ENGINEERING REPORT

FOR

SANITARY SEWER SYSTEM

TO SERVE

COUNTRY HILL ESTATES

FOR

CENTRAL RIVERS WASTEWATER UTILITY, INC. P.O. BOX 528 211 PLATTE CLAY WAY KEARNEY, MO 64060

BY

COPY CONTY Vocabout

GARY V. PHILLIPS, PE MARCH 2006

WHITEHEAD CONSULTANTS, INC. 114 NORTH MAIN STREET PO BOX 461 CLINTON, MISSOURI 64735 660 885 8311

LOCATION

Country Hill Estates is a proposed 30-lot residential subdivision development located on the West side of Interstate 35 approximately 2 miles south of the business district of Cameron in Clinton County, Missouri.

EXISTING CONDITIONS

There are presently no central sewage treatment systems in the area. The closest treatment plant with collection lines is approximately 2 miles to the North in Cameron. There does not appear to be any limiting conditions for the use of a recirculating sand filter sewage treatment system to serve the subdivision. There is no proposed future growth of the development.

PROPOSED IMPROVEMENTS

The recirculating sand filter system is designed to treat 30 lots with an expected density of 3.7 people per lot and 100 gallons of sewage per person per day. The proposed treatment system will be constructed in one phase.

Each lot will have a septic treatment effluent pump (STEP) in a septic tank that will pump to a 2" low pressure main. These tanks area also called interceptor tanks. The effluent from the residential home tanks is expected to be less than 150 mg/l BOD and less than 50 mg/l TSS. The effluent will be pumped from the individual septic tanks at not more than 5 gpm to the main. The septic tanks on the lots will be sized according to the number of bedrooms of the proposed house as shown on the detail sheet. The mains will carry the screened effluent to a minimum 8,325-gallon capacity recirculation tank. The screened effluent will have no solids so manholes are not used. Pigging ports will be installed at strategic locations as shown on the plans.

The pretreated sewage in the recirculation tank will be filtered and pumped to the sand filter bed where it will be distributed and dosed on the filter media. The filtered effluent will flow out to a splitter valve that will discharge 20% and recirculate 80% back to the recirculation tank. The dosing pumps will be controlled by float switches and timers to ensure that the filter media is dosed adequately to maintain a biomat within the media. At times of low flow 100% of the effluent will be recirculated.

The operation and maintenance of the system will be provided by the continuing authority: Central Rivers Wastewater Utility, Inc. A sieve analysis of the proposed filter media will be sent with the application for operating permit.

CALCULATIONS FOR THE SAND FILTER

Design flow = 30 lots x 100 gallons per day x 3.7 persons per lot = 11,100 gpd

Filter bed area = 11,100 gpd / 5 gallons per sq.ft. = 2,220 sq.ft. (minimum)

Using a filter area of 48' x 50' = 2,400 sq ft

Pump size needed = number of orifices x = 0.43 gpm = 24 orifices / line x = 3 lines / zone x = 0.43 gpm = 30.96 gpm minimum.

Total dynamic head per spread sheet = 45.63 ft

Calculation Chart and the pump curve for the pump selected is included with this report.

Detailed specifications for the STEP system components and sand filter are included with this report.

Each orifice will be limited to 1.50 gallons per dose. The time of dose will therefore be limited to 3.5 minutes at 0.43 gpm.

The control panel will be initially set to operate the alternating pumps for 72 cycles per day. The time on will be 3.11 minutes and the time off will be for 16.89 minutes. This will produce a total dosage of 6,932.6 gallons per zone. With 8 zones the total dosage will be 55,460.5 gallons per day. This rate will permit the total pump-out at a recirculation ratio of 4:1, as planned.

Each cycle = 16.89 + 3.11 = 20.00 min. or 72 cycles per day.

