One Ameren Plaza 1901 Chouteau Avenue PO Box 66149 St. Louis, MO 63166-6149 314.621.3222

March 29, 2001

VIA FEDERAL EXPRESS

Mr. Dale Hardy Roberts
Secretary/Chief Regulatory Law Judge
Missouri Public Service Commission
Governor Office Building
200 Madison Street, Suite 100
Jefferson City, MO 65101

Re: In the matter of the Application of Union Electric Company (d/b/a AmerenUE) for an order to approve a change to the single phase meter testing standard under which AmerenUE currently performs its single phase meter testing Case No. E0-200/-52/

Dear Mr. Roberts:

Enclosed for filing in the above-referenced matter are an original and eight (8) copies of the Application of AmerenUE.

Please kindly acknowledge receipt of this filing by stamping as filed a copy of this letter and returning it to the undersigned in the enclosed, self-addressed, stamped envelope.

Sincerely,

David B. Hennen

Associate General Counsel

DBH:rd enclosures

BEFORE THE PUBLIC SERVICE COMMISSION

FILED²
MAR 3 0 2001

OF THE STATE OF MISSOURI

		Servissouri m
In the matter of the Application of Union)	Service Commission
Electric Company (d/b/a AmerenUE) for)	
an order to approve a change to the single phase)	Case No. E0-2001-521
meter testing standard under which AmerenUE)	
currently performs its single phase meter testing)	

APPLICATION OF UNION ELECTRIC COMPANY FOR APPROVAL TO CHANGE THE SINGLE PHASE METER TESTING STANDARD UNDER WHICH AMERENUE CURRENTLY PERFORMS ITS SINGLE PHASE METER TESTING

COMES NOW Union Electric Company, d/b/a AmerenUE ("AmerenUE" or "Company"), and hereby requests, pursuant to 4 CSR 240-2.060, approval of the Missouri Public Service Commission ("Commission") of this Application to change the single phase watt-hour meter statistical sample testing standard under which AmerenUE currently performs its single phase meter testing, and in support thereof, respectfully states the following:

1. AmerenUE is a Missouri corporation, in good standing in all respects, with its principal office and place of business located at 1901 Chouteau Avenue, St. Louis, Missouri 63103. AmerenUE is engaged in providing electric, gas and steam heating utility services in portions of Missouri as a public utility under the jurisdiction of the Missouri Public Service Commission ("Commission"). AmerenUE is also engaged in providing electric and gas service in portions of Illinois. There is already on file with the Commission a certified copy of AmerenUE's Restated Articles of Incorporation (see Commission Case No. EA-87-105), and a copy of AmerenUE's Fictitious Name Registration as filed with the Missouri Secretary of State's Office (see Commission Case No. GO-98-486), and said documents are incorporated herein by reference and made a part hereof for all purposes.

2. Pleadings, notices, orders and other correspondence concerning this Application should be addressed to:

David B. Hennen Associate General Counsel Ameren Services Company 1901 Chouteau Avenue P.O. Box 66149 (MC 1310) St. Louis, MO 63166-6149 (314) 554-4673 Fax: (314) 554-4014 Dhennen@ameren.com

3. AmerenUE does not have any pending action or unsatisfied judgments or decisions against it from any state or federal agency or court which involve customer service or rates, which action, judgment or decision has occurred within the last three (3) years. Furthermore, AmerenUE does not have any annual report or assessment fees that are overdue.

Historical Background

- 4. By application filed on August 26, 1974 (hereinafter "Prior Application"), the Company sought permission to depart from certain requirements of Rule 32 of the Commission's General Order No. 20 (hereinafter "Rule 32") regarding the testing of electric service watt-hour meters.
- 5. Rule 32 required that every electric service watt-hour meter in Missouri be periodically tested by the electric corporation furnishing the same. The schedule of testing a meter was based upon the year that it was manufactured and the rated current capacity of that meter. For example, induction type watt-hour meters not exceeding 50 amperes and manufactured after 1927, but before 1937, needed to be tested every 96 months. Watt-hour

meters manufactured during and since 1937 had to be tested every 240 months. These same testing schedules required under Rule 32 are now codified in 4 CSR 240-10.030(28).

- 6. In its Prior Application, the Company sought approval to be relieved from full compliance with Rule 32, and in furtherance thereof, submitted to the Commission an alternative testing procedure that differed from the testing requirements set forth under Rule 32.
- 7. The Company's alternative testing procedure would utilize a standardized statistical sampling technique that incorporates the mathematical principles of Statistical Quality Control as set forth in published standards of the United States Military establishments and other government agencies. (i.e. MIL-STD-414 and MIL-STD-105) (Hereinafter, such standards shall be referred to collectively as "MIL Standards".) The alternative testing procedure would insure with a confidence level of 95% that not more than 2.5% of meters in service will deviate from 100% accuracy of registration by more than plus or minus 2.0%.
- 8. In its order dated March 12, 1975, the Commission stated in its order approving the Company's request to implement the alternative testing procedure using the MIL Standards sampling technique that the new procedure was in the public interest both from an economic and a practical standpoint. In support of its order the Commission further stated: i) the new testing procedure using the MIL Standards sampling technique would result in significant cost savings of about \$1.5 million over twenty years, ii) by employing the MIL Standards sample testing technique, the Company can focus its testing on those meters that are known to need adjustment or replacement rather than testing each and every meter in operation, most of which will be found to be accurate, iii) testing every meter is time consuming and expensive and if a more feasible method can be used to achieve the same result, then that method should be implemented, iv) the

alternate testing procedure will not impact the procedure in which the Company tests its meters upon the receipt of a customer complaint.

9. The Company, in accordance with the Commission order, has utilized the alternative testing procedure to date as its means of testing the Company's single phase watt-hour meters.

Request

- 10. Pursuant to 4 CSR -10.030(28), AmerenUE hereby requests the Commission's approval to change from the MIL Standards currently used by AmerenUE as a basis for its testing procedure to the American National Standard Institute Sampling Procedures and Tables for Inspection by Attributes and by Variables. (i.e. ANSI/ASQC Z1.4 and ANSI/ASCQ Z1.9 which are attached hereto as Appendix A and B respectively and incorporated herein for all purposes.) (Hereinafter, such standards shall collectively be referred to as the "ANSI Standards".) In support thereof AmerenUE states the following:
 - A. The ANSI Standards are essentially a modernization of the MIL Standards. This is evidenced by the statements contained in the forwards of the respective ANSI Standards. The forward of ANSI/ASQC Z1.4 states that ANSI/ASQC Z1.4 "corresponds directly to MIL-STD-105E... All the tables, table numbers, and procedures used in MIL-STD-105E were retained. The tables are unchanged to make the tabular content completely compatible with MIL-STD-105E." The forward of ANSI/ASQC Z1.9 states that ANSI/ASQC Z1.9 "corresponds directly to the military standard MIL-STD-414... The tables and procedures contained

herein are those of the original MIL-STD-414, suitably modified to ... match MIL-STD-105D."

- B. All other aspects of the Company's testing procedure will remain the same as approved by the Commission in its March 12, 1975 order.
- C. The change from the MIL Standards to the ANSI Standards will not result in any additional cost to the Company's electric customers.
- D. The change from the MIL Standards to the ANSI Standards will not result in a reduction of meters tested nor change the accuracy of the meter testing procedures. The sampling procedures under the ANSI Standards will continue to insure with a confidence level of 95% that not more than 2.5 % of meters in service will deviate from 100% accuracy of registration by more than plus or minus 2.0%.
- E. In connection with the Illinois restructuring legislation, the Company was required to update its electric meter testing procedures in Illinois to incorporate the ANSI Standards. As a result, the Company purchased new software for managing its ANSI Standard based meter testing procedure in Illinois, which also could be used for testing the Company's watt-hour meters in Missouri. Employing the same testing procedure in both of the Company's jurisdictions will reduce the administrative burdens of having to maintain and track two separate, but statistically identical, meter testing programs.
- F. It is the Company's understanding that other electric utilities under the Commission's jurisdiction have been granted permission to use the ANSI

Standards as a basis for their meter testing program.

- G. In an order dated November 12, 1997 in Case No. GO-98-25, the Commission approved the Company's request to utilize the ANSI Standards as a basis for its natural gas meter testing program.
- H. A change from the MIL Standards to the ANSI Standards will not have any impact on the procedure in which the Company tests its meters upon the receipt of a customer complaint.

WHEREFORE, AmerenUE requests that this Commission enter an order granting permission, consent, approval and authority to AmerenUE to adopt the ANSI Standards as a basis for its single phase, watt-hour meter testing procedure.

Respectfully submitted

UNION ELECTRIC COMPANY d/b/a AmerenUE

David B. Hennen

MBE# 0046776

Ameren Services Company

P.O. Box 66149 (MC 1310)

St. Louis, Mo. 63166-6149

(314) 554-4673

(314) 554-4014 - fax

DHennen@ameren.com

Dated: March 29, 2001

VERIFICATION

STATE OF MISSOURI)	
)	SS
CITY OF ST. LOUIS)	

I, David B. Hennen, do state upon oath, that I am an attorney for Union Electric Company, d/b/a AmerenUE, with authority to file this Application, that I am familiar with its contents, and that they are true and correct to the best of my knowledge, information and belief.

David B. Hennen

Sworn to before me this <u>291</u> day of <u>March</u>, 2001.

Notary Public

CAROL A. HEAD Notary Public - Notary Seal STATE OF MISSOURI St. Charles County

My Commission Expires: Sept. 23, 2002

CERTIFICATE OF SERVICE

I hereby certify that a copy of the foregoing Application was mailed by U. S. mail, first class, postage paid to the following persons on this 29th day of March, 2001:

General Counsel Missouri Public Service Commission Governor Office Building 200 Madison Street, Suite 100 Jefferson City, Missouri 65101

Office of Public Counsel Governor Office Building 200 Madison Street, Suite 650 Jefferson City, Missouri 65101

David B. Hennen

AMERICAN NATIONAL STANDARD

SAMPLING PROCEDURES AND TABLES FOR INSPECTION BY VARIABLES FOR PERCENT NONCONFORMING

PREPARED BY
AMERICAN SOCIETY FOR QUALITY CONTROL STANDARDS COMMITTEE
FOR
AMERICAN NATIONAL STANDARDS COMMITTEE
Z-1 ON QUALITY ASSURANCE

SPONSOR AND SECRETARIAT
AMERICAN SOCIETY FOR QUALITY CONTROL

Abstract

Sampling Procedures and Tables for Inspection by Variables for Percent Nonconforming is an acceptable sampling system to be used on a continuing stream of lots for AQL specified. It provides tightened, normal, and reduced plans to be used on measurements which are normally distributed. Variation may be measured by sample standard deviation, sample range, or known standard deviation. It is applicable only when the normality of the measurements is assured.

AMERICAN NATIONAL STANDARD: An American National Standard implies a consensus of those substantially concerned with its scope and provisions. An American National Standard is intended as a guide to aid the manufacturer, the consumer, and the general public. The existence of an American National Standard does not in any respect preclude anyone, whether he has approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard. American National Standards are subject to periodic review and users are cautioned to obtain the latest edition.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken to reaffirm, revise, or withdraw this standard no later than five years from the date of publication. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.

Published by: ASQC

611 East Wisconsin Avenue Milwaukee, Wisconsin 53202

Copyright © 1993 by the American Society for Quality Control

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

Printed in the United States of America

AMERICAN NATIONAL STANDARD ANSI/ASQC Z1.9-1993

Foreword

(This foreword is not a part of American National Standard - Sampling Procedures and Tables for Inspection by Variables for Percent Nonconforming, Z1.9-1993)

This standard is a revision of ANSI/ASQC Z1.9-1972, "Sampling Procedures and Tables for Inspection by Variables for Percent Defective", which corresponds directly to the military standard MIL-STD-414. The present revision ANSI/ASQC Z.1-1993 was undertaken to allow complete interchangeability of the tabulated plans with ISO/DIS 3951, which provides a graphical means for implementation of the plans. ANSI/ASQC Z1.9-1993 is also roughly matched to ANSI Z1.4, which corresponds directly to the military standard MIL-STD-105D. The matching is sufficient to allow inspection under either standard for stated AQLs and Inspection Levels with reasonably equivalent protection. Tables are given in Appendix E which shows differences in protection between ANSI Z1.9-1993 and ANSI Z1.4. These are for use in critical applications to determine whether moving from one standard to the other is appropriate.

The tables and procedures contained herein are those of the original MIL-STD-414, suitably modified to achieve correspondence with the aforementioned ISO/DIS 3951 and matching with MIL-STD-105D. These modifications include:

- 1. Rearranging the code letters assigned to the various plans by eliminating the plans for the original codes J and L and dropping the symbol O. The codes were then relettered alphabetically.
- 2. Relabeling the original Inspection Levels I,II,III,IV,V as S3,S4,I,II,III.
- 3. Adjusting lot size ranges corresponding to various inspection levels to match MIL-STD-105D.
- 4. Deleting original AQLs: 0.04,0.065 and 15.00 percent. (Users who wish to use these AQL values should refer to MIL-STD-414.)
- 5. Replacing the original rules for switching and discontinuance of inspection by those of MIL-STD-105D (slightly revised).
- 6. Deletion of Section A2 on "Classification of Defects" and substituting a new section on "Definitions and Terminology" which refers to ANSI/ASQC Standard A2-1987 as a reference source for terminology and definitions. ANSI/ASQC Z1.6-1987 contains modifiers for the degree of seriousness of defects to be used in defect classifications.
- 7. Deletion of Section A8 on "Estimation of Process Average" and substituting a new section calling attention to the need for verifying the assumption of normality of the underlying distribution of individual measurements.
- 8. Substitution of the word "nonconformity" for "defect", "nonconformance" for "defective", and "percent nonconforming" for "percent defective" throughout.
- 9. Addition of an appendix showing the match between Z1.9-1993 and Z1.4.

NOTE: A compatible and interchangeable graphical version of this standard is contained in ISO/DIS 3951.

Suggestions for improvement of this standard will be welcome. They should be sent to the standard's sponsor, ASQC. Committee members serving as writers and editors of this standard were:

Joseph M. Califano, Chairperson Michael Yargosz August Mundel Harrison Wadsworth Edward G. Schilling

. .

