EER 13.7 IEER	1
		Electric Resistance (or None)	Split System and Single Package	12.5 EER 12.5 IEER	12.5 EER 13.9 IEER	†
Air conditioners, water cooled	and < 240,000 Btu/h	All other	Split System and Single Package	12.3 EER 12.5 IEER	12.3 EER 13.7 IEER	AHRI
	≥ 240,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	12.4 EER 12.6 IEER	12.4 EER 13.6 IEER	340/360
	< 760,000 Btu/h All	All other	Split System and Single Package	12.2 EER 12.4 IEER	12.2 EER 13.4 IEER	
	760 000 Per 1	Electric Resistance (or None)	Split System and Single Package	12.2 EER 12.4 IEER	12.2 EER 13.5 IEER	
	≥ 760,000 Btu/h	All other	Split System and Single Package	12.0 EER 12.2 IEER	12.0 EER 13.3 IEER	

(continued)

TABLE C403.2.3(1)—continued MINIMUM EFFICIENCY REQUIREMENTS: ELECTRICALLY OPERATED UNITARY AIR CONDITIONERS AND CONDENSING UNITS

EQUIPMENT TYPE		HEATING SUB-CATEGORY OR	MINIMUM E	TEST		
EQUIPMENT TIPE		SECTION TYPE	SECTION TYPE RATING CONDITION	Before 1/1/2016	As of 1/1/2016	PROCEDURE*
	< 65,000 Btu/h ^b	All	Split System and Single Package	12.1 EER 12.3 IEER	12.1 EER 12.3 IEER	AHRI 210/240
	≥ 65,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	12.1 EER 12.3 IEER	12.1 EER 12.3 IEER	
	< 135,000 Btu/h	All other	Split System and Single Package	11.9 EER 12.1 IEER	11.9 EER 12.1 IEER]
	≥ 135,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	12.0 EER 12.2 IEER	12.0 EER 12.2 IEER	
Air conditioners, evaporatively cooled	< 240,000 Btu/h	All other	Split System and Single Package	11.8 EER 12.0 IEER	11.8 EER 12.0 IEER	AHRI
	≥ 240,000 Btu/h and <760,000 Btu/h All other	Electric Resistance (or None)	Split System and Single Package	11.9 EER 12.1 IEER	11.9 EER 12.1 IEER	340/360
		All other	Split System and Single Package	11.7 EER 11.9 EER	11.7 EER 11.9 IEER	
		Electric Resistance (or None)	Split System and Single Package	11.7 EER 11.9 IEER	11.7 EER 11.9 IEER]
		All other	Split System and Single Package	11.5 EER 11.7 IEER	11.5 EER 11.7 IEER	
Condensing units, air cooled	≥ 135,000 Btu/h			10.5 EER 11.8 IEER	10.5 EER 11.8 IEER	
Condensing units, water cooled	≥ 135,000 Btu/h			13.5 EER 14.0 IEER	13.5 EER 14.0 IEER	AHRI 365
Condensing units, evaporatively cooled	≥ 135,000 Btu/h			13.5 EER 14.0 IEER	13.5 EER 14.0 IEER	

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWH * CF$

Where:

 ΔkWH

= Annual electricity savings, as calculated above

CF

= Summer peak coincidence demand (kW) to annual energy (kWh) factor for Cooling (dependent on building type) ²³⁸

Building Type	CF
Large Office	0.0006428016
Medium Office	0.0009793854
Small Office	0.0011136865
Warehouse	0.0022840432
Stand-alone Retail	0.0013148378
Strip Mall	0.0013203011
Primary School	0.0011165551
Secondary School	0.0014275540
Supermarket	0.0015717641
Quick Service Restaurant	0.0012226485
Full Service Restaurant	0.0011453635
Hospital	0.0002431707

²³⁸Summer peak coincidence demand (kW) to annual energy (kWh) factor. Calculated using modeling results and Ameren Missouri coincident peak demand methodology. See Volume 1 and modeling submittals for additional information.

For SI: 1 British thermal unit per hour = 0.2931 W.

a. Chapter 6 contains a complete specification of the referenced test procedure, including the reference year version of the test procedure.

b. Single-phase, air-cooled air conditioners less than 65,000 Btu/h are regulated by NAECA. SEER values are those set by NAECA.

c. Minimum efficiency as of January 1, 2015.

Building Type	CF
Outpatient Health Care	0.0003596174
Small Hotel - Building	0.0005445289
Large Hotel - Building	0.0005787040
Midrise Apartment - Building	0.0012319283
Nonresidential Average	0.0014502908

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

MEASURE CODE: CI-HVC-SPUA-V01-170331

2.7.16 Boiler/Furnace Tune-up

DESCRIPTION

This measure entails a tune-up for a natural gas boiler or furnace that provides space and/or process heating in a nonresidential application. The tune-up will improve boiler/furnace efficiency and verify safe operation through a culmination of service procedures. Combustion efficiency should be measured before and after tune-up using an electronic flue gas analyzer.

This measure was developed to be applicable to the following program types: RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The recommended actions the tune up technician should take are as follows:

Boiler:

- Measure combustion efficiency using an electronic flue gas analyzer.
- Adjust airflow and reduce excessive stack temperatures.
- Adjust burner and gas input, manual or motorized draft control.
- Check for proper venting.
- Complete visual inspection of system piping and insulation.
- Check safety controls.
- Check adequacy of combustion air intake.
- Clean fireside surfaces.
- Inspect all refractory. Patch and wash coat as required.
- Inspect gaskets on front and rear doors and replace as necessary.
- Seal and close front and rear doors properly.
- Clean low and auxiliary low water cut-off controls, then re-install using new gaskets.
- Clean plugs in control piping.
- Remove all hand hole and man hole plates. Flush boiler with water to remove loose scale and sediment.
- Replace all hand hole and man hole plates with new gaskets.
- Open feedwater tank manway, inspect and clean as required. Replace manway plate with new gasket.
- Clean burner and burner pilot.
- Check pilot electrode and adjust or replace.
- Clean air damper and blower assembly.
- Clean motor starter contacts and check operation.
- Make necessary adjustments to burner for proper combustion.
- Perform all flame safeguard and safety trip checks.
- Check all hand hole plates and man hole plates for leaks at normal operating temperatures and pressures.
- Troubleshoot any boiler system problems as requested by on-site personnel.
- Verify boiler delta T is within system design limits.

Furnace:

- Measure combustion efficiency using an electronic flue gas analyzer.
- Check and clean blower assembly and components per manufacturer's recommendations.
- Where applicable, lubricate motor and inspect and replace fan belt if required.
- Inspect for gas leaks.

- Clean burner per manufacturer's recommendations and adjust as needed.
- Check ignition system and safety systems and clean and adjust as needed.
- Check and clean heat exchanger per manufacturer's recommendations.
- Inspect exhaust/flue for proper attachment and operation.
- Inspect control box, wiring, and controls for proper connections and performance.
- Check air filter and clean or replace per manufacturer's recommendations.
- Inspect duct work connected to furnace for leaks or blockages.
- Measure temperature rise and adjust flow as needed.
- Check for correct line and load volts/amps.
- Check that thermostat operation is per manufacturer's recommendations.
- Perform Carbon Monoxide test and adjust heating system until results are within standard industry acceptable limits.
- Check and adjust gas input.
- Check high limit and other safety controls.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is a boiler or furnace that has not had a tune-up in the past 24 months.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

Measure life is considered to be two years, although annual tune-ups are generally a recommended best-practice.

DEEMED MEASURE COST

The cost of this measure is the actual tune up cost, which can vary based on the extent of the service required.

LOADSHAPE

N/A

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

NATURAL GAS SAVINGS

$$\Delta Therms = \frac{EFLH * Capacity * \left(\frac{(Eff_{pre} + E_i)}{Eff_{pre}} - 1\right)}{100.000}$$

Where:

= See table at the beginning of section 2.7 HVAC End Use. A custom value may

also be used.

Capacity = Nominal heating input capacity (Btu/hr) of efficient furnace

= Actual

Eff_{pre} = Combustion Efficiency of the boiler before the tune-up

= Actual

E_i = Combustion Efficiency Improvement of the boiler tune-up measure²³⁹

= Actual, informed by flue gas analysis and any additional considerations²⁴⁰

100,000 = Converts Btu to therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

While there is likely to be some O&M cost savings due to reduced service calls, increased equipment life, etc., these will only be realized with a regular maintenance schedule, which cannot be assumed for each individual tune-up measure. This benefit is therefore conservatively excluded.

MEASURE CODE: NR-HVC-BLRT-V01-170331

²³⁹ The percentage improvement in combustion efficiency is deemed a reasonable proxy for the system improvement. If a full thermal efficiency test is performed instead, that should be used.

²⁴⁰ Fuel-air ratios of furnaces and boilers can be either too lean or too rich, either of which reduces the combustion efficiency of the gas-fired equipment. When fuel-air ratios are too rich, correcting the mixture to improve combustion efficiency can actually lead to a decrease in the post-tune up efficiency reading of electronic flue gas analyzer tests (maybe analyzer dependent). When rich fuel-air ratios are corrected, detectable carbon monoxide (CO) or unburned hydrocarbons (HC) levels will decrease, indicating a more complete combustion. Yet the excess air needed for the complete combustion can often be registered as a decrease in the efficiency reading of the flue gas analyzer. Thus, flexibility is given to use other suitable mechanisms to assess pre/post combustion efficiencies.

2.7.17 Air Source Heat Pump

2.7.18 Condensing Unit Heater

2.7.19 Energy Recovery

2.7.20 Furnace/Boiler Tune-Up

2.7.21 High Volume Low Speed Fan

2.7.22 Primary Air Dampers

2.7.23 Shut Off Damper for Space Heating Boilers or Furnaces

2.7.24 Stack Economizer for Boilers Serving HVAC Loads

2.7.25 Stack Economizer for Boilers Serving Process Loads

2.8 Lighting End Use

Building Type	Fixture Annual Operating Hours ²⁴¹ (Hours)	Waste Heat Cooling Energy Factor ²⁴² (WHFe)	Summer Demand Factor ²⁴³ (CF)	Waste Heat Electric Resistance Heating ²⁴⁴ (IFkWh)	Waste Heat Electric Heat Pump Heating (IFkWh)	Waste Heat Gas Heating IFTherms ²⁴⁵
Large Office	3170	1.06	0.0002555753	0.32	0.14	0.014
Medium Office	3170	1.14	0.0002596721	0.19	0.08	0.008
Small Office	2884	1.11	0.0002154904	0.21	0.09	0.009
Warehouse	2827	1.04	0.0001361421	0.26	0.11	0.011
Stand-alone Retail	3421	1.08	0.0002844436	0.21	0.09	0.009
Strip Mall	3694	1.08	0.0002830978	0.22	0.10	0.009
Primary School	3466	1.08	0.0001747332	0.28	0.12	0.012
Secondary School	3466	1.14	0.0001643556	0.30	0.13	0.013
Supermarket	3765	1.07	0.0002892094	0.26	0.11	0.011
Quick Service Restaurant	6443	1.12	0.0001572418	0.27	0.12	0.012
Full Service Restaurant	6443	1.11	0.0001432272	0.22	0.10	0.009
Hospital	3812	1.11	0.0002249500	0.34	0.15	0.015
Outpatient Health Care	3898	1.21	0.0000693793	0.28	0.12	0.012
Small Hotel - Building	3713	1.21	0.0001225280	0.22	0.09	0.009
Large Hotel - Building	3713	1.24	0.0000877617	0.01	0.00	0.000
Midrise Apartment - Building	2876	1.14	0.0002048600	0.44	0.19	0.019
C&I Average	3351	1.09	0.0001861116	0.24	0.10	0.010

²⁴¹Fixtures hours of use are based upon schedule assumptions used in the computer models. Nonresidential Average is a weighted average of indoor spaces using the relative area of each building type in the region (CBECS).

²⁴² The Waste Heat Factor for Energy is developed using computer models for the various building types. Exterior and garage values are 1, unknown is a weighted average of the other building types.

²⁴³Summer peak coincidence demand (kW) to annual energy (kWh) factor. Calculated using modeling results and Ameren Missouri coincident peak demand methodology.

²⁴⁴ Electric heat penalty assumptions are based on converting the IFTherm multiplier value in to kWh and then applying relative heating system efficiencies. The gas efficiency was assumed to be 80% AFUE, electric resistance is assumed to be 100%, Heat Pump is assumed to be 2.3COP.

²⁴⁵ IF Therms value is developed using computer models consistent with methodology for Waste Heat Factor for Energy.

2.8.1 Compact Fluorescent Lamp

DESCRIPTION

An efficient compact fluorescent screw-in bulb (CFL) is installed in place of a baseline screw-in bulb.

This characterization assumes that the CFL is installed in a commercial location. This is therefore appropriate for commercially targeted programs, or, if the implementation strategy does not allow for the installation location to be known (e.g., an upstream retail program), utilities should develop an assumption of the Residential v Commercial and Industrial split and apply the relevant assumptions to each portion.

Federal legislation stemming from the Energy Independence and Security Act of 2007 (EISA) requires all general-purpose light bulbs between 40W and 100W to be approximately 30% more energy efficient than standard incandescent bulbs. Production of 100W, standard efficacy incandescent lamps ended in 2012, followed by restrictions on 75W in 2013 and 60W and 40W in 2014. The baseline for this measure has therefore become bulbs (improved incandescent or halogen) that meet the new standard.

A provision in the EISA regulations requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the baseline equivalent to a current day CFL. Therefore, the measure life (number of years that savings should be claimed) should be reduced once the assumed lifetime of the bulb, when added to the year of installation, exceeds 2020.

This measure was developed to be applicable to the following program types: TOS, DI, RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the high-efficiency equipment must be a standard general service CFL. Note as of 1/2/2017, ENERGY STAR specification v2.0 becomes effective, (https://www.energystar.gov/sites/default/files/Luminaires%20V2%200%20Final.pdf) and currently no CFL can meet the v2.0 requirements (and manufacturers are indicating that they are not planning to reengineer CFLs to meet the new spec). In order to ensure the quality of product being supported by efficiency programs, an archived list of CFLs that met the previous ENERGY STAR standard will remain available and it is recommended this be the standard used for supporting non-ENERGY STAR bulbs going forward.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition for this measure is assumed to be an EISA qualified halogen or incandescent lamp.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life should be calculated by dividing the rated life of the bulb (10,000 hours²⁴⁶) by the run hours for the building type. The lifetime should be capped to the number of years until 2020 due to the EISA backstop provision.

DEEMED MEASURE COST

The incremental capital cost assumption for all bulbs is \$0.40 (baseline cost of \$1.80 and efficient cost of $$2.20^{247}$).

²⁴⁶ As per ENERGY STAR Lamp evaluation specification V1.1, ENERGY STAR bulbs will have a rated life of at least 10,000 hours

²⁴⁷ Incandescent/halogen and CFL cost assumptions based on Cadmus "LED Incremental Cost Study: Overall Final Report", February 2016 (http://ma-eeac.org/wordpress/wp-content/uploads/MA-Task-5b-LED-Incremental-Cost-Study FINAL 01FEB2016.pdf), p19. Note CFL cost is an average of standard spiral and covered A-lamps.

For a Direct Install measure, actual program delivery costs should be used if available. If not, the full cost of \$2.20 per bulb should be used, plus \$6.25 labor²⁴⁸ for a total measure cost of \$8.45 per bulb.

LOADSHAPE

Commercial Lighting (by building type)

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

$$\Delta kWh = \frac{Watts_{Base} - Watts_{EE}}{1,000} * Hours * WHFe * ISR$$

Where:

Watts_{Base} = Actual (if retrofit measure) or based on lumens of CFL bulb installed.

= Actual wattage of CFL purchased or installed . If unknown, assume the Wattsee following defaults²⁴⁹:

Lower Lumen Range	Upper Lumen Range	Watts _{Base}	Watts _{EE} CFL	Delta Watts
250	309	25	5.1	19.9
310	749	29	9.4	19.6
750	1,049	43	13.4	29.6
1,050	1,489	53	18.9	34.1
1,490	2,600	72	24.8	47.2
2,601	3,000	150	41.1	108.9
3,001	3,999	200	53.8	146.2
4,000	6,000	300	65.0	235

= Average hours of use per year are provided in the Lighting Reference Table in Hours

Section 2.8 and based upon building type. If unknown, use the C&I Average value.

= Waste heat factors for energy to account for cooling energy savings from WHFe efficient lighting are provided for each building type in the Lighting Reference

Table in Section 2.8. If unknown, use the C&I Average value.

ISR = In Service Rate or the percentage of units that get installed

²⁴⁸ Assumption based on 15 minutes (including portion of travel time) and \$25 per hour, which is in line with the typical prevailing wage of a General Laborer, as per the Annual Wage Order No. 23 published by the Missouri Department of Labor.

²⁴⁹ Wattsee defaults are based upon the average available ENERGY STAR v1.0 product, accessed 06/18/2015. For any lumen range where there is no ENERGY STAR product currently available, Wattsee is based upon the ENERGY STAR minimum luminous efficacy (55Lm/W for lamps with rated wattages less than 15W and 65 Lm/W for lamps with rated wattages ≥ 15 watts) for the mid-point of the lumen range. See calculation at "cerified-light-bulbs-2015-06-18.xlsx". These assumptions should be reviewed regularly to ensure they represent the available product.

$$=98.7\%^{250}$$

Heating Penalty:

If electrically heated building²⁵¹:

$$\Delta kWhheatpenalty = \frac{Watts_{base} - Watts_{EE}}{1,000} * ISR * Hours * (-IFkWh)$$

Where:

IFkWh

= Lighting-HVAC Interaction Factor for electric heating impacts; this factor represents the increased electric space heating requirements due to the reduction of waste heat rejected by the efficent lighting. Values are provided in the Lighting Reference Table in Section 2.8 and based upon building type. If unknown, use the C&I Average value.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWh * CF$$

Where:

CF

= Summer peak coincidence demand (kW) to annual energy (kWh) factor for measure is provided in the Lighting Reference Table in Section 2.8 and based upon building type. If unknown, use the C&I Average value.

Other factors as defined above.

NATURAL GAS ENERGY SAVINGS

Heating Penalty if fossil fuel heated building (or if heating fuel is unknown)²⁵²:

$$\Delta Therms = \frac{Watts_{Base} - Watts_{EE}}{1,000} * ISR * Hours * (-IFTherms)$$

Where:

IFTherms

= Lighting-HVAC Interaction Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Lighting Reference Table in Section 2.8 and based upon building type. If unknown, use the C&I Average value.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

²⁵⁰ Based on results presented in Ameren Missouri Lighting Impact and Process Evaluation: Program Year 2015. This value takes into account the time-delay of when bulbs are installed over subsequent program years. The reported ISR is based on the net present value (NPV) of the savings over 4 year installation period from the PY15 bulbs, discounted back to Year 1 at 6.95% (utility discount rate).

²⁵¹ Results in a negative value because this is an increase in heating consumption due to the efficient lighting.

²⁵² Results in a negative value because this is an increase in heating consumption due to the efficient lighting.

DEEMED O&M COST ADJUSTMENT CALCULATION

The O&M assumptions that should be used in the cost effectiveness calculation are provided below. If unknown building type, assume C&I Average:

Building Type	Replacement Period (years) ²⁵³	Replacement Cost
Large Office	0.32	
Medium Office	0.32	
Small Office	0.35	
Warehouse	0.35	
Stand-alone Retail	0.29	
Strip Mall	0.27	
Primary School	0.29	
Secondary School	0.29	
Supermarket	0.27	$$1.80^{254}$
Quick Service Restaurant	0.16	
Full Service Restaurant	0.16	
Hospital	0.26	
Outpatient Health Care	0.26	
Small Hotel - Building	0.27	
Large Hotel - Building	0.27	
Midrise Apartment - Building	0.35	
C&I Average	0.30	

MEASURE CODE: CI-LTG-STCFL-V01-170331

²⁵³ Calculated by dividing assumed rated life of baseline bulb by hours of use. Assumed lifetime of EISA qualified Halogen/Incandescents is 1000 hours. The manufacturers are simply using a regular incandescent lamp with halogen fill gas rather than Halogen Infrared to meet the standard (as provided by G. Arnold, NEEP and confirmed by N. Horowitz at NRDC).

²⁵⁴ Incandescent/halogen cost assumptions based on Cadmus "LED Incremental Cost Study: Overall Final Report", February 2016 (http://ma-eeac.org/wordpress/wp-content/uploads/MA-Task-5b-LED-Incremental-Cost-Study FINAL 01FEB2016.pdf), p19.

2.8.2 Fluorescent Delamping

DESCRIPTION

This measure entails the permanent removal of an existing 4-foot or 8-foot T8 lamp and the associated lamp holders and ballasts from the fixture.

Customers are responsible for determining whether or not to use reflectors in combination with lamp removal in order to maintain adequate lighting levels. Lighting levels are expected to meet the Illuminating Engineering Society of North America (IESNA) recommended light levels. Unused lamps, lamp holders, and ballasts must be permanently removed from the fixture and disposed of in accordance with local regulations.

This measure was developed to be applicable to RF.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient condition will vary depending on the existing fixture and number of lamps removed, however for the purposes of this measure, savings are defined on a per removed lamp basis. The retrofit wattage (efficient condition) is therefore assumed to be zero.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is a T8 lamp with default wattages provided below.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is assumed to be 11 years²⁵⁵.

DEEMED MEASURE COST

Measure	Cost
8-Foot Lamp Removal	\$16.00
4-Foot Lamp Removal	\$12.00
8-Foot Lamp Removal with reflector	\$30.00
4-Foot Lame Removal with Reflector	\$25.00

LOADSHAPE

Commercial Lighting (by building type)

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS²⁵⁶

$$\Delta kWh = \frac{Watts_{Base} - Watts_{EE}}{1,000} * Hours * WHFe * ISR$$

²⁵⁵ KCP&L measure life assumption.

²⁵⁶ The savings numbers are for the straight lamp removal measures, as well as the lamp removal and install reflector measures.

Where:

Watts_{Base} = Wattage reduction of lamp removed. Custom input, otherwise assume:

T8 Lamp Size	Wattage ²⁵⁷
8-ft T8	38.6
4-ft T8	19.4

 $Watts_{EE} = 0$

Hours = Average annual lighting hours of use as provided by the customer. If unknown,

the default value based on building type may be selected from the Lighting

Reference Table in Section 2.8.

WHF_e = Waste heat factor for energy to account for cooling energy savings from light

removal is selected from the Lighting Reference Table in Section 2.8 for each building type. If building is un-cooled, the value is 1.0 and if unknown use C&I

Average value.

ISR = In Service Rate, 100% since permanent removal is assumed.

Heating Penalty²⁵⁸

If electrically heated building:

$$\Delta kWhheatpenalty = \frac{Watts_{Base} - Watts_{EE}}{1,000} * ISR * Hours * -IFkWh$$

Where:

IFkWh = Lighting-HVAC Interaction Factor for electric heating impacts; this factor

represents the increased electric space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Lighting Reference Table in Section 2.8. If unknown, use the C&I Average value.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWh * CF$$

Where:

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor for

measure is provided in the Lighting Reference Table in Section 2.8. If unknown,

use the C&I Average value.

Other factors as defined above.

NATURAL GAS ENERGY SAVINGS²⁵⁹

Heating Penalty if fossil fuel heated building (or if heating fuel is unknown):

²⁵⁷ Default wattage reduction is based on averaging the savings from moving from a 2 to 1, 3 to 2 and 4 to 3 lamp fixture, as provided in the Standard Performance Contract Procedures Manual: Appendix B: Table of Standard Fixture Wattages (http://www.sce.com/NR/rdonlyres/7A3455F0-A337-439B-9607-10A016D32D4B/0/spc B Std Fixture Watts.pdf). An adjustment is made to the T8 delamped fixture to account for the significant increase in ballast factor that can be expected when delamping fixtures with parallel ballasts. See 'Delamping calculation.xlsx' for details.

²⁵⁸Negative value because this is an increase in heating consumption due to the efficient lighting.

²⁵⁹ Negative value because this is an increase in heating consumption due to the efficient lighting.

$$\Delta Therms \ = \ \frac{Watts_{Base} - Watts_{EE}}{1,000} * \ ISR * Hours * - IFTherms$$

Where:

IFTherms

= Lighting-HVAC Interaction Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficent lighting. Values are provided in the Lighting Reference Table in Section 2.8. If unknown, use the C&I Average value.

Other factors as defined above.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-LTG-DLMP-V01-170331

2.8.3 High Performance and Reduced Wattage T8 Fixtures and Lamps

DESCRIPTION

This measure applies to "High Performance T8" (HPT8) lamp/ballast systems that have higher lumens per watt than standard T8 systems. This measure applies to the installation of new equipment with efficiencies that exceed that of the equipment that would have been installed following standard market practices and is applicable to time of sale as well as retrofit measures. Retrofit measures may include new fixtures or relamp/reballast measures. In addition, options have been provided to allow for the "Reduced Wattage T8 lamps" or RWT8 lamps that result in re-lamping opportunities that produce equal or greater light levels than standard T8 lamps while using fewer watts.

This measure was developed to be applicable to the following program types: TOS, RF, DI.

If applied to other program types, the measure savings should be verified.

The measure applies to all commercial HPT8 installations excluding new construction and major renovation or change of use measures (see lighting power density measure). Lookup tables have been provided to account for the different types of installations. Whenever possible, actual costs and hours of use should be utilized for savings calculations. Default new and baseline assumptions have been provided in the reference tables. Default component costs and lifetimes have been provided for Operating and Maintenance Calculations. Please see the Definition Table to determine applicability for each program. HPT8 configurations not included in the TRM may be included in custom program design using the provided algorithms as long as energy savings is achieved. The following table defines the applicability for different programs

Time of Sale (TOS)

Retrofit (RF) and Direct Install (DI)

This measure relates to the installation of new equipment with efficiency that exceeds that of equipment that would have been installed following standard market practices. In general, the measure will include qualifying high efficiency low ballast factor ballasts paired with high efficiency long life lamps as detailed in the attached tables. High-bay applications use this system paired with qualifying high ballast factor ballasts and high performance 32 w lamps. Custom lighting designs can use qualifying low, normal or high ballast factor ballasts and qualifying lamps in lumen equivalent applications where total system wattage is reduced when calculated using the Calculation of Savings Algorithms.

This measure relates to the replacement of existing equipment with new equipment with efficiency that exceeds that of the existing equipment. In general, the retrofit will include qualifying high efficiency low ballast factor ballasts paired with high efficiency long life lamps as detailed in the attached tables. Custom lighting designs can use qualifying low, normal or high ballast factor ballasts and qualifying lamps in lumen equivalent applications where total system wattage is reduced when calculated using the Calculation of Savings Algorithms.

High efficiency troffers (new/or retrofit) utilizing HPT8 technology can provide even greater savings. When used in a high-bay application, high-performance T8 fixtures can provide equal light to HID high-bay fixtures, while using fewer watts; these systems typically utilize high ballast factor ballasts, but qualifying low and normal ballast factor ballasts may be used when appropriate light levels are provided and overall wattage is reduced.

DEFINITION OF EFFICIENT EQUIPMENT

This characterization assumes the efficient condition for all applications are qualifying HP or RWT8 fixture and lamp/ballast combinations listed on the CEE website under qualifying HP T8 products²⁶⁰ and qualifying RWT8 products²⁶¹.

The definition of efficient equipment varies based on the program and is defined below:

Time of Sale (TOS)	Retrofit (RF) and Direct Install (DI)
High efficiency troffers combined with high	High efficiency troffers (new or retrofit kits)
efficiency lamps and ballasts allow for fewer	combined with high efficiency lamps and ballasts
lamps to be used to provide a given lumen	allow for fewer lamps to be used to provide a given
output. High efficiency troffers must have a	lumen output. High efficiency troffers must have
fixture efficiency of 80% or greater to qualify.	a fixture efficiency of 80% or greater to qualify.
High bay fixtures must have fixture efficiencies of 85% or greater.	High bay fixtures will have fixture efficiencies of 85% or greater.