Pumps 1 & 3 will operate for 3.11 minutes then shut down for 16.89 minutes. Pumps 2 & 4 will operate for 3.11 minutes then shut down for 16.89 minutes. This cycle will continue indefinitely.

The <u>organic loading rate</u> for a recirculating sand filter is determined by the formula: Rate = BOD / $0.01252 \times 80\%$ (for pretreatment in septic tanks) and BOD = 30 lots x 3.7people x 0.17 pound per person = 18.87 lbs. Rate = $18.87 \times .80 / 0.01252 = 1206 \text{ sf} < 2,400 \text{ sf designed}$.

<u>Peak Flow, Qp</u>, is determined from the equation EDU / 2 + D and EDU is determined from the Qa, (average design flow in gpd) / Kp, (normal design Q per person) (50) x P, (normal design persons per home) (3) or EDU = Qa / (Kp x P) = 11,100 / (50 x 3) = 74 for 30 lots and Qp = (74/2) + D where D is accepted as 15 therefore: Qp = 37 + 15 = 52 gpm.

The sand filter bed is designed to treat 5 gallons per square foot per day of domestic sewage based on the fact that there is no stronger waste entering the system and there will be a 4:1 recirculation ratio. The orifices are 1/8" diameter allowing 0.43 gpm dose at 5 ft of pressure head. The orifices are spaced 2 feet apart and the laterals are 2 feet apart. The pressure will be set to deliver 5 feet of head at the last orifice.

The filter bed is 50 feet deep and 48 feet wide creating 2,400 sf of area. At 5 gallons per square foot the bed can treat 12,000 gpd. The design Q is 11,100 gpd.

CALCULATIONS FOR THE STEP COLLECTION SYSTEM

Each lot has an interceptor tank with a pump that will activate when the fluid level causes the float switch to close the circuit. Therefore, unlike gravity collection system analysis the EDU is not used to compute the estimated flow in the collection mains. Each tank pump will have a flow controller to limit the flow to 5 gpm. This low flow prevents turbulence in the tank and can be accomplished using ½ horsepower pumps. A main line working sketch and a site layout plan is included at the back of this report.

The pressure in the main is computed using a C = 120 and the friction head formula: $Hf = [(10.44 \times L) / d \text{ to the } 4.87 \text{ power}] \times [(Q / C)] \text{ to the } 1.85 \text{ power}$. Where H is in feet, L is in feet, d is in inches and Q is in gpm.

The maximum pressure head in the main will be approximately 170' as determined by graphical methods.

The effluent pumps to be used in all of the tanks are rated at 5 gpm at 177 ft head. Each pump assembly will have a ¼" orifice flow controller to limit the flow from 5 to 10 gallons per minute.

Pressure Main Calculations

It is impossible to determine how many STEP units will be pumping simultaneously in any subdivision development. Historical records accumulated by Orenco for STEP systems show a design flow of ½ gallon per minute per lot. For this subdivision the expected design flow would only be $30 \times .5 = 15$ gpm. The peak flow rate for STEP systems is given by: Q = (EDU/2) + D where Q is in gpm, EDU is 2.467×100 , and D is 0 to 20 and used as 15 in this application. For 30 lots the Q would be $(2.47 \times 30)/2 + 15 = 52.05$ gpm. This would occur at the tank entrance. The velocity would be $\underline{5.25}$ fps. A layout of the main is attached for reference.

All of these computations are based on maximums and ultimate development with every lot being occupied. Actual flows and pressures will be at or less than these shown.

EMERGENCY PLAN

An automatic dialer will be connected to the control panel to notify the owner or the continuing authority of outages or other problems with the treatment system. A technical data sheet for the dialer is attached to the specifications.

At least 3 spare treatment system pumps will be kept at a readily accessible location close to the site to minimize down time of the system due to mechanical failure. At least 3 spare pumps for the individual home pump tanks will be stored on site also. Continuing authority personnel will be trained in the method of pump and other part replacement procedures.