CONTENTS

				Page
			0.0000000000000000000000000000000000000	
SECTION	_	GENERAL DE	SCRIPTION OF SAMPLING PLANS	1
	Tables:			
		Table A-1	AQL Conversion Table	
		Table A-2	Sample Size Code Letters	5
		Table A-3	Operating Characteristic Curves for Sampling Plans	
			of Sections B, C, and D (Graphs for Sample Size Code Letters B through P)	6
~E~~~		12 4 Yo 1 4 YO 12 TOWN	_	0
SECTION	В		UNKNOWN—STANDARD	21
			METHOD	
Part I	SINGL	E SPECIFICATI	ON LIMIT	31
	Exampl	es:		
		Example B-1	Example of Calculations: Single Specification	
			Limit—Form 1	33
		Example B-2	Example of Calculations: Single Specification	
			Limit—Form 2	34
	Tables:			
	•	Table B-1	Master Table for Normal and Tightened Inspection	
			(Form 1—Single Limit)	35
		Table B-2	Master Table for Reduced Inspection (Form 1—	
			Single Limit)	36
Part II	DOUB	LE SPECIFICAT	ION LIMIT	37
	Exampl	les:		
	•	Example B-3	Example of Calculations: Double Specification	
			Limit—One AQL Value for Upper and Lower	
			Specification Limit Combined	39
		Example B-4	Example of Calculations: Double Specification	
			Limit—Different AQL Values for Upper and	
			Lower Specification Limits	40
	Tables:			
		Table B-3	Master Table for Normal and Tightened Inspection	41
		Table D 4	(Double Limit and Form 2—Single Limit)	41
		Table B-4	Master Table for Reduced Inspection (Double Limit and Form 2—Single Limit)	42
		Table B-5	Table for Estimating the Lot Percent Nonconforming	
		Table B-6	Values of F for Maximum Standard Deviation (MSD)	
	Append		Definitions	
SECTION			UNKNOWN—RANGE METHOD	
Part I	SINGL	E SPECIFICATI	ON LIMIT	34
	Examp			
		Example C-1	Example of Calculations: Single Specification	
			Limit—Form 1	56
		Example C-2	Example of Calculations: Single Specification	
	00 - 1. T		Limit—Form 2	57
	Tables:		Master Table for Name 1 and Tichang 4 To	
		Table C-1	Master Table for Normal and Tightened Inspection (Form 1—Single Limit)	50
		Table C-2	Master Table for Reduced Inspection	
		1 aoic C-2	(Form 1—Single Limit)	50

		1 age
Part II	DOUBLE SPECIFICATION LIMIT	60
Examples:		
-	Example of Calculations: Double Specification	
	Limit—One AQL Value for Upper and Lower	
	Specification Limit Combined	62
Example C-4	Example of Calculations: Double Specification	••••
	Limit—Different AQL Value for Upper and Lower	
	Specification Limit Combined	63
Tables:		
Table C-3	Master Table for Normal and Tightened Ingression	
Table C-3	Master Table for Normal and Tightened Inspection (Double Limit and Form 2—Single Limit)	64
Table C 4	Master Table for Reduced Inspection (Double	
Table C-4	Limit and Form 2—Single Limit)	65
Table C-5	Table for Estimating the Lot Percent Nonconforming	
Table C-5		
	Values of f for Maximum Average Range (MAR)	
Appendix C	Definitions	
SECTION D.	VARIABILITY KNOWN	
Part I	SINGLE SPECIFICATION LIMIT	77
Examples:		
	Example of Calculations: Single Specification Limit—Form 1	
	Example of Calculations: Single Specification Limit—Form 2	80
Tables:		
Table D-1	Master Table for Normal and Tightened Inspection	
	(Form 1—Single Limit)	
Table D-2	Master Table for Reduced Inspection (Form 1—Single Limit)	83
Part II	DOUBLE SPECIFICATION LIMIT	85
Examples:		
	Example of Calculations: Double Specification	
•	Limit—One AOL Value for Upper and Lower	
	Specification Limit Combined	87
Example D-3b	Example of Calculations: Double Specification Limit—One AQL Value	
•	for Upper and Lower Specification Limit Combined	88
Example D-4	Example of Calculations: Double Specification	
	Limit—Different AQL Values for Upper and	
	Lower Specification Limits	89
Tables:	•	
Table D-3	Master Table for Normal and Tightened Inspection	
	(Double Limit and Form 2—Single Limit)	90
Table D-4	Master Table for Reduced Inspection (Double	
	Limit and Form 2—Single Limit)	92
Table D-5	Table for Estimating the Lot Percentage Nonconforming	94
Table D-6	Value of $F \sigma$ for Maximum Process Standard Deviation	95
Appendix D	Definitions	
••		
SECTION E	APPENDIX—MATCH WITH ANSI Z1.4	97
	TON	
Tables:		
	g Code Letters and ANSI/ASQC Z1.9 Sample Size	98
2 ANSI/A	SQC Z1.9-1993 (Revised MIL-STD-414) Percentage Points	99
	.4 (MIL-STD-105D) Percentage Points	
	ce ANSI/ASQC Z1.9-1993 (Revised 414) Minus ANSI Z1.4 (105D)	

INTRODUCTION

This Standard was prepared to meet a growing need for the use of standard sampling plans for inspection by variables in procurement, supply and storage, and maintenance inspection operations. The variables sampling plans apply to a single quality characteristic which can be measured on a continuous scale, and for which quality is expressed in terms of percent nonconforming. The theory underlying the development of the variables sampling plans, including the operating characteristic curves, assumes that measurements of the quality characteristics are independent, identically distributed normal random variables.

It is important to note that variables sampling plans are not to be used indiscriminately, simply because it is possible to obtain variables measurement data. In considering applications where the normality or independence assumptions may be questioned, the user is advised to consult his technical agency to determine the feasibility of application.

In comparison with attributes sampling plans, variables sampling plans have the advantage of usually resulting in considerable savings in sample size for comparable assurance as to the correctness of decisions in judging a single quality characteristic, or for the same sample size, greater assurance is obtained using variables plans. Attributes sampling plans have the advantage of greater simplicity, of being applicable to either single or multiple quality characteristics, and of requiring no knowledge about the distribution of the continuous measurements of any of the quality characteristics.

This Standard is divided into four sections. Section A describes general procedures of the sampling plans. Sections B and C describe specific procedures and applications of the sampling plans when variability is unknown. In Section B the estimate of lot standard deviation is used as the basis for an estimate of the unknown variability, and in Section C the average range of the sample is used. Section D describes the plans when variability is known.

Each of Section B, C, and D is divided into two parts: (I) Sampling Plans for the Single Specification Limit Case, and (II) Sampling Plans for the Double Specification Limit Case. For the single specification limit case, the acceptability criterion is given in two forms: Form 1 and Form 2. Either of the forms may be used, since they are identical as to sample size and decision for lot acceptability or rejectability. In deciding whether to use Form 1 or Form 2, the following points should be borne in mind. Form 1 provides the lot acceptability criterion without estimating lot percent nonconforming. The Form 2 lot acceptability criterion requires estimates of lot percent nonconforming.

Operating Characteristic Curves in Table A-3 are for the Normal Sampling Plans and show the relationship between quality and percent of lots expected to be acceptable for the quality characteristic inspected. As stated, these Operating Characteristic Curves are based on the assumption that measurements are selected at random from a normal distribution.

The corresponding sampling plans in Sections B, C, and D were matched as closely as possible under a system of fixed sample size with respect to their Operating Characteristic Curves. Operating Characteristic Curves in Table A-3 have been computed for the sampling plans based on the estimate of lot standard deviation of unknown variability. They are equally applicable for sampling plans based on the average range of the sample of unknown variability and those based on known variability.

Certain characteristics concerning the sampling plans in Section B and C and those in Section D should be noted. Plans based on the estimate of unknown variability require fewer sample units for comparable assurance when the estimate of lot standard deviation is used than when the average range of the sample is used; on the other hand, plans using the average range of the sample require simpler computations. Plans using known variability require considerably fewer sample units for comparable assurance than either of the plans of unknown variability; however, the requirement of known variability is a stringent one. The user is well advised to consult a statistician before applying sampling plans using known variability.

Table B-6 provides values of the factor F to compute the maximum standard deviation: MSD. The MSD serves as a guide for the magnitude of the estimate of lot standard deviation when using plans for the double specification limit case, based on the estimate of lot standard deviation of unknown variability. Similarly Table C-6 provides values of the factor f to compute the maximum average range: MAR. The MAR serves as a guide for the magnitude of the average range of the sample when using plans for the double specification limit case, based on the average range of the sample of unknown variability. The estimate of lot standard deviation or average range of the sample, if it is less than the MSD or MAR, respectively, helps to insure, but does not guarantee, lot acceptability.

All symbols and their definitions are given in the appendix of the applicable section. An illustration of the computations and procedures used in the sampling plans is given in the examples of Parts I and II of the applicable section. The computations involve simple arithmetic operations such as addition, subtraction, multiplication, and division of numbers, or at most, the taking of a square root of a number: The user should become familiar with the general procedures of Section A, and refer to the applicable section for detailed instructions regarding specific procedures, computations, and tables for the sampling plans.

The Appendix—Section E—provides information about the match between this variables standard, ANSI/ASQC Z1.9-1993, and the corresponding attributes standard, ANSI Z1.4.

SECTION A

GENERAL DESCRIPTION OF SAMPLING PLANS

A1. SCOPE

- A1.1 <u>Purpose</u>. This Standard establishes sampling plans and procedures for inspection by variables for use in procurement, supply and storage, and maintenance inspection operations. When applicable this Standard shall be referenced in the specification, contract, or inspection instructions, and the provisions set forth herein shall govern.
- A1.2 <u>Inspection</u>. Inspection is the process of measuring, examining, testing, gauging, or otherwise comparing the "unit or product" (See A1.4) with the applicable requirements.
- A1.3 <u>Inspection by Variables</u>. Inspection by variables is inspection wherein a specified quality characteristic (See A1.5) on a unit of product is measured on a continuous scale, such as pounds, inches, feet per second, etc., and a measurement is recorded.
- A1.4 Unit of Product. The unit of product is the entity of product inspected in order to determine its measurable quality characteristic. This may be a single article, a pair, a set, a component of an end product, or the end product itself. The unit of product may or may not be the same as the unit of purchase, supply, production, or shipment.
- A1.5 Quality Characteristic. The quality characteristic for variables inspection is that characteristic of a unit of product that is actually measured to determine conformance with a given requirement.
- A1.6 Specification Limits. The specification limit(s) is the requirement that a quality characteristic should meet. This requirement may be expressed as an upper specification limit; or a lower specification limit, called herein a single specification limit; or both upper and lower specification limits, called herein a double specification limit.
- A1.7 <u>Sampling Plans</u>. A sampling plan is a procedure which specifies the number of units of product from a lot which are to be inspected, and the criterion for acceptability of the lot. Sampling plans designated in this Standard are applicable to the inspection of a single quality characteristic of a unit of product. These plans may be used whether procurement inspection is performed at the plant of a prime

contractor, subcontractor or vendor, or at destination, and also may be used when appropriate in supply and storage, and maintenance inspection operations.

A2. DEFINITIONS AND TERMINOLOGY

The definitions and terminology employed in this standard are in accord with ANSI/ASQC Standard A2-1987 (Terms, Symbols, and Definitions for Acceptance Sampling Involving the Percent or Proportion of Variant Units in a Lot or Batch). The following two definitions are of particular importance in application of this standard:

DEFECT: A departure of a quality characteristic from its intended level or state that occurs with a severity sufficient to cause an associated product or service not to satisfy intended normal, or foreseeable, usage requirements.

NONCONFORMITY: A departure of a quality characteristic from its intended level or state that occurs with severity sufficient to cause an associated product or service not to meet a specification requirement.

These acceptance sampling plans for variables are given in terms of the percent or proportion of product in a lot or batch that depart from some requirement. The general terminology used within the document will be given in terms of percent of nonconforming units or number of nonconformities, since these terms are likely to constitute the most widely used criteria for acceptance sampling.

A3. PERCENT NONCONFORMING

- A3.1 <u>Expression of Nonconformance</u>. The extent of nonconformance of product shall be expressed in terms of percent nonconforming.
- A3.2 <u>Percent Nonconforming</u>. The percent nonconforming for a quality characteristic of a given lot of product is the number of units of product nonconforming for that characteristic divided by the total number of units of product and multiplied by one hundred. Expressed as an equation: Percent nonconforming =

Number of nonconforming units x 100

A4. ACCEPTABLE QUALITY LEVEL

A4.1 Acceptable Quality Level. The acceptable quality level (AQL) is defined as the maximum percentage or proportion of nonconforming units in a lot or batch that, for purposes of acceptance sampling, can be considered satisfactory as a process average. The acceptable quality level is a nominal value expressed in terms of percent nonconforming specified for a single quality characteristic. Certain numerical values of AQL ranging from .10 to 10.00 percent are shown in Table A-1. When a range of AQL values is specified, it shall be treated as if it were equal to the value of AQL for which sampling plans are furnished and which is included within the AQL range. When the specified AQL is a particular value other than those for which sampling plans are furnished, the AQL, which is to be used in applying the provisions of this Standard, shall be as shown in Table A-1.

A4.2 Specifying AQLs. The particular AQL value to be used for a single quality characteristic of a given product must be specified. In the case of a double specification limit, either an AQL value is specified for the total percent nonconforming outside of both upper and lower specification limits, or two AQL values are specified, one for the upper limit and another for the lower limit.

A5. SUBMITTAL OF PRODUCT

A5.1 Lot. The term "lot" shall mean "inspection lot," i.e., a collection of units of product from which a sample is drawn and inspected to determine compliance with the acceptability criterion.

A5.1.1 <u>Formation of Lots</u>. Each lot shall, as far as is practicable, consist of units of product of a single type, grade, class, size, or composition manufactured under essentially the same conditions.

A5.2 <u>Lot Size</u>. The lot size is the number of units of product in a lot, and may differ from the quantity designated in the contract or order as a lot for production, shipment, or other purposes.

A6. LOT ACCEPTABILITY

A6.1 <u>Acceptability Criterion</u>. The acceptability of a lot of material submitted for inspection shall be determined by use of one of the sampling plans associated with a specified

value of the AQL(s). This Standard provides sampling plans based on known and unknown variability. In the latter case two alternative methods are provided, one based on the estimate of lot standard deviation and the other on the average range of the sample. These are referred to as the standard deviation method and the range method. For the case of a single specification limit, the acceptability criterion is given in two forms. These are identified as Form 1 and Form 2.

A6.2 Choice of Sampling Plans. Sampling plans and procedures are provided in Section B if variability is unknown and the standard deviation method is used, in Section C if variability is unknown and the range method is used, and in Section D if variability is known. Unless otherwise specified, unknown variability, standard deviation method sampling plans, and the acceptability criterion of Form 2 (for the single specification limit case) shall be used.

A7. SAMPLE SELECTION

A7.1 Determination of Sample Size. The sample size is the number of units of product drawn from a lot. Relative sample sizes are designated by code letters. The sample size code letter depends on the inspection level and the lot size. There are five inspection levels: Special Levels S3, S4, and General Levels I, II and III. Unless otherwise specified, Inspection Level II shall be used. However, Inspection Level I may be specified when less discrimination is needed, or Level III may be specified for greater discrimination. Levels S3 and S4 may be used when relatively small sample sizes are necessary and large sampling risks can or must be tolerated. The sample size code letter applicable to the specified inspection level and for lots of given size shall be obtained from Table A-2.

A7.2 <u>Drawings of Samples</u>. A sample is one or more units of product drawn from a lot. Units of the sample shall be selected without regard to their quality.

A8. NORMALITY ASSUMPTION

This standard assumes the underlying distribution of individual measurements to be normal in shape. Failure of this assumption to be valid will affect the OC curves and probabilities based on these curves. In particular it will affect the estimate of percent nonconforming calculated from the mean and standard deviation of the distribution. The assumption should be verified prior to use of the standard.

A variety of statistical tests and graphical techniques are available for this purpose. A person knowledgeable in statistics should be consulted who can advise whether the distribution appears suitable for sampling by variables.

A9. SPECIAL PROCEDURE FOR APPLICATION OF MIXED VARIABLES-ATTRIBUTES SAMPLING PLANS

A9.1 <u>Applicability</u>. A mixed variables and attributes sampling plan may be used under either of the two following conditions: (Note: No Operating Characteristic Curves are provided for the mixed variables-attributes sampling plans herein and those in Table A-3 are not applicable.)

Condition A. Ample evidence exists that the product submitted for inspection is selected by the supplier to meet the specification limit(s) by a screening process from a larger quantity of product which is not being produced within the specification limit(s).

<u>Condition B</u>. Other conditions exist that warrant the use of a variables-attributes sampling plan.

A9.2 Definitions.