DEFINITION OF BASELINE EQUIPMENT

The definition of baseline equipment varies based on the program and is defined below:

Time of Sale (TOS)	Retrofit (RF) and Direct Install (DI)
The baseline is standard efficiency T8 systems that would have been installed. The baseline for high-bay fixtures is pulse start metal halide fixtures.	The baseline is the existing system. In July 14, 2012, Federal Standards were enacted that were expected to eliminate T12s as an option for linear fluorescent fixtures. However, due to significant loopholes in the legislation, T12 compliant product is still freely available.
	There will be a baseline shift applied to all T12 in 2020, at which point it is assumed no remaining T12 products will remain in operation.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The deemed lifetime of efficient equipment varies based on the program and is defined below:

²⁶⁰ http://library.cee1.org/content/cee-high-performance-t8-specification

²⁶¹ http://library.cee1.org/content/reduced-wattage-t8-specification

Time of Sale (TOS)	Retrofit (RF) and Direct Install (DI)
Fixture lifetime is 15 years ²⁶² .	
Fixture retrofits which utilize RWT8 lamps have a lifetime equivalent to the life of the lamp, capped at 15 years. There is no guarantee that a reduced wattage lamp will be installed at time of burnout, but if one is, savings will be captured in the RWT8 measure below. RWT8 lifetime is the life of the product, at the reported operating hours (lamp life in hours divided by operating hours per year — see reference table "RWT8 Component Costs and Lifetime"), capped at 15 years ²⁶³ .	Fixture lifetime is 15 years. Note, since the fixture lifetime is deemed at 15 years, the replacement cost of both the lamp and ballast should be incorporated in to the O&M calculation.

DEEMED MEASURE COST

The deemed measure cost is found in the reference table at the end of this characterization.

LOADSHAPE

Commercial Lighting (by building type)

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = ((Watts_{base} - Watts_{EE})/1000) * Hours * WHF_e * ISR$

Where:

 $Watts_{base}$

= Input wattage of the existing system which depends on the baseline fixture configuration (number and type of lamp) and number of fixtures. Value can be selected from the appropriate reference table as shown below, or a custom value can be entered if the configurations in the tables is not representative of the exisiting system.

Program	Reference Table
Time of Sale	A-1: HPT8 and RWT8 New and
Time of Sale	Baseline Assumptions
Retrofit	A-2: HPT8 and RWT8 New and
Retrofft	Baseline Assumptions
High-Bay T8 Time of Sale	A-3: High Bay T8 New and
and Retrofit	Baseline Assumptions

²⁶² 15 years from GDS Measure Life Report, June 2007

²⁶³ 15 years from GDS Measure Life Report, June 2007

Watts_{EE} = New Input wattage of EE fixture which depends on new fixture configuration

(number of lamps) and ballast factor and number of fixtures. Value can be selected from the appropriate reference table, or a custom value can be entered if the

configurations in the tables is not representative of the exisiting system.

Hours = Average hours of use per year as provided by the customer or selected from the

Reference Table in Section 2.8. If hours or building type are unknown, use the

C&I Average value.

WHF_e = Waste heat factor for energy to account for cooling energy savings from efficient

lighting is selected from the Reference Table in Section 2.8 for each building type.

If building is un-cooled, the value is 1.0.

ISR = In Service Rate is assumed to be 100%

Heating Penalty

If electrically heated building:

$$\Delta kWh_{heatpenalty}^{264} = (((WattsBase-WattsEE)/1000) * ISR * Hours * -IFkWh$$

Where:

IFkWh = Lighting-HVAC Interaction Factor for electric heating impacts; this factor

represents the increased electric space heating requirements due to the reduction of waste heat rejected by the efficent lighting. Values are provided in the Reference

Table in Section 2.8. If unknown, use the C&I Average value.

Midlife Adjustment

A midlife savings adjustment should be applied to retrofit projects in 2020 to account for the baseline lamp replacement assumption changing from a T12 to 100% Standard T8 by 2020²⁶⁵. The savings adjustment is calculated as follows, and is provided in the HP/RW T8 Reference Table below:

% Adjustment =
$$\left(\frac{Watts_{\text{T8base}} - Watts_{\text{EE}}}{Watts_{\text{Base}} - Watts_{\text{EE}}}\right)$$

Where:

Watts_{T8Base} = Input wattage of the of a 100% T8 fixture baseline.

Watts_{Base} = Input wattage of the T12 baseline

SUMMER COINCIDENT DEMAND SAVINGS

$$\Delta kW = \Delta kWh * CF$$

Where:

²⁶⁴Negative value because this is an increase in heating consumption due to the efficient lighting.

²⁶⁵ As of July 1, 2010, a Federal mandate states that the magnetic ballasts used in many T12 fixtures can no longer be produced for commercial and industrial applications. However, there have been many loopholes that have meant T12 lamps continue to hold a significant market share. It is expected that new mandates will close the loophole within the next few years. T12 lamps have an average life of 20,000 hours and if we assume they are operated on average for 4500 hours annually, this would mean a lamp would have to be replaced every 4.5 years. We therefore assume that by 2020 all replacement lamps are Standard T8s. Therefore, while the more likely scenario would be a gradual shift in baseline to T8s over the timeframe, to simplify this assumption, a single midlife adjustment in 2020 is assumed.

CF

= Summer peak coincidence demand (kW) to annual energy (kWh) factor for measure is selected from the Reference Table in Section 2.8 for each building type. If the building type is unknown, use the C&I Average value.

Other factors as defined above

NATURAL GAS SAVINGS

 Δ Therms²⁶⁶ = (((WattsBase-WattsEE)/1000) * ISR * Hours *- IFTherms

Where:

IFTherms

= Lighting-HVAC Interaction Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Please select from the Reference Table in Section 2.8 for each building type.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

Actual operation and maintenance costs will vary by specific equipment installed/replaced. See Reference tables for Operating and Maintenance Values;

Program	Reference Table
Time of Sale	B-1: HPT8 and RWT8 New and Baseline Assumptions
Retrofit	B-2: HPT8 and RWT8 New and Baseline Assumptions
High-Bay T8 Time of Sale and Retrofit	B-3: High Bay T8 New and Baseline Assumptions

REFERENCE TABLES

A-1: Time of Sale: HPT8 and RWT8 New and Baseline Assumptions²⁶⁷

EE Measure Description	Watts _{EE} Baseline Description		Watts _{BASE}	Incremental Cost
1-Lamp 32w HPT8 (BF < 0.79)	24.0	Standard T8	29.1	\$15.00
2-Lamp 32w HPT8 (BF < 0.77)	48.0	Standard T8	57.0	\$17.50
3-Lamp 32w HPT8 (BF < 0.76)	71.0	Standard T8	84.5	\$20.00
4-Lamp 32w HPT8 (BF < 0.78)	98.0	Standard T8	112.6	\$22.50
6-Lamp 32w HPT8 (BF < 0.76)	142.0	Standard T8	169.0	\$40.00
1-Lamp 28w RWT8 (BF < 0.76)	21.3	Standard T8	29.1	\$15.00
2-Lamp 28w RWT8 (BF < 0.76)	42.6	Standard T8	57.0	\$17.50
3-Lamp 28w RWT8 (BF < 0.77)	63.0	Standard T8	84.5	\$20.00
4-Lamp 28w RWT8 (BF < 0.79)	88.5	Standard T8	112.6	\$22.50
6-Lamp 28w RWT8 (BF < 0.77)	126.0	Standard T8	169.0	\$40.00

²⁶⁶ Negative value because this is an increase in heating consumption due to the efficient lighting.

²⁶⁷ Watt, lumen, lamp life, and ballast factor assumptions for efficient measures are based upon Consortium for Energy Efficiency (CEE) Commercial Lighting Qualifying Product Lists. Watt, lumen, lamp life, and ballast factor assumptions for baseline fixtures are based upon manufacturer specification sheets. Baseline and efficient measure cost data comes from lighting suppliers, past Efficiency Vermont projects, and professional judgment. See "HPT8 TRM Reference Tables.xlsx" for more information and specific product links. Currently, 25WT8 are not considered under this measure as their lower light trade off and limitations on temperature and dimming have caused most distributers/contractors to use 28W almost exclusively in other markets.

A-2: Retrofit: HPT8 and RWT8 New and Baseline Assumptions

EE Measure Description	Watts _{EE}	Baseline Description	Watts _{BASE}	Full Cost	Mid Life Savings Adjustment (2020)
1-Lamp Relamp/Reballast T12 to HPT8	24.0	1-Lamp 34w T12	31.0	\$50.00	73%
2-Lamp Relamp/Reballast T12 to HPT8	48.0	2-Lamp 34w T12	62.0	\$55.00	64%
3-Lamp Relamp/Reballast T12 to HPT8	71.0	3-Lamp 34w T12	108.0	\$60.00	36%
4-Lamp Relamp/Reballast T12 to HPT8	98.0	4-Lamp 34w T12	144.0	\$65.00	32%
6-Lamp Relamp/Reballast T12 to HPT8	142.0	6-Lamp 34w T12	216.0	\$75.00	36%
1-Lamp Relamp/Reballast T12 to RWT8	21.3	1-Lamp 34w T12	31.0	\$50.00	81%
2-Lamp Relamp/Reballast T12 to RWT8	42.6	2-Lamp 34w T12	62.0	\$55.00	74%
3-Lamp Relamp/Reballast T12 to RWT8	63.0	3-Lamp 34w T12	108.0	\$60.00	48%
4-Lamp Relamp/Reballast T12 to RWT8	88.5	4-Lamp 34w T12	144.0	\$65.00	44%
6-Lamp Relamp/Reballast T12 to RWT8	126.0	6-Lamp 34w T12	216.0	\$75.00	48%
1-Lamp Relamp/Reballast T8 to HPT8	24.0	1-Lamp 32w T8	29.1	\$50.00	N/A
2-Lamp Relamp/Reballast T8 to HPT8	48.0	2-Lamp 32w T8	57.0	\$55.00	N/A
3-Lamp Relamp/Reballast T8 to HPT8	71.0	3-Lamp 32w T8	84.5	\$60.00	N/A
4-Lamp Relamp/Reballast T8 to HPT8	98.0	4-Lamp 32w T8	112.6	\$65.00	N/A
6-Lamp Relamp/Reballast T8 to HPT8	142.0	6-Lamp 32w T8	169.0	\$75.00	N/A
1-Lamp Relamp/Reballast T8 to RWT8	21.3	1-Lamp 32w T8	29.1	\$50.00	N/A
2-Lamp Relamp/Reballast T8 to RWT8	42.6	2-Lamp 32w T8	57.0	\$55.00	N/A
3-Lamp Relamp/Reballast T8 to RWT8	63.0	3-Lamp 32w T8	84.5	\$60.00	N/A
4-Lamp Relamp/Reballast T8 to RWT8	88.5	4-Lamp 32w T8	112.6	\$65.00	N/A
6-Lamp Relamp/Reballast T8 to RWT8	126.0	6-Lamp 32w T8	169.0	\$75.00	N/A

A-2: Retrofit: HPT8 and RWT8 New and Baseline Assumptions

EE Measure Description	Watts _{EE}	Baseline Description	Watts _{BASE}	Full Cost	Mid Life Savings Adjustment (2020)
1-Lamp Relamp/Reballast T12 to HPT8	24.0	1-Lamp 34w T12	31.0	\$50.00	73%
2-Lamp Relamp/Reballast T12 to HPT8	48.0	2-Lamp 34w T12	62.0	\$55.00	64%
3-Lamp Relamp/Reballast T12 to HPT8	71.0	3-Lamp 34w T12	108.0	\$60.00	36%
4-Lamp Relamp/Reballast T12 to HPT8	98.0	4-Lamp 34w T12	144.0	\$65.00	32%
6-Lamp Relamp/Reballast T12 to HPT8	142.0	6-Lamp 34w T12	216.0	\$75.00	36%
1-Lamp Relamp/Reballast T12 to RWT8	21.3	1-Lamp 34w T12	31.0	\$50.00	81%
2-Lamp Relamp/Reballast T12 to RWT8	42.6	2-Lamp 34w T12	62.0	\$55.00	74%
3-Lamp Relamp/Reballast T12 to RWT8	63.0	3-Lamp 34w T12	108.0	\$60.00	48%
4-Lamp Relamp/Reballast T12 to RWT8	88.5	4-Lamp 34w T12	144.0	\$65.00	44%
6-Lamp Relamp/Reballast T12 to RWT8	126.0	6-Lamp 34w T12	216.0	\$75.00	48%
1-Lamp Relamp/Reballast T8 to HPT8	24.0	1-Lamp 32w T8	29.1	\$50.00	N/A
2-Lamp Relamp/Reballast T8 to HPT8	48.0	2-Lamp 32w T8	57.0	\$55.00	N/A
3-Lamp Relamp/Reballast T8 to HPT8	71.0	3-Lamp 32w T8	84.5	\$60.00	N/A
4-Lamp Relamp/Reballast T8 to HPT8	98.0	4-Lamp 32w T8	112.6	\$65.00	N/A
6-Lamp Relamp/Reballast T8 to HPT8	142.0	6-Lamp 32w T8	169.0	\$75.00	N/A
1-Lamp Relamp/Reballast T8 to RWT8	21.3	1-Lamp 32w T8	29.1	\$50.00	N/A

EE Measure Description	Watts _{EE}	Baseline Description	Watts _{BASE}	Full Cost	Mid Life Savings Adjustment (2020)
2-Lamp Relamp/Reballast T8 to RWT8	42.6	2-Lamp 32w T8	57.0	\$55.00	N/A
3-Lamp Relamp/Reballast T8 to RWT8	63.0	3-Lamp 32w T8	84.5	\$60.00	N/A
4-Lamp Relamp/Reballast T8 to RWT8	88.5	4-Lamp 32w T8	112.6	\$65.00	N/A
6-Lamp Relamp/Reballast T8 to RWT8	126.0	6-Lamp 32w T8	169.0	\$75.00	N/A

A-3: Time of Sale/Retrofit: High Bay T8 New and Baseline Assumptions

EE Measure Description	Watts _E	Baseline Description	Watts _{BAS}	Increment al Cost	Full Cost
4-Lamp HPT8 w/ High- BF Ballast High-Bay	218.5	200 Watt Pulse Start Metal-Halide	232.0	\$75	\$200
4-Lamp HPT8 w/ High- BF Ballast High-Bay	218.5	250 Watt Metal Halide	295.0	\$75	\$200
6-Lamp HPT8 w/ High- BF Ballast High-Bay	330.1	320 Watt Pulse Start Metal-Halide	348.8	\$75	\$225
6-Lamp HPT8 w/ High- BF Ballast High-Bay	330.1	400 Watt Pulse Start Metal Halide	455.0	\$75	\$225
8-Lamp HPT8 w/ High- BF Ballast High-Bay	418.6	Proportionally Adjusted according to 6-Lamp HPT8 Equivalent to 320 PSMH	476.0	\$75	\$250
8-Lamp HPT8 w/ High-BF Ballast High-Bay	418.6	Proportionally Adjusted according to 6-Lamp HPT8 Equivalent to 400 W Metal Halide	618.0	\$75	\$250

B-1: Time of Sale: HPT8 and RWT8 Component Costs and Lifetime

			EE N	I easure		Baseline				
EE Measure Description	Lamp Quantit y	Lamp Life (hrs)	Total Lamp Replaceme nt Cost	Ballast Life (hrs)	Total Ballast Replaceme nt Cost	Lamp Life (hrs)	Total Lamp Replaceme nt Cost	Ballas t Life (hrs)	Total Ballast Replacement Cost	
1-Lamp 32w HPT8 (BF < 0.79)	1	24,000	\$8.17	70,000	\$52.50	20,000	\$5.67	70,000	\$35.00	
2-Lamp 32w HPT8 (BF < 0.77)	2	24,000	\$16.34	70,000	\$52.50	20,000	\$11.34	70,000	\$35.00	
3-Lamp 32w HPT8 (BF < 0.76)	3	24,000	\$24.51	70,000	\$52.50	20,000	\$17.01	70,000	\$35.00	
4-Lamp 32w HPT8 (BF < 0.78)	4	24,000	\$32.68	70,000	\$52.50	20,000	\$22.68	70,000	\$35.00	
6-Lamp 32w HPT8 (BF < 0.76)	6	24,000	\$49.02	70,000	\$105.00	20,000	\$34.02	70,000	\$35.00	
1-Lamp 28w RWT8 (BF < 0.76)	1	18,000	\$8.17	70,000	\$52.50	20,000	\$5.67	70,000	\$35.00	
2-Lamp 28w RWT8 (BF < 0.76)	2	18,000	\$16.34	70,000	\$52.50	20,000	\$11.34	70,000	\$35.00	
3-Lamp 28w RWT8 (BF < 0.77)	3	18,000	\$24.51	70,000	\$52.50	20,000	\$17.01	70,000	\$35.00	
4-Lamp 28w RWT8 (BF < 0.79)	4	18,000	\$32.68	70,000	\$52.50	20,000	\$22.68	70,000	\$35.00	
6-Lamp 28w RWT8 (BF < 0.77)	6	18,000	\$49.02	70,000	\$105.00	20,000	\$34.02	70,000	\$35.00	

B-2: Retrofit: HPT8 and RWT8 Component Costs and Lifetime

			EE M	easure		Baseline				
EE Measure Description	Lamp Quantity	Lamp Life (hrs)	Total Lamp Replacement Cost	Ballast Life (hrs)	Total Ballast Replacement Cost	Lamp Life (hrs)	Total Lamp Replacement Cost	Ballast Life (hrs)	Total Ballast Replacement Cost	
1-Lamp Relamp/Reballast T12 to HPT8	1	24,000	\$8.17	70,000	\$52.50	20,000	\$5.87	40,000	\$35.00	
2-Lamp Relamp/Reballast T12 to HPT8	2	24,000	\$16.34	70,000	\$52.50	20,000	\$11.74	40,000	\$35.00	
3-Lamp Relamp/Reballast T12 to HPT8	3	24,000	\$24.51	70,000	\$52.50	20,000	\$17.61	40,000	\$35.00	
4-Lamp Relamp/Reballast T12 to HPT8	4	24,000	\$32.68	70,000	\$52.50	20,000	\$23.48	40,000	\$35.00	
6-Lamp Relamp/Reballast T12 to HPT8	6	24,000	\$49.02	70,000	\$105.00	20,000	\$35.22	40,000	\$35.00	
1-Lamp Relamp/Reballast T12 to RWT8	1	18,000	\$8.17	70,000	\$52.50	20,000	\$5.87	40,000	\$35.00	
2-Lamp Relamp/Reballast T12 to RWT8	2	18,000	\$16.34	70,000	\$52.50	20,000	\$11.74	40,000	\$35.00	
3-Lamp Relamp/Reballast T12 to RWT8	3	18,000	\$24.51	70,000	\$52.50	20,000	\$17.61	40,000	\$35.00	
4-Lamp Relamp/Reballast T12 to RWT8	4	18,000	\$32.68	70,000	\$52.50	20,000	\$23.48	40,000	\$35.00	
6-Lamp Relamp/Reballast T12 to RWT8	6	18,000	\$49.02	70,000	\$105.00	20,000	\$35.22	40,000	\$35.00	
1-Lamp Relamp/Reballast T8 to HPT8	1	24,000	\$8.17	70,000	\$52.50	20,000	\$5.67	70,000	\$35.00	

			EE M	easure		Baseline				
	Lamn	Lamp	Total Lamp	Ballast	Total Ballast	Lamp	Total Lamp	Ballast	Total Ballast	
EE Measure Description	Lamp Quantity	Life	Replacement	Life	Replacement	Life	Replacement	Life	Replacement	
	Quantity	(hrs)	Cost	(hrs)	Cost	(hrs)	Cost	(hrs)	Cost	
2-Lamp Relamp/Reballast T8 to HPT8	2	24,000	\$16.34	70,000	\$52.50	20,000	\$11.34	70,000	\$35.00	
3-Lamp Relamp/Reballast T8 to HPT8	3	24,000	\$24.51	70,000	\$52.50	20,000	\$17.01	70,000	\$35.00	
4-Lamp Relamp/Reballast T8 to HPT8	4	24,000	\$32.68	70,000	\$52.50	20,000	\$22.68	70,000	\$35.00	
6-Lamp Relamp/Reballast T8 to HPT8	6	24,000	\$49.02	70,000	\$105.00	20,000	\$34.02	70,000	\$35.00	
1-Lamp Relamp/Reballast T8 to RWT8	1	18,000	\$8.17	70,000	\$52.50	20,000	\$5.67	70,000	\$35.00	
2-Lamp Relamp/Reballast T8 to RWT8	2	18,000	\$16.34	70,000	\$52.50	20,000	\$11.34	70,000	\$35.00	
3-Lamp Relamp/Reballast T8 to RWT8	3	18,000	\$24.51	70,000	\$52.50	20,000	\$17.01	70,000	\$35.00	
4-Lamp Relamp/Reballast T8 to RWT8	4	18,000	\$32.68	70,000	\$52.50	20,000	\$22.68	70,000	\$35.00	
6-Lamp Relamp/Reballast T8 to RWT8	6	18,000	\$49.02	70,000	\$105.00	20,000	\$34.02	70,000	\$35.00	

B-3: High Bay HPT8 Component Costs and Lifetime

	EE N	Measure			Baseline					
EE Measure Description	Lamp Life (hrs)	Total Lamp Replaceme nt Cost	Ballas t Life (hrs)	Total Ballast Replaceme nt Cost	Baseline Description	Lamp Life (hrs)	Total Lamp Replaceme nt Cost	Ballas t Life (hrs)	Total Ballast Replaceme nt Cost	
4-Lamp HPT8 w/ High-	24000	\$46.68	70000	\$47.50	200 Watt Pulse Start Metal-Halide	12000	\$35.67	40000	\$110.25	
BF Ballast High-Bay	24000	\$40.08	70000	\$47.50	250 Watt Metal Halide	10000	\$27.67	40000	\$114.50	
6-Lamp HPT8 w/ High-	24000	\$70.02	70000	\$47.50	320 Watt Pulse Start Metal-Halide	20000	\$78.67	40000	\$131.85	
BF Ballast High-Bay	24000	\$70.02	70000	\$47.30	400 Watt Metal-Halide	20000	\$23.67	40000	\$136.50	
8-Lamp HPT8 w/ High- BF Ballast High-Bay	24000	\$93.36	70000	\$47.50	Proportionally Adjusted according to 6-Lamp HPT8 Equivalent to 320 PSMH	20000	\$23.67	40000	\$131.85	

MEASURE CODE: CI-LTG-HPRWT8FX-V01-170331

2.8.4 LED Bulbs and Fixtures

DESCRIPTION

The installation of Light-Emitting Diode (LED) lighting systems have comparable luminosity to incandescent bulbs and equivalent fluorescent lamps at significantly less wattage, lower heat, and with significantly longer lifetimes.

This measure provides savings assumptions for a variety of efficient lighting fixtures including internal and external LED fixtures, recess (troffer), canopy, and pole fixtures as well as refrigerator and display case lighting.

This measure was developed to be applicable to the following program types: TOS, RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, all LED fixtures are assumed to be ENERGY STAR labeled or on the Design Light Consortium qualifying fixture list²⁶⁸.

DEFINITION OF BASELINE EQUIPMENT

For Time of Sale and Retrofit installations, the baselines efficiency case is project specific and is determined using actual fixture types and counts from the existing space. The existing fluorescent fixture end connectors and ballasts must be completely removed to qualify.

Where the installation technology is not known, the assumed baselines condition for an outdoor pole/arm, wall-mounted, garage/canopy fixture and high-bay luminaire with a high intensity discharge light source is a metal halide fixture. Deemed fixture wattages are provided in reference tables at the end of this characterization.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

Lifetime is the life of the product, at the reported operating hours (lamp life in hours divided by operating hours per year – see reference table "LED component Costs and Lifetime." The analysis period is the same as the lifetime, capped at 15 years²⁶⁹.

DEEMED MEASURE COST

Actual incremental costs should be used if available. For default values, refer to the reference tables below.

LOADSHAPE

Commercial Lighting (by building type)

²⁶⁸ DesignLights Consortium Qualified Products List http://www.designlights.org/qpl

²⁶⁹ GDS Associates, Inc. (2007). Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

$$\Delta kWh = \frac{Watts_{Base} - Watts_{EE}}{1.000} * Hours * WHFe * ISR$$

Where:

Watts_{Base} = Input wattage of the existing or baseline system. Reference the "LED New and

Baseline Assumptions" table for default values.

Watts_{EE} = Actual wattage of LED fixture purchased / installed. If unknown, use default

provided in "LED New and Baseline Assumptions".

Hours = Average annual lighting hours of use as provided by the customer or selected

from the Lighting Reference Table in Section 2.8. by building type. If hours or

building type are unknown, use the C&I Average value.

WHFe = Waste heat factor for energy to account for cooling energy savings from efficient

lighting is selected from the Lighting Reference Table in Section 2.8 for each

building type. If building is un-cooled, the value is 1.0.

ISR = In Service Rate is assumed to be 98.7% for Time of Sale and 100% for Retrofit²⁷⁰.

Heating Penalty:

If electrically heated building:

$$\Delta kWhheatpenalty = \frac{Watts_{Base} - Watts_{EE}}{1,000} * ISR * Hours * (-IFkWh)$$

Where:

IFkWh = Lighting-HVAC Interaction Factor for electric heating impacts²⁷¹; this factor

represents the increased electric space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Lighting

Reference Table in Section 2.8. If unknown, use the C&I Average value.

Mid Life Adjustment:

A midlife savings adjustment should be applied to any retrofit measure using a T12 baseline. The adjustment should occur in 2020 to account for the baseline lamp replacement assumption changing from a T12 to 100% Standard T8 by 2020^{272} . The savings adjustment is calculated as follows:

% Adjustment =
$$\left(\frac{Watts_{T8base} - Watts_{EE}}{Watts_{T12 Base} - Watts_{EE}}\right)$$

Where:

WattsT8 Base = Input wattage of the existing system based on 100% T8 fixture.

WattsT12 Base = Input wattage of the existing T12 system.

²⁷⁰ Based on results presented in Ameren Missouri Lighting Impact and Process Evaluation: Program Year 2015 and consistent with other program ISR in neighboring states (Illinois and Iowa).

²⁷¹ Negative value because this is an increase in heating consumption due to the efficient lighting.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWh * CF$$

Where:

CF

= Summer peak coincidence demand (kW) to annual energy (kWh) factor for measure is selected from the Lighting Reference Table in Section 2.8 for each building type. If the building type is unknown, use the C&I Average value.

Other factors as defined above.

NATURAL GAS ENERGY SAVINGS

Heating Penalty if fossil fuel heated building (or if heating fuel is unknown):

$$\Delta Therms = \frac{Watts_{Base} - Watts_{EE}}{1,000} * ISR * Hours * (-IFTherms)$$

Where:

IFTherms

= Lighting-HVAC Interaction Factor for gas heating impacts ²⁷³; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Lighting Reference Table in Section 2.8. If unknown, use the C&I Average value.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

See Reference Tables below for default assumptions.

REFERENCE TABLES²⁷⁴

LED New and Baseline Assumptions:

LED Category	EE Measure		Baseline		Incremental
LED Category	Description	Wattsee	Description	Wattsbase	Cost
LED Downlight Fixtures	LED Recessed, Surface, Pendant Downlights	17.6	40% CFL 26W Pin Based & 60% PAR30/38	54.3	\$27
	LED Track Lighting	12.2	10% CMH PAR38 & 90% Halogen PAR38	60.4	\$59
LED Interior Directional	LED Wall-Wash Fixtures	8.3	40% CFL 42W Pin Base & 60% Halogen PAR38	17.7	\$59
LED Display Case	LED Display Case Light Fixture	7.1 / ft	50% 2'T5 Linear & 50% 50W Halogen	36.2 / ft	\$11/ft

²⁷³ Negative value because this is an increase in heating consumption due to the efficient lighting.

²⁷⁴ Watt, lumen, lamp life, and ballast factor assumptions for efficient measures are based upon Consortium for Energy Efficiency (CEE) Commercial Lighting Qualifying Product Lists alongside past Efficiency Vermont projects and PGE refrigerated case study. Watt, lumen, lamp life, and ballast factor assumptions for baseline fixtures are based upon manufacturer specification sheets. Baseline cost data comes from lighting suppliers, past Efficiency Vermont projects, and professional judgment. Efficient cost data comes from 2012 DOE "Energy Savings Potential of Solid-State Lighting in General Illumination Applications", Table A.1. See "LED Lighting Systems TRM Reference Tables.xlsx" for more information and specific product links.