A backup power supply generator will be stored at a convenient place to be able to be connected to the treatment system within 24 hours. If there is an electrical outage the home pump tanks will not be adding any effluent to the treatment system.

	SAND FILT	ER DESIGN CA	ALCULAT	IONS		- Control of the Cont	1	T	T
		VTRY HILLS ES	STATES 8	3/9/05		dest (to			
	#05-286					and promise			
NUMBER OF LOTS				30.00					
PERSONS PER LOT				3.70					
FLOW PER PERSON			1	00.00		-95100			
DAILY FLOW (GPD)			111	00.00	GALLONS	PER DAY			
LOADING RATE					GALLONS		Q. FT.		
FILTER SIZE SQ FT @	5GPD		22	20.00	SQ. FT. RE	QUIRED			
		WIDTH	LEN	GTH	AREA	and the same of th			
DESIGN SIZE (IN FEET	Γ)	48	5	0	2400	SQ FT DES	IGN		
NUMBER OF CELLS				2	input	in the state of th	· .		
NUMBER OF ZONES F	ER CELL			4	input				l
ZONE CALCULATIONS	3	WIDTH	LEN	GTH	AREA	To the second se			
ZONE SIZE			6	50		SQ FT DES	IGN		
NUMBER OF LATERAL	S (2' O.C.)			3		5			
LATERAL LENGTH (IN	FEET)			48		- Company			
NUMBER 1/8" ORIFICE	/LATERAL (2	2 FT O.C.)		24		The second secon			
TOTAL ORIFICES				72		į.			
GPM FOR 5' RESIDUA	LHEAD			30.96					
NUMBER OF CYCLES	PER DAY PE	R ZONE		48	72	96			
MINUTES ON (5:1 RAT	rio)			4.67	3.11	2.33			
MINUTES OFF	T			25.33	16.89	12.67			
Min. Required Velocity i	n Discharge	Pipe - 2 fps		5.62	input	4			
DISCHARGE LINE DIA				1.50	input	1"	1.25"	1.5"	2"
DISCHARGE ASSEMBI	LY FRICTION	LOSS			input	0.37	0.35	0.34	0.32
HAZEN - WILLIAMS PIF	E FOULING	FACTOR	1	20.00					
LENGTH OF SUPPLY F	PIPE			70.00	input	The state of the s			
LOSS IN SUPPLY PIPE				8.29					
DIAMETER OF LATERA	AL (INCHES)			1.00	input				
LOSS IN LATERALS	T			10.00		and the state of t			
						j	-		
ELEV. DIFF. STATIC (P	UMP TO SF	SURFACE)		7.00	input				
RESIDUAL HEAD				5.00					
OSS THROUGH DIST	RIBUTING V	ALVE		15.00	input	Î.			
TOTAL HEAD NEEDED				45.63		- Comment			

		T				T	T	Γ
RECIRCUI	ATING TAN	K CALCULATIONS	3			-		
RUN-OFF I	PERIOD (US	E IN EQUATION IN	E69)					
SUBC	IVISION =	16	,	100				
SCHO		8		Make				
	AURANTS =					1		- AV
	TUTIONS =							
	MERCIAL =			of Windows				
RES	ORTS =	16		To a section				
TOM	ELS =	16		and the second				
Qmax/Qav	% DAILY F	T		1 carried				
1	0			1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			<u> </u>	
1.5				100				
2								ļ
2.5			<u> </u>	17 month				
3			18	12.70		ļ		
3.5								
4								
5								ļ
6								-
1				Confidence				<u> </u>
8		1						ļ
9		1						
10	55			1		_		
		-						
	-							
DAILY FLOW (Q AVERAGE)	=	11100.00		Contraction of the Contraction o				
PEAK FLOW FACTOR	= .	3.33		ran Zumi				
Q MAX = PEAK X DAILY X 2	4 / RUN-OFF PE	RIOD =		input d42 thr	u d48			
Q MAX / Q AVG				input				
% DAILY AVG. FLOW FOR S	TORAGE =	-	33.00	input				
STORAGE BETWEEN 100%	RECIRC. MECI	1.		The state of the s				
	& HIGH WATE		3663.00	100				
VOLUME BETWEEN TANK I			4440.00	1.1				
VOLUME BETWEEN LOW W	VATER OFF & 1	00% RECIRC. =	2220.00	Trans.				
MINIMUM VOLUME OF REC	IRC TANK W/O	FREEBOARD =	8103.00				1	