- A9.2.1 <u>Inspection by Attributes</u>. Inspection by attributes is inspection wherein the unit of product is classified simply as a nonconforming unit or conforming with respect to a given requirement or set of requirements.
- A9.2.2 <u>Mixed Variables-Attributes Inspection</u>. Mixed variables-attributes inspection is inspection of a sample by attributes, in addition to inspection by variables already made of a previous sample, before a decision as to acceptability or rejectability of a lot can be made.
- A9.3 <u>Selection of Sampling Plans</u>. The mixed variablesattributes sampling plan shall be selected in accordance with the following:
- A9.3.1 Select the variables sampling plan in accordance with Section B, C, or D.
- A9.3.2 Select the attributes sampling plan from ANSI Z1.4 (MIL-STD-105D) using a single sampling plan and tightened inspection. The same AQL value(s) shall be used for the attributes sampling plan as used for the variables plan of paragraph A9.3.1.

(Additional sample items may be drawn, as necessary, to satisfy the requirements for sample size of the attributes sampling plan. Count as a nonconforming unit each sample item falling outside of specification limit(s).)

A9.4 <u>Determination of Acceptability</u>. A lot meets the acceptability criterion if one of the following conditions is satisfied:

<u>Condition A</u>. The lot complies with the appropriate variables acceptability criterion of Section B, C. or D.

<u>Condition B</u>. The lot complies with the acceptability criterion of ANSI Z1.4.

- A9.4.1 If Condition A is not satisfied, proceed in accordance with the attributes sampling plan to meet Condition B.
- A9.4.2 If Condition B is not satisfied, the lot does not meet the acceptability criterion.

A10. NORMAL, TIGHTENED AND REDUCED INSPECTION

- A10.1 <u>Initiation of Inspection</u>. Normal inspection will be used at the start of inspection unless otherwise directed by the responsible authority.
- A10.2 <u>Continuation of Inspection</u>. Normal, tightened or reduced inspection shall continue unchanged on successive lots or batches except where the switching procedures given below require change.

A10.3 Switching Procedures.

- A10.3.1 Normal to Tightened. When normal inspection is in effect, tightened inspection shall be instituted when 2 out of 5 consecutive lots or batches have been rejected on original inspection (i.e., ignoring resubmitted lots or batches for this procedure).
- A10.3.2 <u>Tightened to Normal</u>. When tightened inspection is in effect, normal inspection shall be instituted when 5 consecutive lots or batches have been considered acceptable on original inspection.
- A10.3.3 Normal to Reduced. When normal inspection is in effect, reduced inspection shall be instituted providing that all of the following conditions are satisfied:

- The preceding 10 lots or batches have been on normal inspection and none has been rejected;
- b. Production is at a steady rate; and
- c. Reduced inspection is considered desirable by the responsible authority and is permitted by the contract or specification.
- A10.3.4 <u>Reduced to Normal.</u> When reduced inspection is in effect, normal inspection shall be instituted if any of the following occur on original inspection:

- a. A lot or batch is rejected; or
- b. Production becomes irregular or delayed; or
- c. Other conditions warrant that normal inspection shall be instituted.

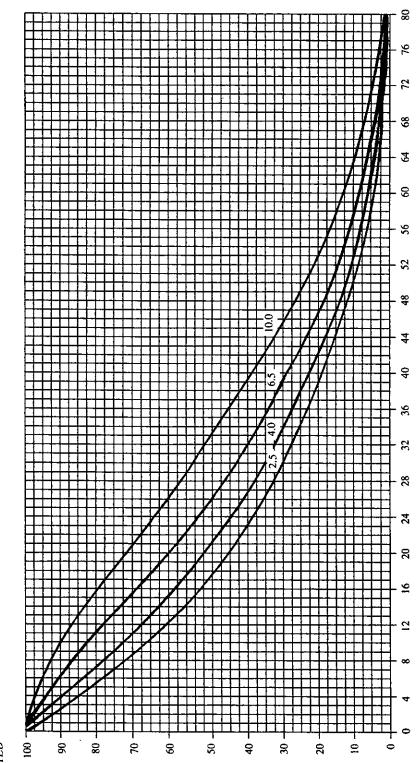
A10.4 Discontinuation of Inspection. In the event that 10 consecutive lots or batches remain on tightened inspection (or such other number as may be designated by the responsible authority), inspection under the provisions of this document should be discontinued pending action to improve the quality of submitted material.

TABLE A-1
AQL Conversion Table

•	ed AQL values in these ranges.	Use this AQL value
- 0.110 0.165 0.280 0.440 0.700 1.10 1.65 2.80 4.40 7.00	to 0.109 to 0.164 to 0.279 to 0.439 to 0.669 to 1.09 to 1.64 to 2.79 to 4.39 to 6.99 to 10.9	0.10 0.15 0.25 0.40 0.65 1.0 1.5 2.5 4.0 6.5 10.0
1		ľ

TABLE A-2²
Sample Size Code Letters¹

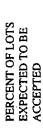
		Inspection Levels			
Le	ot Si	ze	Spe	cial	General
		·	<u>S3</u>	<u>\$4</u>	I II III
2	to	8	В	В	ввс
9	to	15	В	В	BBD
16	to	25	В	В	все
26	to	50	В	В	CDF
51	to	90	В	В	DÈG
91	to	150	В	С	EFH
151	to	280	В	D	FGI
281	to	400	С	E	GHJ
401	to	500	С	E	GIJ
501	to	1,200	D	F	нјк
1,201	to	3,200	Ε	G	IKL
3,201	to	10,000	F	Н	JLM
10,001	to	35,000	G	I	K M'N
35,001	to	150,000	Н	J	LNP
150,001	to	500,000	Н	K	MPP
500,001	and	over	Н	K	NPP

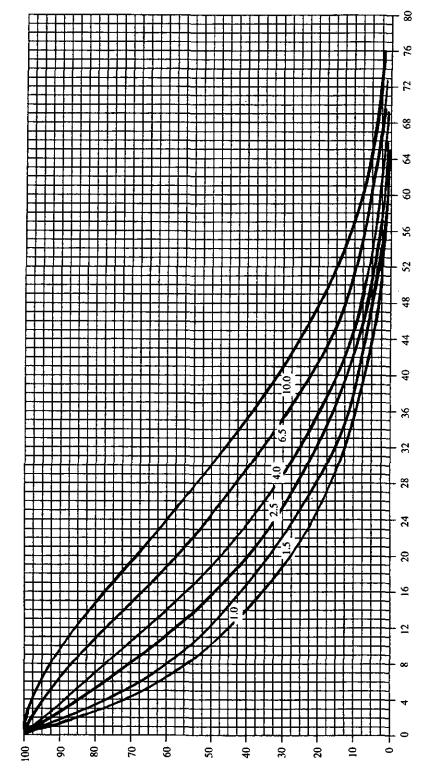

Sample size code letters given in body of table are applicable when the indicated inspection levels are to be used.

The theory governing inspection by variables depends on the properties of the normal distribution and, therefore, this method of inspection is only applicable when there is reason to believe that the frequency distribution is normal.

TABLE A-3
Operating Characteristic Curves for Sampling Plans
of Sections B, C, and D

Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method Sample Size Code Letter B Table A-3

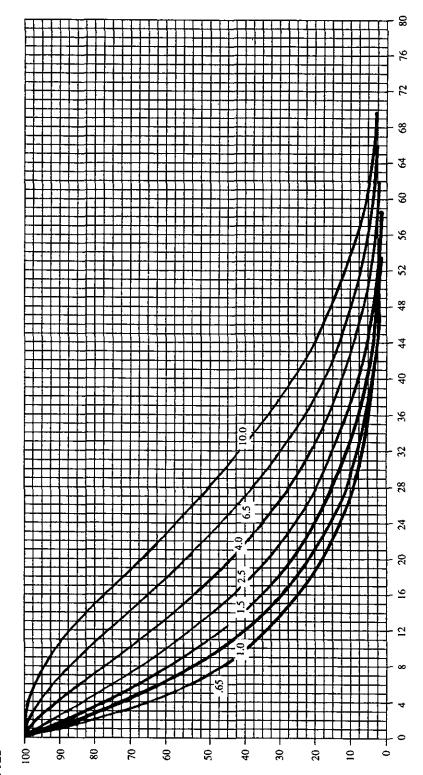

PERCENT OF LOTS
EXPECTED TO BE
ACCEPTED



The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.

QUALITY OF SUBMITTED LOTS (In percent nonconforming)
NOTE: Figures on curves are Acceptable Quality Levels for normal inspection.

Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method Sample Size Code Letter C Table A-3



The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.

QUALITY OF SUBMITTED LOTS (In percent nonconforming) · NOTE: Figures on curves are Acceptable Quality Levels for normal inspection.

Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method Sample Size Code Letter D Table A-3

PERCENT OF LOTS
EXPECTED TO BE
ACCEPTED

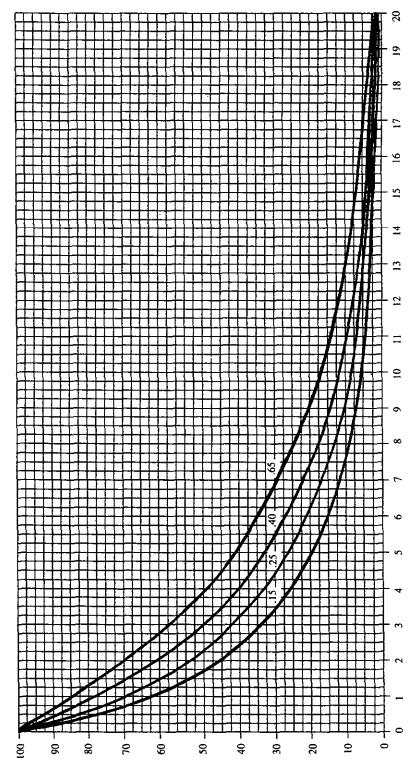
The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.

QUALITY OF SUBMITTED LOTS (In percent nonconforming) NOTE: Figures on curves are Acceptable Quality Levels for normal inspection.

Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method Sample Size Code Letter E Table A-3

PERCENT OF LOTS
EXPECTED TO BE
ACCEPTED

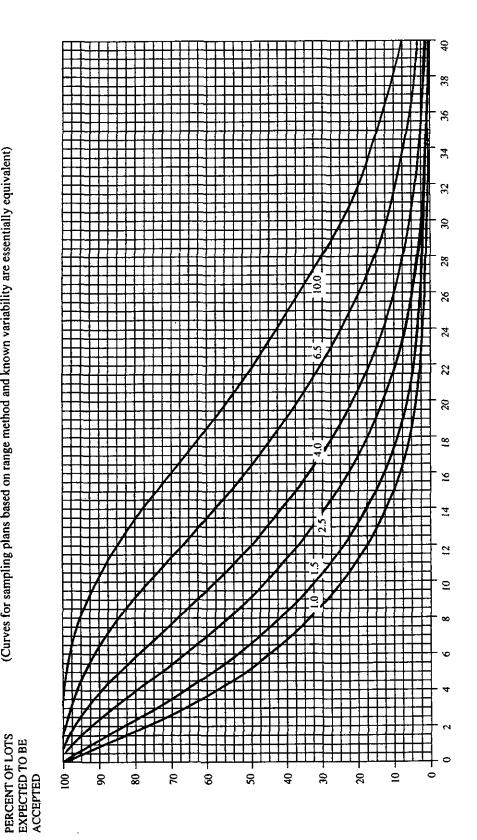
(Curves for sampling plans based on range method and known variability are essentially equivalent)



The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.

QUALITY OF SUBMITTED LOTS (In percent nonconforming) NOTE: Figures on curves are Acceptable Quality Levels for normal inspection.

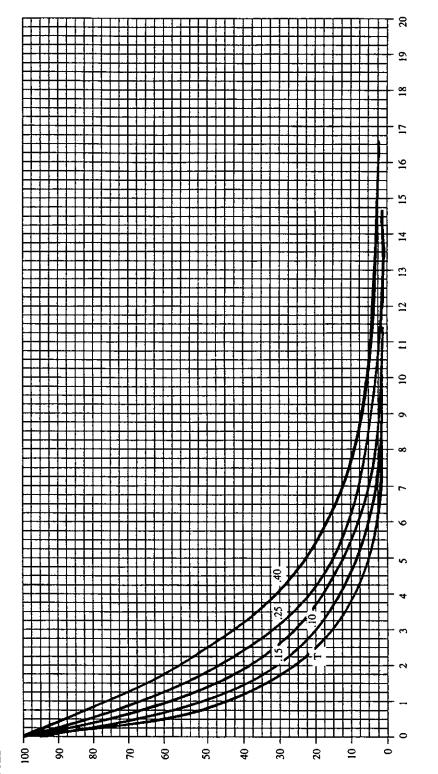
Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method (Curves for sampling plans based on range method and known variability are essentially equivalent) Sample Size Code Letter F Table A-3



The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.

QUALITY OF SUBMITTED LOTS (In percent nonconforming) NOTE: Figures on curves are Acceptable Quality Levels for normal inspection.

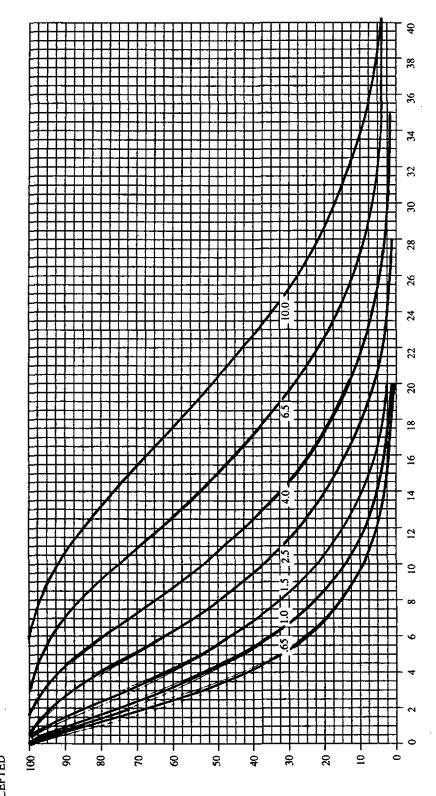
Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method Table A-3



The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.

QUALITY OF SUBMITTED LOTS (In percent nonconforming) NOTE: Figures on curves are Acceptable Quality Levels for normal inspection.

Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method Sample Size Code Letter G Table A-3

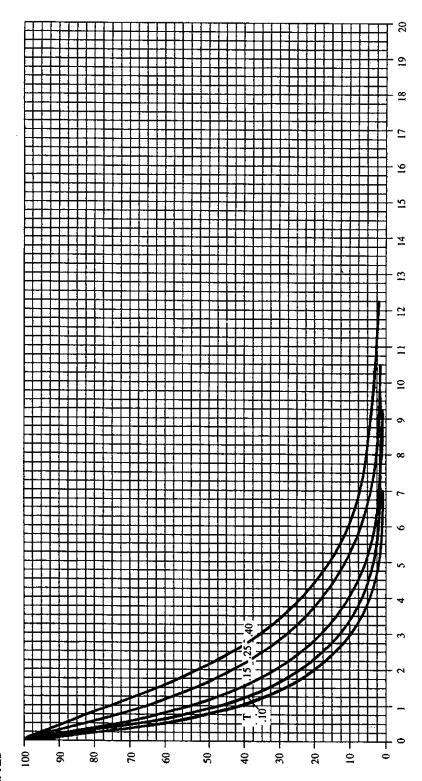

The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.

OUALITY OF SUBMITTED LOTS (In percent nonconforming)
NOTE: Figures on curves are Acceptable Quality Levels for normal inspection.
T denotes plan used exclusively on tightened inspection and provides symbol for

identification of appropriate OC curve.

Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method Sample Size Code Letter G (Continued) Table A-3

PERCENT OF LOTS
EXPECTED TO BE
ACCEPTED

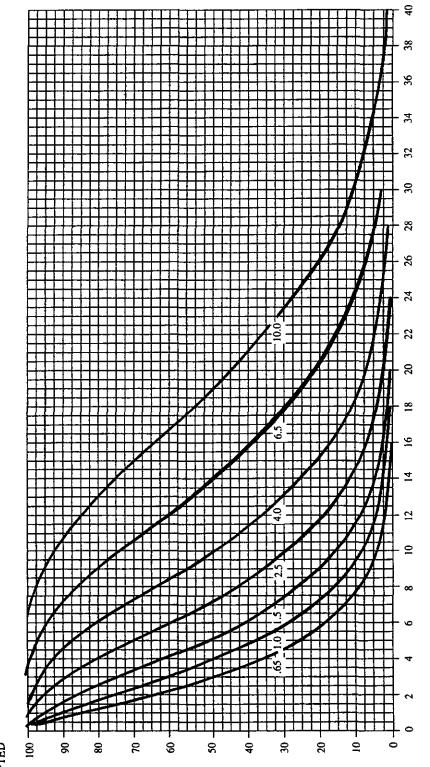


The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.

QUALITY OF SUBMITTED LOTS (In percent nonconforming)
NOTE: Figures on curves are Acceptable Quality Levels for normal inspection.

Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method (Curves for sampling plans based on range method and known variability are essentially equivalent) Sample Size Code Letter H Table A-3

PERCENT OF LOTS
EXPECTED TO BE
ACCEPTED

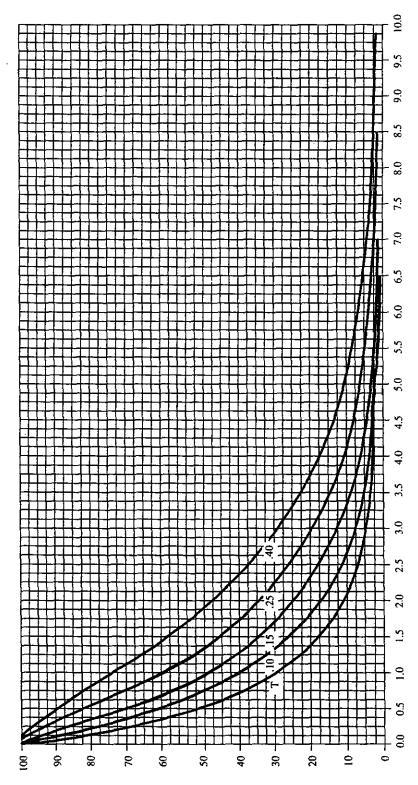


The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.

QUALITY OF SUBMITTED LOTS (In percent nonconforming) NOTE: Figures on curves are Acceptable Quality Levels for normal inspection. T denotes plan used exclusively on tightened inspection and provides symbol for identification of appropriate OC curve.

Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method Sample Size Code Letter H (Continued) Table A-3

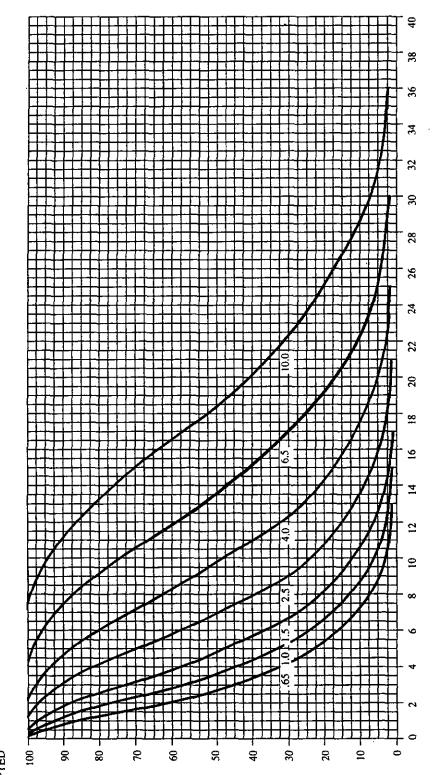
PERCENT OF LOTS
EXPECTED TO BE
ACCEPTED



The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.

QUALITY OF SUBMITTED LOTS (In percent nonconforming) NOTE: Figures on curves are Acceptable Quality Levels for normal inspection.

Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method Sample Size Code Letter I Table A-3

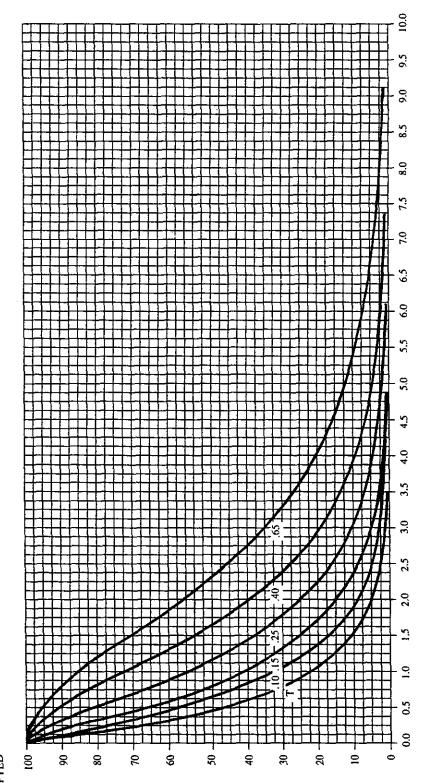

The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.

QUALITY OF SUBMITTED LOTS (In percent nonconforming)
NOTE: Figures on curves are Acceptable Quality Levels for normal inspection.
T denotes plan used exclusively on tightened inspection and provides symbol for identification of appropriate OC curve.

Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method Sample Size Code Letter I (Continued) Table A-3

PERCENT OF LOTS
EXPECTED TO BE
ACCEPTED

(Curves for sampling plans based on range method and known variability are essentially equivalent)


The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.

QUALITY OF SUBMITTED LOTS (In percent nonconforming) NOTE: Figures on curves are Acceptable Quality Levels for normal inspection.

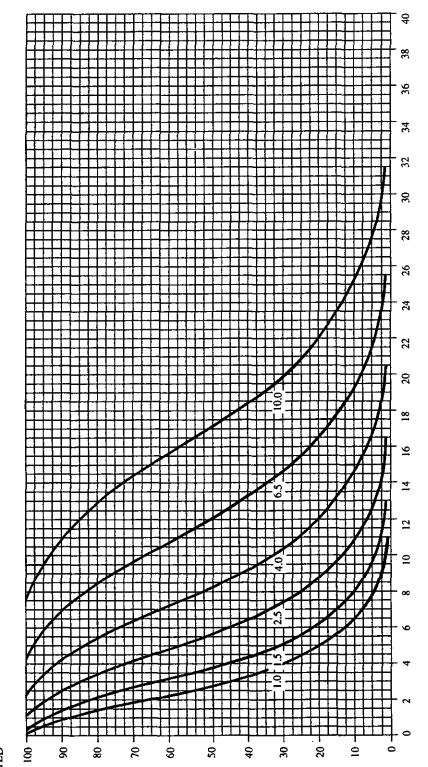
Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method (Curves for sampling plans based on range method and known variability are essentially equivalent) Sample Size Code Letter J Table A-3

PERCENT OF LOTS

EXPECTED TO BE
ACCEPTED

The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.

QUALITY OF SUBMITTED LOTS (In percent nonconforming)
NOTE: Figures on curves are Acceptable Quality Levels for normal inspection.
T denotes plan used exclusively on tightened inspection and provides symbol for

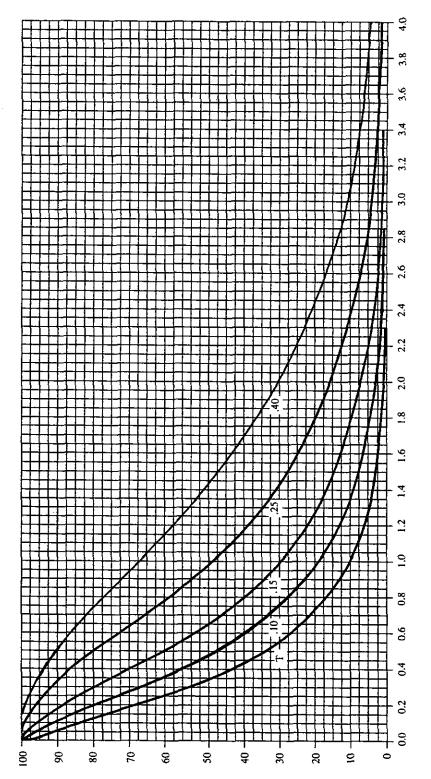

identification of appropriate OC curve.

19

Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method Sample Size Code Letter J (Continued) Table A-3

PERCENT OF LOTS
EXPECTED TO BE
ACCEPTED

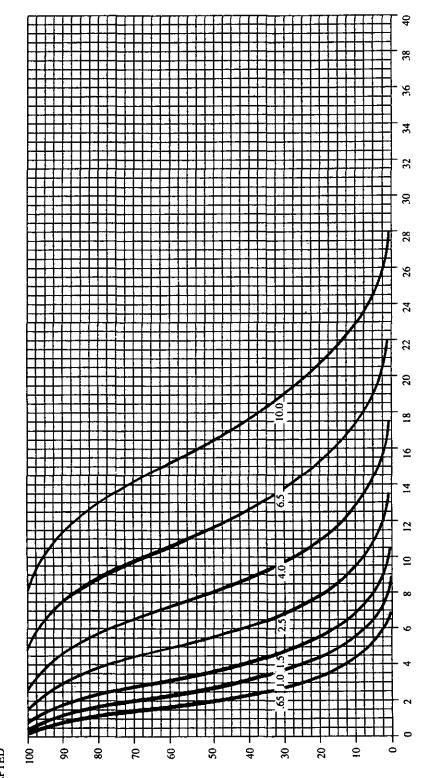
(Curves for sampling plans based on range method and known variability are essentially equivalent)


The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.

QUALITY OF SUBMITTED LOTS (In percent nonconforming) NOTE: Figures on curves are Acceptable Quality Levels for normal inspection.

Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method Sample Size Code Letter K Table A-3

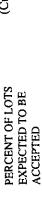
The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.

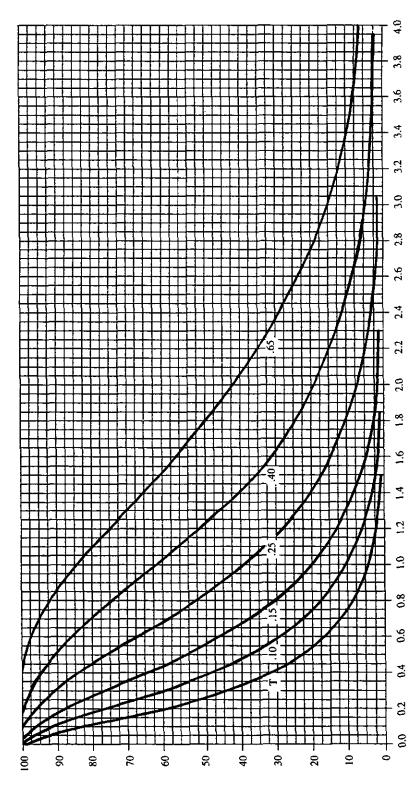

QUALITY OF SUBMITTED LOTS (In percent nonconforming)
NOTE: Figures on curves are Acceptable Quality Levels for normal inspection.
T denotes plan used exclusively on tightened inspection and provides symbol for identification of appropriate OC curve.

21

Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method Sample Size Code Letter K (Continued)

(Curves for sampling plans based on range method and known variability are essentially equivalent)

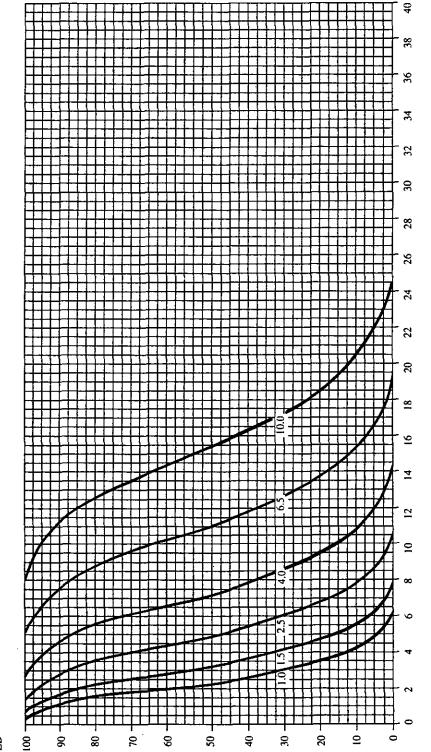

PERCENT OF LOTS
EXPECTED TO BE
ACCEPTED



The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.

QUALITY OF SUBMITTED LOTS (In percent nonconforming)
NOTE: Figures on curves are Acceptable Quality Levels for normal inspection.

Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method (Curves for sampling plans based on range method and known variability are essentially equivalent) Sample Size Code Letter L Table A-3

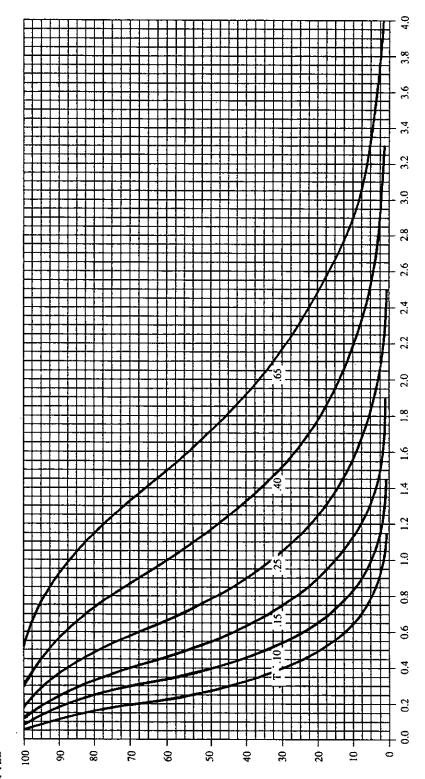

The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.

QUALITY OF SUBMITTED LOTS (In percent nonconforming)
NOTE: Figures on curves are Acceptable Quality Levels for normal inspection.
T denotes plan used exclusively on tightened inspection and provides symbol for identification of appropriate OC curve.

Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method Sample Size Code Letter L (Continued) Table A-3

(Curves for sampling plans based on range method and known variability are essentially equivalent)

PERCENT OF LOTS
EXPECTED TO BE
ACCEPTED


The values of the percent of lots expected to be accepted are valid only when measurements are NOTE: Figures elected at random from a normal distribution.

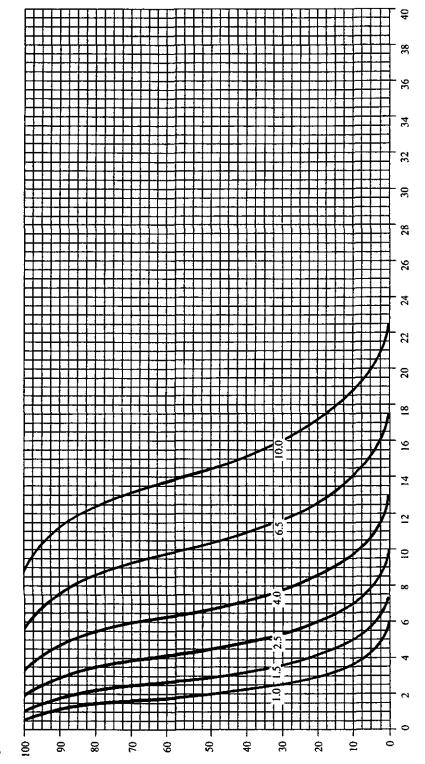
QUALITY OF SUBMITTED LOTS (In percent nonconforming)
NOTE: Figures on curves are Acceptable Quality Levels for normal inspection.

Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method Sample Size Code Letter M Table A-3

PERCENT OF LOTS EXPECTED TO BE ACCEPTED

(Curves for sampling plans based on range method and known variability are essentially equivalent)

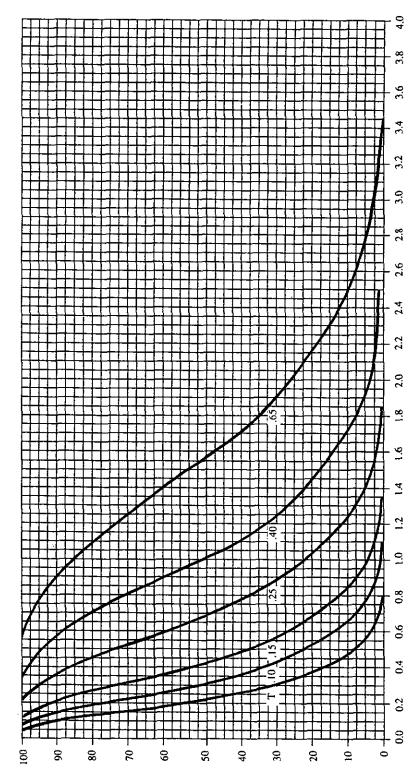
The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.


QUALITY OF SUBMITTED LOTS (In percent nonconforming)
NOTE: Figures on curves are Acceptable Quality Levels for normal inspection.
T denotes plan used exclusively on tightened inspection and provides symbol for identification of appropriate OC curve.

25

Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method Sample Size Code Letter M (Continued) Table A-3

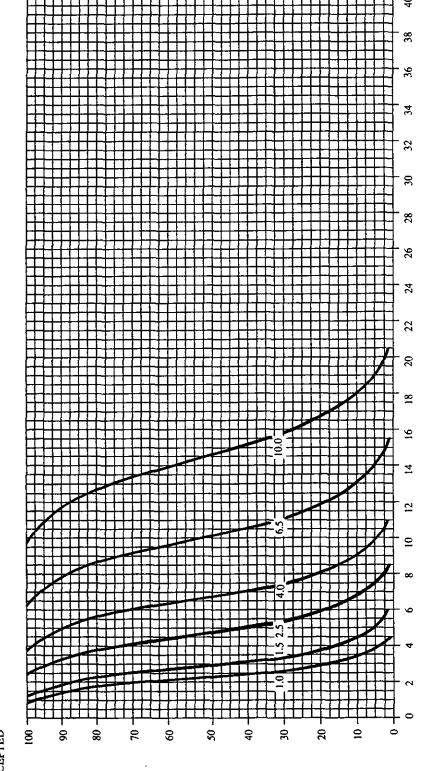
(Curves for sampling plans based on range method and known variability are essentially equivalent)


The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.

QUALITY OF SUBMITTED LOTS (In percent nonconforming) NOTE: Figures on curves are Acceptable Quality Levels for normal inspection.

Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method Sample Size Code Letter N

(Curves for sampling plans based on range method and known variability are essentially equivalent)

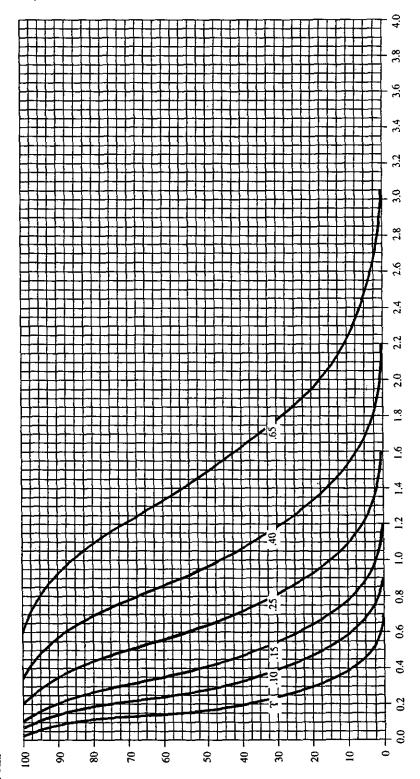

The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.

QUALITY OF SUBMITTED LOTS (In percent nonconforming)
NOTE: Figures on curves are Acceptable Quality Levels for normal inspection.
T denotes plan used exclusively on tightened inspection and provides symbol for identification of appropriate OC curve.

Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method Sample Size Code Letter N (Continued) Table A-3

PERCENT OF LOTS
EXPECTED TO BE
ACCEPTED

(Curves for sampling plans based on range method and known variability are essentially equivalent)

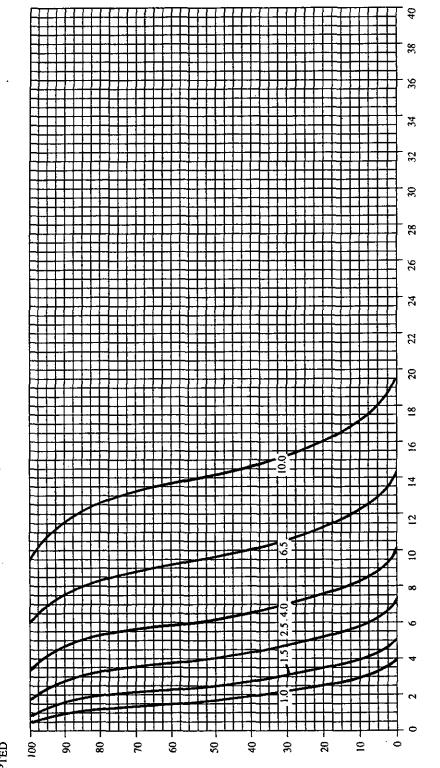


The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.

QUALITY OF SUBMITTED LOTS (In percent nonconforming) NOTE: Figures on curves are Acceptable Quality Levels for normal inspection.

Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method (Curves for sampling plans based on range method and known variability are essentially equivalent) Sample Size Code Letter P Table A-3

PERCENT OF LOTS (Curves for sampling pla EXPECTED TO BE ACCEPTED


The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.

QUALITY OF SUBMITTED LOTS (In percent nonconforming)
NOTE: Figures on curves are Acceptable Quality Levels for normal inspection.
T denotes plan used exclusively on tightened inspection and provides symbol for identification of appropriate OC curve.

Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method Sample Size Code Letter P (Continued)

PERCENT OF LOTS
EXPECTED TO BE
ACCEPTED

(Curves for sampling plans based on range method and known variability are essentially equivalent)

The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.

QUALITY OF SUBMITTED LOTS (In percent nonconforming) NOTE: Figures on curves are Acceptable Quality Levels for normal inspection.

SECTION B

VARIABILITY UNKNOWN—STANDARD DEVIATION METHOD

Part 1 SINGLE SPECIFICATION LIMIT

B1. SAMPLING PLAN FOR SINGLE SPECIFICATION LIMIT

This part of the Standard describes the procedures for use with plans for a single specification limit when variability of the lot with respect to the quality characteristic is unknown and the standard deviation method is used. The acceptability criterion is given in two equivalent forms. These are identified as Form 1 and Form 2.

- B1.1 <u>Use of Sampling Plans</u>. To determine whether the lot meets the acceptability criterion with respect to a particular quality characteristic and AQL value, the applicable sampling plan shall be used in accordance with the provisions of Section A, General Description of Sampling Plans, and those in this part of the Standard.
- B1.2 <u>Drawing of Samples</u>. All samples shall be drawn in accordance with paragraph A7.2.
- B1.3 <u>Determination of Sample Size Code Letter</u>. The sample size code letter shall be selected from Table A-2 in accordance with paragraph A7.1.

B2. SELECTING THE SAMPLING PLAN WHEN FORM 1 IS USED

- B2.1 <u>Master Sampling Tables</u>. The master sampling tables for plans based on variability unknown for a single specification limit when using the standard deviation method are Tables B-1 and B-2. Table B-1 is used for normal and tightened inspection and Table B-2 for reduced inspection.
- B2.2 Obtaining the Sampling Plan. The sampling plan consists of a sample size and an associated acceptability constant. The sampling plan is obtained from Master Table B-1 or B-2.
- B2.2.1 <u>Sample Size</u>. The sample size n is shown in the master table corresponding to each sample size code letter.
- B2.2.2 Acceptability Constant. The acceptability constant k, corresponding to the sample size mentioned in paragraph B2.2.1, is indicated in the column of the master table corresponding to the applicable AQL value. Table B-1 is entered

from the top for normal inspection and from the bottom for tightened inspection. Sampling plans for reduced inspection are provided in Table B-2.

B3. LOT-BY-LOT ACCEPTABILITY PROCEDURES WHEN FORM 1 IS USED²

- B3.1 Acceptability Criterion. The degree of conformance of a quality characteristic with respect to a single specification limit shall be judged by the quantity $(U \overline{X})$ /s or $(\overline{X} L)$ /s.
- B3.2 <u>Computation</u>. The following quantity shall be computed: $(U \overline{X})/s$ or $(\overline{X} L)/s$, depending on whether the specification limit is an upper or lower limit, where

U is the upper specification limit, L is the lower specification limit, \overline{X} is the sample mean, and s is the estimate of lot standard deviation.

B3.3 Acceptability Criteria. Compare the quantity $(U - \overline{X})$ /s or $(\overline{X} - L)$ /s with the acceptability constant k. If $(U - \overline{X})$ /s or $(\overline{X} - L)$ /s is equal to or greater than k, the lot meets the acceptability criterion; if $(U - \overline{X})$ /s or $(\overline{X} - L)$ /s is less than k or negative, then the lot does not meet the acceptability criterion.

B4. SUMMARY FOR OPERATION OF SAMPLING PLAN WHEN FORM 1 IS USED

The following steps summarize the procedures to be followed:

- (1) Determine the sample size code letter from Table A-2 by using the lot size and inspection level.
- (2) Obtain plan from Master Table B-1 or B-2 by selecting the sample size n and the acceptability constant k.
- (3) Select at random the sample of n units from the lot; inspect and record the measurement of the quality characteristic for each unit of the sample.
- (4) Compute the sample mean (\overline{X}) and estimate of lot standard deviation s, and also compute the quantity $(U-\overline{X})/s$ for an upper specification limit U or the quantity $(\overline{X}-L)/s$ for a lower specification limit L.

¹See Appendix B for definitions of all symbols used in the sampling plans based on variability unknown—standard deviation method.

²See Example B-1 for a complete example of this procedure.

(5) If the quantity $(U-\overline{X})$ /s or $(\overline{X}-L)$ /s is equal to or greater than k, the lot meets the acceptability criterion; if $(U-\overline{X})$ /s or $(\overline{X}-L)$ /s is less than k or negative, then the lot does not meet the acceptability criterion.

B5. SELECTING THE SAMPLING PLAN WHEN FORM 2 IS USED

- B5.1 Master Sampling Tables. The master sampling tables for plans based on variability unknown for a single specification limit when using the standard deviation method are Table B-3 and B-4 of Part II. Table B-3 is used for normal and tightened inspection and Table B-4 for reduced inspection.
- B5.2 Obtaining the Sampling Plan. The sampling plan consists of a sample size and an associated maximum allowable percent nonconforming. The sampling plan is obtained from Master Table B-3 or B-4.
- B5.2.1 <u>Sample Size</u>. The sample size n is shown in the master table corresponding to each sample size code letter.
- B5.2.2 Maximum Allowable Percent Nonconforming. The maximum allowable percent nonconforming M for sample estimates corresponding to the sample size mentioned in paragraph B5.2.1 is indicated in the column of the master table corresponding to the applicable AQL value. Table B-3 is entered from the top for normal inspection and from the bottom for tightened inspection. Sampling plans for reduced inspection are provided in Table B-4.

B6. LOT-BY-LOT ACCEPTABILITY PROCEDURES WHEN FORM 2 IS USED³

- B6.1 <u>Acceptability Criterion</u>. The degree of conformance of a quality characteristic with respect to a single specification limit shall be judged by the percent of nonconforming product outside the upper or lower specification limit. The percentage of nonconforming product is estimated by entering Table B-5 with the quality index and the sample size.
- B6.2 <u>Computation of Quality Index</u>. The quality index $Q_U = (U \overline{X} / s \text{ shall be computed if the specification limit is an upper limit U, or <math>Q_L(\overline{X} L)/s$ if it is a lower limit L.

The quantities, (\overline{X}) and s, are the sample mean and estimate of lot standard deviation, respectively.

- B6.3 Estimate of Percent Nonconforming in Lot. The quality of a lot shall be expressed by p_U , the estimated percent nonconforming in the lot above the upper specification limit, or by p_L , the estimated percent nonconforming below the lower specification limit. The estimated percent nonconforming p_U or p_L is obtained by entering Table B-5 with Q_U or Q_L and the appropriate sample size.
- B6.4 Acceptability Criterion. Compare the estimated lot percent nonconforming p_U or p_L with the maximum allowable percent nonconforming M. If p_U or p_L is equal to or less than M, the lot meets the acceptability criterion; if p_U or p_L is greater than M or if Q_U or Q_L is negative, then the lot does not meet the acceptability criterion.

B7. SUMMARY FOR OPERATION OF SAMPLING PLAN WHEN FORM 2 IS USED

The following steps summarize the procedures to be followed:

- (1) Determine the sample size code letter from Table A-2 by using the lot size and the inspection level.
- (2) Obtain plan from Master Table B-3 or B-4 by selecting the sample size n and the maximum allowable percent nonconforming M.
- (3) Select at random the sample of n units from the lot; inspect and record the measurement of the quality characteristic on each unit of the sample.
- (4) Compute the sample mean \overline{X} and the estimate of lot standard deviation s.
- (5) Compute the quality index $Q_U = (U \overline{X})/s$ if an upper specification limit U is specified, or $Q_L = (\overline{X} L)/s$ if a lower specification limit L is specified.
- (6) Determine the estimated lot percent nonconforming P_U or P_L from Table B-5.
- (7) If the estimated lot percent nonconforming P_U or P_L is equal to or less than the maximum allowable percent nonconforming M, the lot meets the acceptability criterion; if P_U or P_L is greater than M or if Q_U or Q_L is negative, then the lot does not meet the acceptability criterion.

³See Example B-2 for a complete example of this procedure.

EXAMPLE B-1

Example of Calculations

Single Specification Limit-Form 1

Variability Unknown-Standard Deviation Method

Example The maximum temperature of operation for a certain device is specified as 209°F. A lot of 40 items is submitted for inspection. Inspection Level II, normal inspection, with AQL = 1% is to be used. From Tables A-2 and B-1 it is seen that a sample of size 5 is required. Suppose the measurements obtained are as follows: 197°, 188°, 184°, 205°, and 201°; and compliance with the acceptability criterion is to be determined.