I ED C 4	EE Measure		Baseline		Incremental
LED Category	Description	Wattsee	Description	Wattsbase	Cost
	LED Undercabinet Shelf- Mounted Task Light Fixtures	7.1 / ft	50% 2'T5 Linear & 50% 50W Halogen	36.2 / ft	\$11/ft
	LED Refrigerated Case Light, Horizontal or Vertical	7.6 / ft	5'T8	15.2 / ft	\$11/ft
	LED Freezer Case Light, Horizontal or Vertical	7.7 / ft	6'T12HO	18.7 / ft	\$11/ft
LED Linear	LED 4' Linear Replacement Lamp	18.7	Lamp Only 32w T8	32.0	\$24
Replacement Lamps	LED 2' Linear Replacement Lamp	9.7	Lamp Only 17w T8	17.0	\$13
	LED 2x2 Recessed Light Fixture, 2000-3500 lumens	34.1	2-Lamp 32w T8 (BF < 0.89)	57.0	\$48
	LED 2x2 Recessed Light Fixture, 3501-5000 lumens	42.8	3-Lamp 32w T8 (BF < 0.88)	84.5	\$91
	LED 2x4 Recessed Light Fixture, 3000-4500 lumens	37.9	2-Lamp 32w T8 (BF < 0.89)	57.0	\$62
LEDT	LED 2x4 Recessed Light Fixture, 4501-6000 lumens	54.3	3-Lamp 32w T8 (BF < 0.88)	84.5	\$99
LED Troffers	LED 2x4 Recessed Light Fixture, 6001-7500 lumens	72.7	4-Lamp 32w T8 (BF < 0.88)	112.6	\$150
	LED 1x4 Recessed Light Fixture, 1500-3000 lumens	18.1	1-Lamp 32w T8 (BF <0.91)	29.1	\$36
	LED 1x4 Recessed Light Fixture, 3001-4500 lumens	39.6	2-Lamp 32w T8 (BF < 0.89)	57.0	\$76
	LED 1x4 Recessed Light Fixture, 4501-6000 lumens	53.1	3-Lamp 32w T8 (BF < 0.88)	84.5	\$130
	LED Surface & Suspended Linear Fixture, ≤ 3000 lumens	19.7	1-Lamp 32w T8 (BF <0.91)	29.1	\$54
	LED Surface & Suspended Linear Fixture, 3001-4500 lumens	37.8	2-Lamp 32w T8 (BF < 0.89)	57.0	\$104
LED Linear Ambient Fixtures	LED Surface & Suspended Linear Fixture, 4501-6000 lumens	55.9	3-Lamp 32w T8 (BF < 0.88)	84.5	\$158
	LED Surface & Suspended Linear Fixture, 6001-7500 lumens	62.6	T5HO 2L-F54T5HO - 4'	120.0	\$215
	LED Surface & Suspended Linear Fixture, > 7500 lumens	95.4	T5HO 3L-F54T5HO - 4'	180.0	\$374
	LED Low-Bay Fixtures, ≤ 10,000 lumens	90.3	3-Lamp T8HO Low- Bay	157.0	\$191
LED High & Low	LED High-Bay Fixtures, 10,001-15,000 lumens	127.5	4-Lamp T8HO High- Bay	196.0	\$331
Bay Fixtures	LED High-Bay Fixtures, 15,001-20,000 lumens	191.0	6-Lamp T8HO High- Bay	294.0	\$482
	LED High-Bay Fixtures, > 20,000 lumens	249.7	8-Lamp T8HO High- Bay	392.0	\$818
LED Agricultural Interior Fixtures	LED Ag Interior Fixtures, ≤ 2,000 lumens	17.0	25% 73 Watt EISA Inc, 75% 1L T8	42.0	\$33

LED Category	EE Measure		Baseline		Incremental
LED Category	Description	Wattsee	Description	Wattsbase	Cost
	LED Ag Interior Fixtures, 2,001-4,000 lumens	27.8	25% 146 Watt EISA Inc, 75% 2L T8	81.0	\$54
	LED Ag Interior Fixtures, 4,001-6,000 lumens	51.2	25% 217 Watt EISA Inc, 75% 3L T8	121.0	\$125
	LED Ag Interior Fixtures, 6,001-8,000 lumens	71.7	25% 292 Watt EISA Inc, 75% 4L T8	159.0	\$190
	LED Ag Interior Fixtures, 8,001-12,000 lumens	103.5	200W Pulse Start Metal Halide	227.3	\$298
	LED Ag Interior Fixtures, 12,001-16,000 lumens	143.8	320W Pulse Start Metal Halide	363.6	\$450
	LED Ag Interior Fixtures, 16,001-20,000 lumens	183.3	350W Pulse Start Metal Halide	397.7	\$595
	LED Ag Interior Fixtures, > 20,000 lumens	305.0	(2) 320W Pulse Start Metal Halide	727.3	\$998
	LED Exterior Fixtures, ≤ 5,000 lumens	42.6	100W Metal Halide	113.6	\$190
LED Exterior	LED Exterior Fixtures, 5,001-10,000 lumens	68.2	175W Pulse Start Metal Halide	198.9	\$287
Fixtures	LED Exterior Fixtures, 10,001-15,000 lumens	122.5	250W Pulse Start Metal Halide	284.1	\$391
	LED Exterior Fixtures, > 15,000 lumens	215.0	400W Pulse Start Metal Halide	454.5	\$793

LED Component Costs and Lifetimes:

			EE Measure			Baseline			
LED Category	EE Measure Description	Lamp Life (hrs)	Total Lamp Replace Cost	LED Driver Life (hrs)	Total LED Driver Replace Cost	Lamp Life (hrs)	Total Lamp Replace Cost	Ballast Life (hrs)	Total Ballast Replace Cost
LED Downlight Fixtures	LED Recessed, Surface, Pendant Downlights	35,000	\$30.75	70,000	\$47.50	2,500	\$8.86	40,000	\$14.40
LED Intonion	LED Track Lighting	35,000	\$39.00	70,000	\$47.50	2,500	\$12.71	40,000	\$11.00
LED Interior Directional	LED Wall-Wash Fixtures	35,000	\$39.00	70,000	\$47.50	2,500	\$9.17	40,000	\$27.00
	LED Display Case Light Fixture	35,000	\$9.75/ft	70,000	\$11.88/ft	2,500	\$6.70	40,000	\$5.63
I ED Diomlar	LED Undercabinet Shelf-Mounted Task Light Fixtures	35,000	\$9.75/ft	70,000	\$11.88/ft	2,500	\$6.70	40,000	\$5.63
LED Display Case	LED Refrigerated Case Light, Horizontal or Vertical	35,000	\$8.63/ft	70,000	\$9.50/ft	15,000	\$1.13	40,000	\$8.00
	LED Freezer Case Light, Horizontal or Vertical	35,000	\$7.88/ft	70,000	\$7.92/ft	12,000	\$0.94	40,000	\$6.67
LED Linear Replacement	LED 4' Linear Replacement Lamp	35,000	\$8.57	70,000	\$13.67	20,000	\$6.17	70,000	\$11.96
Lamps	LED 2' Linear Replacement Lamp	35,000	\$5.76	70,000	\$13.67	20,000	\$6.17	70,000	\$11.96

		EE Measure			Baseline				
LED Category	EE Measure Description	Lamp Life (hrs)	Total Lamp Replace Cost	LED Driver Life (hrs)	Total LED Driver Replace Cost	Lamp Life (hrs)	Total Lamp Replace Cost	Ballast Life (hrs)	Total Ballast Replace Cost
	LED 2x2 Recessed Light Fixture, 2000- 3500 lumens	35,000	\$46.68	70,000	\$40.00	20,000	\$11.34	70,000	\$35.00
	LED 2x2 Recessed Light Fixture, 3501- 5000 lumens	35,000	\$56.31	70,000	\$40.00	20,000	\$17.01	70,000	\$35.00
	LED 2x4 Recessed Light Fixture, 3000- 4500 lumens	35,000	\$49.58	70,000	\$40.00	20,000	\$11.34	70,000	\$35.00
LED Troffers	LED 2x4 Recessed Light Fixture, 4501- 6000 lumens	35,000	\$57.76	70,000	\$40.00	20,000	\$17.01	70,000	\$35.00
LED Hollers	LED 2x4 Recessed Light Fixture, 6001- 7500 lumens	35,000	\$68.89	70,000	\$40.00	20,000	\$22.68	70,000	\$35.00
	LED 1x4 Recessed Light Fixture, 1500- 3000 lumens	35,000	\$43.43	70,000	\$40.00	20,000	\$5.67	70,000	\$35.00
	LED 1x4 Recessed Light Fixture, 3001- 4500 lumens	35,000	\$52.31	70,000	\$40.00	20,000	\$11.34	70,000	\$35.00
	LED 1x4 Recessed Light Fixture, 4501- 6000 lumens	35,000	\$63.86	70,000	\$40.00	20,000	\$17.01	70,000	\$35.00
	LED Surface & Suspended Linear Fixture, ≤ 3000 lumens	35,000	\$45.01	70,000	\$40.00	20,000	\$5.67	70,000	\$35.00
	LED Surface & Suspended Linear Fixture, 3001-4500 lumens	35,000	\$58.73	70,000	\$40.00	20,000	\$11.34	70,000	\$35.00
LED Linear Ambient Fixtures	LED Surface & Suspended Linear Fixture, 4501-6000 lumens	35,000	\$73.50	70,000	\$40.00	20,000	\$17.01	70,000	\$35.00
	LED Surface & Suspended Linear Fixture, 6001-7500 lumens	35,000	\$88.69	70,000	\$40.00	30,000	\$26.33	70,000	\$60.00
	LED Surface & Suspended Linear Fixture, > 7500 lumens	35,000	\$123.91	70,000	\$40.00	30,000	\$39.50	70,000	\$60.00
LED High & Low Bay Fixtures	LED Low-Bay Fixtures, ≤ 10,000 lumens	35,000	\$90.03	70,000	\$62.50	18,000	\$64.50	70,000	\$92.50

		EE Measure				Baseline			
LED Category	EE Measure Description	Lamp Life (hrs)	Total Lamp Replace Cost	LED Driver Life (hrs)	Total LED Driver Replace Cost	Lamp Life (hrs)	Total Lamp Replace Cost	Ballast Life (hrs)	Total Ballast Replace Cost
	LED High-Bay Fixtures, 10,001- 15,000 lumens	35,000	\$122.59	70,000	\$62.50	18,000	\$86.00	70,000	\$92.50
	LED High-Bay Fixtures, 15,001- 20,000 lumens	35,000	\$157.22	70,000	\$62.50	18,000	\$129.00	70,000	\$117.50
	LED High-Bay Fixtures, > 20,000 lumens	35,000	\$228.52	70,000	\$62.50	18,000	\$172.00	70,000	\$142.50
	LED Ag Interior Fixtures, ≤ 2,000 lumens	35,000	\$37.00	70,000	\$40.00	1,000	\$1.23	40,000	\$26.25
	LED Ag Interior Fixtures, 2,001-4,000 lumens	35,000	\$44.96	70,000	\$40.00	1,000	\$1.43	40,000	\$26.25
	LED Ag Interior Fixtures, 4,001-6,000 lumens	35,000	\$63.02	70,000	\$40.00	1,000	\$1.62	40,000	\$26.25
LED Agricultural	LED Ag Interior Fixtures, 6,001-8,000 lumens	35,000	\$79.78	70,000	\$40.00	1,000	\$1.81	40,000	\$26.25
Interior Fixtures	LED Ag Interior Fixtures, 8,001-12,000 lumens	35,000	\$119.91	70,000	\$62.50	15,000	\$63.00	40,000	\$112.50
	LED Ag Interior Fixtures, 12,001- 16,000 lumens	35,000	\$151.89	70,000	\$62.50	15,000	\$68.00	40,000	\$122.50
	LED Ag Interior Fixtures, 16,001- 20,000 lumens	35,000	\$184.62	70,000	\$62.50	15,000	\$73.00	40,000	\$132.50
	LED Ag Interior Fixtures, > 20,000 lumens	35,000	\$285.75	70,000	\$62.50	15,000	\$136.00	40,000	\$202.50
	LED Exterior Fixtures, ≤ 5,000 lumens	35,000	\$86.92	70,000	\$62.50	15,000	\$58.00	40,000	\$102.50
LED Exterior	LED Exterior Fixtures, 5,001-10,000 lumens	35,000	\$111.81	70,000	\$62.50	15,000	\$63.00	40,000	\$112.50
Fixtures	LED Exterior Fixtures, 10,001-15,000 lumens	35,000	\$138.32	70,000	\$62.50	15,000	\$68.00	40,000	\$122.50
	LED Exterior Fixtures, > 15,000 lumens	35,000	\$223.67	70,000	\$62.50	15,000	\$73.00	40,000	\$132.50

MEASURE CODE: CI-LTG-LEDFX-V01-170331

2.8.5 LED Screw Based Omnidirectional Bulb

DESCRIPTION

LEDs lighting systems convert electricity to light and emit more lumens per watt when compared to baseline EISA incandescent, halogen, or compact fluorescent lamps.

This specific characterization provides savings assumptions for LED lamps that replace standard screw-in connections (e.g., A-Type lamp) such as interior/exterior omnidirectional bulb options.

This characterization assumes that the LED is installed in a commercial location. This is therefore appropriate for commercially targeted programs, or, if the implementation strategy does not allow for the installation location to be known (e.g., an upstream retail program), utilities should develop an assumption of the Residential v Nonresidential split and apply the relevant assumptions to each portion.

Federal legislation stemming from the Energy Independence and Security Act of 2007 (EISA) requires all general-purpose light bulbs between 40W and 100W to be approximately 30% more energy efficient than standard incandescent bulbs. Production of 100W, standard efficacy incandescent lamps ended in 2012, followed by restrictions on 75W in 2013 and 60W and 40W in 2014. The baseline for this measure has therefore become bulbs (improved incandescent or halogen) that meet the new standard.

This measure was developed to be applicable to the following program types: TOS, RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, new LED screw-based lamps must be ENERGY STAR qualified based upon the ENERGY STAR specification v2.0 which will become effective on 1/2/2017 (https://www.energystar.gov/sites/default/files/Luminaires%20V2%200%20Final.pdf). Qualification could also be based or on the Design Light Consortium's qualified product list²⁷⁵.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition for this measure is assumed to be an EISA qualified halogen or incandescent. From 2020 the baseline becomes a CFL²⁷⁶ and therefore a midlife adjustment is provided.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The lifetime of the product is the lamp life in hours divided by operating hours per year. Depending on operating conditions (currents and temperatures) and other factors (settings and building use), LED rated life is assumed to be 20,000 hours. ²⁷⁷

DEEMED MEASURE COST

Wherever possible, actual incremental costs should be used. If unavailable, assume \$3.26 (baseline cost of 1.80 and efficient cost of 5.06^{278}).

²⁷⁵ https://www.designlights.org/QPL

²⁷⁶ A provision in the EISA regulations requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the baseline equivalent to a current day CFL.

²⁷⁷ Version 2.0 of the specification now only requires 15,000 hours for omni-directional bulbs. In the absence of data suggesting an average – an assumed average rated life of 20,000 hours is used.

²⁷⁸ Incandescent/halogen and LED cost assumptions based on Cadmus "LED Incremental Cost Study: Overall Final Report", February 2016 (http://ma-eeac.org/wordpress/wp-content/uploads/MA-Task-5b-LED-Incremental-Cost-Study_FINAL_01FEB2016.pdf), p19.

LOADSHAPE

Commercial Lighting (by building type)

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

$$\Delta kWh = \frac{Watts_{Base} - Watts_{EE}}{1,000} * Hours * WHFe * ISR$$

Where:

 $Watts_{Base}$ = Based on lumens of LED bulb installed

Watts_{EE} = Actual wattage of LED purchased/installed. If unknown, use default provided below²⁷⁹.

Lower Lumen Range	Upper Lumen Range	Watts _{Base}	Watts _{EE} LED	Delta Watts
250	309	25	4.0	21
310	749	29	6.7	22.3
750	1,049	43	10.1	32.9
1,050	1,489	53	12.8	40.2
1,490	2,600	72	17.4	54.6
2,601	3,000	150	43.1	106.9
3,001	3,999	200	53.8	146.2
4,000	6,000	300	76.9	223.1

Hours = Average hours of use per year as provided by the customer or selected from the

Lighting Reference Table in Section 2.8 and based upon building type. If

unknown, use the C&I Average value.

WHFe = Waste heat factors for energy to account for cooling energy savings from

efficient lighting are provided for each building type in the Lighting Reference

Table in Section 2.8. If unknown, use the C&I Average value.

ISR = In Service Rate or the percentage of units rebated that get installed

 $=98.7\%^{280}$

2.

²⁷⁹ Watts_{EE} defaults are based upon the average available ENERGY STAR product, accessed 06/18/2015. For any lumen range where there is no ENERGY STAR product currently available, Watts_{EE} is based upon the ENERGY STAR minimum luminous efficacy (55Lm/W for lamps with rated wattages less than 15W and 65 Lm/W for lamps with rated wattages ≥ 15 watts) for the mid-point of the lumen range. See calculation at "cerified-light-bulbs-2015-06-18.xlsx". These assumptions should be reviewed regularly to ensure they represent the available product.

²⁸⁰ Based on results presented in Ameren Missouri Lighting Impact and Process Evaluation: Program Year 2015. This value takes into account the time-delay of when bulbs are installed over subsequent program years. The reported ISR is based on the net present value (NPV) of the savings over 4 year installation period from the PY15 bulbs, discounted back to Year 1 at 6.95% (utility discount rate).

Mid-Life Baseline Adjustment

During the lifetime of a standard Omnidirectional LED, the baseline incandescent/halogen bulb would need to be replaced multiple times. Since the baseline bulb changes to a CFL equivalent in 2020 due to the EISA backstop provision (except for <310 and 2600+ lumen lamps), the annual savings claim must be reduced within the life of the measure to account for this baseline shift. This reduced annual savings will need to be incorporated in to cost effectiveness screening calculations. The baseline adjustment also impacts the O&M schedule.

For example, for 43W equivalent LED lamp installed in 2016, the full savings (as calculated above in the Algorithm) should be claimed for the first four years, but a reduced annual savings (calculated energy savings above multiplied by the adjustment factor in the table below) should be claimed for the remainder of the measure life. ²⁸¹

Lower Lumen Range	Upper Lumen Range	Mid Lumen Range	Watts EE	WattsBase before EISA 2020	Delta Watts before EISA 2020	WattsBase after EISA 2020 ²⁸²	Delta Watts after EISA 2020	Mid Life adjustment (in 2020) to first year savings
250	309	280	4.0	25	21	25	21	100.0%
310	749	530	6.7	29	22.3	9.4	2.7	12.1%
750	1049	900	10.1	43	32.9	13.4	3.3	10.0%
1050	1489	1270	12.8	53	40.2	18.9	6.1	15.2%
1490	2600	2045	17.4	72	54.6	24.8	7.4	13.6%
2,550	3,000	2,775	43.1	150	106.9	150	106.9	100.0%
3,001	3,999	3,500	53.8	200	146.2	200	146.2	100.0%
4,000	6,000	5,000	76.9	300	223.1	300	223.1	100.0%

Heating Penalty:

If electrically heated building²⁸³:

$$\Delta kWhheatpenalty = \frac{Watts_{Base} - Watts_{EE}}{1,000} * ISR * Hours * (-IFkWh)$$

Where:

IFkWh

= Lighting-HVAC Interaction Factor for electric heating impacts; this factor represents the increased electric space heating requirements due to the reduction of waste heat rejected by the efficent lighting. Values are provided in the Lighting Reference Table in Section 2.8 and based upon building type. If unknown, use the C&I Average value.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWh * CF$$

Where:

²⁸¹ These adjustments should be applied to kW and gas impacts as well.

²⁸² Calculated with EISA requirement of 45lumens/watt.

²⁸³ Results in a negative value because this is an increase in heating consumption due to the efficient lighting.

CF

= Summer peak coincidence demand (kW) to annual energy (kWh) factor for measure is provided in the Lighting Reference Table in Section 2.8 and based upon building type. If unknown, use the C&I Average value.

Other factors as defined above.

NATURAL GAS ENERGY SAVINGS

Heating Penalty if fossil fuel heated building (or if heating fuel is unknown) ²⁸⁴:

$$\Delta Therms = \frac{Watts_{Base} - Watts_{EE}}{1,000} * ISR * Hours * (-IFTherms)$$

Where:

IFTherms

= Lighting-HVAC Interaction Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Lighting Reference Table in Section 2.8 and based upon building type. If unknown, use the C&I Average value.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

In order to account for the falling EISA Qualified backdrop provision, an equivalent annual levelized baseline replacement cost over the lifetime of the LED bulb is calculated. The key assumptions used in this calculation are documented below²⁸⁵:

Incandescent / Halogen	CFL	LED A- Lamp
\$1.80	\$2.20	\$5.06

The present value of replacement lamps and annual levelized replacement costs using utilities' average real discount rate of 6.91% are presented below:

	PV of rep	olacement	costs for	Levelized annual replacement				
Location		period		cost savings				
	2016 -	2017 -	2018 -	2016 -	2017 -	2018 -		
	2017	2018	2019	2017	2018	2019		
C&I Average	\$18.66	\$14.70	\$10.46	\$2.04	\$1.60	\$1.14		

Note: incandescent lamps in lumen range <310 and >2600 are exempt from EISA. For these bulb types, an O&M cost should be applied as follows. If unknown building type, assume C&I Average:

²⁸⁴ Results in a negative value because this is an increase in heating consumption due to the efficient lighting.

²⁸⁵ All cost assumptions based on Cadmus "LED Incremental Cost Study: Overall Final Report", February 2016 (http://maeeac.org/wordpress/wp-content/uploads/MA-Task-5b-LED-Incremental-Cost-Study FINAL 01FEB2016.pdf), p19.

Building Type	Replacement Period (years) ²⁸⁶	Replacement Cost
Large Office	0.32	
Medium Office	0.32	
Small Office	0.35	
Warehouse	0.35	
Stand-alone Retail	0.29	
Strip Mall	0.27	
Primary School	0.29	
Secondary School	0.29	
Supermarket	0.27	$$1.80^{287}$
Quick Service Restaurant	0.16	
Full Service Restaurant	0.16	
Hospital	0.26	
Outpatient Health Care	0.26	
Small Hotel - Building	0.27	
Large Hotel - Building	0.27	
Midrise Apartment - Building	0.35	
C&I Average	0.30	

MEASURE CODE: CI-LTG-LEDA-V01-170331

_

²⁸⁶ Calculated by dividing assumed rated life of baseline bulb by hours of use. Assumed lifetime of EISA qualified Halogen/Incandescent is 1000 hours (manufacturers are simply using a regular incandescent lamp with halogen fill gas rather than Halogen Infrared to meet the standard (as provided by G. Arnold, NEEP and confirmed by N. Horowitz at NRDC)).

²⁸⁷ Incandescent/halogen cost assumptions based on Cadmus "LED Incremental Cost Study: Overall Final Report", February 2016 (http://ma-eeac.org/wordpress/wp-content/uploads/MA-Task-5b-LED-Incremental-Cost-Study FINAL 01FEB2016.pdf), p19.

2.8.6 T5 Fixtures and Lamps

DESCRIPTION

T5 HO lamp/ballast systems have greater lumens per watt than a typical T8 system. The smaller lamp diameter of the T5HO also increases optical control efficiency, and allows for more precise control and directional distribution of lighting. These characteristics make it easier to design light fixtures that can produce equal or greater light than standard T8 or T12 systems, while using fewer watts. In addition, when lighting designers specify T5 HO lamps/ballasts, they can use fewer luminaries per project, especially for large commercial projects, thus increasing energy savings further.²⁸⁸

The main markets served by T5 HO fixtures and lamps include retrofit in the commercial and nonresidential sector, specifically industrial, warehouse, and grocery facilities with higher ceiling heights that require maximum light output.

This measure was developed to be applicable to the following program types: TOS, RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The definition of the efficient equipment is T5 HO high-bay (>15ft mounting height) fixtures with 3, 4, 6, or 8-lamp configurations.

DEFINITION OF BASELINE EQUIPMENT

The definition of baseline equipment varies based on number of lamps in a fixture and is defined in the baseline reference table at the end of this characterization. The default baseline is assumed to be a Pulse-Start Metal Halide fixture.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The deemed lifetime of the efficient equipment fixture is 15 years²⁸⁹.

DEEMED MEASURE COST

The deemed measure cost is found in reference table at the end of this characterization. For retrofit applications, actual costs should be used if available, or if not available, \$10/lamp and \$37.50/ballast can be used to account for installation labor costs.

LOADSHAPE

Commercial Lighting (by building type)

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

$$\Delta kWh = \frac{Watts_{Base} - Watts_{EE}}{1,000} * Hours * WHFe * ISR$$

²⁸⁸ Lighting Research Center. T5 Fluorescent Systems. http://www.lrc.rpi.edu/programs/nlpip/lightingAnswers/lat5/abstract.asp
²⁸⁹ Focus on Energy Evaluation "Business Programs: Measure Life Study" Final Report, August 9, 2009 prepared by PA Consulting Group.

Where:

Watts_{Base} = Custom input. If unknown, input wattage of the baseline system is dependant on

new fixture configuration and found in the 'T5HO Efficient and Baseline Wattage

and Cost Assumptions' reference table below.

Watts_{EE} = Custom Input. If unknown, input wattage depends on new fixture configuration

(number of lamps) and ballast factor and number of fixtures. Value can be selected from the 'T5HO Efficient and Baseline Wattage and Cost Assumptions' reference

table below.

Hours = Average annual lighting hours of use as provided by the customer or selected

from the Lighting Reference Table in Section 2.8 as annual operating hours, by building type. If hours or building type are unknown, use the C&I Average value.

WHF_e = Waste heat factor for energy to account for cooling energy savings from efficient

lighting is selected from the Lighting Reference Table in Section 2.8 for each

building type. If building is un-cooled, the value is 1.0.

ISR = In Service Rate or the percentage of units rebated that get installed.

 $=98\%^{290}$.

Heating Penalty:

If electrically heated building²⁹¹:

$$\Delta kWhheatpenalty = \frac{Watts_{Base} - Watts_{EE}}{1,000} * ISR * Hours * (-IFkWh)$$

Where:

IFkWh

= Lighting-HVAC Interaction Factor for electric heating impacts; this factor represents the increased electric space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Lighting Reference Table in Section 2.8. If unknown, use the C&I Average value.

SUMMER COINCIDENT DEMAND SAVINGS

$$\Delta kW = \Delta kWh * CF$$

Where:

CF

= Summer peak coincidence demand (kW) to annual energy (kWh) factor for measure is selected from the Lighting Reference Table in Section 2.8 for each building type. If the building type is unknown, use the C&I Average value.

Other factors as defined above.

NATURAL GAS ENERGY SAVINGS

Heating Penalty if fossil fuel heated building (or if heating fuel is unknown):

$$\Delta Therms = \frac{Watts_{Base} - Watts_{EE}}{1.000} * ISR * Hours * (-IFTherms)$$

²⁹⁰ Based upon review of PY5-6 evaluations from ComEd, IL commercial lighting program (BILD).

²⁹¹ Negative value because this is an increase in heating consumption due to the efficient lighting.

Where:

IFTherms

= Lighting-HVAC Interaction Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Lighting Reference Table in Section 2.8 ²⁹². If unknown, use the C&I Average value.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

See reference tables for different cost assumptions for lamps and ballasts. When available, actual costs and hours of use should be used.