At Parameters ——				-Calculation			-Size Pump For
Orifice Size	1/8	7	inches	Minimum Flow Rate per	0.43	gpm	Design Flow Rate 31.9 gpm
Residual Head at Last Orifice	5.0	₹.	feet	Number of Orifices per Zone	72		Total Dynamic Heat 43.8 feet
Orifice Spacing	2.00	1	feet	Total Flow Rate per Zone	31.9	gpm	Control of the Contro
Number of Laterals per Cel		12		Number of Laterals per Zone	3	4 1	Nominal diameter of distribution
Lateral Length		46.0	feet	% Flow Differential 1st and Last	9.3	%	laterals. Choose from the list of
Lateral Pipe Class/Schedult	40	ž	A. Topic Min Co.				standard sizes.
Läteral Line Size	1.00	Ť	inches	-Static Heads			
Distributing Valve Mode	4404	Ž		Lift to Manifold	7.0	feet	
Manifold Length		4.0	feet	Residual Head at Last Orifice	5.0	feet	
Manifold Pipe Class/Schedul	40	Ž					
Manifold Line Size	1.00	Z	inches	Frictional Head Losses			
Lift to Manifold		7.0	feet	∦	1.1	feet	Calculate
Transport Length		70.0	feet	Head Loss through Distributing	12.9	feet	
Transport Pipe Class/Scheduli	40	7		Head Loss in Manifold	0.5	feet	
Transport Line Size	1.50	3	inches	Head Loss in Transport Pipe	4.2	feet	Generate Chart
Discharge Assembly Size	1.50	3	inches	Head Loss through Discharge	3.1	féet	
Flow Meter	None	Ž	inches	Head Loss through Flow	0.0	feet	
'Add-on' Friction Losses	N. Charles	10.0	feet	'Add-on' Friction Losses	10.0	feet	

Pump Selection for a Pressurized System

1
ຄ
\$
ne
a
ail
1
5
=

Orenco Systems' Incorporated

814 AIRWAY AVENUE SUTHERLIN, OREGON

(800) 348-9843

TO LL FREE:

97479

TELEPHONE (541) 459-4449

													groun-				
1/8 inches	5.0 feet	feet		feet	inches			4.0 feet	1.00 inches		7.0 feet	feet	1.50 inches		inches	inches	feet
1/8	5.0	2.00	12	46.0 feet	1.00	40	4404	4.0	1.00	40	7.0	70.0 feet	1.50	40	1.50	None	10.0 feet
Orifice Size	Residual Head at Last Orifice	Orifice Spacing	Number of Laterals per Cell	Lateral Length	Lateral Line Size	Lateral Pipe Class/Schedule	Distributing Valve Model	Manifold Length	Manifold Line Size	Manifold Pipe Class/Schedule	Lift to Manifold	Transport Length	Transport Line Size	Transport Pipe Class/Schedule	Discharge Assembly Size	Flow Meter	'Add-on' Friction Losses