Information Needed	Value Obtained	Explanation
Sample Size: n	5	
Sum of Measurements: ΣX	975	
Sum of Squared Measurements: ΣX ²	190,435	
Correction Factor (CF): ΣX²/n	190,125	(975)2/5
Corrected Sum of Squares (SS): ΣX ² – CF	310	190,435 - 190,125
Variance (V): SS/(n - 1)	77.5	310/4
Estimate of Lot Standard Deviation s: \sqrt{V}	8.81	√77.5
Sample Mean $\overline{X}: \Sigma X/n$	195	975/5
Specification Limit (Upper): U	209	
The quantity: $(U - \overline{X})/s$	1.59	(209 - 195)/8.81
Acceptability Constant: k	1.53	See Table B-1
Acceptability Criterion: Compare $(U - \overline{X})$ /s with k	1.59 > 1.53	See Para. B3.3
	Sample Size: n Sum of Measurements: ΣX Sum of Squared Measurements: ΣX^2 Correction Factor (CF): $\Sigma X^2/n$ Corrected Sum of Squares (SS): $\Sigma X^2 - CF$ Variance (V): $SS/(n-1)$ Estimate of Lot Standard Deviation s: \sqrt{V} Sample Mean $\overline{X}: \Sigma X/n$ Specification Limit (Upper): U The quantity: $(U-\overline{X})/s$ Acceptability Constant: k	Sample Size: n 5 Sum of Measurements: ΣX 975 Sum of Squared Measurements: ΣX^2 190,435 Correction Factor (CF): $\Sigma X^2/n$ 190,125 Corrected Sum of Squares (SS): $\Sigma X^2 - CF$ 310 Variance (V): $SS/(n-1)$ 77.5 Estimate of Lot Standard Deviation s: \sqrt{V} 8.81 Sample Mean $\overline{X}: \Sigma X/n$ 195 Specification Limit (Upper): U 209 The quantity: $(U - \overline{X})/s$ 1.59 Acceptability Constant: k 1.53

The lot meets the acceptability criterion, since $(U - \overline{X})$ /s is greater than k.

NOTE: If a single lower specification limit L is given, then compute the quantity $(\overline{X} - L)/s$ in line 10 and compare it with k; the lot meets the acceptability criterion if $(\overline{X} - L)/s$ is equal to or greater than k.

EXAMPLE B-2

Example of Calculations

Single Specification Limit—Form 2

Variability Unknown-Standard Deviation Method

Example The maximum temperature of operation for a certain device is specified as 209° F. A lot of 40 items is submitted for inspection. Inspection Level II, normal inspection, with AQL = 1% is to be used. From Tables A-2 and B-1 it is seen that a sample of size 5 is required. Suppose the measurements obtained are as follows: 197°, 188°, 184°, 205°, and 201°; and compliance with the acceptability criterion is to be determined.

Line	Information Needed	Value Obtained	Explanation
1	Sample Size: n	5	
2	Sum of Measurements: ΣX	975	
3	Sum of Squared Measurements: ΣX ²	190,435	
4	Correction Factor (CF): (\(\Sigma X\))^2/n	190,125	(975)²/5
5	Corrected Sum of Squares (SS): ΣX ² – CF	310	190,435 – 190,125
6	Variance (V): SS/(n - 1)	77.5	310/4
7	Estimate of Lot Standard Deviation s: \sqrt{V}	8.81	√ 77.5
8	Sample Mean $\overline{X}: \Sigma X/n$	195	975/5
9	Specification Limit (Upper): U	209	
10	Quality Index: $Q_U = (U - \overline{X})/s$	1.59	(209 – 195)/8.81
11	Est. of Lot Percent Ncf.: p _U	2.19%	See Table B-5
12	Max. Allowable Percent Ncf.: M	3.32%	See Table B-3
13	Acceptability Criterion: Compare p _U with M	2.19% < 3.32%	See Para. B6.4

The lot meets the acceptability criterion, since p_U is less than M.

NOTE: If a single lower specification limit L is given, then compute the quality index $Q_L = (\overline{X} - L)/s$ in line 10 and obtain the estimate of lot percent nonconforming p_L . Compare p_L with M; the lot meets the acceptability criterion if p_L is equal to or less than M.

Standard Deviation Method Master Table for Normal and Tightened Inspection for Plans Based on Variability Unknown (Single Specification Limit—Form 1) Table B-1

Sample				Acc	ptable	Qualit	Acceptable Quality Levels (normal inspection)	ls (nor	mal ins	spectio	Ê		
size	size	L	.10	.15	.25	64.	.65	1.00	1.50	2.50	4.00	6.50	10.00
letter		ĸ	k	×	ĸ	ㅗ	k	k	×	¥	k	א	ᆇ
В	3							-	*	1.12	958	765	.566
C	4	-				-	-	1.46	1.34	1.17	1.01	.815	.617
Q	5		*	4	4	1.77	1.65	1.52	1.40	1.24	1.07	.874	579.
ш	7	-	2.22	2.13	2.00	1.88	1.75	1.62	1.50	1.33	1.15	.955	.755
Ľ	10	2.44	2.34	2.24	2.11	1.98	1.84	1.72	1.59	1.41	1.23	1.03	.828
Ð	15	2.53	2.42	2:32	2.19	2.06	1.92	1.79	1.65	1.48	1.30	1.09	.885
Н	20	2.58	2.47	2.37	2.23	2.10	1.96	1.83	1.69	1.51	1.33	1.12	916
Ι	25	2.61	2.50	2.40	2.26	2.13	1.98	1.85	1.72	1.53	1.35	1.14	.935
J	35	2.66	2.55	2.45	2.31	2.18	2.03	1.89	1.76	1.57	1.39	1.18	896.
×	50	2.71	2.61	2.50	2.36	2.22	2.08	1.94	1.80	19.1	1.42	1.2.1	1.00
L	75	2.77	2.66	2.55	2.41	2.27	2.12	1.98	1.84	1.65	1.46	1.25	1.03
Μ	100	2.80	2.69	2.58	2.43	2.29	2.14	2.00	1.86	1.67	1.48	1.26	1.05
Z	150	2.84	2.73	2.62	2.47	2.33	2.18	2.03	1.89	1.70	1.51	1.29	1.07
Ъ	200	2.85	2.73	2.62	2.47	2.33	2.18	2.04	1.89	1.70	1.51	1.29	1.08
		.10	.15	.25	.40	.65	1.00	1.50	2.50	4.00	6.50	10.00	:
				Accel	table (Quality	Acceptable Quality Levels (tightened inspection)	s (tight	ened in	spectic	(mo		_

All AQL values are in percent nonconforming. T denotes plan used exclusively on tightened inspection and provides symbol for identification of appropriate OC curve.

Use first sampling plan below arrow; that is, both sample size as well as k value. When sample size equals or exceeds lot size, every item in the lot must be inspected. Standard Deviation Method

Master Table for Reduced Inspection for Plans Based on Variability Unknown (Single Specification Limit—Form 1) Table B-2

Sample	5	į	:	;	Acce	ptable	Acceptable Quality Levels	y Leve	SI S			
size	size	.10	.15	.25	.40	.65	00.1	1.50	2.50	4.00	6.50	10.00
letter		ᆇ	k	k	k	k	k	k	k	צג	*	~
щ	3							1.12	856	765	995.	.341
ပ	3							1.12	928	.765	.566	.341
Ď	3							1.12	.958	765	.566	.341
Э	Э					-	-	1.12	.958	765	.566	.341
F	4			-	-	1.46	1.34	1.17	1.01	815	.617	396
Ð	5	•	A	1.77	1.65	1.52	1.40	1.24	1.07	.874	.675	.456
Н	7	2.13	2.00	1.88	1.75	1.62	1.50	1.33	1.15	955	.755	.536
I	10	2.24	2.11	1.98	1.84	1.71	1.59	1.41	1.23	1.03	.828	609.
J	15	2.32	2.19	2.06	1.92	1.79	1.65	1.48	1.30	1.09	2885	.663
K	20	2.37	2.23	2.10	1.96	1.83	1.69	1.51	1.33	1.12	916.	69.
1	25	2.40	2.26	2.13	1.98	1.85	1.72	1.53	1.35	1.14	.935	.712
M	30	2.41	2.28	2.14	2.00	1.86	1.73	1.55	1.36	1.15	.946	.722
Z	20	2.50	2.36	2.22	2.08	1.94	1.80	1.61	1.42	1.21	1.00	774
Р	75	2.55	2.41	2.27	2.12	1.98	1.84	1.65	1.46	1.25	1.03	908.

All AQL values are in percent nonconforming.

Use first sampling plan below arrow; that is, both sample size as well as k value. When sample size equals or vexceeds lot size, every item in the lot must be inspected.

Part II DOUBLE SPECIFICATION LIMIT

B8. SAMPLING PLAN FOR DOUBLE SPECIFICATION LIMIT

This part of the Standard describes the procedures for use with plans for a double specification limit when variability of the lot with respect to the quality characteristic is unknown and the standard deviation method is used.

B8.1 <u>Use of Sampling Plans</u>. To determine whether the lot meets the acceptability criterion with respect to a particular quality characteristic and AQL value(s) the applicable sampling plan shall be used in accordance with the provisions of Section A. General Description of Sampling Plans, and those in this part of the Standard.

B9. SELECTING THE SAMPLING PLAN

A sampling plan for each AQL value shall be selected from Table B-3 or B-4 as follows:

- B9.1 <u>Determination of Sample Size Code Letter</u>. The sample size code letter shall be selected from Table A-2 in accordance with paragraph A7.1.
- B9.2 <u>Master Sampling Tables</u>. The master sampling tables for plans based on variability unknown for a double specification limit when using the standard deviation method are Tables B-3 and B-4. Table B-3 is used for normal and tightened inspection and Table B-4 for reduced inspection.
- B9.3 Obtaining Sampling Plan. A sampling plan consists of a sample size and the associated maximum allowable percent nonconforming. The sampling plan to be applied in inspection shall be obtained from Master Table B-3 or B-4.
- B9.3.1 <u>Sample Size</u>. The sample size n is shown in the master tables corresponding to each sample size code letter.
- B9.3.2 <u>Maximum Allowable Percent Nonconforming</u>. The maximum allowable percent nonconforming for sample estimates of percent nonconforming for the lower, upper, or both specification limits combined, corresponding to the sample size mentioned in paragraph B9.3.1, is shown in the column of the master table corresponding to the applicable

AQL value(s). If different AQLs are assigned to each specification limit, designate the maximum allowable percent nonconforming by M_L for the lower limit, and by M_U for the upper limit. If one AQL is assigned to both limits combined, designate the maximum allowable percent nonconforming by M. Table B-3 is entered from the top for normal inspection and from the bottom for tightened inspection. Sampling plans for reduced inspection are provided in Table B-4.

B10. DRAWING OF SAMPLES

Samples shall be selected in accordance with paragraph A7.2.

B11. LOT-BY-LOT ACCEPTABILITY PROCEDURES

- B11.1 <u>Acceptability Criterion</u>. The degree of conformance of a quality characteristic with respect to a double specification limit shall be judged by the percent of nonconforming product. The percentage of nonconforming product is estimated by entering Table B-5 with the quality index and the sample size.
- B11.2 <u>Computation of Quality Indices</u>. The quality indices $Q_U = (U \overline{X})/s$ and $Q_L = (\overline{X} L)/s$ shall be computed, where

U is the upper specification limit, L is the lower specification limit, \overline{X} is the sample mean, and s is the estimate of lot standard deviation.

B11.3 Percent Nonconforming in the Lot. The quality of a lot shall be expressed in terms of the lot percent nonconforming. Its estimate will be designated by p_L , p_U , or $p_.$ The estimate p_U indicates conformance with respect to the upper specification limit, p_L with respect to the lower specification limit, and p_U for both specification limits combined. The estimates p_L and p_U shall be determined by entering Table B-5, respectively with Q_L and Q_U and the sample size. The estimate p_U shall be determined by adding the corresponding estimated percents nonconforming p_L and p_U found in the table.

B12. ACCEPTABILITY CRITERION AND SUMMARY FOR OPERATION OF SAMPLING PLANS

B12.1 One AOL value for both Upper and Lower Specification Limit Combined.

- B12.1.1 Acceptability Criterion. Compare the estimated lot percent nonconforming $p = p_L + p_U$ with the maximum allowable percent nonconforming M. If p is equal to or less than M, the lot meets the acceptability criterion; if p is greater than M or if either Q_U or Q_L or both are negative, then the lot does not meet the acceptability criterion.
- B12.1.2 <u>Summary for Operation of Sampling Plan</u>. In cases where a single AQL value is established for the upper and lower specification limit combined for a single quality characteristic, the following steps summarize the procedures to be used:
- (1) Determine the sample size code letter from Table A-2 by using the lot size and the inspection level.
- (2) Select plan from Master Table B-3 or B-4. Obtain the sample size n and the maximum allowable percent non-conforming M.
- (3) Select at random the sample of n units from the lot; inspect and record the measurement of the quality characteristic on each unit of the sample.
- (4) Compute the sample mean \overline{X} and estimate a lot of standard deviation s.
- (5) Compute the quality indices $Q_U = (U \overline{X})/s$ and $Q_L = (\overline{X} L)/s$.
- (6) Determine the estimated lot percent nonconforming $p = p_U + p_L$ from Table B-5.
- (7) If the estimated lot percent nonconforming p is equal to or less than the maximum allowable percent nonconforming M, the lot meets the acceptability criterion; if p is greater than M or if either Q_U or Q_L or both are negative, then the lot does not meet the acceptability criterion.
- B12.2 <u>Different AQL Values for Upper and Lower Specification Limit.</u>
- B12.2.1 Acceptability Criteria. Compare the estimated lot percents nonconforming p_L and p_U with the corresponding

maximum allowable percents nonconforming M_L and M_U ; also compare $p = p_L + p_U$ with the larger of M_L and M_U . If p_L is equal to or less than M_L , p_U is equal to or less than M_U , and p is equal to or less than the larger of M_L and M_U , the lot meets the acceptability criteria; otherwise, the lot does not meet the acceptability criteria. If either Q_L or Q_U or both are negative, then the lot does not meet the acceptability criteria.

- B12.2.2 <u>Summary for Operation of Sampling Plan</u>. In cases where a different AQL value is established for the upper and lower specification limit for a single quality characteristic, the following steps summarize the procedures to be used:
- (1) Determine the sample size code letter from Table A-2 by using the lot size and inspection level.
- (2) Select the sampling plan from Master Table B-3 or B-4. Obtain the sample size n and the maximum allowable percents nonconforming M_U or M_L , corresponding to the AQL values for the upper and lower specification limits, respectively.
- (3) Select at random the sample of n units from the lot; inspect and record the measurement of the quality characteristic on each unit in the sample.
- (4) Compute the sample mean \overline{X} and estimate a lot standard deviation s.
- (5) Compute the quality indices $Q_U = (U \overline{X})/s$ and $Q_L = (\overline{X} L)/s$.
- (6) Determine the estimated lot percents nonconforming p_L and p_U corresponding to the percents nonconforming above the upper and below the lower specification limits. Also determine the combined percent nonconforming $p = p_L + p_U$.
 - (7) If all three of the following conditions:
 - (a) p_{ij} is equal to or less than M_{ij} ,
 - (b) p_L is equal to or less than M_L ,
 - (c) p is equal to or less than the larger of M_L and M_U ,

are satisfied, the lot meets the acceptability criteria; otherwise the lot does not meet the acceptability criteria. If either Q_L or Q_U or both are negative, then the lot does not meet the acceptability criteria.

⁴See Example B-3 for a complete example of this procedure.

⁵See Example B-4 for a complete example of this procedure.

EXAMPLE B-3

Example of Calculations

Double Specification Limit

Variability Unknown—Standard Deviation Method

One AQL Value for Both Upper and Lower Specification Limit Combined

Example: The minimum temperature of operation for a certain device is specified as 180°F. The maximum temperature is 209°F. A lot of 40 items is submitted for inspection. Inspection Level II, normal inspection, with AQL = 1% is to be used. From Tables A-2 and B-3 it is seen that a sample of size 5 is required. Suppose the measurements obtained are as follows: 197°, 188°, 184°, 205°, and 201°; and compliance with the acceptability criterion is to be determined.