REFERENCE TABLES

T5HO Efficient and Baseline Wattage And Cost Assumptions²⁹³

EE Measure Description	WattsEE	Baseline Description	WattsBASE	Incremental Cost
3-Lamp T5 High-Bay	176	200 Watt Pulse Start Metal-Halide	227	\$100.00
4-Lamp T5 High-Bay	235	320 Watt Pulse Start Metal-Halide	364	\$100.00
6-Lamp T5 High-Bay	352	400 Watt Pulse Start Metal-Halide	455	\$100.00
8-Lamp T5 High-Bay	470	750 Watt Pulse Start Metal-Halide	825	\$100.00

T5 HO Component Costs and Lifetimes²⁹⁴

	EE Measure				Baseline			
EE Measure Description	Lamp Life (hrs)	Total Lamp Replacement Cost	Ballast Life (hrs)	Total Ballast Replacement Cost	Lamp Life (hrs)	Total Lamp Replacement Cost	Ballast Life (hrs)	Total Ballast Replacement Cost
3-Lamp T5 High-Bay	30,000	\$63.00	70,000	\$87.50	15,000	\$63.00	40,000	\$107.50
4-Lamp T5 High-Bay	30,000	\$84.00	70,000	\$87.50	20,000	\$68.00	40,000	\$117.50
6-Lamp T5 High-Bay	30,000	\$126.00	70,000	\$112.50	20,000	\$73.00	40,000	\$127.50
8-Lamp T5 High-Bay	30,000	\$168.00	70,000	\$137.50	20,000	\$78.00	40,000	\$137.50

MEASURE CODE: CI-LTG-T5FX-VO1-170331

_

²⁹² Negative value because this is an increase in heating consumption due to the efficient lighting.

²⁹³ Reference Table adapted from Efficiency Vermont TRM, T5 Measure Savings Algorithms and Cost Assumptions, October, 2014. Refer to "T5HO-adjusted deemed costs.baselines.xlsx" for more information.

²⁹⁴ Costs include labor cost – see "T5HO-adjusted deemed costs.baselines.xlsx" for more information.

2.8.7 LED Exit Sign

This measure characterizes the savings associated with installing a new Light Emitting Diode (LED) exit sign (or retrofit kit) in place of a compact fluorescent (CFL) or incandescent exit sign in a commercial building. LED exit signs use less power (≤ 5 watts), have a significantly longer lifetime, and have less maintenance costs when compared to incandescent or CFL exit signs.²⁹⁵

This measure applies to the following program types: RF and DI.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is an LED exit sign with an input power demand of 5 watts or less. 296

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is the existing exit sign (either a CFL or incandescent unit).

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is assumed to be 16 years.²⁹⁷

DEEMED MEASURE COST

Actual program delivery costs should be used if available. If not, use the full cost of \$39²⁹⁸ for a new LED exit sign and \$25 for a retrofit kit, plus \$6.25 in labor,²⁹⁹ for a total measure cost of \$45.25 and \$31.25 respectively.

LOADSHAPE

Flat

²⁹⁵ ENERGY STAR "Save Energy, Money and Prevent Pollution with LED Exit Signs"

²⁹⁶ ENERGY STAR "Program Requirements for Exit Signs Version 3.0." While the EPA suspended the ENERGY STAR Exit Sign specification effective May 1, 2008, Federal requirements specify minimum efficiency standards for electrically-powered, single-faced exit signs with integral lighting sources that are equivalent to ENERGY STAR levels for input power demand of 5 watts or less per face.

²⁹⁷ California Database for Energy Efficiency Resources (DEER) 2014 Estimated Useful Life (EUL) Table Update

²⁹⁸ Cost of new LED exit sign from ENERGY STAR Exit Signs Calculator.xlsx.

²⁹⁹ Assumption based on 15 minutes (including portion of travel time) and \$25 per hour, which is in line with the typical prevailing wage of a General Laborer, as per the Annual Wage Order No. 23 published by the Missouri Department of Labor.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS 300

$$\Delta kWh = \frac{Watts_{Base} - Watts_{EE}}{1,000} * Hours * WHFe$$

Where:

Watts_{Base} = Actual wattage if known, if unknown assume the following:

Baseline Type	Watts _{Base}
Incandescent (dual sided)	$50W^{301}$
Incandescent (single sided)	25W
CFL (dual sided)	$14W^{302}$
CFL (single sided)	7W

Watts_{EE} = Actual wattage if known, if unknown assume 2W for singled sided and 4W³⁰³

for dual sided

Hours = Annual operating hours

= 8,766

WHF_e = Waste heat factor for energy to account for cooling energy savings from efficient

lighting is selected from the Lighting Reference Table in Section 2.8 for each

building type. If building is un-cooled, the value is 1.0.

HEATING PENALTY

If electrically heated building:

$$\Delta kWh_{heatpenalty}^{304} = \frac{Watts_{Base} - Watts_{EE}}{1,000} * Hours * (-IFkWh)$$

Where:

IFkWh

= Lighting-HVAC Interation Factor for electric heating impacts; this factor represents the increased electric space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Reference Table in Section 2.8. If unknown, use the C&I Average value.

Other factors as defined above.

³⁰⁰ There is no ISR calculation. Exit signs and emergency lighting are required by federal regulations to be installed and functional in all public buildings as outlined by the U.S. Occupational Safety and Health Standards (USOSHA 1993).

³⁰¹ Average incandescent single sided (5W, 10W, 15W, 20W, 25W, 34W, 40W, 50W) from Appendix B 2013-14 Table of Standard Fixture Wattages. Available at: http://www.aesc-

 $[\]underline{inc.com/download/spc/2013SPCDocs/PGE/App\%20B\%20Standard\%20Fixture\%20Watts.pdf}$

³⁰² Average CFL single sided (5W, 7W, 9W) from Appendix B 2013-14 Table of Standard Fixture Wattages. Available at: http://www.aesc-inc.com/download/spc/2013SPCDocs/PGE/App%20B%20Standard%20Fixture%20Watts.pdf

³⁰³ Average Exit LED watts are assumed as a 2W as listed in Appendix B 2013-14 Table of Standard Fixture Wattages. Available at: http://www.aesc-inc.com/download/spc/2013SPCDocs/PGE/App%20B%20Standard%20Fixture%20Watts.pdf

³⁰³ Average LED single sided (2W) from Appendix B 2013-14 Table of Standard Fixture Wattages. Available at: http://www.aesc-inc.com/download/spc/2013SPCDocs/PGE/App%20B%20Standard%20Fixture%20Watts.pdf

³⁰⁴ Results in a negative value because this is an increase in heating consumption due to the efficient lighting.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWh * CF$$

Where:

 ΔkWh = Electric energy savings, including cooling savings, as calculated above.

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.00011415525^{305}$

Other factors as defined above.

NATURAL GAS ENERGY SAVINGS

Heating penalty if fossil fuel heated building (or if heating is unknown):³⁰⁶

$$\Delta Therms = \frac{Watts_{Base} - Watts_{EE}}{1,000} * Hours * (-IFTherms)$$

Where:

IFTherms

= Lighting-HVAC Integration Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Please select from the Reference Table in Section 2.8 for each building type.

Other factors as defined above.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

The annual O&M Cost Adjustment savings should be calculated using the following component costs and lifetimes.

Component	Baseline Measure		
Component	Cost	Life (yrs)	
CFL lamp	\$8.91 ³⁰⁷	0.63 years ³⁰⁸	

³⁰⁵ Calculated as 1/8760, consistent with the unitized coincident peak factor approach

³⁰⁶ Results in a negative value because this is an increase in heating consumption due to the efficient lighting.

³⁰⁷ Includes cost of labor and new replacement bulb. Labor cost of \$6.25 based on 15 minutes (including portion of travel time) and \$25 per hour, which is in line with the typical prevailing wage of a General Laborer, as per the Annual Wage Order No. 23 published by the Missouri Department of Labor. Cost of new 7W CFL bulb is \$2.66, from Itron "2010-2012 WO017 Ex Ante Measure Cost Study Final Report." Prepared for California Public Utilities Commission, May 27, 2014.

³⁰⁸ ENERGY STAR "Save Energy, Money and Prevent Pollution with LED Exit Signs" states that CFL bulbs for exit signs typically have an average rated life of 5,000-6,000 hours. Given 24/7 run time, assume a CFL in an exit sign will require replacement every 0.63 years (5,500 hours/8,766 hours).

Component	Baseline Measure		
Component	Cost	Life (yrs)	
Incandescent lamp	\$7.39 ³⁰⁹	0.14 years ³¹⁰	

MEASURE CODE: NR-LTG-EXIT-V01-170331

³⁰⁹ Includes cost of labor and new replacement bulb. Labor cost of \$6.25 based on 15 minutes (including portion of travel time) and \$25 per hour, which is in line with the typical prevailing wage of a General Laborer, as per the Annual Wage Order No. 23 published by the Missouri Department of Labor. Cost of new 29W incandescent A-lamp is \$1.14, from Itron "2010-2012 WO017 Ex Ante Measure Cost Study Final Report." Prepared for California Public Utilities Commission, May 27, 2014.

³¹⁰ ENERGY STAR "Save Energy, Money and Prevent Pollution with LED Exit Signs" states that a typical incandescent exit sign bulb will have a rated life of 500-2,000 hours. Given 24/7 run time, assume an incandescent in an exit sign will require replacement every 0.14 years (1,250 hours/8,766 hours).

2.8.8 LED Specialty Lamp

DESCRIPTION

This characterization provides savings assumptions for LED Directional, Decorative, and Globe lamps. This characterization assumes that the LED is installed in a commercial location. This is therefore appropriate for commercially targeted programs, or, if the implementation strategy does not allow for the installation location to be known (e.g., an upstream retail program), utilities should develop an assumption of the Residential v Nonresidential split and apply the relevant assumptions to each portion.

Federal legislation stemming from the Energy Independence and Security Act of 2007 (EISA) requires all general-purpose light bulbs between 40W and 100W to be approximately 30% more energy efficient than standard incandescent bulbs. Production of 100W, standard efficacy incandescent lamps ended in 2012, followed by restrictions on 75W lamps in 2013 and 60W and 40W lamps in 2014. The baseline for this measure has therefore become bulbs (improved incandescent or halogen) that meet the new standard.

A provision in the EISA regulations requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the baseline equivalent to a current day CFL.

This measure was developed to be applicable to the following program types: TOS, RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, new lamps must be ENERGY STAR labeled based upon the ENERGY STAR specification v2.0 which will become effective on 1/2/2017 https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Lamps%20V2_0%20Revised%20AUG-2016.pdf). Qualification could also be based on the Design Light Consortium's qualified product list.³¹¹

DEFINITION OF BASELINE EQUIPMENT

The baseline condition for this measure is assumed to be an EISA qualified halogen or incandescent.

DEEMED LIFETIME OF EFFICIENT EOUIPMENT

The lifetime of the product is the lamp life in hours divided by operating hours per year. Depending on operating conditions (currents and temperatures) and other factors (settings and building use), LED rated life is assumed to be 25,000 hours for directional bulbs and is 15,000 hours³¹² for decorative bulbs.

DEEMED MEASURE COST

Wherever possible, actual incremental costs should be used. If unavailable, assume the following incremental costs³¹³:

Bulb Type	LED Wattage	LED	Incandesce nt	Incremental Cost
Directional	< 20W	\$14.52	\$6.31	\$8.21

³¹¹ https://www.designlights.org/QPL

https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Lamps%20V2 0%20Revised%20AUG-2016.pdf)

313 Incandescent based on "2010-2012 WA017 Ex Ante Measure Cost Study Draft Report", Itron, February 28, 2014. LED lamp

³¹² ENERGY STAR, v2.0:

or "2010-2012 WA017 Ex Ante Measure Cost Study Draft Report", Itron, February 28, 2014. LED lamp costs are based on a 2014/2015 VEIC review of a year's worth of LED sales through VEIC implemented programs. The retail cost was averaged and then DOE price projection trends (from Department of Energy, 2012; "Energy Savings Potential of Solid-State Lighting in General Illumination Applications", Table A.1) used to decrease the cost for a 2017 TRM assumption (see 2015 LED Sales Review.xls). LED costs are falling rapidly and should be reviewed in each update cycle.

Bulb Type	LED Wattage	LED	Incandesce nt	Incremental Cost
	≥20W	\$45.85		\$39.54
	<15W	\$8.09		\$4.17
Decorative	15 to <25W	\$15.86	\$3.92	\$11.94
	≥25W	\$15.86		\$11.94

LOADSHAPE

Commercial Lighting (by building type)

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

$$\Delta kWh = \frac{Watts_{Base} - Watts_{EE}}{1,000} * Hours * WHFe * ISR$$

Where:

 $Watts_{Base}$ = Based on bulb type and lumens of LED bulb installed. See table below.

Watts_{EE} = Actual wattage of LED purchased / installed - If unknown, use default provided below³¹⁴:

Lower Upper Delta **Bulb Type** Lumen Lumen Watts_{Base} **Watts**_{EE} Watts Range Range 250 349 25 5.6 19.4 350 399 35 6.3 28.7 400 599 40 7.5 32.5 Directional 600 749 60 9.7 50.3 750 999 75 12.7 62.3 1000 1250 100 16.2 83.8 70 10 89 1.8 8.2 90 149 15 2.7 12.3 150 299 25 Decorative 3.2 21.8 300 499 40 4.7 35.3 500 699 60 6.9 53.1 Globe 250 349 25 4.1 20.9

 $^{^{314}}$ Wattsee defaults are based upon the average available ENERGY STAR product, accessed $^{06/18/2015}$. For any lumen range where there is no ENERGY STAR product currently available, Wattsee is based upon the ENERGY STAR minimum luminous efficacy (55 Lm/W for lamps with rated wattages less than 15 W and 65 Lm/W for lamps with rated wattages 25 to the mid-point of the lumen range. See calculation at "cerified-light-bulbs- 2015 - 2015 - 2015 - 2015 - 2015 . These assumptions should be reviewed regularly to ensure they represent the available product.

Bulb Type	Lower Lumen Range	Upper Lumen Range	Watts _{Base}	Watts _{EE}	Delta Watts
	350	499	40	5.9	34.1
	500	574	60	7.6	52.4
	575	649	75	13.6	61.4
	650	1099	100	17.5	82.5
	1100	1300	150	13.0	137.0

Hours = Average hours of use per year as provided by the customer or selected from the

Lighting Reference Table in Section 2.8 and based upon building type. If

unknown, use the C&I Average value.

WHFe = Waste heat factors for energy to account for cooling energy savings from

efficient lighting are provided for each building type in the Lighting Reference

Table in Section 2.8. If unknown, use the C&I Average value.

ISR = In Service Rate or the percentage of units rebated that get installed

 $=98.7\%^{315}$

Heating Penalty:

If electrically heated building³¹⁶:

$$\Delta kWhheatpenalty = \frac{Watts_{Base} - Watts_{EE}}{1,000} * ISR * Hours * (-IFkWh)$$

Where:

IFkWh

= Lighting-HVAC Interaction Factor for electric heating impacts; this factor represents the increased electric space heating requirements due to the reduction of waste heat rejected by the efficent lighting. Values are provided in the Lighting Reference Table in Section 2.8 and based upon building type. If unknown, use the C&I Average value.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWh * CF$$

Where:

CF

= Summer peak coincidence demand (kW) to annual energy (kWh) factor for measure is provided in the Lighting Reference Table in Section 2.8 and based upon building type. If unknown, use the C&I Average value.

Other factors as defined above.

³¹⁵ Based on results presented in Ameren Missouri Lighting Impact and Process Evaluation: Program Year 2015. This value takes into account the time-delay of when bulbs are installed over subsequent program years. The reported ISR is based on the net present value (NPV) of the savings over 4 year installation period from the PY15 bulbs, discounted back to Year 1 at 6.95% (utility discount rate).

³¹⁶ Results in a negative value because this is an increase in heating consumption due to the efficient lighting.

NATURAL GAS SAVINGS

Heating Penalty if fossil fuel heated building (or if heating fuel is unknown) 317:

$$\Delta Therms = \frac{Watts_{Base} - Watts_{EE}}{1,000} * ISR * Hours * (-IFTherms)$$

Where:

IFTherms

= Lighting-HVAC Interaction Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Lighting Reference Table in Section 2.8 and based upon building type. If unknown, use the C&I Average value.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

O&M cost should be applied as follows:

Installation Location	Replacement Period (years) ³¹⁸	Replacement Cost ³¹⁹
Large Office	0.32	
Medium Office	0.32	
Small Office	0.35	
Warehouse	0.35	
Stand-alone Retail	0.29	
Strip Mall	0.27	
Primary School	0.29	Decorative:
Secondary School	0.29	\$6.31
Supermarket	0.27	
Quick Service Restaurant	0.16	Directional:
Full Service Restaurant	0.16	\$3.92
Hospital	0.26	
Outpatient Health Care	0.26	
Small Hotel - Building	0.27	
Large Hotel - Building	0.27	
Midrise Apartment - Building	0.35	
C&I Average	0.30	

MEASURE CODE: CI-LTG-LEDS-V01-170331

³¹⁷ Results in a negative value because this is an increase in heating consumption due to the efficient lighting.

³¹⁸ Calculated by dividing assumed rated life of baseline bulb by hours of use. Assumed lifetime of EISA qualified Halogen/Incandescents is 1000 hours. The manufacturers are simply using a regular incandescent lamp with halogen fill gas rather than Halogen Infrared to meet the standard (as provided by G. Arnold, NEEP and confirmed by N. Horowitz at NRDC).

³¹⁹ Incandescent costs based on "2010-2012 WA017 Ex Ante Measure Cost Study Draft Report", Itron, February 28, 2014.

2.8.9 Lighting Power Density

DESCRIPTION

This measure entails the installation of efficient lighting systems in either new construction or during substantial renovation of commercial buildings that triggers compliance with code. This methodology applies to situations where code specifies maximum lighting power density allowances (W/ft²).. Either the Building Area Method or Space by Space (not recognized by IECC 2009) method as defined in IECC 2009, 2012 or 2015, can be used for calculating the Interior Lighting Power Density³²⁰. The measure consists of a design that is more efficient (has a lower lighting power density in watts/square foot) than code requires.

This measure was developed to be applicable to the following program types: NC.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the lighting system must be more efficient than the baseline Energy Code lighting power density in watts/square foot for either the interior space or exterior space.

DEFINITION OF BASELINE EQUIPMENT

The baseline is assumed to be a lighting power density that meets the building code recognized by the local jurisdiction. For illustrative purposes in this characterization, IECC 2009, 2012 and 2015, are highlighted to demonstrate the methodology.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 15 years³²¹

DEEMED MEASURE COST

The actual incremental cost over a baseline system should be collected from the customer if possible, or quantified using an alternative suitable source..

LOADSHAPE

Commercial Exterior Lighting (by building type)

Algorithm

CALCULATION OF SAVINGS

ENERGY SAVINGS

 $\Delta kWh = (WSF_{base}-WSF_{effic})/1000* SF* Hours * WHF_{e}$

Where:

³²⁰ Refer to the referenced code documents for specifics on calculating lighting power density using either the whole building method (IECC) or the Space by Space method (ASHRAE 90.1).

³²¹ Measure Life Report, Residential and Commercial/Industrial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

WSF_{base} = Baseline lighting watts per square foot or linear foot as determined by building

or space type. IECC example whole building analysis values are presented in the

Reference Tables below. 322

WSF_{effic} = The actual installed lighting watts per square foot or linear foot.

SF = Provided by customer based on square footage of the building area applicable to

the lighting design for new building.

Hours = Annual site-specific hours of operation of the lighting equipment collected from

the customer or selected from the Reference Table in Section 2.8 if unavailable.

WHF_e = Waste Heat Factor for Energy to account for cooling savings from efficient

lighting is as provided in the Reference Table in Section 2.8 for each building type.

If building is not cooled, the value is 1.0.

Heating Penalty

If electrically heated building:

 $\Delta kWh_{heatpenalty}^{323} = (WSF_{base}-WSF_{effic})/1000* SF* Hours * -IFkWh$

Where:

IFkWh = Lighting-HVAC Interation Factor for electric heating impacts; this factor

represents the increased electric space heating requirements due to the reduction of waste heat rejected by the efficent lighting. Values are provided in the Reference

Table in Section 2.8. If unknown, use the C&I Average value.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor for

measure is selected from the Reference Table in Section 2.8 for each building type. If the building type is unknown, use the C&I Average value.

if the building type is unknown, use the C&I Average value

 $= 0.0000056160^{324}$ for exterior lighting

Other factors as defined above

NATURAL GAS ENERGY SAVINGS

 $\Delta Therms = (WSF_{base}-WSF_{effic})/1000* SF* Hours * - IFTherms$

Where:

IFTherms = Lighting-HVAC Integration Factor for gas heating impacts; this factor represents

the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Please select from the Reference Table in Section

2.8 for each building type.

³²²See IECC 2009, 2012 and 2015 - Reference Code documentation for additional information.

³²³Negative value because this is an increase in heating consumption due to the efficient lighting.

³²⁴ 2016 Ameren Missouri Coincident Peak Demand Factor for Commercial Exterior Lighting. See reference "Ameren Missouri 2016 Appendix E - End Use Shapes and Coincident Factors.pdf"

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

REFERENCE TABLES

<u>Lighting Power Density Values from IECC 2009, 2012 and 2015 for Interior Commercial New Construction and Substantial Renovation Building Area Method:</u>

Building Area Type ³²⁵	IECC 2009 Lighting Power Density (w/ft²)	IECC 2012 Lighting Power Density (w/ft²)	IECC 2015 Lighting Power Density (w/ft²)
Automotive Facility	0.9	0.9	0.80
Convention Center	1.2	1.2	1.01
Court House	1.2	1.2	1.01
Dining: Bar Lounge/Leisure	1.3	1.3	1.01
Dining: Cafeteria/Fast Food	1.4	1.4	0.9
Dining: Family	1.6	1.6	0.95
Dormitory	1.0	1.0	0.57
Exercise Center	1.0	1.0	0.84
Fire station	1.0	0.8	0.67
Gymnasium	1.1	1.1	0.94
Healthcare – clinic	1.0	1.0	0.90
Hospital	1.2	1.2	1.05
Hotel	1.0	1.0	0.87
Library	1.3	1.3	1.19
Manufacturing Facility	1.3	1.3	1.17
Motel	1.0	1.0	0.87
Motion Picture Theater	1.2	1.2	0.76
Multifamily	0.7	0.7	0.51
Museum	1.1	1.1	1.02
Office	1.0	0.9	0.82
Parking Garage	0.3	0.3	0.21
Penitentiary	1.0	1.0	0.81
Performing Arts Theater	1.6	1.6	1.39
Police Station	1.0	1.0	0.87
Post Office	1.1	1.1	0.87
Religious Building	1.3	1.3	1.0
Retail ³²⁶	1.5	1.4	1.26
School/University	1.2	1.2	0.87
Sports Arena	1.1	1.1	0.91
Town Hall	1.1	1.1	0.89
Transportation	1.0	1.0	0.70
Warehouse	0.8	0.6	0.66
Workshop	1.4	1.4	1.19

³²⁵ In cases where both a general building area type and a more specific building area type are listed, the more specific building area type shall apply.

_

³²⁶ Where lighting equipment is specified to be installed to highlight specific merchandise in addition to lighting equipment specified for general lighting and is switched or dimmed on circuits different from the circuits for general lighting, the small of the actual wattage of the lighting equipment installed specifically for merchandise, or additional lighting power as determined below shall be added to the interior lighting power determined in accordance with this line item.

<u>Lighting Power Density Values from IECC 2012 for Interior Commercial New Construction and Substantial Renovation Space by Space Method:</u>

COMMERCIAL ENERGY EFFICIENCY

TABLE C405.5.2(2) INTERIOR LIGHTING POWER ALLOWANCES: SPACE-BY-SPACE METHOD

SPACE-BY-SPACE METHOD	
COMMON SPACE-BY-SPACE TYPES	LPD (w/ft²)
Atrium – First 40 feet in height	0.03 per ft. ht.
Atrium – Above 40 feet in height	0.02 per ft. ht.
Audience/seating area – permanent	
For auditorium	0.9
For performing arts theater	2.6
For motion picture theater	1.2
Classroom/lecture/training	1.30
Conference/meeting/multipurpose	1.2
Corridor/transition	0.7
Dining area	1.40
Bar/lounge/leisure dining Family dining area	1.40
, ,	1.1
Dressing/fitting room performing arts theater	
Electrical/mechanical	1.10
Food preparation	1.20
Laboratory for classrooms	1.3
Laboratory for medical/industrial/research	1.8
Lobby	1.10
Lobby for performing arts theater	3.3
Lobby for motion picture theater	1.0
Locker room	0.80
Lounge recreation	0.8
Office – enclosed	1.1
Office – open plan	1.0
Restroom	1.0
Sales area	1.6ª
Stairway	0.70
Storage	0.8
Workshop	1.60
Courthouse/police station/penetentiary	
Courtroom	1.90
Confinement cells	1.1
Judge chambers	1.30
Penitentiary audience seating	0.5
Penitentiary classroom	1.3
Penitentiary dining	1.1
BUILDING SPECIFIC SPACE-BY-SPACE T	
Automotive – service/repair	0.70
Bank/office – banking activity area	1.5
Dormitory living quarters	1.10
Gymnasium/fitness center Fitness area	0.9
Gymnasium audience/seating	0.40
Playing area	1.40
,	1110

(continued)

TABLE C405.5.2(2)—continued INTERIOR LIGHTING POWER ALLOWANCES: SPACE-BY-SPACE METHOD

COMMON SPACE-BY-SPACE TYPES	LPD (w/ft²)
Healthcare clinic/hospital	
Corridors/transition	1.00
Exam/treatment	1.70
Emergency	2.70
Public and staff lounge	0.80
Medical supplies	1.40
Nursery	0.9
Nurse station	1.00
Physical therapy	0.90
Patient room	0.70
Pharmacy	1.20
Radiology/imaging	1.3 2.20
Operating room	1.2
Recovery Lounge/recreation	0.8
Laundry – washing	0.60
	0.00
Hotel	1.20
Dining area	1.30
Guest rooms	1.10
Hotel lobby	2.10
Highway lodging dining	1.20
Highway lodging guest rooms	1.10
Library	
Stacks	1.70
Card file and cataloguing	1.10
Reading area	1.20
Manufacturing	
Corridors/transition	0.40
Detailed manufacturing	1.3
Equipment room	1.0
Extra high bay (> 50-foot floor-ceiling height)	1.1
High bay (25 50-foot floor-ceiling height)	1.20
Low bay (< 25-foot floor-ceiling height)	1.2
Museum	
General exhibition	1.00
Restoration	1.70
Parking garage – garage areas	0.2
	0.2
Convention center	1.50
Exhibit space	1.50
Audience/seating area	0.90
Fire stations	
Engine room	0.80
Sleeping quarters	0.30
Post office	0.0
Sorting area	0.9
Religious building	-
	0.60
Fellowship hall	2.40
Audience seating	2.40
Worship pulpit/choir	2.40
	1
Retail	0.0
Dressing/fitting area	0.9
	0.9 1.6 1.6 ^a

(continued)

C-62

2012 INTERNATIONAL ENERGY CONSERVATION CODE®

TABLE C405.5.2(2)—continued INTERIOR LIGHTING POWER ALLOWANCES: SPACE-BY-SPACE METHOD

BUILDING SPECIFIC SPACE-BY-SPACE TYPES	LPD (w/ft ²)
Sports arena	
Audience seating	0.4
Court sports area – Class 4	0.7
Court sports area – Class 3	1.2
Court sports area – Class 2	1.9
Court sports area – Class 1	3.0
Ring sports area	2.7
Transportation	
Air/train/bus baggage area	1.00
Airport concourse	0.60
Terminal – ticket counter	1.50
Warehouse	
Fine material storage	1.40
Medium/bulky material	0.60

<u>Lighting Power Density Values from IECC 2015 for Interior Commercial New Construction and Substantial Renovation Space by Space Method:</u>

TABLE C405.4.2(2) INTERIOR LIGHTING POWER ALLOWANCES: SPACE-BY-SPACE METHOD

LPD (watts/sq.ft) COMMON SPACE TYPES* Atrium 0.03 per foot Less than 40 feet in height in total height 0.40 + 0.02 per foot Greater than 40 feet in height in total height Audience seating area In an auditorium 0.63 In a convention center 0.82 0.65 In a gymnasium In a motion picture theater 1.14 0.28 In a penitentiary In a performing arts theater 2.43 In a religious building 1.53 In a sports arena 0.43 Otherwise 0.43 Banking activity area 1.01 Breakroom (See Lounge/Breakroom) Classroom/lecture hall/training room In a penitentiary 1.34 Otherwise 1.24 1.23 Conference/meeting/multipurpose room 0.72 Copy/print room Corridor In a facility for the visually impaired (and 0.92 not used primarily by the staff) 0.79 In a hospital In a manufacturing facility 0.41 0.66 Otherwise 1.72 Courtroom 1.71 Computer room Dining area In a penitentiary 0.96 In a facility for the visually impaired (and 1.9 not used primarily by the staff)b In bar/lounge or leisure dining 1.07 In cafeteria or fast food dining 0.65 In family dining 0.89 Otherwise 0.65 Electrical/mechanical room 0.95 Emergency vehicle garage 0.56

TABLE C405.4.2(2)—continued INTERIOR LIGHTING POWER ALLOWANCES: SPACE-BY-SPACE METHOD

SPACE-BY-SPACE METHOD	
COMMON SPACE TYPES*	LPD (watts/sq.ft)
Food preparation area	1.21
Guest room	0.47
Laboratory	
In or as a classroom	1.43
Otherwise	1.81
Laundry/washing area	0.6
Loading dock, interior	0.47
Lobby	
In a facility for the visually impaired (and	1.8
not used primarily by the staff) ^b	
For an elevator	0.64
In a hotel	1.06
In a motion picture theater	0.59
In a performing arts theater	2.0
Otherwise	0.9
Locker room	0.75
Lounge/breakroom	
In a healthcare facility	0.92
Otherwise	0.73
Office	
Enclosed	1.11
Open plan	0.98
Parking area, interior	0.19
Pharmacy area	1.68
Restroom	
In a facility for the visually impaired (and not used primarily by the staff ^b	1.21
Otherwise	0.98
Sales area	1.59
Seating area, general	0.54
Stairway (See space containing stairway)	
Stairwell	0.69
Storage room	0.63
Vehicular maintenance area	0.67
Workshop	1.59
BUILDING TYPE SPECIFIC SPACE TYPES*	LPD (watts/sq.ft)
Facility for the visually impaired ^b	Zi Z (manorqui)
In a chapel (and not used primarily by the staff)	2.21
In a recreation room (and not used primarily by the staff)	2.41
Automotive (See Vehicular Maintenance Area above)	
Convention Center—exhibit space	1.45
Dormitory—living quarters	0.38
Fire Station—sleeping quarters	0.22
Gymnasium/fitness center	
In an exercise area	0.72
In a playing area	1.2
ти а риаушу агеа	1.2

(continued) (continued)

TABLE C405.4.2(2)—continued INTERIOR LIGHTING POWER ALLOWANCES: SPACE-BY-SPACE METHOD

BUILDING TYPE SPECIFIC SPACE TYPES	LPD (watts/sq.ft)
healthcare facility	
In an exam/treatment room	1.66
In an imaging room	1.51
In a medical supply room	0.74
In a nursery	0.88
In a nurse's station	0.71
In an operating room	2.48
In a patient room	0.62
In a physical therapy room	0.91
In a recovery room	1.15
Library	
In a reading area	1.06
In the stacks	1.71
Manufacturing facility	
In a detailed manufacturing area	1.29
In an equipment room	0.74
In an extra high bay area (greater than 50' floor-to-ceiling height)	1.05
In a high bay area (25-50' floor-to-ceiling height)	1.23
In a low bay area (less than 25' floor-to- ceiling height)	1.19
Museum	•
In a general exhibition area	1.05
In a restoration room	1.02
Performing arts theater—dressing room	0.61
Post Office—Sorting Area	0.94
Religious buildings	•
In a fellowship hall	0.64
In a worship/pulpit/choir area	1.53
Retail facilities	•
In a dressing/fitting room	0.71
In a mall concourse	1.1
Sports arena—playing area	'
For a Class I facility	3.68
For a Class II facility	2.4
For a Class III facility	1.8
For a Class IV facility	1.2
Transportation facility	•
In a baggage/carousel area	0.53
In an airport concourse	0.36
At a terminal ticket counter	0.8
Warehouse—storage area	•
For medium to bulky, palletized items	0.58

a. In cases where both a common space type and a building area specific space type are listed, the building area specific space type shall apply

b. A 'Facility for the Visually Impaired' is a facility that is licensed or will be licensed by local or state authorities for senior long-term care, adult daycare, senior support or people with special visual needs.