Calculations

Calculations	
Minimum Flow Rate per Orifice 0.43	0.43 gpm
Number of Orifices per Zone 72	
Total Actual Flow Rate 31.9	31.9 gpm
Number of Lines per Zone 3	
% Flow Differential 1st and Last Orifice 9.3 %	%
Lift to Manifold 7.0	7.0 feet
Residual Head at Last Orifice 5.0	5.0 feet
Head Loss in Laterals 1.1	1.1 feet
Head Loss Through Distributing Valve 12.9	12.9 feet
Head Loss in Manifold 0.5	0.5 feet
Head Loss in Transport Pipe 4.2	feet
Head Loss Through Discharge 3.1	feet
Head Loss Through Flow Meter 0.0	0.0 feet
'Add-on' Friction Losses 10.0 feet	feet
Total Flow Rate 31.9 gpm	mdf

100 80 Total Dynamic Head (TDH), feet

www.orenco.com

(541) 459-2884 FACSIMILE

TREATMENT I 上のこの

9

20

6

30

20

10

Net Discharge, gpm

APPENDIX 5B

VeriComm® S_RO Control Panels

Technical Data Sheet

For On-Demand Applications

Applications

VeriComm S1RO and S2RO remote telemetry control panels are used with on-demand simplex pumping operations. Coupled with the VeriComm Web-based Monitoring System, these affordable control panels give water/wastewater system operators and maintenance organizations the ability to monitor and control each individual system's performance remotely, with real-time efficiency, while remaining invisible to the homeowner.

To Specify...

To specify this panel for your installation, require the following:

Basic Control Logic: Three Operating Modes

- A "Start-up Mode" for the initial 30 days, during which the system collects trend data to establish operating standards for future reference.
- A "Normal Mode" that manages day-to-day functions.
- A "Test Mode" that suspends data collection and alarm reporting during installation and service.

Data Collection and Utilization

 Data logs of system conditions and events, such as pump run times, pump cycles, and alarm conditions.

Troubleshooting and Diagnostic Logic

 Troubleshooting capabilities that can report suspected failed components, which then trigger Alarms.

Advanced Control Logic

 Advanced control logic that activates during float malfunctions to diagnose the situation and keep the system operating normally until servicing.

Communication and Alarm Management

- Remote telemetry capabilities coupled with a Web-based monitoring application (see VeriComm Monitoring System, ATD-WEB-VCOM-1) for communication and alarm management.
 Updating of point values and receipt of queued changes during each communication sessions with host. Communication sessions that occur monthly, at a minimum, and more frequently during alarm conditions.
- · Multiple methods of communication, as follows:

Call-In to VeriComm® Host

- Automatic notification to host of "Alarms," which signal fault conditions that need to be addressed immediately (e.g., pump failure).
- Automatic notification to host of "Alerts," which signal less critical fault conditions and which trigger the panel's troubleshooting logic and alternative operating mode (e.g., stuck float switch).
- Automatic notification to host of "Updates," which include alarm updates or all-clear notifications following Alarms/ Alerts, as well as normally scheduled monthly panel reports.
- Manual, forced communication from panel to host to effect an updating of point values and receipt of queued changes.

Real-Time Direct Connection to Panel

- Manual, direct connection at the site via RS-232 serial port, to allow a local operator real-time access to detailed logged data and the ability to change point values from a laptop.
- Manual, forced communication by local operator/ homeowner at the site to initiate an auto-answer mode, allowing a remote operator real-time access to detailed logged data and the ability to change point values.

During real-time, manual connections, software with open architecture (and password security) is used; no proprietary software is required. VT100 protocol allows access and control from any computer modem (Mac or PC) with a simple communication program (e.g., Windows® HyperTerminal); multilevel password protection in panel ensures that only qualified personnel can access the panel's data.

Additional Features

- Status light indicators on the board, including . . .
 - Flashing green LED for normal operation
 - Yellow LEDs for status of digital inputs
 - Red LEDs for status of digital outputs and modern activity
- · UL-recognized and FCC-approved

For more information, try our online demo at www.vericomm.net (no password required).

Orenco Systems'

Changing the Way the World Does Wastewater®

1-800-348-9843 www.orenco.com

APPENDIX 580, 2.1 © 12/04