Line	Information Needed	Value Obtained	Explanation
1	Sample Size: n	5	
2	Sum of Measurements: ΣX	975	
3	Sum of Squared Measurements: ΣX ²	190,435	
4	Correction Factor (CF): (\(\Sigma X\)^2/n	190,125	(975)2/5
5	Corrected Sum of Squares (SS): ΣX ² -CF	310	190,435 – 190,125
6	Variance (V): SS/(n - 1)	77.5	310/4
7	Estimate of Lot Standard Deviation s: \sqrt{V}	8.81	$\sqrt{77.5}$
8	Sample Mean \overline{X} : $\Sigma X/n$	195	975/5
9	Upper Specification Limit: U	209	
10	Lower Specification Limit: L	180	
11	Quality Index: $Q_U = (U - \overline{X})/s$	1.59	(209 - 195)/8.81
12	Quality Index: $Q_L = (\overline{X} - L)/s$	1.70	(195 – 180)/8.81
13	Est. of Lot Percent Ncf. above U: pt	2.19%	See Table B-5
14	Est. of Lot Percent Ncf. below L: pL	.66%	See Table B-5
15	Total Est. Percent Ncf. in Lot: $p = p_U + p_L$	2.85%	2.19% + .66%
16	Max. Allowable Percent Ncf.: M	3.32%	See Table B-3
17	Acceptability Criterion:		
	Compare $p = p_U + p_L$ with M	2.85% < 3.32%	See Para. B12.1.20

The lot meets the acceptability criterion, since $p = p_U + p_L$ is less than M.

EXAMPLE B-4

Example of Calculations

Double Specification Limit

Variability Unknown—Standard Deviation Method Different AQL Values for Upper and Lower Specification Limits

Example: The minimum temperature of operation for a certain device is specified as 180°F. The maximum temperature is 209°F. A lot of 40 items is submitted for inspection. Inspection Level II, normal inspection, with AQL = 1% for the upper and AQL = 2.5% for the lower specification limit is to be used. From Tables A-2 and B-3 it is seen that a sample of size 5 is required. Supposed the measurements obtained are as follows: 197°, 188°, 184°, 205°, and 201°; and compliance with the acceptability criteria is to be determined.

Line	Information Needed	Value Obtained	Explanation
1	Sample Size: n	5	
2	Sum of Measurements: ΣX	975	
3	Sum of Squared Measurements: ΣX ²	190,435	
4	Correction Factor (CF): (ΣX)²/n	190,125	(975)2/5
5	Corrected Sum of Squares (SS): $\Sigma X^2 - CF$	310	190,435 - 190,125
6	Variance (V): SS/ (n - 1)	77.5	310/4
7	Estimate of Lot Standard Deviation s: \sqrt{V}	8.80	$\sqrt{77.5}$
8	Sample Mean $\overline{X}: \Sigma X/n$	195	975/5
9	Upper Specification Limit: U	209	
10	Lower Specification Limit: L	180	
11	Quality Index: $Q_U = (U - \overline{X})/s$	1.59	(209 - 195)/8.80
12	Quality Index: $Q_L = (\overline{X} - L)/s$	1.70	(195 - 180)/8.80
13	Est. of Lot Percent Ncf. above U: pu	2.19%	See Table B-5
14	Est. of Lot Percent Ncf. below L: pL	.66%	See Table B-5
15	Total Est. Percent Ncf. in Lot: $p = p_U + p_L$	2.85%	2.19% + .66%
16	Max. Allowable Percent Ncf. Above U: M _U	3.32%	See Table B-3
17	Max. Allowable Percent Ncf. below L: M _L	9.80%	See Table B-3
18	Acceptability Criteria: (a) Compare p _U with M _U	2.19% < 3.32%	See Para. B12.2.2(7)(a)
	(b) Compare p_L with M_L	.66% < 9.80%	See Para. B12.2.2(7)(b)
	(c) Compare p with M _L	2.85% < 9.80%	See Para. B12.2.2(7)(c)

The lot meets the acceptability criteria, since 18(a), (b), and (c) are satisfied; i.e., $p_U < M_U$, $p_L < M_L$, and $p < M_L$.

Standard Deviation Method

Master Table for Normal and Tightened Inspection for Plans Based on Variability Unknown (Double Specification Limit and Form 2—Single Specification Limit) Table B-3

		Sample				Acce	ptable	Quality	y Leve	ls (non	mal ins	Acceptable Quality Levels (normal inspection)	(u		
¥.	Misses	size cod e	size	T	.10	.15	.25	.40	59.	1.00	1.50	2.50	4.00	6.50	10.00
SAMO	SAMPLE NGOLD	letter		M	М	M	M	M	M	M	M	М	M	М	М
F. F.	For ATTA WITES COT	В	3							-	-	7.59	18.86	26.94	33.69
A STATE OF THE STA	ES 250 100 100 000	ပ	4					-	-	1.49	5.46	10.88	16.41	22.84	29.43
こと	(Millian Millian)	Ω	5		•	*	•	0.041	1.34	3.33	5.82	08'6	14.37	20.19	26.55
72	5 5143	ш	7	-	0.005	0.087 0.421		1.05	2.13	3.54	5.34	8.40	12.19	17.34 23.30	23.30
5/	0 0	II.	10	0.077	0.179	0.349	0.714	1.27	2.14	3.27	4.72	7.26	10.53	15.17	20.73
	5 151-280	ŋ	15	0.186	0.311	0.491	0.839	1.33	2.09	3.06	4.32	6.55	9.48	13.74	18.97
41	26 281-400	H	20	0.228	0.356	0.356 0.531 0.864		1.33	2.03	2.93	4.10	6.18	8.95	8.95 13.01 18.07	18.07
์ ผ	401-500	I	25	0.250	0.378	0.551 0.874		1.32	2.00	2.86	3.97	5.98	8.65	12.60	17.55
40		ſ	35	0.253	0.373	0.534 0.833		1.24	1.87	2.66	3.70	5.58	8.11	11.89	16.67
32	(201- 3205	Ж	50	0.243	0.355	0.355 0.503 0.778		1.16	1.73	2.47	3.44	5.21	19'2	11.23	15.87
ñ,	3201-10,000	ר	75	0.225	0.326	0.461 0.711		1.06	1.59	2.27	3.17	4.83	7.10	10.58	15.07
200	10,001 - 35 420	M	100	0.218	0.315	0.315 0.444 0.684 1.02	0.684	1.02	1.52	2.18	3.06	4.67	6.88	10.29	14.71
125	35 vsl - 150 000	Z	150	0.202	0.292	0.292 0.412 0.636 0.946	0.636	0.946	1.42	2.05	2.88	4.42	6.56	98.6	14.18
12.5	150,002 - 300,021	Ь	200	0.204	0.294	0.414	0.637	0.945	1.42	2.04	2.86	4.39	6.52	9.80	14.11
				.10	.15	.25	.40	.65	1.00	1.50	2.50	4.00	6.50	10.00	
						Accep	table (Quality	Level	; (tight	ened ii	Acceptable Quality Levels (tightened inspection)	on)		

All AQL values are in percent nonconforming. T denotes plan used exclusively on tightened inspection and provides symbol for identification of appropriate OC curve.

Use first sampling plan below arrow; that is, both sample size as well as M value. When sample size equals or exceeds lot size, every item in the lot must be inspected. Standard Deviation Method

Table B-4

Master Table for Reduced Inspection for Plans Based on Variability Unknown (Double Specification Limit and Form 2—Single Specification Limit)

Sample		•			Acce	ptable	Acceptable Quality Levels	y Leve	sl			
size code	Sample	.10	.15	.25	.40	59.	1.00	1.50	2.50	4.00	6.50	10.00
letter		M	Μ	Σ	M	М	M	M	М	M	М	Σ
В	3							7.59	18.86	7.59 18.86 26.94	33.69 40.47	40.47
ပ	3							7.59	18.86 26.94	26.94	33.69 40.47	40.47
۵	3							7.59	18.86	26.94	33.69	40.47
ш	3					~	-	7.59	18.86	7.59 18.86 26.94	33.69 40.47	40.47
щ	4			*	*	1.49	5.46	10.88	10.88 16.41	22.84	29.43	36.79
G	5	*	-	0.041	1.34	3.33	5.82	08'6	14.37	9.80 14.37 20.19 26.55	26.55	33.94
H	7	0.087	0.421	1.06	2.13	3.54	5.34	8.40	12.19	8.40 12.19 17.34 23.30	23.30	30.50
	10	0.349	0.714	1.27	2.14	3.27	4.72	7.26	7.26 10.53	15.17	20.73	27.65
	15	0.491	0.839	1.33	2.09	3.06	4.32	6.55	9.48	13.74	18.97	25.63
*	20	0.531	0.864	1.33	2.03	2.93	4.10	81'9	8.95	13.01	13.01 18.07 24.58	24.58
ر	25	0.551	0.874	1.32	2.00	2.86	3.97	5.98		8.65 12.60 17.55 23.97	17.55	23.97
Σ	30	0.567	0.885	1.32	1.98	2.82	3.91	5.87	8.48	12.37 17.25	17.25	23.61
z	50	0.503	0.778	1.16	1.73	2.47	3.44	5.21	19.7	7.61 11.23 15.87 21.99	15.87	21.99
Д	75	0.461	0.711 1.06	1.06	1.59	2.27	3.17	4.83		7.10 10.58	15.07 21.05	21.05

All AQL values are in percent nonconforming.

Use first sampling plan below arrow; that is, both sample size as well as M value. When sample size equals or exceeds lot size, every item in the lot must be inspected.

Table B-5
Table for Estimating the Lot Percent Nonconforming Using Standard Deviation Method¹

Q _U or							Sa	mple S	ize					<u>-</u> -	
Q _L	3	4	5	7	10	15	20	25	30	35	50	75	100	150	200
0	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00
1.1	47.24	46.67	46.44	46.26	46.16	46.10	46.08	46.06	46.05	46.05	46.04	46.03	46.03	46.02	46.02
2	44.46	43.33	42.90	42.54	42.35	42.24	42.19	42.16	42.15	42.13	42.11	42.10	42.09	42.09	42.08
.3	41.63	40.00	39.37	38.87	38.60	38.44	38.37	38.33	38.31	38.29	38.27	38.25	38.24	38.23	38.22
.31	41.35	39.67	39.02	38.50	38.23	38.06	37.99	37.95	37.93	37.91	37.89	37.87	37.86	37.85	37.84
.32	41.06	39,33	38.67	38.14	37.86	37.69	37.62	37.58	37.55	37.54	37.51	37.49	37.48	37,47	37.46
.33	40.77	39.00	38.32	37.78	37.49	37.31	37.24	37.20	37.18	37.16	37.13	37.11	37.10	37.09	37.08
34	40.49	38.67 38.33	37.97 37.62	37.42 37.06	37.12 36.75	36.94 36.57	36.87 36.49	36.83 36.45	36.80 36.43	36.78 36.41	36.75 36.38	36.73 36.36	36.72 36.35	36.71 36.34	36.71 36.33
.36	39.91	38.00	37.02	36.69	36.38	36.20	36.12	36.08	36.05	36.04	36.01	35.98	35.97	35.96	35.96
.37	39.62	37.67	36.93	36.33	36.02	35.83	35.75	35.71	35.68	35.66	35.63	35.61	35.60	35.59	35.58
.38	39.33	37.33	36.58	35.98	35.65	35.46	35.38	35.34	35.31	35.29	35.26	35.24	35.23	35.22	35.21
.39	39.03	37.00	36.23	35.62	35.29	35.10	35.02	34.97	34.94	34.93	34.89	34.87	34.86	34.85	34.84
.40	38.74	36.67	35.88	35.26	34.93	34.73	34,65	34.60	34.58	34,56	34.53	34.50	34.49	34.48	34.47
41	38.45	36.33	35.54	34.90	34.57	34.37	34.28	34.24	34.21	34.19	34.16	34.13	34.12	34.11	34.11
.42	38.15	36.00	35.19	34.55	34.21	34.00	33.92	33.87	33.85	33.83	33.79	33.77	33.76	33.75	33.74
.43	37.85	35.67	34.85	34.19	33.85	33.64	33.56	33.51	33.48	33,46	33.43	33.40	33.39	33.38	33.38
.44	37.56	35.33	34.50	33.84	33.49	33.28	33.20	33.15	33.12	33.10	33.07	33.04	33.03	33.02	33.01
.45	37.26	35.00	34.16	33.49	33.13	32.92	32.84	32.79	32.76	32.74	32.71	32.68	32.67	32.66	32.65
.46	36.96	34.67	33.81	33.13	32.78	32.57	32.48	32.43	32.40	32.38	32.35	32.32	32.31	32.30	32.29
.47	36.66	34.33	33.47	32.78	32.42	32.21	32.12	32.07	32.04	32.02	31.99	31.96	31.95	31.94	31.93
.48	36.35	34.00	33.12	32.43	32.07	31.85	31.77	31.72	31.69	31.67	31.63	31.61	31.60	31.58	31.58
.49	36.05	33.67	32.78	32.08	31.72	31.50	31.41	31.36	31.33	31.31	31.28	31.25	31.24	31.23	31.22
.50	35.75	33.33	32.44	31.74	31.37	31.15	31.06	31.01	30.98	30.96	30.93	30.90	30.89	30.88	30.87
.51	35,44	33.00	32.10	31.39	31.02	30.80	30.71	30.66	30.63	30.61	30.57	30.55	30.54	30.53	30.52
.52	35.13	32.67	31.76	31.04	30.67	30.45	30.36	30.31	30.28	30.26	30.23	30.20	30.19	30.18	30.17
.53	34.82	32.33	31.42	30.70	30.32	30.10	30.01	29.96	29.93	29.91	29.88	29.85	29.84	29.83	29.82
.54	34.51	32.00	31.08	30.36	29.98	29.76	29.67	29.62	29.59	29.57	29.53	29.51	29.49	29.48	29.48
.55	34.20	31.67	30.74	30.01	29.64	29.41	29.32	29.27	29.24	29.22	29.19	29,16	29.15	29.14	29.13
.56	33.88	31.33	30.40	29.67	29.29	29.07	28.98	28.93	28.90	28.88	28.85	28.82	28.81	28.80	28.79
.57	33.57	31.00	30.06	29.33	28.95	28.73	28.64	28.59	28.56	28.54	28.51	28.48	28.47	28.46	28.45
.58	33.25	30.67	29,73	28.99	28.61	28.39	28.30	28.25	28.22	28.20	28.17	28.14	28.13	28.12	28.11
.59	32.93	30.33	29.39	28.66	28.28	28.05	27.96	27.92	27.89	27.87	27.83	27.81	27.79	27.78	27.78
.60	32.61	30.00	29.05	28.32	27.94	27.72	27.63	27.58	27.55	27.53	27.50	27,47	27.46	27.45	27.44
.61	32.28	29.67	28.72	27.98	27.60	27.39	27.30	27.25	27.22	27.20	27.16	27.14	27.13	27.11	27.11
.62	31.96	29.33	28.39	27.65	27.27	27.05	26.96	26.92	26.89	26.87	26.83	26.81	26.80	26.78	26.78
.63	31.63	29.00	28.05	27.32	26.94	26.72	26.63	26.59	26.56	26.54	26.50	26.48	26.47	26.46	26.45
.64	31.30	28.67	27,72	26.99	26.61	26.39	26.31	26.26	26.23	26.21	26.18	26.15	26.14	26.13	26.12
.65	30.97	28.33	27.39	26.66	26.28	26.07	25.98	25.93	25,90	25.88	25.85	25.83	25.82	25.81	25.80
.66	30.63	28.00	27.06	26.33	25.96	25.74	25.66	25.61	25.58	25.56	25.53	25.51	25.49	25.48	25.48
.67	30.30	27.67	26.73	26.00	25.63	25.42	25.33	25.29	25.26	25.24	25.21	25.19	25.17	25.16	25.16
.68	29.96	27.33	26.40	25.68	25.31	25.10	25.01	24.97	24.94	24.92	24.89	24.87	24.86	24.85	24.84
.69	29.61	27.00	26.07	25.35	24.99	24.78	24.70	24.65	24.62	24.60	24.57	24.55	24.54	24.53	24.52

^{&#}x27;Values tabulated are read in percent.