The exterior lighting design will be based on the building location and the applicable "Lighting Zone" as defined in

IECC 2015 Table C405.5.2(1) which follows. This table is identical to IECC 2012 Table C405.6.2(1) and IECC 2009 Table 505.6.2(1).

TABLE C405.5.2(1) EXTERIOR LIGHTING ZONES

LIGHTING ZONE	DESCRIPTION
1	Developed areas of national parks, state parks, forest land, and rural areas
2	Areas predominantly consisting of residential zoning, neighborhood business districts, light industrial with limited nighttime use and residential mixed-use areas
3	All other areas not classified as lighting zone 1, 2 or 4
4	High-activity commercial districts in major metropoli- tan areas as designated by the local land use planning authority

The lighting power density savings will be based on reductions below the allowable design levels as specified in IECC 2009 Table 505.6.2(2), IECC 2012 Table C405.6.2(2) or IECC 2015 Table C405.5.2(2).

Allowable Design Levels from IECC 2009

TABLE 505.6.2(2) INDIVIDUAL LIGHTING POWER ALLOWANCES FOR BUILDING EXTERIORS

					ı					
		Zone 1	Zone 2	Zone 3	Zone 4					
Base Site Allowance (Base allowance may be used in tradable or nontradable surfaces.)		500W	600W	750W	1300W					
	Uncovered Parking Areas									
	Parking areas and drives	$0.04 \ W/{\hat{\pi}}^2$	0.06 W/ft ²	0.10 W/ft ²	0.13 W/ft ²					
	Building Grounds									
	Walkways less than 10 feet wide	0.7 W/linear foot	0.7 W/linear foot	0.8 W/linear foot	1.0 W/linear foot					
	Walkways 10 feet wide or greater, plaza areas special feature areas	0.14 W/ft ²	0.14 W/ft ²	0.16 W/ft ²	0.2 W/ft ²					
	Stairways	0.75 W/ft ²	$1.0~\mathrm{W/ft^2}$	1.0 W/ft^2	1.0 W/ft ²					
Tradable Surfaces	Pedestrian tunnels	0.15 W/ft ²	0.15 W/ft ²	0.2 W/ft ²	0.3 W/ft ²					
(Lighting power		В	uliding Entrances and Exi	ta						
densities for uncovered parking areas, building grounds, building	Main entries	20 W/linear foot of door width	20 W/linear foot of door width	30 W/linear foot of door width	30 W/linear foot of door width					
entrances and exits, canopies and overhangs and outdoor sales areas	Other doors	20 W/linear foot of door width	20 W/linear foot of door width	20 W/linear foot of door width	20 W/linear foot of door width					
may be traded.)	Entry canopies	0.25 W/ft ² 0.25 W/ft ² 0.4 W/ft ²		0.4 W/ft ²	0.4 W/ft ²					
	Sales Canopies									
	Free-standing and attached	0.6 W/ft ²	0.6 W/ft ²	0.8 W/ft ²	1.0 W/ft ²					
	Outdoor Sales									
	Open areas (including vehicle sales lots)	0.25 W/ft ²	0.25 W/ ft ²	0.5 W/ft ²	0.7 W/ft ²					
	Street frontage for vehicle sales lots in addition to "open area" allowance	No allowance	lOW/linear foot	lOW/linear foot	30 W/linear foot					
Nontradable Surfaces	Building facades	No allowance	0.1 W/ft² for each illuminated wall or surface or 2.5 W/linear foot for each illuminated wall or surface length	0.15 W/ft ² for each illuminated wall or surface or 3.75 W/linear foot for each illuminated wall or surface length	0.2 W/ft ² for each illuminated wall or surface or 5.0 W/linear foot for each illuminated wall or surface length					
(Lighting power density calculations for the following applications can be used only for the specific application and cannot be traded between surfaces or with other exterior lighting. The following allowances are in addition to any allowance otherwise permitted in the "Tradable Surfaces"	Automated teller machines and night depositories	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location					
	inspection stations at guarded facilities	0.75 W/ft ² of covered and uncovered area	0.75 W/ft ² of covered and uncovered area	0.75 W/ft ² of covered and uncovered area	0.75 W/ft ² of covered and uncovered area					
	Loading areas for law enforcement, fire, ambulance and other emergency service vehicles	0.5 W/ft ² of covered and uncovered area	0.5 W/ft ² of covered and uncovered area	0.5 W/ft ² of covered and uncovered area	0.5 W/ft ² of covered and uncovered area					
section of this table.)	Drive-up windows/doors	400 W per drive-through	400 W per drive-through	400 W per drive-through	400 W per drive-through					
	Parking near 24-hour retail entrances	800 W per main entry	800 W per main entry	800 W per main entry	800 W per main entry					

For SI: 1 foot = 304.8 mm, 1 watt per square foot = W/0.0929 m2.

Allowable Design Levels from IECC 2012

TABLE C405.6.2(2) INDIVIDUAL LIGHTING POWER ALLOWANCES FOR BUILDING EXTERIORS

	LIGHTING ZONES								
		Zone 1	Zone 2	Zone 3	Zone 4				
Base Site Allowance (Base allowance is usable in tradable or nontradable surfaces.)		500 W	600 W	750 W	1300 W				
			Uncovered Parking Areas						
	Parking areas and drives	0.04 W/ft ²	0.06 W/ft ²	0.10 W/ft ²	0.13 W/ft ²				
			Building Grounds						
	Walkways less than 10 feet wide	0.7 W/linear foot	0.7 W/linear foot	0.8 W/linear foot	1.0 W/linear foot				
	Walkways 10 feet wide or greater, plaza areas special feature areas	0.14 W/ft ²	0.14 W/ft ²	0.16 W/ft ²	$0.2~\mathrm{W/ft^2}$				
	Stairways	0.75 W/ft ²	1.0 W/ft ²	1.0 W/ft ²	1.0 W/ft ²				
Tradable Surfaces	Pedestrian tunnels	0.15 W/ft ²	0.15 W/ft ²	0.2 W/ft ²	0.3 W/h^2				
(Lighting power		В	Building Entrances and Ex	its					
densities for uncovered parking areas, building grounds, building	Main entries	20 W/linear foot of door width	20 W/linear foot of door width	30 W/linear foot of door width	30 W/linear foot of door width				
entrances and exits, canopies and overhangs	Other doors	20 W/linear foot of door width	20 W/linear foot of door width	20 W/linear foot of door width	20 W/linear foot of door width				
and outdoor sales areas are tradable.)	Entry canopies	0.25 W/ft ² 0.25 W/ft ² 0.4 W/ft ²		0.4 W/ft ²					
are tradable.)	Sales Canopies								
	Free-standing and attached	0.6 W/ft ²	0.6 W/ft ²	0.8 W/ft ²	1.0 W/ft ²				
	Outdoor Sales								
	Open areas (including vehicle sales lots)	0.25 W/ft ²	0.25 W/ft ²	0.5 W/ft ²	0.7 W/ft ²				
	Street frontage for vehicle sales lots in addition to "open area" allowance	No allowance	10 W/linear foot	10 W/linear foot	30 W/linear foot				
Nontradable Surfaces (Lighting power density calculations	Building facades	No allowance	0.1 W/h² for each illuminated wall or surface or 2.5 W/linear foot for each illuminated wall or surface length	0.15 W/ft² for each illuminated wall or surface or 3.75 W/linear foot for each illuminated wall or surface length	0.2 W/ft ² for each illuminated wall or surface or 5.0 W/linear foot for each illuminated wall or surface length				
for the following applications can be used only for the specific application	Automated teller machines and night depositories	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location				
and cannot be traded between surfaces or with other exterior lighting. The following allowances are in addition to any allowance otherwise permitted in the	Entrances and gatehouse inspection stations at guarded facilities	0.75 W/ft ² of covered and uncovered area	0.75 W/ft ² of covered and uncovered area	0.75 W/ft ² of covered and uncovered area	0.75 W/ft ³ of covered and uncovered area				
	Loading areas for law enforcement, fire, ambulance and other emergency service vehicles	0.5 W/ft ² of covered and uncovered area	0.5 W/ft ² of covered and uncovered area	0.5 W/ft² of covered and uncovered area	0.5 W/ft ² of covered and uncovered area				
"Tradable Surfaces" section of this table.)	Drive-up windows/doors	400 W per drive-through	400 W per drive-through	400 W per drive-through	400 W per drive-through				
	Parking near 24-hour retail entrances	800 W per main entry	800 W per main entry	800 W per main entry	800 W per main entry				

For SI: 1 foot = 304.8 mm, 1 watt per square foot = W/0.0929 m².

Allowable Design Levels from IECC 2015

TABLE C405.5.2(2) INDIVIDUAL LIGHTING POWER ALLOWANCES FOR BUILDING EXTERIORS

		LIGHTING ZONES					
		Zone 1	Zone 2	Zone 3	Zone 4		
Base Site Allowance (Base allowance is usable in tradable or nontradable surfaces.)		500 W	600 W	750 W	1300 W		
			Uncovered Parking Area	s			
	Parking areas and drives	0.04 W/ft ²	0.06 W/ft ²	0.10 W/ft ²	0.13 W/ft ²		
			Building Grounds				
	Walkways less than 10 feet wide	0.7 W/linear foot	0.7 W/linear foot	0.8 W/linear foot	1.0 W/linear foot		
	Walkways 10 feet wide or greater, plaza areas special feature areas	0.14 W/ft²	0.14 W/ft²	0.16 W/ft²	0.2 W/ft²		
	Stairways	0.75 W/ft ²	1.0 W/ft ²	1.0 W/ft ²	1.0 W/ft ²		
Tradable Surfaces	Pedestrian tunnels	0.15 W/ft ²	0.15 W/ft ²	0.2 W/ft ²	0.3 W/ft ²		
(Lighting power densities for uncovered		E	Building Entrances and Ex	its			
parking areas, building grounds, building	Main entries	20 W/linear foot of door width	20 W/linear foot of door width	30 W/linear foot of door width	30 W/linear foot of door width		
entrances and exits, canopies and overhangs and outdoor sales areas	Other doors	20 W/linear foot of door width					
are tradable.)	Entry canopies	0.25 W/ft ²	0.25 W/ft ²	0.4 W/ft ²	0.4 W/ft ²		
	Sales Canopies						
	Free-standing and attached	0.6 W/ft²	0.6 W/ ft ²	0.8 W/ft²	1.0 W/ft²		
			Outdoor Sales				
	Open areas (including vehicle sales lots)	0.25 W/ft ²	0.25 W/ft ²	0.5 W/ft²	0.7 W/ft²		
	Street frontage for vehicle sales lots in addition to "open area" allowance	No allowance	10 W/linear foot	10 W/linear foot	30 W/linear foot		
Nontradable Surfaces	Building facades	No allowance	0.075 W/ft² of gross above-grade wall area	0.113 W/ft² of gross above-grade wall area	0.15 W/ft² of gross above-grade wall area		
(Lighting power density calculations for the following applications can be used only for the specific application and cannot be traded between surfaces or with other exterior lighting. The following allowances are in addition to any allowance otherwise	Automated teller machines (ATM) and night depositories	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location		
	Entrances and gatehouse inspection stations at guarded facilities	0.75 W/ft² of covered and uncovered area	0.75 W/ft² of covered and uncovered area	0.75 W/ft² of covered and uncovered area	0.75 W/ft² of covered and uncovered area		
	Loading areas for law enforcement, fire, ambulance and other emergency service vehicles	0.5 W/ft² of covered and uncovered area	0.5 W/ft² of covered and uncovered area	0.5 W/ft² of covered and uncovered area	0.5 W/ft² of covered and uncovered area		
permitted in the "Tradable Surfaces"	Drive-up windows/doors	400 W per drive-through					
section of this table.)	Parking near 24-hour retail entrances	800 W per main entry					

For SI: 1 foot = 304.8 mm, 1 watt per square foot = $W/0.0929 \text{ m}^2$. W = watts

MEASURE CODE: CI-LTG-LPDE-V01-170331

2.8.10 Metal Halide Fixtures and Lamps

DESCRIPTION

This measure involves the installation of high efficiency pulse start metal halide fixtures and lamps in place of a standard metal halide. Pulse start metal halide luminaires produce more lumens per watt and have an improved lumen maintenance compared to standard probe start technology. Similarly the high efficiency pulse start metal halide ballast lasts longer than a standard system due to their cooler operating temperatures.³²⁷

This measure was developed to be applicable for the following program type: RF.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient condition is an EISA-compliant pulse start metal halide lamp and ballasts for luminaires. Under 2009 federal rulings metal halide ballasts in low-watt options (150W-500W fixtures) must be pulse start and have a minimum ballast efficiency of 88%. Amendments made in 2014 require more stringent energy conservations standards with compliance required by February 10, 2017³²⁹.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is the existing bulb and fixture. If unknown assume, High Intensity Discharge (HID) Metal Halide lighting with probe start fixture and a standard \leq 400 Watt lamp.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is assumed to be 15 years³³⁰.

DEEMED MEASURE COST

As a retrofit measure, actual costs should be used. If unknown, cost is assumed to be \$267³³¹

LOADSHAPE

Commercial Lighting (by building type)

 $^{^{327}}$ Building a Brighter Future: Your Guide to EISA-Compliant Ballast and Lamp Solutions from Philips Lighting: $\underline{http://1000bulbs.com/pdf/advance\%20eisa\%20brochure.pdf}$

³²⁸ Under EISA rulings metal halide ballasts in low-watt options must be pulse start and have a minimum ballast efficiency of 88%. This ruling virtually eliminates the manufacture of probe start (ceramic) fixtures but some exemptions exist including significantly the 150w wet location fixtures (as rated per NEC 2002, section 410.4 (A)). These will be replaced by 150W. Department of Energy – 10 CFR Part 431 – Energy Conservation Program: Energy Conservation Standards for Metal Halide Lamp Fixtures; Final Rule 7746 Federal Register / Vol. 79, No. 27 / Monday, February 10, 2014 / Rules and Regulations https://www.federalregister.gov/articles/2014/02/10/2014-02356/energy-conservation-program-energy-conservation-standards-for-metal-halide-lamp-fixtures#h-9
329 The revised 2014 efficiency standards for metal halides require that luminaires produced on or after February 10th, 2017 must

not contain a probe-start metal halide ballast. Exceptions to this ruling include, metal halide luminaires with a regulated-lag ballast, that utilize an electronic ballasts which operates at 480V and those which utilize a high-frequency (≥1000Hz) electronic ballast. Department of Energy − 10 CFR Part 431 − Energy Conservation Program: Energy Conservation Standards for Metal Halide Lamp Fixtures; Final Rule 7746 Federal Register / Vol. 79, No. 27 / Monday, February 10, 2014 / Rules and Regulations https://www.federalregister.gov/articles/2014/02/10/2014-02356/energy-conservation-program-energy-conservation-standards-for-metal-halide-lamp-fixtures/#h.9

for-metal-halide-lamp-fixtures#h-9
330 GDS Associates, Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, June 2007, http://library.cee1.org/sites/default/files/library/8842/CEE Eval MeasureLifeStudyLights&HVACGDS 1Jun2007.pdf
331 Assuming cost of lamp and fixture combined per Itron, Inc. 2010-2012 WO017 Ex Ante Measure Cost Study – Final Report (Deemed Measures), May 27, 2014.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

$$\Delta kWh = \frac{Watts_{Base} - Watts_{EE}}{1,000} * Hours * WHFe * ISR$$

Where:

Watts_{Base} = Input wattage of the existing system which depends on the baseline fixture

configuration (number and type of lamp). Value can be selected from the reference table at the end of the characterization or a custom value can be used.

Watts_{EE} = New Input wattage of EE fixture, which depends on new fixture configuration.

Value can be selected from the appropriate reference table at the end of the

characterization, or a custom value can be used.

Hours = Average annual lighting hours of use as provided by the customer or selected

from the Lighting Reference Table in Section 2.8. If hours or building type are

unknown, use the C&I Average value.

WHF_e = Waste heat factor for energy to account for cooling energy savings from efficient

lighting is selected from the Reference Table in Section 2.8 for each building type.

If building is un-cooled, the value is 1.0.

ISR = In Service Rate is assumed to be 100%

Heating Penalty:

If electrically heated building:

$$\Delta kWh_{heatpenalty}^{332} = \frac{Watts_{Base} - Watts_{EE}}{1,000} * ISR * Hours * (-IFkWh)$$

Where:

IFkWh = Lighting-HVAC Interaction Factor for electric heating impacts; this factor

represents the increased electric space heating requirements due to the reduction of waste heat rejected by the efficent lighting. Values are provided in the Reference

Table in Section 2.8. If unknown, use the C&I Average value.

SUMMER COINCIDENT DEMAND SAVINGS

$$\Delta kW = \Delta kWh * CF$$

Where:

 Δ kWh = as calculated above.

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor for

measure is selected from the Reference Table in Section 2.8 for each building type.

If the building type is unknown, use the C&I Average value.

³³²Negative value because this is an increase in heating consumption due to the efficient lighting.

NATURAL GAS SAVINGS

$$\Delta \text{Therms}^{333} = \frac{\text{Watts}_{\text{Base}} - \text{Watts}_{\text{EE}}}{1,000} * \text{ISR} * \text{Hours} * (- \text{IFTherms})$$

Where:

IFTherms

= Lighting-HVAC Interaction Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Please select from the Reference Table in Section 2.8 for each building type.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

No O&M adjustments apply to this measure.³³⁴

REFERENCE TABLES³³⁵

Lamp Wattee	Efficient Fixture Ballast	Efficient System Lumen	System Watt _{EE}	Lamp Watt _{Base}	Baselines Ballast ³³⁶	System Watts _{Base}	Baseline System Lumen
Pulse Start MH 150W	Pulse Start- CWA Ballast	10500	185	Probe Start MH 175W	standard C&C	210	9100
Pulse Start MH 175W	Pulse Start- CWA Ballast	11200	208	Probe Start MH 175W	standard C&C	210	9100
Pulse Start MH 200W	Pulse Start- CWA Ballast	16800	232	Probe Start MH250W	standard C&C	295	13500
Pulse Start MH 250W	Pulse Start- CWA Ballast	16625	290	Probe Start MH250W	standard C&C	295	13500
Pulse Start MH 320W	Pulse Start- CWA Ballast	21000	368	Probe Start MH400W	standard C&C	458	24000
Pulse Start MH350W	Pulse Start- CWA Ballast	25200	400	Probe Start MH400W	standard C&C	458	24000
Pulse Start MH 400W	Pulse Start- CWA Ballast	29820	452	Probe Start MH400W	standard C&C	458	24000

MEASURE CODE: NR-LTG-PSMH-V01-170331

³³³ Negative value because this is an increase in heating consumption due to the efficient lighting.

³³⁴ Given that probe start MH technology is becoming a technology of the past, it is assumed that upon failure they would have been replaced with pulse start technology.

³³⁵ Per lamp/ballast

³³⁶ Standard Magnetic Core and Coil ballast systems are common for Metal Halide lamp wattages 175-400. See Panasonic "Metal Halide: Probe Start vs. Pulse Start"

2.8.11 Occupancy Lighting Sensor Controls

DESCRIPTION

Occupancy sensors are devices that reduce lighting levels by turning lights on or off in response to the presence (or absence) of people in a defined area. Associated energy savings depends on the building type, location area covered, type of lighting and activity, and occupancy pattern³³⁷.

This measure relates to the installation of interior occupancy sensors on an existing lighting system. Lighting control types covered by this measure include switch-mounted, remote-mounted, and fixture-mounted. It does not cover automatic photo sensors, time clocks, and energy management systems. All sensors must be hard wired and control interior lighting. Lighting controls required by state energy codes are not eligible.

This measure was developed to be applicable to the following program types: TOS, RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

It is assumed that this measure characterization applies to only those automatic controlled lighting occupancy sensors that control a minimum average wattage greater than 45W per control.

DEFINITION OF BASELINE EQUIPMENT

The baseline efficiency case assumes lighting fixtures with no occupancy controls.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life for all lighting controls is assumed to be 8 years.³³⁸.

DEEMED MEASURE COST

When available, the actual cost of the measure shall be used. When not available, the following default values are provided:

Lighting control type	Cost ³³⁹
Full cost of switch (wall) mounted occupancy sensor (interior)	\$54
Full cost of fixture (bi-level) mounted occupancy sensor	\$67
Full cost of remote (ceiling) mounted occupancy sensor	\$105

LOADSHAPE

Commercial Lighting (by building type)

³³⁷ United States Department of the Interior. Greening the Department of Interior. http://www.doi.gov/archive/greening/energy/occupy.html

³³⁸ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

³³⁹ Based on averaging typical prices quoted by online vendors. See reference table "Occupancy Sensor Reference Costs 2015.xls" for more information.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = kW_{Controlled} * Hours * ESF * WHFe$

Where:

kW_{Controlled}

= Total lighting load connected to the control in kilowatts. Savings is per control. The total connected load per control should be collected from the customer, or use the default values presented below used;

Lighting Control Type Interior	Default kW controlled ³⁴⁰
Switch (wall) mounted occupancy sensor	0.304 (per control)
Fixture-mounted occupancy sensor	0.180 (per fixture)
Remote (ceiling) mounted occupancy sensor	0.517 (per control)

Hours

= the total annual operating hours of lighting for each type of building before occupancy sensors. This number should be collected from the customer. If no data is available, the deemed average number of operating hours by building type should be used as provided by Lighting Reference Table in Section 2.8. If building type is unknown, use the C&I Average value.

ESF

= Energy Savings factor (represents the percentage reduction to the operating Hours from the non-controlled baseline lighting system). Determined on a site-specific basis or using the default values below:

Lighting Control Type	Energy Savings Factor ³⁴¹
Switch (wall) mounted occupancy sensor	24%
Fixture-mounted sensor	24%
Remote (ceiling) mounted occupancy sensor	24%

WHFe

= Waste heat factor for energy to account for cooling energy savings from more efficient lighting is provided in the Lighting Reference Table in Section 2.8.

Heating Penalty:

If electrically heated building³⁴²:

³⁴⁰ Based on review of custom Efficiency Vermont program data of installed occupancy sensors from 2009-2014. See reference table "Updated-Occupancy-Sensor-ReferenceCosts-7-30-15.xls".

³⁴¹ Lawrence Berkeley National Laboratory. A Meta-Analysis of Energy Savings from Lighting Controls in Commercial Buildings. Page & Associates Inc. 2011.

http://eetd.lbl.gov/publications/meta-analysis-energy-savings-lighting-controls-commercial-buildings.

LBNL's meta study of energy savings from lighting controls in commercial buildings bases its savings analysis on over 240 actual field installations. The report found that savings are over-represented and do not filter for external factors such as building orientation, location, use, weather, blinds, commissioning, changes in behavior after controls are set, etc. As such, their value of 24% represented the best conservative estimate of occupancy controls energy savings achievable in the field today.

³⁴²Negative value because this is an increase in heating consumption due to the efficient lighting.

 $\Delta kWhheatpenalty = kW_{Controlled} * Hours * ESF * (-IFkWh)$

Where:

IFkWh

= Lighting-HVAC Interation Factor for electric heating impacts; this factor represents the increased electric space heating requirements due to the reduction of waste heat rejected by the efficent lighting. Values are provided in the Lighting Reference Table 2.8.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = kWh * CF$

Where:

kWh = as calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor. TBD

NATURAL GAS ENERGY SAVINGS

If gas heated building (or unknown):

 $\Delta Therms = kW_{Controlled} * Hours * ESF * - IFTherms$

Where:

IFTherms

= Lighting-HVAC Integration Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting and is provided in the Lighting Reference Table in Section 2.8 by building type.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: NR-LTG-OSLC-V01-170331

2.8.12 Street Lighting

DESCRIPTION

This measure characterizes the savings associated with LED street lighting conversions where a Light Emitting Diode (LED) fixture replaces a high-intensity discharge (HID) outdoor lighting system, including Metal Halide, High Pressure Sodium and Mercury Vapor. LED street lights provide considerable benefits compared to HID lights, including:

- Improved nighttime visibility and safety through better color rendering, more uniform light distribution and elimination of dark areas between poles.
- Reduced direct and reflected uplight which are the primary causes of urban sky glow.
- 40-80% energy savings (dependent on incumbent lighting source).
- 50-75% street lighting maintenance savings. 343

This measure includes LED fixture housings including cobrahead and post-top and is applicable only where utility tariffs support LED street lighting conversions.

This measure was developed to be applicable for a one-to-one RF opportunity only. 344

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment must be an LED fixture that meets the United Illuminating Rate Schedule, alongside all other luminary performance requirements based on site characteristics³⁴⁵ and all local, state and federal codes.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is the existing lighting system – a Metal Halide, High Pressure Sodium or Mercury Vapor outdoor lamp, ballast and fixture.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is assumed to be 12.5 years.³⁴⁶

³⁴³ See NEEP "LED Street Lighting Assessment and Strategies for the Northeast and Mid-Atlantic," January 2015, and the Municipal Solid State Street Lighting Consortium for more information http://www1.eere.energy.gov/buildings/ssl/consortium.html

Many light fixtures were placed in service 20-50 years ago and may no longer service their intended purpose. It is important to conduct a comprehensive assessment of lighting needs with a lighting professional when considering a LED street lighting project. LED street lighting can result in removal of lighting altogether as LED lights provide better CRI and lighting levels than existing HID lighting types. While this measure only characterizes a one-to-one replacement value it is recommended that this measure be updated following an MO assessment to see where LED street lighting has resulted in the removal of street lighting to ensure additional savings calculations are captured. Recommend using Street and Parking Facility Lighting Retrofit Financial Analysis Tool developed by DOE Municipal Solid-State Street Lighting Consortium and the Federal Energy Management Program.

³⁴⁵ See DOE Municipal Solid-State Street Lighting Consortium "Model Specifications for LED Roadway Luminaires v.2.0," July 2014.

³⁴⁶ The measure lifetime is calculated using 4,000 annual hours of use from Ameren Missouri "Light Emitting Diode (LED) Street and Area Lighting Report," July 2013 and a typical LED streetlight lifetime of 50,000 hours from Massachusetts Department of Energy Resources "LED Streetlights: What is Your Plan? (webinar)," September 11, 2013.

DEEMED MEASURE COST

Actual measure installation cost should be used, including material and labor.³⁴⁷ If the actual cost of the LED unit is unknown, use the default values for typical LED streetlight retrofits provided below.³⁴⁸

Light output								
Low (<50W) Med (50W-100W) High (>100W)								
Fixture Type	tture Type min max min max min max							
Decorative/Post Top	\$350.00	\$615.00	\$550.00	\$950.00	\$750.00	\$1,450.00		
Cobrahead	\$99.00	\$225.00	\$179.00	\$451.00	\$310.00	\$720.00		

LOADSHAPE

Commercial Exterior Lighting

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS 349

$$\Delta kWh = \frac{Watts_{Base} - Watts_{EE}}{1,000} * Hours$$

Where:

 $Watts_{Base}$ = Actual wattage if known, if unknown assume the following nominal

wattage based on technology³⁵⁰

Metal Halide = 554WHigh Pressure Sodium = 157WMercury Vapor = 228W

Wattsee = Actual wattage³⁵¹

= Annual operating hours Hours

 $= 4.000 \text{ hours}^{352}$

SUMMER COINCIDENT PEAK DEMAND SAVINGS

No summer peak savings should be claimed for street lighting, as street lights are not expected to be operational during system peak loads.

NATURAL GAS ENERGY SAVINGS

N/A

³⁴⁷ Labor should include the removal of the old fixture and installation of the new fixture. Assume the typical prevailing wage as

per the Annual Wage Order No. 23 published by the Missouri Department of Labor.

348 LED unit costs from New York State Energy Research and Development Authority "Street Lighting in New York State: Opportunities and Challenges," Revised January 2015.

There is no ISR input. Savings are per unit.

³⁵⁰ Baseline wattages are a weighted average of products evaluated in Ameren Missouri "Light Emitting Diode (LED) Street and Area Lighting Report," July 2013. See "Street Lighting Baseline Wattages.xlsx."

³⁵¹ It is important to ensure that retrofit opportunities base efficient wattage on a lumen per watt equivalence.

³⁵² Ameren Missouri "Light Emitting Diode (LED) Street and Area Lighting Report," July 2013

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

Annual O&M savings are estimated at \$50/LED streetlight. 353

MEASURE CODE: NR-LTG-STLT-V01-170331

³⁵³ New York State Energy Research and Development Authority "Street Lighting in New York State: Opportunities and Challenges," Revised January 2015.

2.8.13 Multi-Level Lighting Switch

This measure was not characterized for Version 1 of the Missouri Statewide TRM.

2.8.14 T9 Fixtures and Lamps

This measure was not characterized for Version 1 of the Missouri Statewide TRM.

2.9 Miscellaneous End Use

2.9.1 Laptop Computer

DESCRIPTION

This measure estimates savings for a laptop (or notebook) computer with that has been certified by ENERGY STAR (ES) Version 6.0.

This measure was developed to be applicable to the following program types: TOS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient product is laptop meeting the requirements set forth by ENERGY STAR Version 6.0.

DEFINITION OF BASELINE EQUIPMENT

Non ENERGY STAR qualified laptop.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The life of this measure is 4 years.³⁵⁴

DEEMED MEASURE COST³⁵⁵

The incremental cost is \$5.

LOADSHAPE

Commercial Office Equipment

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS³⁵⁶

$$\Delta kWh = Hours_{idle} * (P_{idle_base} - P_{idle_eff}) + Hours_{sleep} * (P_{sleep_base} - P_{sleep_eff}) + Hours_{off} * (P_{off_base} - P_{off_eff})$$

Where:

Hours_{idle} = Annual hours the computer is on and idling. Custom input or based on usage pattern (see table below).

 P_{idle_base} = Power draw (kW) of baseline unit while idling. Based on computer performance level (see table below).

- Power draw (kW) of efficient unit while idling. Based on computer performs

P_{idle_eff} = Power draw (kW) of efficient unit while idling. Based on computer performance level (see table below).

³⁵⁴ Based on Energy Star Office Equipment Calculator. See "Office Equipment Calculator.xlsx"

³⁵⁵ Computer CASE Report, CA IOUs. <a href="http://www.energy.ca.gov/appliances/2013rulemaking/documents/proposals/12-AAER-2A Consumer Electronics/California IOUs Standards Proposal Computers UPDATED 2013-08-06 TN-71813. The small incremental cost is in alignment with Energy Star reporting, which lists an incremental cost of \$0.

³⁵⁶ Based on the algorithms used by the Energy Star Office Equipment Calculator. See "Office Equipment Calculator.xlsx"

Hours_{sleep} = Annual hours the computer is in sleep mode. Custom input or based on usage pattern (see table below).

 $P_{\text{sleep_base}}$ = Power draw (kW) of baseline unit while in sleep mode. Based on computer performance level (see table below).

P_{sleep_eff} = Power draw (kW) of efficient unit while in sleep mode. Based on computer performance level (see table below).

Hours_{off} = Annual hours the computer is off. Custom input or based on usage pattern (see table below).

 P_{off_base} = Power draw (kW) of baseline unit while off. Based on computer performance level (see table below).

= Power draw (kW) of efficient unit while off. Based on computer performance level (see table below).

Table: Default Hours of Use³⁵⁷

Poff eff

Use Pattern	Hoursidle	Hourssleep	Hoursoff
Turned off at night, sleep enabled	803	1104	6854
Turned off at night, sleep disabled	1906	0	6854
Left on at night, sleep enabled	803	7957	0
Left on at night, sleep disabled	8760	0	0
Unknown	5853	439	2467

Table: Power Requirements³⁵⁸

Performance	Baseline			Efficient			
Level ³⁵⁹	P _{idle_base}	P _{sleep_base}	P _{off_base}	P_{idle_eff}	P_{sleep_eff}	P_{off_eff}	
Low	0.01104	0.00104	0.000563	0.0064	0.000787	0.000382	
Medium	0.01482	0.00121	0.000606	0.00861	0.000889	0.000457	
High	0.01724	0.00134	0.000619	0.01024	0.00122	0.000522	

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

 Δ kWh = Energy Savings as calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001184316^{360}$

MO-TRM-2017_Vol. 2_March 31, 2017_Final

³⁵⁷ Based on Energy Star Office Equipment Calculator. See "Office Equipment Calculator.xlsx" "Unknown" based on data suggesting 36% of computers are shut off at night and 8% have sleep mode enabled.

³⁵⁸ Based on Energy Star Office Equipment Calculator. See "Office Equipment Calculator.xlsx"

³⁵⁹ "Low" refers to budget or low-end models, "Medium" refers to mid-grade models and "High" refers to high-end models. For more specific performance definitions, refer to Energy Star 6.0 Requirements.

³⁶⁰ Itron eShapes, 8760 hourly data for office equipment for Missouri. The overall average of annual unitized demand values was determined for Month 7, Day 21, Hour 17, representing system peak loading.

NATURAL GAS SAVINGS

N/A

WATER AND OTHER NON-ENERGY IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-MSC-COMP-V01-170331

2.9.2 Computer Power Management Software

DESCRIPTION

Computer power management software is installed on a network of computers. This is software which monitors and records computer and monitor usage, as well as allows centralized control of computer power management settings.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is defined by the requirements listed below:

- Allow centralized control and override of computer power management settings of workstations which include both a computer monitor and CPU (i.e. a desktop or laptop computer on a distributed network)
- Be able to control on/off/sleep states on both the CPU and monitor according to the Network Administrator-defined schedules and apply power management policies to network groups
- Have capability to allow networked workstations to be remotely wakened from power-saving mode (e.g. for system maintenance or power/setting adjustments)
- Have capability to detect and monitor power management performance and generate energy savings reports
- Have capability to produce system reports to confirm the inventory and performance of equipment on which the software is installed.

This measure was developed to be applicable to the following program types: RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF BASELINE EQUIPMENT

Baseline is defined as a computer network without software enforcing the power management capabilities in existing computers and monitors.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is 4 years.³⁶¹

DEEMED MEASURE COST

The deemed measure cost is \$29 per networked computer, including labor. ³⁶²

LOADSHAPE

Commercial Office Equipment.

³⁶¹ Consistent with the expected lifetimes of Energy Star Office Equipment.

³⁶² Work Paper WPSCNROE0003 Revision 1, Power Management Software for Networked Computers. Southern California Edison

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

N

 $\Delta kWh = kWh_{savings} * N$

Where:

kWh_{savings} = annual energy savings per workstation

= 200 kWh³⁶³ for desktops, 50 kWh for laptops³⁶⁴

= If unknown assume 161 kWh (based on 74% desktop and 26% laptop³⁶⁵)

= number of desktop or laptop workstations controlled by the power

management software

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

 Δ kWh = Energy Savings as calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001184316^{366}$

NATURAL GAS SAVING

NA

WATER IMPACT DESCRIPTIONS AND CALCULATION

NA

DEEMED O&M COST ADJUSTMENT CALCULATION

Assumed to be \$2/unit annually 367

Surveyor Network Energy Manager Evaluation Report, NEEA (68, 100, and 128kWh)

Regional Technical Forum http://rtf.nwcouncil.org/measures/measure.asp?id=95 (200 kWh)

EnergySTAR Computer Power Management Savings Calculator (~190 kWh for a mix of laptop/desktop and assuming 30% are already turned off at night)

http://www.energystar.gov/ia/products/power_mgt/LowCarbonITSavingsCalc.xlsx?78c1-120e&78c1-120e

Power Management for Networked Computers: A Review of Utility Incentive Programs J. Michael Walker, Beacon Consultants Network Inc., 2009 ACEEE Summer Study on Energy Efficiency in Industry (330 kWh)

³⁶³ Based on average energy savings/computer from the following sources:

South California Edison, Work Paper WPSCNROE0003 (200k Wh)

³⁶⁴ Power Management for Networked Computers: A Review of Utility Incentive Programs J. Michael Walker, Beacon Consultants Network Inc., 2009 ACEEE Summer Study on Energy Efficiency in Industry

³⁶⁵ Based on PY6 ComEd Computer Software Program data showing a split of 74% desktop to 26% laptop.

³⁶⁶ Itron eShapes, 8760 hourly data for office equipment for Missouri. The overall average of annual unitized demand values was determined for Month 7, Day 21, Hour 17, representing system peak loading.

³⁶⁷ Based on Dimetrosky, S., Luedtke, J. S., & Seiden, K. (2005). Surveyor Network Energy Manager: Market Progress Evaluation Report, No. 2 (Northwest Energy Efficiency Alliance report #E05-136). Portland, OR: Quantec LLC and review of CLEARResult document providing Qualifying Software Providers for ComEd program and their licensing fees; "Qualifying Vendor Software Comparison.pdf".

MEASURE CODE: CI-MSC-CPMS-V01-170331

2.9.3 Heat Pump Pool Heater

DESCRIPTION

This measure applies to the installation of a heat pump pool heater in place of a standard electric pool heater on an outdoor pool at a commercial location.

This measure was developed to be applicable to the following program type: TOS.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be a new heat pump pool heater meeting program requirements.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new, standard efficiency electric resistance pool heater.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 15 years. 368

DEEMED MEASURE COST

The incremental equipment cost difference between an electric resistance pool heater and a heat pump pool heater is \$1,000 per unit.³⁶⁹

LOADSHAPE

Commercial - Electric Pool Heating

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = Q_{PoolHeating} * (1/Eff_{Base} - 1/Eff_{EE})$

Where:

QPoolHeating

= required annual heat transfer to pool water (kWh), calculated as follows³⁷⁰:

= For an uncovered pool: [53.075 * (SQFT)] + 1631.1

= For a pool that is regularly covered when not in use: [8.079 * (SQFT)] + 1295.4

Where SQFT is the total surface area of the pool.

Where:

³⁶⁸ Measure life is for a high efficiency pool heater, from 2017 Michigan Energy Measures Database.

³⁶⁹ Measure cost based on "The Definitive Guide to Heating Your Swimming Pool," AquaCal, July 2013. Electric resistance pool heaters can be purchased for less than \$2,000, and heat pump pool heaters cost between \$2,000 and \$4,000.

³⁷⁰ Based on the results of a swimming pool energy calculation tool found at http://noanderson.com/services/swimming-pool-energy-temperature-calculator/. Results use St. Louis weather related assumptions and assume a pool season of May through October (per Energy Star guidelines), with a water temperature of 80 degrees Fahrenheit.

 Eff_{Base} = Efficiency of electric resistance pool heater

= 100%

 Eff_{EE} = Efficiency (COP) of heat pump pool heater

= Actual

SUMMER COINCIDENT PEAK DEMAND SAVINGS

No peak demand savings are claimed for this measure due to the fact that during the peak demand definition (Hour 17 of July 21st), the Climate Normal temperature for nearly all stations in Missouri show average temperatures exceeding the assumed temperature setpoint for pool water (80 degrees Fahrenheit). Accordingly, water heating is not expected to occur during this time period.

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-MSC-HPPH-V01-170331

2.9.4 Computer Server

DESCRIPTION

This measure estimates savings for a computer server with that has been certified by ENERGY STAR (ES) Version 2.0.

This measure was developed to be applicable to the following program types: TOS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient product is computer server meeting the requirements set forth by ENERGY STAR Version 2.0.

DEFINITION OF BASELINE EQUIPMENT

Non ENERGY STAR qualified computer server.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The life of this measure is 4 years.³⁷¹

DEEMED MEASURE COST³⁷²

The incremental cost is \$9.80.

LOADSHAPE

Commercial Office Equipment

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS³⁷³

Annual energy savings are based on the rated output of the server's power supply, according to the following table:

Power Supply Rated Output (W)	Baseline Annual Energy Consumption (kWh)	Efficient Annual Energy Consumption (kWh)	Annual Energy Savings (kWh)
Up to 500	1,221	742	479
501-1000	3,024	1,837	1,187
1001-1500	5,883	3,575	2,308

³⁷¹ Consistent with Energy Star computing equipment. It is important to note that lifetime doesn't necessarily reflect the expected functional lifetime of mechanical components, but rather the lifetime of operating system technology, which is generally assumed to become obsolete after a period of four years.

MO-TRM-2017_Vol. 2_March 31, 2017_Final

³⁷² Computer CASE Report, CA IOUs. http://www.energy.ca.gov/appliances/2013rulemaking/documents/proposals/12-AAER-2A Consumer Electronics/California IOUs Standards Proposal Computers UPDATED 2013-08-06 TN-71813. The small incremental cost is in alignment with Energy Star reporting, which lists an incremental cost of \$0 for all office equipment.

³⁷³ Based on current Energy Star qualified product performance and assumptions drawn from the Energy Savings From Energy Star-Qualified Servers report and Energy Star Computer Specifications version 4.0. See "Computer Server Savings.xlsx" for additional details and methodology.

Power Supply Rated Output (W)	Baseline Annual Energy Consumption (kWh)	Efficient Annual Energy Consumption (kWh)	Annual Energy Savings (kWh)
1501-2000	9,152	5,561	3,591
2001-2500	8,667	5,266	3,401
2501-3000	19,633	11,929	7,704

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

 Δ kWh = Energy Savings as calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001184316^{374}$

NATURAL GAS SAVINGS

N/A

WATER AND OTHER NON-ENERGY IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-MSC-SERV-V01-170331

³⁷⁴ Itron eShapes, 8760 hourly data for office equipment for Missouri. The overall average of annual unitized demand values was determined for Month 7, Day 21, Hour 17, representing system peak loading.

2.9.5 Point of Sale Terminal

This measure was not characterized for Version 1 of the Missouri Statewide TRM.

2.10 Motors End Use

2.10.1 Motors

DESCRIPTION

This measure applies to the one-for-one replacement of an old, working or failed/near failure 1-350 horsepower, constant speed, uniformly loaded HVAC fan or pumping motor with a new motor of the same rated horsepower that meets or exceeds National Electrical Manufacturers Association (NEMA) Premium efficiency levels.

This measure was developed to be applicable to the following program type: RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be a new motor that meets or exceeds NEMA Premium efficiency levels.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment efficiency is the efficiency of the existing motor, or if unknown, the federal minimum required efficiency is assumed.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 15 years.³⁷⁵

DEEMED MEASURE COST

Actual incremental costs should be used if available. If actual costs are unknown, use default installed cost from table below.³⁷⁶

Motor Size (HP)	Installed Cost
1	\$730
1.5	\$725
2	\$800
3	\$840
5	\$860
7.5	\$1,165
10	\$1,298
15	\$2,242
20	\$2,522
25	\$2,873
30	\$3,095
40	\$3,716
50	\$4,073
60	\$5,128
75	\$5,888
100	\$7,392

³⁷⁵ California Database for Energy Efficiency Resources (DEER) 2014 Estimated Useful Life (EUL) Table Update

³⁷⁶ Installed costs from 2015-2016 Demand-Side Management Plan, Xcel Energy.

Motor Size (HP)	Installed Cost
125	\$9,076
150	\$9,401
200	\$11,250
250	\$13,958
300	\$17,744
350	\$25,653

LOADSHAPE

Flat

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = HP * LF * 0.746 * (1/\eta_{Bmotor} - 1/\eta_{EEmotor}) * Hours$

Where:

HP = Nominal horsepower (HP) of new motor

= Actual

LF = Load Factor; Motor Load at Fan/Pump Design CFM

 $=75\%^{377}$

0.746 = Conversion factor from HP to kWh

= Actual efficiency of existing motor, or if unknown, use federal baseline η_{Bmotor}

nominal/nameplate motor efficiency as shown in table below for Open Drip

Proof (ODP) and Totally Enclosed Fan Cooled (TEFC)³⁷⁸

Matau Sina	Open Drip Proof (ODP) # of Poles		Totally Enclosed Fan-Cooled (TEFC) # of Poles				
Motor Size (HP)	6	4	2	6	4	2	
(111)		Speed (RPM)			Speed (RPM)		
	1200	1800	3600	1200	1800	3600	
1	82.50%	85.50%	77.00%	82.50%	85.50%	77.00%	
1.5	86.50%	86.50%	84.00%	87.50%	86.50%	84.00%	
2	87.50%	86.50%	85.50%	88.50%	86.50%	85.50%	
3	88.50%	89.50%	85.50%	89.50%	89.50%	86.50%	
5	89.50%	89.50%	86.50%	89.50%	89.50%	88.50%	
7.5	90.20%	91.00%	88.50%	91.00%	91.70%	89.50%	
10	91.70%	91.70%	89.50%	91.00%	91.70%	90.20%	
15	91.70%	93.00%	90.20%	91.70%	92.40%	91.00%	

³⁷⁷ Motor efficiency curves typically result in motors being most efficient at approximately 75% of the rated load. *Determining* Electric Motor Load and Efficiency, US DOE Motor Challenge, a program of the US Department of Energy, https://energy.gov/sites/prod/files/2014/04/f15/10097517.pdf.

378 For 1-200 HP motors, baseline efficiency is from NEMA MG 1 Table 12-12. For motors over 200 hp, baseline efficiency is

MO-TRM-2017_Vol. 2_March 31, 2017_Final

from NEMA MG 1 Table 12-11.

	Open Drip Proof (ODP) # of Poles			Totally Enclosed Fan-Cooled (TEFC) # of Poles			
Motor Size	6	4	2	6	4	2	
(HP)		Speed (RPM)			Speed (RPM)		
	1200	1800	3600	1200	1800	3600	
20	92.40%	93.00%	91.00%	91.70%	93.00%	91.00%	
25	93.00%	93.60%	91.70%	93.00%	93.60%	91.70%	
30	93.60%	94.10%	91.70%	93.00%	93.60%	91.70%	
40	94.10%	94.10%	92.40%	94.10%	94.10%	92.40%	
50	94.10%	94.50%	93.00%	94.10%	94.50%	93.00%	
60	94.50%	95.00%	93.60%	94.50%	95.00%	93.60%	
75	94.50%	95.00%	93.60%	94.50%	95.40%	93.60%	
100	95.00%	95.40%	93.60%	95.00%	95.40%	94.10%	
125	95.00%	95.40%	94.10%	95.00%	95.40%	95.00%	
150	95.40%	95.80%	94.10%	95.80%	95.80%	95.00%	
200	95.40%	95.80%	95.00%	95.80%	96.20%	95.40%	
250	95.40%	95.80%	95.00%	95.80%	96.20%	95.80%	
300	95.40%	95.80%	95.40%	95.80%	96.20%	95.80%	
350	95.40%	95.80%	95.40%	95.80%	96.20%	95.80%	

 $\eta_{EEmotor}$ =Efficient motor nominal/nameplate motor efficiency

= Actual

Hours = Annual hours of operation for motor; see table below for HVAC motors³⁷⁹

Building Type	Hot Water Pump Hours	Chilled Water Pump Hours	Fan Motor Run Hours
Large Office	5,233	6,385	6,753
Medium Office	3,437	5,921	6,968
Small Office	3,715	3,774	6,626
Warehouse	4,587	1,292	6,263
Stand-alone Retail	4,040	2,713	6,679
Strip Mall	3,908	2,548	6,687
Primary School	4,754	5,160	5,906
Secondary School	5,594	5,279	6,702
Supermarket	4,868	4,255	6,900
Quick Service Restaurant	4,231	3,378	7,679
Full Service Restaurant	4,595	4,897	7,664
Hospital	8,760	8,717	8,760
Outpatient Health Care	8,760	8,689	8,760
Small Hotel - Building	3,533	7,976	8,760

³⁷⁹ Hours per year are estimated using the eQuest models as the total number of hours the heating or cooling system is operating for each building type. "Heating and Cooling Run Hours" are estimated as the total number of hours fans are operating for heating, cooling and ventilation for each building type. This may over claim certain applications (e.g. pumps) and so where possible actual hours should be used for these applications.

~

Building Type	Hot Water Pump Hours	Chilled Water Pump Hours	Fan Motor Run Hours
Large Hotel - Building	5,538	8,308	8,760
Midrise Apartment - Building	5,197	4,347	8,728
Nonresidential Average	4,411	3,539	6,773

SUMMER COINCIDENT PEAK DEMAND SAVINGS³⁸⁰

 $\Delta kW = \Delta kWh/Hours$

Where:

 Δ kWh = Electric energy savings, as calculated above

Other variables as defined above.

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-MTR-MOTR-V01-170331

³⁸⁰ Since savings will be constant and without fluctuation over the period of operation, demand savings are simply the energy savings divided by the hours of operation. Demand savings are expected to coincide with peak demand period definitions, consistent with assumptions in VFD measures on HVAC pumps and fans.

2.10.2 Pool Pump

DESCRIPTION

This measure applies to the installation of a variable frequency drive (VFD) on an existing single-speed pool pump at a commercial location. VFDs save energy by reducing the speed of the pool pump motor to match the pool's required flow rate. Additionally, VFD's soft-starting extends motor life by reducing wear.

This measure was developed to be applicable to the following program type: RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be a new VFD meeting program requirements.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is an existing, single-speed pool pump without a VFD or other motor control device.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years.³⁸¹

DEEMED MEASURE COST

Actual costs (equipment and labor) should be used if available. If actual costs are unknown, assume equipment costs of \$200/motor horsepower and labor cost of \$46.382

LOADSHAPE

Flat

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = 1.747 * HP$

Where:

1,747

= Average annual energy savings per pool pump motor horsepower (kWh/HP)³⁸³

HP

= Pool pump motor horsepower

= Custom input, actual horsepower rating of the pump motor.

³⁸¹ Measure life from 2017 Michigan Energy Measures Database.

³⁸² Costs from 2017 Michigan Energy Measures Database.

³⁸³ Energy savings based on monitoring performed at commercial pool facilities, from Commercial Variable Speed Pool Pump Market Characterization and Metering Study," Southern California Edison, February 2015.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

kWh = Electric energy savings, as calculated above.

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.00011415525^{384}$

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-MTR-PVFD-V01-170331

³⁸⁴ Calculated as 1/8760, consistent with the unitized coincident peak factor approach.

2.10.3 Pump Optimization

DESCRIPTION

Pump improvements can be done to optimize the design and control of centrifugal water pumping systems, including water solutions with freeze protection up to 15% concentration by volume. Other fluid and gas pumps cannot use this measure calculation. The measurement of energy and demand savings for commercial and industrial applications will vary with the type of pumping technology, operating hours, efficiency, and existing and proposed controls. Depending on the specific application slowing the pump, trimming or replacing the impeller may be suitable options for improving pumping efficiency. Pumps up to 40 HP are allowed to use this energy savings calculation. Larger motors should use a custom calculation (which may result in larger savings than this measure would claim).

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is proven to be an optimized centrifugal pumping system meeting the applicable program efficiency requirements:

- Pump balancing valves no more than 15% throttled
- Balancing valves on at least one load 100% open.

DEFINITION OF BASELINE EQUIPMENT

In order for this characterization to apply, the baseline equipment is assumed to be the existing pumping system including existing controls and sequence of operations.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 10 years³⁸⁵

DEEMED MEASURE COST

The incremental capital cost for this measure can vary considerably depending upon the strategy employed to achieve the required efficiency levels and should be determined on a site-specific basis.

LOADSHAPE

Commercial Process

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = (HP_{motor} * 0.746 * LF / \eta_{motor}) * HOURS * ESF$

Where:

 HP_{motor} = Installed nameplate motor horsepower

= Actual

³⁸⁵ Martin, N. et al., Emerging Energy-Efficient Industrial Technologies: New York State Edition, American Council for an Energy Efficient Economy (ACEEE), March 2001 (as stated in the OH State TRM, page 269)

0.746 = Conversion factor from horse-power to kW (kW/hp)

LF / η_{motor} = Combined as a single factor since efficiency is a function of load

 $=0.65^{386}$

Where:

LF = Load Factor; Ratio of the peak running load to the nameplate rating of the motor

 η_{motor} = Motor efficiency at pump operating conditions

HOURS = Annual operating hours of the pump

= Actual

ESF = Energy Savings Factor; assume a value of 15% ³⁸⁷.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

CF = Summer Coincident Peak Factor for measure

 $= 0.0001379439^{388}$

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-MSC-PMPO-V01-170331

³⁸⁶ "Measured Loading of Energy Efficient Motors - the Missing Link in Engineering Estimates of Savings," ACEEE 1994 Summer Study Conference, Asilomar, CA.

³⁸⁷ Published estimates of typical pumping efficiency improvements range from 5 to 40%. For analysis purposes, assume 15%. United States Industrial Electric Motor Systems Market Opportunities Assessment December 2002, Table E-7, Page 18, https://www1.eere.energy.gov/manufacturing/tech_assistance/pdfs/mtrmkt.pdf

³⁸⁸ Based on Ameren Missouri 2016 Process Loadshape

2.10.4 Variable Frequency Drives (VFDs) for Process

DESCRIPTION

This measure applies to variable frequency drives (VFDs) installed on HVAC chilled water and hot water distribution pumps. There is a separate measure for HVAC supply and return fans. The VFD will modulate the speed of the motor when it does not need to run at full load. Since the power of the motor is proportional to the cube of the speed for these types of applications, significant energy savings will result.

This measure was developed to be applicable to the following program types: TOS, RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The VFD is applied to a pump motor 1-75 HP that does not have a VFD. The hydronic system that the VFD is applied to must have a variable or reduced load. Installation is to include the necessary control points and parameters (example: differential pressure, differential temperature, return water temperature) as determined by a qualified engineer.

DEFINITION OF BASELINE EQUIPMENT

The time of sale baseline is a new motor installed without a VFD or other methods of control. Retrofit baseline is an existing motor operating as is.

Installations of new equipment with VFDs which are required by regional code adoption should not claim savings.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life for HVAC application is 15 years³⁸⁹.

DEEMED MEASURE COST

Customer-provided costs will be used when available. Default measure costs are listed below for 1 to 75 HP motors³⁹⁰.

Cost
\$1,874
\$2,967
\$4,060
\$5,154
\$6,247
\$7,340
\$8,433
\$9,526

LOADSHAPE

VFD - Chilled Water Pumps

VFD - Hot Water Pumps

³⁸⁹ Consistent with Ameren Missouri program assumptions

³⁹⁰ Average costs observed by other Midwestern states energy efficiency programs – specific data reflects results from Iowa program costs.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = BHP / EFFi * Hours * ESF$

Where:

BHP = System Brake Horsepower

(Nominal motor HP * Motor load factor)

Motors are assumed to have a load factor of 65% for calculating kW if actual values cannot be determined³⁹¹. Custom load factor may be applied if known.

EFFi = Motor efficiency, installed. Actual motor efficiency shall be used to calculate kW. If not known, a default value of 93% is an appropriate assumption.

Hours = Default hours are provided for HVAC applications which vary by HVAC application and building type³⁹². When available, actual hours should be used.

Building Type	Hot Water Pump Hours	Chilled Water Pump Hours
Large Office	5233	6385
Medium Office	3437	5921
Small Office	3715	3774
Warehouse	4587	1292
Stand-alone Retail	4040	2713
Strip Mall	3908	2548
Primary School	4754	5160
Secondary School	5594	5279
Supermarket	4868	4255
Quick Service Restaurant	4231	3378
Full Service Restaurant	4595	4897
Hospital	8760	8717
Outpatient Health Care	8760	8689
Small Hotel - Building	3533	7976
Large Hotel - Building	5538	8308
Midrise Apartment - Buildin	g 5197	4347
Nonresidential Average	4411	3539

³⁹¹ Del Balso, Ryan J. "Investigation into the Reliability of Energy Efficiency/Demand Side Management Savings Estimates for Variable Frequency Drives in Commercial Applications", University of Colorado, Department of Civil, Environmental and Architectural Engineering, 2013.

³⁹² Hours per year are estimated using the eQuest models as the total number of hours the heating or cooling system is operating for each building type. "Heating and Cooling Run Hours" are estimated as the total number of hours fans are operating for heating, cooling and ventilation for each building type. This may over claim certain applications (e.g. pumps) and so where possible actual hours should be used for these applications.

ESF = Energy savings factor varies by VFD application. Units are kW/HP.

Application	ESF ³⁹³
Hot Water Pump	0.3577
Chilled Water Pump	0.3389

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

 $\Delta kWh = As$ calculated above.

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor, as specified in the following table:³⁹⁴

Application	CF
Hot Water Pump	0.0001442621
Chilled Water Pump	0.0001165116

FOSSIL FUEL IMPACT DESCRIPTIONS AND CALCULATION

If fossil fuel impacts are expected, a custom analysis should be used to support them.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-HVC-VSDHP-V01-170331

³⁹³ Developed from datasets produced from the Northeast Energy Efficiency Partnerships Variable Speed Drive Loadshape Project. See supporting workbook "VSD HVAC Pump Savings.xlsx" for derivation.

³⁹⁴ Developed from datasets produced from the Northeast Energy Efficiency Partnerships Variable Speed Drive Loadshape Project. See supporting workbook "VSD HVAC Pump Savings.xlsx" for derivation.

2.10.5 Variable Frequency Drives (VFDs) for HVAC Supply and Return Fans

DESCRIPTION

This measure applies to variable frequency drives (VFDs) installed on HVAC supply fans and return fans. There is a separate measure for HVAC Pumps. The VFD will modulate the speed of the motor when it does not need to run at full load. Since the power of the motor is proportional to the cube of the speed for these types of applications, significant energy savings will result.

This measure is applicable to the following program types: TOS, RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The VFD is applied to an HVAC fan motor that does not have a VFD. The air distribution system must have a variable or reduced load, and installation is to include the necessary control point as determined by a qualified engineer (example: differential pressure, temperature, or volume). Savings are based on the application of VFDs to a range of baseline system conditions, including no control, inlet guide vanes, outlet guide vanes, relief dampers, and throttling valves.

DEFINITION OF BASELINE EQUIPMENT

The time of sale baseline is a new motor installed without a VFD or other methods of control. Retrofit baseline is an existing motor operating as is. Retrofit baselines may or may not include guide vanes, throttling valves, or other methods of control.

Installations of new equipment with VFDs which are required by regional code adoption should not claim savings.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life for HVAC application is 15 years³⁹⁵.

DEEMED MEASURE COST

Customer provided costs will be used when available. Default measure costs are listed below for up to 100 hp motors³⁹⁶.

HP	Cost
1-9 HP	\$1,874
10-19 HP	\$2,967
20-29 HP	\$4,060
30-39 HP	\$5,154
40-49 HP	\$6,247
50-59 HP	\$7,340
60-69 HP	\$8,433
70-79 HP	\$9,526
80-89 HP	\$10,620
90-100 HP	\$11,713

³⁹⁵ Consistent with Ameren Missouri program assumptions

³⁹⁶ Average costs observed by energy efficiency programs in Iowa

Missouri Statewide Technical Reference Manual – 2017 –2.10.5 Variable Frequency Drives (VFDs) for HVAC Supply and Return Fans

LOADSHAPE

VFD - Supply fans

VFD - Return fans

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS³⁹⁷

$$kWh_{Base} = \begin{pmatrix} 0.746*HP*\frac{LF}{\eta_{motor}} \end{pmatrix} * RHRS_{Base} * \sum_{0\%}^{100\%} (\%FF*PLR_{Base}) \\ kWh_{Retrofit} = \begin{pmatrix} 0.746*HP*\frac{LF}{\eta_{motor}} \end{pmatrix} * RHRS_{base} * \sum_{30\%}^{100\%} (\%FF*PLR_{Retrofit}) \\ \Delta kWh_{fan} = kWh_{Base} - kWh_{Retrofit} \\ \Delta kWh_{total} = \Delta kWh_{fan} * (1 + IE_{energy}) \end{pmatrix}$$

Where:

 kWh_{Base} = Baseline annual energy consumption (kWh/yr) $kWh_{Retrofit}$ = Retrofit annual energy consumption (kWh/yr)

 ΔkWh_{fan} = Fan-only annual energy savings

 ΔkWh_{total} = Total project annual energy savings

0.746 = Conversion factor for HP to kWh

HP = Nominal horsepower of controlled motor

LF = Load Factor; Motor Load at Fan Design CFM (Default = 65%)³⁹⁸

 η_{motor} = Installed nominal/nameplate motor efficiency

= Actual. If unknown, default can be assumed as a NEMA Premium Efficiency, ODP, 4-pole/1800 RPM fan motor, with efficiency indicated in the following table:

³⁹⁷ Methodology developed and tested in Del Balso, Ryan Joseph. "Investigation into the Reliability of Energy Efficiency/Demand Side Management Savings Estimates for Variable Frequency Drives in Commercial Applications". A project report submitted to the Faculty of the Graduate School of the University of Colorado, 2013.

³⁹⁸ Lawrence Berkeley National Laboratory, and Resource Dynamics Corporation. (2008). "Improving Motor and Drive System Performance; A Sourcebook for Industry". U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Golden, CO: National Renewable Energy Laboratory.

NEMA Premium Efficiency Motors Default Efficiencies³⁹⁹

	Ope	n Drip Proof (C	DDP)	Totally Enclosed Fan-Cooled (TEFC)				
		# of Poles		# of Poles				
Size HP	6 4			6	4	2		
Size III		Speed (RPM)						
	1200	1800 Default	3600	1200	1800	3600		
1	0.825	0.855	0.770	0.825	0.855	0.770		
1.5	0.865	0.865	0.840	0.875	0.865	0.840		
2	0.875	0.865	0.855	0.885	0.865	0.855		
3	0.885	0.895	0.855	0.895	0.895	0.865		
5	0.895	0.895	0.865	0.895	0.895	0.885		
7.5	0.902	0.910	0.885	0.910	0.917	0.895		
10	0.917	0.917	0.895	0.910	0.917	0.902		
15	0.917	0.930	0.902	0.917	0.924	0.910		
20	0.924	0.930	0.910	0.917	0.930	0.910		
25	0.930	0.936	0.917	0.930	0.936	0.917		
30	0.936	0.941	0.917	0.930	0.936	0.917		
40	0.941	0.941	0.924	0.941	0.941	0.924		
50	0.941	0.945	0.930	0.941	0.945	0.930		
60	0.945	0.950	0.936	0.945	0.950	0.936		
75	0.945	0.950	0.936	0.945	0.954	0.936		
100	0.950	0.954	0.936	0.950	0.954	0.941		
125	0.950	0.954	0.941	0.950	0.954	0.950		
150	0.954	0.958	0.941	0.958	0.958	0.950		
200	0.954	0.958	0.950	0.958	0.962	0.954		
250	0.954	0.958	0.950	0.958	0.962	0.958		
300	0.954	0.958	0.954	0.958	0.962	0.958		
350	0.954	0.958	0.954	0.958	0.962	0.958		
400	0.958	0.958	0.958	0.958	0.962	0.958		
450	0.962	0.962	0.958	0.958	0.962	0.958		
500	0.962	0.962	0.958	0.958	0.962	0.958		

 $RHRS_{Base} \hspace{0.5in} = Annual \ operating \ hours \ for \ fan \ motor \ based \ on \ building \ type.$

Default hours are provided for HVAC applications which vary by building type⁴⁰⁰. When available, actual hours should be used.

Building Type	Total Fan Run Hours
Large Office	6753
Medium Office	6968

³⁹⁹ Douglass, J. (2005). Induction Motor Efficiency Standards. Washington State University and the Northwest Energy Efficiency Alliance, Extension Energy Program, Olympia, WA. Retrieved October 17, 2013, from http://www1.eere.energy.gov/manufacturing/tech_assistance/pdfs/motor_efficiency_standards.pdf

MO-TRM-2017_Vol. 2_March 31, 2017_Final

Hours per year are estimated using the modeling results and represent the total number of hours the fans are operating for heating, cooling and ventilation for each building type.

Building Type	Total Fan Run Hours
Small Office	6626
Warehouse	6263
Stand-alone Retail	6679
Strip Mall	6687
Primary School	5906
Secondary School	6702
Supermarket	6900
Quick Service Restaurant	7679
Full Service Restaurant	7664
Hospital	8760
Outpatient Health Care	8760
Small Hotel - Building	8760
Large Hotel - Building	8760
Midrise Apartment - Building	8728
Nonresidential Average	6773

%FF = Percentage of run-time spent within a given flow fraction range⁴⁰¹

Flow Fraction (% of design cfm)	Percent of Time at Flow Fraction
0% to 10%	0.0%
10% to 20%	1.0%
20% to 30%	5.5%
30% to 40%	15.5%
40% to 50%	22.0%
50% to 60%	25.0%
60% to 70%	19.0%
70% to 80%	8.5%
80% to 90%	3.0%
90% to 100%	0.5%

 PLR_{Base} = Part load ratio for a given flow fraction range based on the baseline flow control type (see table below)

 $\label{eq:plr_Retrofit} PLR_{Retrofit} \qquad = \text{Part load ratio for a given flow fraction range based on the retrofit flow control type (see table below)}$

Control Tyma	Flow Fraction									
Control Type	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
No Control or Bypass Damper	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Discharge Dampers	0.46	0.55	0.63	0.70	0.77	0.83	0.88	0.93	0.97	1.00
Outlet Damper, BI & Airfoil Fans	0.53	0.53	0.57	0.64	0.72	0.80	0.89	0.96	1.02	1.05

⁴⁰¹ Based on 2012 ASHRAE Handbook; HVAC Systems and Equipment, page 45.11, Figure 12.

Control Type	Flow Fraction										
Control Type	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	
Inlet Damper Box	0.56	0.60	0.62	0.64	0.66	0.69	0.74	0.81	0.92	1.07	
Inlet Guide Vane, BI & Airfoil Fans	0.53	0.56	0.57	0.59	0.60	0.62	0.67	0.74	0.85	1.00	
Inlet Vane Dampers	0.38	0.40	0.42	0.44	0.48	0.53	0.60	0.70	0.83	0.99	
Outlet Damper, FC Fans	0.22	0.26	0.30	0.37	0.45	0.54	0.65	0.77	0.91	1.06	
Eddy Current Drives	0.17	0.20	0.25	0.32	0.41	0.51	0.63	0.76	0.90	1.04	
Inlet Guide Vane, FC Fans	0.21	0.22	0.23	0.26	0.31	0.39	0.49	0.63	0.81	1.04	
VFD with duct static pressure controls	0.09	0.10	0.11	0.15	0.20	0.29	0.41	0.57	0.76	1.01	
VFD with low/no duct static pressure	0.05	0.06	0.09	0.12	0.18	0.27	0.39	0.55	0.75	1.00	

Provided below are the resultant values based upon the defaults provided above:

Control Type	$\sum_{0\%}^{100\%} (\%FF \times PLR_{Base})$
No Control or Bypass Damper	1.00
Discharge Dampers	0.80
Outlet Damper, BI & Airfoil Fans	0.78
Inlet Damper Box	0.69
Inlet Guide Vane, BI & Airfoil Fans	0.63
Inlet Vane Dampers	0.53
Outlet Damper, FC Fans	0.53
Eddy Current Drives	0.49
Inlet Guide Vane, FC Fans	0.39
VFD with duct static pressure controls	0.30
VFD with low/no duct static pressure	0.27

 IE_{energy} = HVAC interactive effects factor for energy (default = 15.7%)⁴⁰²

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kW h_{total} * CF$

Where:

 ΔkWh_{total} = As calculated above.

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor, as

specified in the following table:⁴⁰³

⁴⁰² Del Balso, Ryan Joseph. "Investigation into the Reliability of Energy Efficiency/Demand Side Management Savings Estimates for Variable Frequency Drives in Commercial Applications". A project report submitted to the Faculty of the Graduate School of the University of Colorado, 2013.

⁴⁰³ Developed from datasets produced from the Northeast Energy Efficiency Partnerships Variable Speed Drive Loadshape Project. See supporting workbook "VSD HVAC Pump Savings.xlsx" for derivation.

Application	CF
Supply Fan	0.0001248516
Return Fan	0.0001318494

NATURAL GAS ENERGY SAVINGS

If fossil fuel impacts are expected, a custom analysis should be used to support them.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: NR-HVC-VFDF-V01-170331

2.11 Refrigeration End Use

2.11.1 Commercial Solid and Glass Door Refrigerators & Freezers

DESCRIPTION

This measure applies to ENERGY STAR vertical closed and horizontal closed refrigerators or freezers installed in a commercial kitchen. ENERGY STAR commercial refrigerators and freezers are more energy efficient because they are designed with components such as ECM evaporator and condenser fan motors, hot gas anti-sweat heaters, or high-efficiency compressors, which will significantly reduce energy consumption.

This measure was developed to be applicable to the following program types: TOS.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be a new ENERGY STAR certified vertical closed or horizontal closed, solid or glass door refrigerator or freezer meeting energy consumptions requirements as determined by door type (solid or glass) and refrigerated volume (V).

ENERGY STAR Requirements (Version 3.0, Effective October 1, 2014)

Volume (ft ³)	Maximum Daily Energy Consumption (kWh/day)	
, ,	Refrigerator	Freezer
Vertical Closed		
Solid Door		
0 < V < 15	$\leq 0.02V + 1.60$	\leq 0.25V + 1.55
$15 \le V < 30$	\leq 0.09V + 0.55	\leq 0.20V + 2.30
$30 \le V < 50$	\leq 0.01V + 2.95	\leq 0.25V + 0.80
V ≥ 50	\leq 0.06V + 0.45	$\leq 0.14V + 6.30$
Glass Door		
0 < V < 15	\leq 0.10V + 1.07	\leq 0.56V + 1.61
$15 \le V < 30$	\leq 0.15V + 0.32	\leq 0.30V + 5.50
$30 \le V < 50$	$\leq 0.06V + 3.02$	$\leq 0.55V - 2.00$
V ≥ 50	\leq 0.08V + 2.02	\leq 0.32V + 9.49
Horizontal Closed		
Solid or Glass Doors	·	
All Volumes	$\leq 0.06V + 0.60$	$\leq 0.10V + 0.20$

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new vertical closed or horizontal closed, solid or glass door refrigerator or freezer that is not ENERGY STAR certified.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years. 404

⁴⁰⁴Measure life from ENERGY STAR Commercial Kitchen Equipment Savings Calculator which cites reference as "FSTC research on available models, 2009"

https://www.energystar.gov/sites/default/files/asset/document/commercial_kitchen_equipment_calculator%2003-15-2016.xlsx

DEEMED MEASURE COST

The incremental capital cost for this measure is \$0.405

LOADSHAPE

Commercial Refrigeration

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Custom calculation below.406

$$\Delta kWh = (kWh_{Base} - kWh_{ESTAR}) * Days$$

Where:

 kWh_{Base}

= Maximum daily energy consumption (kWh/day) of baseline refrigerator or freezer

= Calculated as shown in the table below using the actual refrigerated volume (V)

Equipment Type	$\mathrm{kWh_{Base}}^{407}$
Solid Door Refrigerator	0.10V + 2.04
Glass Door Refrigerator	0.12V + 3.34
Solid Door Freezer	0.40V + 1.38
Glass Door Freezer	0.75V + 4.10

kWh_{ESTAR} or

= Maximum daily energy consumption (kWh/day) of ENERGY STAR refrigerator freezer

= Custom or if unknown, calculated as shown in the table below using the actual refrigerated volume (V)

Volume (ft³)	Maximum Daily Energy Consumption (kWh/day)	
	Refrigerator	Freezer
Vertical Closed		
Solid Door		
0 < V < 15	$\leq 0.02V + 1.60$	\leq 0.25V + 1.55
$15 \le V < 30$	\leq 0.09V + 0.55	\leq 0.20V + 2.30
$30 \le V < 50$	\leq 0.01V + 2.95	$\leq 0.25V + 0.80$
V ≥ 50	$\leq 0.06V + 0.45$	$\leq 0.14V + 6.30$
Glass Door		
0 < V < 15	\leq 0.10V + 1.07	\leq 0.56V + 1.61
15 ≤ V < 30	\leq 0.15V + 0.32	\leq 0.30V + 5.50
$30 \le V < 50$	$\leq 0.06V + 3.02$	$\leq 0.55V - 2.00$

⁴⁰⁵ ENERGY STAR Commercial Kitchen Equipment Savings Calculator

⁴⁰⁶ Algorithms and assumptions from ENERGY STAR Commercial Kitchen Equipment Savings Calculator

⁴⁰⁷10 CFR §431.66 - Energy Conservation Standards for Commercial Refrigerators, Freezers and Refrigerator-Freezers

Volume (ft³)	Maximum Daily Energy Consumption (kWh/day)	
	Refrigerator	Freezer
V ≥ 50	$\leq 0.08V + 2.02$	\leq 0.32V + 9.49
Horizontal Closed		
Solid or Glass Doors		
All Volumes	$\leq 0.06V + 0.60$	\leq 0.10V + 0.20

V

- = Refrigerated volume (ft³) calculated in accordance with the Department of
- Energy test procedure in 10 CFR §431.64
- = Actual installed
- Days = Days of refrigerator or freezer operation per year
 - = Custom, or if unknown assume 365.25 days per year

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

 Δ kWh = Electric energy savings, calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.000135738^{408}$

NATURAL GAS ENERGY SAVINGS

N/A

PEAK GAS SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-FSE-CSGD-V01-170331

⁴⁰⁸ 2016 Ameren Missouri Coincident Peak Demand Factor for Commercial Refrigeration. See reference "Ameren Missouri 2016 Appendix E - End Use Shapes and Coincident Factors.pdf"

2.11.2 Refrigerated Beverage Vending Machine

DESCRIPTION

This measure applies to new ENERGY STAR, Class A or Class B refrigerated vending machines. ENERGY STAR vending machines incorporate more efficient compressors, fan motors, and lighting systems as well as a low power mode option that allows the machine to be placed in low-energy lighting and/or low-energy refrigeration states during times of inactivity.

This measure was developed to be applicable to the following program types: TOS.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be a new or rebuilt ENERGY STAR, Class A or Class B⁴⁰⁹ refrigerated vending machine meeting energy consumptions requirements as determined by equipment type (Class A or Class B).

ENERGY STAR Requirements (Version 3.1, Effective March 1, 2013)

Equipment Type	Maximum Daily Energy Consumption (kWh/day)
Class A	$\leq 0.0523V + 2.432$
Class B	$\leq 0.0657V + 2.844$

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new or rebuilt, Class A or Class B refrigerated vending machine that is not ENERGY STAR certified.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years.⁴¹⁰

DEEMED MEASURE COST

The incremental cost of this measure is \$140.411

LOADSHAPE

Commercial Refrigeration

⁴⁰⁹ Class A means a refrigerated bottled or canned beverage vending machine that is fully cooled, and is not a combination vending machine. Class B means any refrigerated bottled or canned beverage vending machine not considered to be Class A, and is not a combination vending machine. See 10 CFR §431.292 "Definitions concerning refrigerated bottled or canned beverage vending machines"

⁴¹⁰ Average of measure lives recognized by Ameren Missouri (10 years) and KCPL (14 years). Also consistent with Energy Star commercial refrigerator lifetime.

⁴¹¹ Consistent with Ameren Missouri and KCPL TRM assumptions.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Custom calculation below.

$$\Delta kWh = (kWh_{Base} - kWh_{ESTAR}) * Days$$

Where:

kWh_{Base}= Maximum daily energy consumption (kWh/day) of baseline vending machine

= Calculated as shown in the table below using the actual refrigerated volume (V)

Equipment Type	$\mathrm{kWh_{Base}}^{412}$
Class A	0.055V + 2.56
Class B	0.073V + 3.16

kWh_{ESTAR} machine

= Maximum daily energy consumption (kWh/day) of ENERGY STAR vending

= Custom or if unknown, calculated as shown in the table below using the actual refrigerated volume (V)

Equipment Type	$\mathrm{kWh_{EE}}^{413}$
Class A	\leq 0.0523V + 2.432
Class B	\leq 0.0657V + 2.844

 $V = Refrigerated volume^{414} (ft^3)$

= Actual installed

Days = Days of vending machine operation per year

= 365.25 days per year

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWh * CF$$

Where:

 Δ kWh = Electric energy savings, calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.000135738^{415}$

MO-TRM-2017_Vol. 2_March 31, 2017_Final

⁴¹²10 CFR §431.296 - Energy Conservation Standards for Refrigerated Bottled or Canned Beverage Vending Machines

⁴¹³ ENERGY STAR Version 3.1 requirements for maximum daily energy consumption

⁴¹⁴V is measured by the American National Standards Institute (ANSI)/Association of Home Appliance Manufacturers (AHAM) HRF–1–2004, "Energy, Performance and Capacity of Household Refrigerators, Refrigerator-Freezers and Freezers." Measurement of refrigerated volume must be in accordance with the methodology specified in Section 5.2, Total Refrigerated Volume (excluding subsections 5.2.2.2 through 5.2.2.4), of ANSI/AHAM HRF–1–2004

⁴¹⁵ 2016 Ameren Missouri Coincident Peak Demand Factor for Commercial Refrigeration. See reference "Ameren Missouri 2016 Appendix E - End Use Shapes and Coincident Factors.pdf"

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-RFG-ESVE-V01-170331

2.11.3 Door Heater Controls for Cooler or Freezer

DESCRIPTION

This measure applies to door heater controls installed on commercial coolers or freezers. There are two main categories of commercially available control strategies that achieve "on-off" control of door heaters based on either (1) the relative humidity of the air in the store or (2) the "conductivity" of the door (which drops when condensation appears). In the first strategy, the system activates door heaters when the relative humidity in a store rises above a specific setpoint, and turns them off when the relative humidity falls below that setpoint. In the second strategy, the sensor activates the door heaters when the door conductivity falls below a certain setpoint, and turns them off when the conductivity rises above that setpoint. Savings result from a reduction in electric energy use due to heaters not running continuously and from reduced cooling loads when heaters are off. The assumptions included within this measure assume that door heater controls which are properly designed and commissioned will achieve approximately equivalent savings, regardless of control strategy.

This measure applies to the following program types: RF.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be a door heater control installed on a commercial glass door cooler or freezer.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a door heater without controls, installed on a commercial glass door cooler or freezer.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years. 416

DEEMED MEASURE COST

The incremental capital cost \$1,266 per heater control.⁴¹⁷

LOADSHAPE

Commercial Refrigeration

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

$$\Delta kWh = kW_{Base} * DOORS * (\%ON_{Base} - \%ON_{control}) * Hours$$

Where:

⁴¹⁶ 2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05, "Effective/Remaining Useful Life Values", California Public Utilities Commission, December 16, 2008.

⁴¹⁷ Measure cost from "Incremental Cost Study, Phase Four Final Report." Northeast Energy Efficiency Partnerships. June 15, 2015.

kW_{Base} = Per door electric energy consumption of door heater without controls

= Assume 0.130 kW per door⁴¹⁸

DOORS = Number of doors controlled with door heater controls

= Actual or if unknown, use 1 (a per door savings)

 $%ON_{Base}$ = Effective run time of uncontrolled door heater

= Actual or if unknown, use 90.7% 419

 $\%ON_{Control}$ = Effective run time with anti-sweat door heater controls

= Actual or if unknown, use 45.6% 420

Hours = Annual hours of cooler or freezer operation

= Assume 8,766 hours per year

BF = Cooling Bonus factor for reduction in waste heat inside of the refrigerated space.

= 1.3 for a refrigerator (medium/high temp), 1.5 for freezers (low temp)⁴²¹

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

 Δ kWh = Electric energy savings, calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor.

 $= 0.000135738^{422}$

Other variables as defined above.

Savings calculated with default values as defined above.

Door Heater Control Application	ΔkWh/door	ΔkW/door
Refrigerator	668.1	0.0907
Freezer	770.9	0.1046

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

⁴¹⁸ The Cadmus Group, *Commercial Refrigeration Loadshape Project Final Report*, Northeast Energy Efficiency Partnerships, Regional Evaluation, Measurement, and Verification Forum, Lexington, MA 2015. Page 75, Table 42.

⁴¹⁹ The Cadmus Group, *Commercial Refrigeration Loadshape Project Final Report*, Northeast Energy Efficiency Partnerships, Regional Evaluation, Measurement, and Verification Forum, Lexington, MA 2015. Page 67, Table 37.

⁴²⁰ The Cadmus Group, *Commercial Refrigeration Loadshape Project Final Report*, Northeast Energy Efficiency Partnerships, Regional Evaluation, Measurement, and Verification Forum, Lexington, MA 2015. Page 67, Table 37.

⁴²¹ The Cadmus Group, Commercial Refrigeration Loadshape Project Final Report, Northeast Energy Efficiency Partnerships, Regional Evaluation, Measurement, and Verification Forum, Lexington, MA 2015. Page 78, Figure 54.

⁴²² 2016 Ameren Missouri Coincident Peak Demand Factor for Commercial Refrigeration. See reference "Ameren Missouri 2016 Appendix E - End Use Shapes and Coincident Factors.pdf"

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: NR-RFG-DHCT-V01-170331

2.11.4 Electronically Commutated Motors (ECM) for Walk-in and Reach-in Coolers/Freezers

DESCRIPTION

This measure consists of replacement of an existing, uncontrolled, and continuously operating standard-efficiency shaded-pole evaporator fan motor in refrigerated display cases or fan coil in walk-ins.

This measure achieves savings by installing a more efficient motor, thereby moving the same amount of air with less energy requirements. Additionally, less waste heat is produced, resulting in a decreased refrigeration load.

This measure was developed to be applicable to the following program types: RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

This measure applies to the replacement of an existing standard-efficiency shaded-pole evaporator fan motor in refrigerated display cases or fan coil in walk-ins. The replacement unit must be an electronically commutated motor (ECM). Savings assume that efficient motors operate continuously.

DEFINITION OF BASELINE EQUIPMENT

The baseline is the existing shaded-pole motor(s) with no fan control operating 8760 hours continuously in a refrigerated display case or fan coil unit of a walk-in cooling unit.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 15 years⁴²³

DEEMED MEASURE COST

The measure cost is assumed to be \$177 per motor for a walk in cooler and walk in freezer, including the cost of the motor plus installation. 424

LOADSHAPE

Flat

Algorithm

CALCULATION OF SAVINGS

Savings are based on a measure created by Energy & Resource Solutions for the California Municipal Utilities Association and supported by PGE workpaper PGE3PREF126. Note that climate differences across all California climate zones resulted in negligible savings differences, which indicates that the average savings for the California study should apply equally as well to Missouri. Savings found in the aforementioned source are presented in combination with savings from controllers, however for the purposes of this measure only those associated with the ECM upgrade are considered.

⁴²³ DEER database

⁴²⁴ Difference in the fully installed cost (\$468) for ECM motor and controller, listed in Work Paper PGE3PREF126, "ECM for Walk-In Evaporator with Fan Controller," June 20,2012, and the measure cost specified in the DEER database for controller (\$291)

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = Savings per motor * motors$

Where:

Savings per motor⁴²⁵ = based on the motor rating of the ECM motor:

Evaporator Fan Motor Rating (of ECM)	Annual kWh Savings/motor
16W	408
1/15 - 1/20HP	1,064
1/5HP	1,409
1/3HP	1,994
1/2HP	2,558
3/4HP	2,782

motors = number of fan motors replaced

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

 ΔkWh = Electric energy savings, as calculated above.

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.00011415525^{426}$

The following table provides the resulting kW savings (per motor)

Evaporator Fan Motor Rating (of ECM)	Peak kW Savings/motor
16W	0.047
1/15 - 1/20HP	0.121
1/5HP	0.161
1/3HP	0.228
1/2HP	0.292
3/4HP	0.318

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

⁴²⁵ See reference workbook "ECM Savings.xlsx" for derivation.

⁴²⁶ Calculated as 1/8760, consistent with the unitized coincident peak factor approach

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-RFG-ECMF-V01-170331

2.11.5 Strip Curtain for Walk-in Coolers and Freezers

DESCRIPTION

This commercial measure pertains to the installation of infiltration barriers (strip curtains) on walk-in coolers or freezers. Strip curtains impede heat transfer from adjacent warm and humid spaces into walk-ins when the main door is opened, thereby reducing the cooling load. As a result, compressor run time and energy consumption are reduced. The engineering assumption is that the walk-in door is open for varying durations per day based on facility type, and the strip curtain covers the entire door frame. All assumptions are based on values that were determined by direct measurement and monitoring of over 100 walk-in units in the 2006-2008 evaluation for the CA Public Utility Commission. 427

This measure was developed to be applicable to the following program types: RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is a strip curtain added to a walk-in cooler or freezer. The new strip curtain must cover the entire area of the doorway when the door is opened.

DEFINITION OF BASELINE EQUIPMENT

The baseline assumption is a walk-in cooler or freezer that previously had either no strip curtain installed or an old, ineffective strip curtain installed.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 4 years⁴²⁸.

DEEMED MEASURE COST

The incremental capital cost for this measure is \$10.22/sq ft of door opening 429

LOADSHAPE

Commercial Refrigeration

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS⁴³⁰

 $\Delta kWh = \Delta kWh/sq ft * A$

⁴²⁷ The scale factors have been determined with tracer gas measurements on over 100 walk-in refrigeration units during the California Public Utility Commission's evaluation of the 2006-2008 CA investor owned utility energy efficiency programs. The door-open and close times, and temperatures of the infiltrating and refrigerated airs are taken from short term monitoring of over 100 walk-in units. http://www.calmac.org/publications/ComFac_Evaluation_V1_Final_Report_02-18-2010.pdf.

⁴²⁸DEER 2014 Effective Useful Life.

⁴²⁹ The reference for incremental cost is \$10.22 per square foot of door opening (includes material and labor). 2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05, "Cost Values and Summary Documentation", California Public Utilities Commission, December 16, 2008.

⁴³⁰ The source algorithm from which the savings per square foot values are determined is based on Tamm's equation (an application of Bernoulli's equation) [Kalterveluste durch kuhlraumoffnungen, Tamm W.,Kaltetechnik-Klimatisierung

Where:

= Average annual kWh savings per square foot of infiltration barrier. Based on ΔkWh/sq ft application type, as indicated by the following table⁴³¹:

Туре	Pre-Existing Curtains	Energy Savings ΔkWh/sq ft
Supermarket - Cooler	Yes	37
Supermarket - Cooler	No	108
Supermarket - Freezer	Yes	119
Supermarket - Freezer	No	349
Convenience Store - Cooler	Yes	5
Convenience Store - Cooler	No	20
Convenience Store - Freezer	Yes	8
Convenience Store - Freezer	No	27
Restaurant - Cooler	Yes	8
Restaurant - Cooler	No	30
Restaurant - Freezer	Yes	34
Restaurant - Freezer	No	119
Refrigerated Warehouse	Yes	254
Refrigerated Warehouse	No	729

= Doorway area. Use actual measurements, if unknown assume the following: Α

Facility Type	Doorway Area (sq ft)
Supermarket - Cooler	35
Supermarket - Freezer	35
Convenience Store - Cooler	21
Convenience Store - Freezer	21
Restaurant - Cooler	21
Restaurant - Freezer	21
Refrigerated Warehouse	80

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

 ΔkWh = Electric energy savings, calculated above

= Summer peak coincidence demand (kW) to annual energy (kWh) factor CF

 $= 0.000135738^{432}$

NATURAL GAS ENERGY SAVINGS

N/A

^{1966;18;142-144;]} and the ASHRAE handbook [American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE). 2010. ASHRAE Handbook, Refrigeration: 13.4, 13.6]. ⁴³¹See reference file "Strip Curtain Savings Calcs.docx" for details on derivation.

^{432 2016} Ameren Missouri Coincident Peak Demand Factor for Commercial Refrigeration. See reference "Ameren Missouri 2016 Appendix E - End Use Shapes and Coincident Factors.pdf"

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-RFG-CRTN-V01-170331

2.11.6 Beverage and Snack Machine Controls

This measure was not characterized for Version 1 of the Missouri Statewide TRM.

2.11.7 Refrigeration Door Gasket Replacement

This measure was not characterized for Version 1 of the Missouri Statewide TRM.

2.12 Shell End Use

2.12.1 Windows

DESCRIPTION

Energy and demand saving are realized through the installation of windows that offer performance improvements over baseline windows. Savings may be realized from reducing air infiltration, improved insulating properties, and changes to solar heat gain through the glazed surfaces of the building.

This measure was developed to be applicable to the following program types: RF and NC.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to exceed the efficiency requirements defined by the program.

DEFINITION OF BASELINE EQUIPMENT

In order for this characterization to apply, the baseline is assumed to meet the efficiency requirements set forth by local jurisdictions. In most cases, this will be some version of International Energy Conservation Code (IECC). For retrofit applications, the baseline condition is the existing condition and requires assessment of the existing window assemblies.

Local code shall be referenced to define baseline where applicable. As an example, the following is set forth by IECC 2012. An efficient window would have specifications not exceeding these values.

	Climate Zones 4 & 5
U-Factor	
Fixed Windows	0.38 Btu/ft ² .°F.h
Operable Windows	0.45 Btu/ft ² .°F.h
SHGC	0.40

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 20 years. 433

DEEMED MEASURE COST

For retrofit projects, full installation costs should be used, including both material and labor costs to install the windows.

In all other scenarios, the incremental cost for this measure is assumed to be \$1.50 per square foot of window area. 434

LOADSHAPE

Commercial Cooling (by Building Type)

Commercial Electric Heat (by Building Type)

⁴³³ Consistent with window measure lives specified by Ameren Missouri and KCP&L.

⁴³⁴ Alliance to Save Energy Efficiency Windows Collaborative Report, December 2007. Consistent with other market reports.

Commercial Electric Heat Pump (by Building Type)

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

Electric energy savings is calculated as the sum of energy saved when cooling the building and energy saved when heating the building.

$$\Delta kWh = \Delta kWh_{\rm cooling} + \Delta kWh_{\rm heating}$$

Heating and cooling savings are composed of three components: infiltration, conduction and solar gains. In instances where infiltration savings do not apply or are not eligible, it may be disregarded.

If central cooling, the electric energy saved in annual cooling due to the added insulation is:

$$\begin{split} \Delta k Wh_{cooling} &= Infltration_{cooling} + Conduction_{cooling} + Solar_{cooling} \\ &Infiltration_{cooling} \\ &= \frac{(CFM_{Pre} - CFM_{Post})*~60*~EFLH_{cooling}*\Delta T_{AVG,cooling}*~0.018*LM}{(1000*~\eta_{cooling})} \end{split}$$

 CFM_{Pre} = Infiltration at natural conditions as estimated by blower door testing before

window upgrade

= Actual

= Infiltration at natural conditions as estimated by blower door testing after CFM_{Post}

window upgrade

= Actual

60 = Converts Cubic Feet per Minute to Cubic Feet per Hour

= Equivalent Full Load Hours for Cooling [hr] are provided in Section 2.7, **EFLH**_{cooling}

HVAC End Use

= Average temperature difference [⁰F] during cooling season between outdoor air $\Delta T_{AVG,cooling}$

temperature and assumed 75°F indoor air temperature, dependent on location:

Climate Zone	OA _{AVG,cooling}	$\Delta T_{ m AVG,cooling}$
(City based upon)	$[^{\circ}\mathrm{F}]^{435}$	[°F]
North East (Fort Madison, IA)	76.2	1.2
North West (Lincoln, NE)	78.8	3.8
South East (Cape Girardeau,	79.4	4.4
MO)		
South West (Kaiser, MO)	81.3	6.3
St Louis, MO	80.8	5.8

⁴³⁵ National Solar Radiation Data Base -- 1991- 2005 Update: Typical Meteorological Year 3 http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/by_state_and_city.html . Heating Season defined as September 17th through April 13th, cooling season defined as May 20 through August 15th. For cooling season, temperatures from 8AM to 8PM were used to establish average temperatures as this is when cooling systems are expected to be loaded.

MO-TRM-2017_Vol. 2_March 31, 2017_Final

Climate Zone (City based upon)	$\mathrm{OA_{AVG, cooling}} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\Delta T_{ m AVG,cooling} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Kansas City, MO	79.0	4.0
Average/Unknown (Knob Noster)	80.7	5.7

0.018 = Specific Heat Capacity of Air (Btu/ft³ °F)

LM = Latent multiplier to account for latent cooling demand

= dependent on location: 436

Climate Zone (City based upon)	LM
North East (Fort Madison, IA)	5.1
North West (Lincoln, NE)	3.5
South East (Cape Girardeau, MO)	4.5
South West (Kaiser, MO)	3.7
St Louis, MO	3.0
Kansas City, MO	4.0
Average/Unknown (Knob Noster)	3.2

1,000 = Conversion from Btu to kBtu

 $\eta_{cooling}$ = Seasonal energy efficiency ratio (SEER) of cooling system (kBtu/kWh)

= Actual

 $Conduction_{cooling}$

$$= \frac{\left(U_{base} - U_{eff}\right) * A_{window} * EFLH_{cooling} * \Delta T_{AVG,cooling}}{(1,000 * \eta_{cooling})}$$

Where:

U_{base} = U-factor value of baseline window assembly (Btu/ft².°F.h)

= Dependent on climate zone and window type. See table below for IECC2012

requirements:

U_{eff} = U-factor value of the efficient window assembly (Btu/ft².°F.h)

= Actual.

 A_{window} = Area of insulated window (including visible frame and glass) (ft²)

Other variables as defined above.

Solar_{cooling}

$$= \frac{\left(SHGC_{base} - SHGC_{eff}\right) * A_{window} * \psi_{cooling}}{(1,000 * \eta_{cooling})}$$

⁴³⁶ The Latent Multiplier is used to convert the sensible cooling savings calculated to a value representing sensible and latent cooling loads. The values are derived from the methodology outlined in Infiltration Factor Calculation Methodology by Bruce Harley, Senior Manager, Applied Building Science, CLEAResult 11/18/2015 and is based upon an 8760 analysis of sensible and total heat loads using hourly climate data.

Where:

SHGC_{base} = Solar Heat Gain Coefficient of the baseline window assembly (fractional)

SHGC_{eff} = Solar Heat Gain Coefficient of the efficient window assembly

(fractional)

 Ψ_{cooling} = Incident solar radiation during the cooling season (Btu/ft²)

= Based on location 437 :

Climate Zone (City based upon)	$\Psi_{ m cooling}$
North East (Fort Madison, IA)	42062
North West (Lincoln, NE)	42322
South East (Cape Girardeau, MO)	40266
South West (Kaiser, MO)	45222
St Louis, MO	40996
Kansas City, MO	44843
Average/Unknown (Knob Noster)	45892

Other variables as defined above.

If the building is heated with electric heat (resistance or heat pump), the electric energy saved in annual heating due to the window upgrade is:

$$\Delta kWh_{heating} = Infltration_{heating} + Conduction_{heating} - Solar_{heating}$$

$$Infiltration_{heating}$$

$$=\frac{(CFM_{Pre}-CFM_{Post})*~60*~EFLH_{heating}*\Delta T_{AVG,heating}*~0.018}{(3,412*~\eta_{heating})}$$

Where:

EFLH_{heating} = Equivalent Full Load Hours for Heating [hr] are provided in Section 2.7,

HVAC end use

 $\Delta T_{AVG,heating}$ = Average temperature difference [^{0}F] during heating season between outdoor

air temperature and assumed 55°F heating base temperature

Climate Zone	OA _{AVG} ,heating	$\Delta T_{ m AVG,heating}$
(City based upon)	$[^{\circ}F]^{438}$	$[^{\circ}\mathbf{F}]$
North East (Fort Madison, IA)	42.1	12.9
North West (Lincoln, NE)	39.0	16.0
South East (Cape Girardeau,	45.7	9.3
MO)	43.7	9.3
South West (Kaiser, MO)	45.0	10.0
St Louis, MO	43.2	11.8
Kansas City, MO	40.3	14.7

⁴³⁷ See "Windows SHG.xlsx" for derivation.

⁴³⁸ National Solar Radiation Data Base -- 1991- 2005 Update: Typical Meteorological Year 3

http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/by_state_and_city.html. Heating Season defined as September 17th through April 13th, cooling season defined as May 20 through August 15th. For cooling season, temperatures from 8AM to 8PM were used to establish average temperatures as this is when cooling systems are expected to be loaded.

Climate Zone (City based upon)	OA _{AVG,heating} [°F] ⁴³⁸	$\Delta T_{ m AVG,heating} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Average/Unknown (Knob Noster)	43.4	11.6

3,412 = Conversion from Btu to kWh.

 η_{heating} = Efficiency of heating system

= Actual. Note: electric resistance heating and heat pumps will have an efficiency greater than or equal to 100%

Other variables as defined above.

Conduction heating

$$= \frac{(U_{base} - U_{eff}) * A_{window} * EFLH_{heating} * \Delta T_{AVG,heating}}{(3,412 * \eta_{heating})}$$

Variables as defined above.

 $Solar_{\text{heating}}$

$$= \frac{\left(SHGC_{base} - SHGC_{eff}\right) * A_{window} * \psi_{heating}}{(3,412 * \eta_{heating})}$$

Where:

 $\Psi_{heating}$ = Incident solar radiation during the heading season (Btu/ft²)

= Based on location:

Climate Zone (City based upon)	$\Psi_{ m cooling}$
North East (Fort Madison, IA)	70736
North West (Lincoln, NE)	74390
South East (Cape Girardeau, MO)	72519
South West (Kaiser, MO)	70498
St Louis, MO	66592
Kansas City, MO	78501
Average/Unknown (Knob Noster)	68653

Other variables as defined above.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWH_{cooling} * CF$$

Where:

 $\Delta kWH_{cooling}$ = Annual electricity savings for cooling, as calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor for Cooling (dependent on building type)

Building Type	CF
Large Office	0.0006428016
Medium Office	0.0009793854

Building Type	CF
Small Office	0.0011136865
Warehouse	0.0022840432
Stand-alone Retail	0.0013148378
Strip Mall	0.0013203011
Primary School	0.0011165551
Secondary School	0.0014275540
Supermarket	0.0015717641
Quick Service Restaurant	0.0012226485
Full Service Restaurant	0.0011453635
Hospital	0.0002431707
Outpatient Health Care	0.0003596174
Small Hotel - Building	0.0005445289
Large Hotel - Building	0.0005787040
Midrise Apartment - Building	0.0012319283
C&I Average ⁴³⁹	0.0014502908

NATURAL GAS SAVINGS

If building uses a gas heating system, the savings resulting from the window assembly is calculated with the following formula.

$$\Delta \text{Therms} = Infltration_{gasheating} + Conduction_{gasheating} - Solar_{gasheating}$$

$$= \frac{(CFM_{Pre} - CFM_{Post}) * 60 * EFLH_{heating} * \Delta T_{AVG,heating} * 0.018}{(100,000 * \eta_{heat})}$$

Where:

100,000 = Conversion from BTUs to Therms
$$\eta_{heat} = \text{Efficiency of heating system}$$

$$= \text{Actual}$$

 $Conduction_{gasheating}$

Other variables as defined above.

$$= \frac{\left(U_{base} - U_{eff}\right) * A_{window} * EFLH_{heating} * \Delta T_{AVG,heating}}{(100,000 * \eta_{heat})}$$

 $Solar_{\rm gasheating}$

$$= \frac{\left(SHGC_{base} - SHGC_{eff}\right) * A_{window} * \psi_{heating}}{(100,000 * \eta_{heat})}$$

Variables as defined above.

⁴³⁹ For weighting factors, see HVAC variable table in section 2.7.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-SHL-WIND-V01-170331

2.12.2 Ceiling and Wall Insulation

DESCRIPTION

Energy and demand saving are realized through reductions in the building cooling and heating loads.

This measure was developed to be applicable to the following program types: RF and NC.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to exceed the efficiency requirements defined by the program.

DEFINITION OF BASELINE EQUIPMENT

In order for this characterization to apply, the baseline is assumed to meet the efficiency requirements set forth by local jurisdictions. In most cases, this will be some version of International Energy Conservation Code (IECC). For retrofit applications, the baseline condition is the existing condition and requires assessment of the existing insulation. It should be based on the entire wall assembly.

Local code shall be referenced to define baseline where applicable. As an example, the following is set forth by IECC 2012:

	ASHRAE/IECC Climate Zone 5 (A, B, C) Nonresidential	
	Assembly Insulation Min.	
	Maximum	R-Value
Mass	U-0.078	R-11.4 ci
Metal Building	U-0.052	R-13 + R-13 ci
Metal Framed	U-0.064	R-13 + R-7.5 ci
Wood Framed	U-0.064	R-13 + R-3.8 ci
and Other	0-0.004	or R-20

	ASHRAE/IECC Climate Zone 6 (A, B, C) Nonresidential	
	Assembly Insulation Min.	
	Maximum	R-Value
Mass	U-0.078	R-13.1 ci
Metal Building	U-0.052	R-13 + R-13 ci
Metal Framed	U-0.064	R-13 + R-7.5 ci
Wood Framed		R-13 + R-7.5 ci
and Other	U-0.051	or $R-20 + R-3.8$
and Other		ci

Note: ci = continuous insulation

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure expected useful life (EUL) is assumed to be 20 years per DEER 2008. This is consistent with SDG&E's 9th Year Measure Retrofit Study (1996 & 1997 Residential Weatherization Programs), CPUC's Energy Efficiency Policy Manual v.2, and GDS's Measure Life Report Residential and Commercial/Industrial Lighting and HVAC Measures (June 2007).

DEEMED MEASURE COST

For retrofit projects, full installation costs should be used.

For new construction projects, costs should be limited to incremental material and labor costs associated with the portion of insulation that exceeds code requirements.

LOADSHAPE

Commercial Cooling (by Building Type)

Commercial Electric Heat (by Building Type)

Commercial Electric Heat Pump (by Building Type)

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

Electric energy savings is calculated as the sum of energy saved when cooling the building and energy saved when heating the building

$$\Delta kWh = \Delta kWh_{cooling} + \Delta kWh_{heating}$$

If central cooling, the electric energy saved in annual cooling due to the added insulation is

$$\Delta \text{kWh}_{\text{cooling}} = \frac{\left(\frac{1}{R_{existing}} - \frac{1}{R_{new}}\right) * Area * CRF * EFLH_{cooling} * \Delta T_{AVG,cooling}}{(1,000 * \eta_{cooling})}$$

Where:

 $R_{existing}$ = Assembly heat loss coefficient with existing insulation [(hr- 0 F-ft²)/Btu]

 R_{new} = Assembly heat loss coefficient with new insulation [(hr- ${}^{0}F$ -ft²)/Btu]

Area = Area of the surface in square feet.

CRF = Correction Factor. Adjustment to account for the effects the framing has on the

overall assembly R-value, when cavity insulation is used.

= 100% if Spray Foam or External Rigid Foam

= 50% if studs and cavity insulation⁴⁴⁰

EFLH_{cooling} = Equivalent Full Load Hours for Cooling [hr] are provided in Section 2.7,

HVAC End Use

 $\Delta T_{AVG,cooling}$ = Average temperature difference [0 F] during cooling season between outdoor air

temperature and assumed 75°F indoor air temperature

MO-TRM-2017_Vol. 2_March 31, 2017_Final

⁴⁴⁰ Consistent with the information listed in ASHRAE, 2001, Table 5-1 Wall Sections with Steel Studs Parallel Path Correction Factors and experimental findings by the Oak Ridge National Laboratory, "Couple Secrets about How Framing is Effecting the Thermal Performance of Wood and Steel-Framed Walls."

Climate Zone (City based upon)	$\mathrm{OA_{AVG,cooling}} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\Delta T_{ m AVG,cooling} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
North East (Fort Madison, IA)	76.2	1.2
North West (Lincoln, NE)	78.8	3.8
South East (Cape Girardeau, MO)	79.4	4.4
South West (Kaiser, MO)	81.3	6.3
St Louis, MO	80.8	5.8
Kansas City, MO	79.0	4.0
Average/Unknown (Knob Noster)	80.7	5.7

1,000 = Conversion from Btu to kBtu

 $\eta_{cooling}$ = Seasonal energy efficiency ratio (SEER) of cooling system (kBtu/kWh)

= Actual

If the building is heated with electric heat (resistance or heat pump), the electric energy saved in annual heating due to the added insulation is:

$$\Delta \text{kWh}_{\text{heating}} \, = \, \frac{\left(\frac{1}{R_{existing}} - \frac{1}{R_{new}}\right) * \, Area * CRF * EFLH_{heating} * \Delta T_{AVG,heating}}{(3,412 \, * \, \eta_{heating})}$$

Where:

EFLH_{heating} = Equivalent Full Load Hours for Heating [hr] are provided in Section 2.7,

HVAC end use

 $\Delta T_{AVG,heating}$ = Average temperature difference [^{0}F] during heating season between outdoor air temperature and assumed $55^{0}F$ heating base temperature

Climate Zone (City based upon)	OA _{AVG} ,heating [°F] ⁴⁴²	$\Delta T_{ m AVG,heating}$ [°F]
North East (Fort Madison, IA)	42.1	12.9
North West (Lincoln, NE)	39.0	16.0
South East (Cape Girardeau, MO)	45.7	9.3
South West (Kaiser, MO)	45.0	10.0
St Louis, MO	43.2	11.8
Kansas City, MO	40.3	14.7
Average/Unknown (Knob Noster)	43.4	11.6

⁴⁴¹ National Solar Radiation Data Base -- 1991- 2005 Update: Typical Meteorological Year 3

http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/by_state_and_city.html . Heating Season defined as September 17th through April 13th, cooling season defined as May 20 through August 15th. For cooling season, temperatures from 8AM to 8PM were used to establish average temperatures as this is when cooling systems are expected to be loaded.

⁴⁴² National Solar Radiation Data Base -- 1991- 2005 Update: Typical Meteorological Year 3

http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/by_state_and_city.html. Heating Season defined as September 17th through April 13th, cooling season defined as May 20 through August 15th. For cooling season, temperatures from 8AM to 8PM were used to establish average temperatures as this is when cooling systems are expected to be loaded.

3,412 = Conversion from Btu to kWh.

 η_{heating} = Efficiency of heating system

= Actual. *Note: electric resistance heating and heat pumps will have an*

efficiency greater than or equal to 100%

If the building is heated with a gas furnace, there will be some electric savings in heating the building attributed to extra insulation since the furnace fans will run less.

$$\Delta kWh_{heating} = \Delta Therms * Fe * 29.3$$

Where:

 Δ Therms = Gas savings calculated with equation below.

Fe = Percentage of heating energy consumed by fans, assume 3.14% 443

29.3 = Conversion from therms to kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWH_{cooling} * CF$$

Where:

 Δ kWH_{cooling} = Annual electricity savings for cooling, as calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor for Cooling (dependent on building type)

Building Type	CF
Large Office	0.0006428016
Medium Office	0.0009793854
Small Office	0.0011136865
Warehouse	0.0022840432
Stand-alone Retail	0.0013148378
Strip Mall	0.0013203011
Primary School	0.0011165551
Secondary School	0.0014275540
Supermarket	0.0015717641
Quick Service Restaurant	0.0012226485
Full Service Restaurant	0.0011453635
Hospital	0.0002431707
Outpatient Health Care	0.0003596174
Small Hotel - Building	0.0005445289
Large Hotel - Building	0.0005787040
Midrise Apartment - Building	0.0012319283
C&I Average ⁴⁴⁴	0.0014502908

MO-TRM-2017_Vol. 2_March 31, 2017_Final

 $^{^{443}}$ Fe is not one of the AHRI certified ratings provided for furnaces, but can be reasonably estimated from a calculation based on the certified values for fuel energy (Ef in MMBtu/yr) and Eae (kWh/yr). An average of a 300 record sample (non-random) out of 1495 was 3.14% for residential units. This is, appropriately, ~50% greater than the Energy Star version 3 criteria for 2% Fe. See "Programmable Thermostats Furnace Fan Analysis.xlsx" for reference. Assumed to be consistent with C&I applications.

NATURAL GAS SAVINGS

If building uses a gas heating system, the savings resulting from the insulation is calculated with the following formula.

$$\Delta \text{Therms} = \frac{\left(\frac{1}{R_{existing}} - \frac{1}{R_{new}}\right) * Area * CRF * EFLH_{heating} * \Delta T_{AVG,heating}}{(100,000 * \eta_{heat})}$$

Where:

 $R_{existing}$ = Assembly heat loss coefficient with existing insulation [(hr- ^{0}F -ft²)/Btu]

 R_{new} = Assembly heat loss coefficient with new insulation [(hr- 0 F-ft²)/Btu]

Area = Area of the surface in square feet. Assume 1000 sq ft for planning.

EFLH_{heating} = Equivalent Full Load Hours for Heating are provided in Section 2.7, HVAC end

use

 $\Delta T_{AVG,heating}$ = Average temperature difference [0 F] during heating season (see above)

100,000 = Conversion from BTUs to Therms

 η_{heat} = Efficiency of heating system

= Actual

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: NR-SHL-WINS-V01-170331

2.12.3 Ceiling Insulation

This measure was not characterized for Version 1 of the Missouri Statewide TRM.