Table B-5—Continued

Table for Estimating the Lot Percent Nonconforming Using Standard Deviation Method¹

Q_{ij}							Sa	mple S	ize						
Q _L	3	4	5	7	10	15	20	25	30	35	50	75	100	150	200
.70	29.27	26.67	25.74	25.03	24.67	24.46	24.38	24.33	24.31	24.29	24.26	24.24	24.23	24.22	24.21
.71	28.92	26.33	25.41	24.71	24.35	24.15	24.06	24.02	23.99	23.98	23.95	23.92	23.91	23.90	23.90
.72	28.57	26.00	25.09	24.39	24.03	23.83	23.75	23.71	23.68	23.67	23.64	23.61	23.60	23.59	23.59
.73	28.22	25.67	24.76	24.07	23.72	23.52	23.44	23.40	23.37	23.36	23.33	23.31	23.30	23.29	23.28
.74	27.86	25.33	24.44	23.75	23.41	23.21	23.13	23.09	23.07	23.05	23.02	23.00	22.99	22.98	22.98
1 1	1 .	25.00			23.10	22.90	22.83	22.79	22.76	22.75	22.72	22.70	22.69	22.68	22.68
.75	27.50		24.11	23.44		.!									
.76	27.13	24.67	23.79	23.12	22.79	22.60	22.52	22.48	22.46	22.44	22.42	22.40	22.39	22.38	22.38
.77	26.76	24.33	23.47	22.81	22.48	22.30	22.22	22.18	22.16	22.14	22.12	22.10	22.09	22.08	22.08
.78	26.39	24.00	23.15	22.50	22.18	21.99	21.92	21.89	21.86	21.85	21.82	21.80	21.78	21.79	21.78
.79	26.02	23.67	22.83	22.19	21.87	21.70	21.63	21.59	21.57	21.55	21.53	21.51	21.50	21.49	21.49
.80	25.64	23.33	22.51	21.88	21.57	21.40	21.33	21.29	21.27	21.26	21.23	21.22	21.21	21.20	21.20
.81	25.25	23.00	22.19	21.58	21.27	21.10	21.04	21.00	20.98	20.97	20.94	20.93	20.92	20.91	20.91
.82	24.86	22.67	21.87	21.27	20.98	20.81	20.75	20.71	20.69	20.68	20.65	20.64	20.63	20.62	20.62
.83	24.47	22.33	21.56	20.97	20.68	20.52	20.46	20.42	20.40	20.39	20.37	20.35	20.35	20.34	20.34
.84	24.07	22.00	21.24	20.67	20.39	20.23	20.17	20.14	20.12	20.11	20.09	20.07	20.06	20.06	20.05
.85	23.67	21.67	20.93	20.37	20.10	19.94	19.89	19.86	19.84	19.82	19.80	19.79	19.78	19.78	19.77
.86	23.26	21.33	20.62	20.07	19.81	19.66	19.60	19.57	19.56	19.54	19.53	19.51	19.51	19.50	19.50
87	22.84	21.00	20.31	19.78	19.52	19.38	19.32	19.30	19.28	19.27	19.25	19.24	19.23	19.23	19.22
.88	22.42	20.67	20.00	19.48	19.23	19.10	19.05	19.02	19.00	18.99	18.98	18.96	18.96	18.95	18.95
.89	21.99	20.33	19.69	19.19	18.95	18.82	18.77	18.74	18.73	18.72	18.70	18.69	18.69	18.68	18.68
.90	21.55	20.00	19.38	18.90	18.67	18.54	18.50	18.47	18.46	18.45	18.43	18.42	18.42	18.41	18.41
.91	21.11	19.67	19.07	18.61	18.39	18.27	18.23	18.20	18.19	18.18	18.17	18.16	18.15	18.15	18.15
.92	20.66	19.33	18.77	18.33	18.11	18.00	17.96	17.94	17.92	17.92	17.90	17.89	17.89	17.89	17.88
.93	20.19	19.00	18.46	18.04	17.84	17.73	17.69	17.67	17.66	17.65	17.64	17.63	17.63	17.62	17.62
.94	19.73	18.67	18.16	17.76	17.56	17.46	17,43	17.41	17.40	17.39	17.38	17.37	17.37	17.37	17.36
.95	19.25	18.33	17.86	17.48	17.29	17.20	17.17	17.16	17.14	17.13	17.12	17.12	17.11	17.11	17.11
.96	18.75	18.00	17.55	17.20	17.03	16.94	16.90	16.89	16.88	16.88	16.87	16.86	16.86	16.86	16.86
.97	18.25	17.67	17.25	16.92	16.76	16.68	16. 6 5	16.63	16.63	16.62	16.61	16.61	16.61	16.61	16.60
.98	17.74	17.33	16.96	16.65	16.49	16.42	16.39	16.38	16.37	16.37	16.36	16.36	16.36	16.36	16.36
.99	17.21	17.00	16.66	16.37	16.23	16.16	16.14	16.13	16.12	16.12	16.12	16.11	16.11	16.11	16.11
1.00	16.67	16.67	16.36	16.10	15.97	15.91	15.89	15.88	15.88	15.87	15.87	15.87	15.87	15.87	15.87
1.01	16.11	16.33	16.07	15.83	15.72	15.66	15.64	15.63	15.63	15.63	15.63	15.62	15.62	15.62	15.62
1.02	15.53	16.00	15.78	15.56	15.46	15.41	15.40	15.39	15.39	15.38	15.38	15.38	15.38	15.39	15.39
1.03	14.93	15.67	15.48	15.30	15.21	15.17	15.15	15.15	15.15	15.15	15.15	15.15	15.15	15.15	15.15
1.04	14.31	15.33	15.19	15.03	14.96	14.92	14.91	14.91	14.91	14.91	14.91	14.91	14.91	14.91	14.91
1.05	13.66	15.00	14.91	14.77	14.71	14.68	14.67	14.67	14.67	14.67	14.68	14.68	14.68	14.68	14.68
1.06	12.98	14.67	14.62	14.51	14.46	14.44	14.44	14.44	14.44	14.44	14.45	14.45	14.45	14.45	14.45
1.07	12.27	14.33	14.33	14.26	14.22	14.20	14.20	14.21	14.21	14.21	14.22	14.22	14.22	14.23	14.22
1.08	11.51	14.00	14.05	14.00	13.97	13.97	13.97	13.98	13.98	13.98	13.99	13.99	14.00	14.00	14.00
1.09	10.71	13.67	13.76	13.75	13.73	13.74	13.74	13.75	13.75	13.76	13.77	13.77	13.77	13.78	13.78

^{&#}x27;Values tabulated are read in percent.

Table B-5—Continued

Table for Estimating the Lot Percent Nonconforming Using Standard Deviation Method¹

Q _D or							Sa	mple S	ize						
Q̈́ _L	3	_4	5	7	10	15	20	25	30	35	50	75	100	150	200
1.10	9.84	13.33	13.48	13.49	13.50	13.51	13.52	13.52	13.53	13.54	13.54	13.55	13.55	13.56	13.56
1.11	8.89	13.00	13.20	13.25	13.26	13.28	13.29	13.30	13.31	13.31	13.32	13.33	13.34	13.34	13.34
1.12	7.82	12.67	12.93	13.00	13.03	13.05	13.07	13.08	13.09	13.10	13.11	13.12	13.12	13.13	13.13
1.13	6.60	12.33	12.65	12.75	12.80	12.83	12.85	12.86	12.87	12.88	12.89	12.90	12.91	12.91	12.92
1.14	5.08	12.00	12.37	12.51	12.57	12.61	12.63	12.65	12.66	12.67	12.68	12.69	12.70	12.70	12.71
1.15	2.87	11.67	12.10	12.27	12.34	12.39	12.42	12.44	12.45	12.46	12.47	12.48	12.49	12.49	12.50
1.16	0.00	11.33	11.83	12.03	12.12	12.18	12.21	12.22	12.24	12.25	12.26	12.28	12.28	12.29	12.29
1.17	0.00	11.00	11.56	11.79	11.90	11.96	12.00	12.02	12.03	12.04	12.06	12.07	12.08	12.09	12.09
1.18	0.00	10.67	11.29	11.56	11.68	11.75	11.79	11.81	11.82	11.84	11.85	11.87	11.88	11.88	11.89
1.19	0.00	10.33	[1.02	11.33	11.46	11.54	11.58	11.61	11.62	11.63	11.65	11.67	11.68	11.69	11.69
1.20	0.00	10.00	10.76	11.10	11.24	11.34	11.38	11.41	11.42	11.43	11.46	11.47	11.48	11.49	11.49
1.21	0.00	9.67	10.50	10.87	11.03	11.13	11.18	11.21	11.22	11.24	11.26	11.28	11.29	11.30	11.30
1.22	0.00	9.33	10.23	10.65	10.82	10.93	10.98	11.01	11.03	11.04	11.07	11.09	11.09	11.10	11.11
1.23	0.00	9.00	9.97	10.42	10.61	10.73	10.78	10.81	10.84	10.85	10.88	10.90	10.91	10.92	10.92
1.24	0.00	8.67	9.72	10.20	10.41	10.53	10.59	10.62	10.64	10.66	10.69	10.71	10.72	10.73	10.73
1.25	0.00	8.33	9.46	9.98	10.21	10.34	10.40	10.43	10.46	10.47	10.50	10.52	10.53	10.54	10.55
1.26	0.00	8.00	9.21	9.77	10.00	10.15	10.21	10.25	10.27	10.29	10.32	10.34	10.35	10.36	10.37
1.27	0.00	7.67	8.96	- 9.55	9.81	9.96	10.02	10.06	10.09	10.10	10.13	10.16	10.17	10.18	10.19
1.28	0.00	7.33	8.71	9.34	9.61	9.77	9.84	9.88	9.90	9.92	9.95	9.98	9.99	10.00	10.01
1.29	0.00	7.00	8.46	9.13	9.42	9.58	9.66	9.70	9.72	9.74	9.78	9.80	9.82	9.83	9.83
1.30	0.00	6.67	8.21	8.93	9.22	9.40	9.48	9.52	9.55	9.57	9.60	9.63	9.64	9.65	9.66
1.31	0.00	6.33	7.97	8.72	9.03	9.22	9.30	9.34	9.37	9.39	9.43	9.46	9.47	9.48	9.49
1.32	0.00	6.00	7.73	8.52	8.85	9.04	9.12	9.17	9.20	9.22	9.26	9.29	9.30	9.31	9.32
1.33	0.00	5.67	7.49	8.32	8.66	8.86	8.95	9.00	9.03	9.05	9.09	9.12	9.13	9.15	9.15
1.34	0.00	5.33	7.25	8.12	8.48	8.69	8.78	8.83	8.86	8.88	8.92	8.95	8.97	8.98	8.99
1.35	0.00	5.00	7.02	7.92	8.30	8.52	8.61	8.66	8.69	8.72	8.76	8.79	8.81	8.82	8.83
1.36	0.00	4.67	6.79	7.73	8.12	8.35	8.44	8.50	8.53	8.55	8.60	8.63	8.65	8.66	8.67
1.37	0.00	4.33	6.56	7.54	7.95	8.18	8.28	8.33	8.37	8.39	8.44	8.47	8.49	8.50	8.51
1.38	0.00	4.00	6.33	7.35	7.77	8.01	8.12	8.17	8.21	8.24	8.28	8.31	8.33	8.35	8.36
1.39	0.00	3.67	6.10	7.17	7.60	7.85	7.96	8.01	8.05	8.08	8.12	8.16	8.18	8.19	8.20
1.40	0.00	3.33	5.88	6.98	7.44	7.69	7.80	7.86	7.90	7.92	7.97	8.01	8.02	8.04	8.05
[1.41]	0.00	3.00	5.66	6.80	7.27	7.53	7.64	7.70	7.74	7.77	7.82	7.86	7.87	7.89	7.90
1.42	0.00	2.67	5.44	6.62	7.10	7.37	7.49	7.55	7.59	7.62	7.67	7.71	7.73	7.74	7.75
1.43	0.00	2.33	5.23	6.45	6.94	7.22	7.34	7.40	7.44	7.47	7.52	7.56	7.58	7.60	7.61
1.44	0.00	2.00	5.02	6.27	6.78	7.07	7.19	7.26	7.30	7.33	7.38	7.42	7.44	7.46	7.47
1.45	0.00	1.67	4.81	6.10	6.63	6.92	7.04	7.11	7.15	7.18	7.24	7.28	7.30	7.32	7.32
1.46	0.00	1.33	4.60	5.93	6.47	6.77	6.90	6.97	7.01	7.04	7.10	7.14	7.16	7.18	7.19
1.47	0.00	1.00	4.39	5.77	6.32	6.63	6.75	6.83	6.87	6.90	6.96	7.00	7.02	7.04	7.05
1.48	0.00	.67	4.19	5.60	6.17	6.48	6.61	6.69	6.73	6.77	6.82	6.86	6.88	6.90	6.91
1.49	0.00	.33	3.99	5.44	6.02	6.34	6.48	6.55	6.60	6.63	6.69	6.73	6.75	6.77	6.78

¹Values tabulated are read in percent.

Table B-5—Continued

Table for Estimating the Lot Percent Nonconforming Using Standard Deviation Method¹

Q _U							Sai	mple S	ize	_					
ο̈́.	3	4	5	7	10	15	20	25	30	35	50	75	100	150	200
1.50	0.00	0.00	3.80	5.28	5.87	6.20	6.34	6.41	6.46	6.50	6.55	6.60	6.62	6.64	6.65
1.51	0.00	0.00	3.61	5.13	5.73	6.06	6.20	6.28	6.33	6.36	6.42	6.47	6.49	6.51	6.52
1.52	0.00	0.00	3.42	4.97	5.59	5.93	6.07	6.15	6.20	6.23	6.29	6.34	6.36	6.38	6.39
1.53	0.00	0.00	3.23	4.82	5.45	5.80	5.94	6.02	6.07	6.11	6.17	6.21	6.24	6.26	6.27
1.54	0.00	0.00	3.05	4.67	5.31	5.67	5.81	5.89	5.95	5.98	6.04	6.09	6.11	6.13	6.15
1.55	0.00	0.00	2.87	4.52	5.18	5.54	5.69	5.77	5.82	5.86	5.92	5.97	5.99	6.01	6.02
1.56	0.00	0.00	2.69	4.38	5.05	5.41	5.56	5.65	5.70	5.74	5.80	5.85	5.87	5.89	5.90
1.57	0.00	0.00	2.52	4.24	4.92	5.29	5.44	5.53	5.58	5.62	5.68	5.73	5.75	5.78	5.79
1.58	0.00	0.00	2.35	4.10	4.79	5.16	5.32	5.41	5.46	5.50	5.56	5.61	5.64	5.66	5.67
1.59	0.00	0.00	2.19	3.96	4.66	5.04	5.20	5.29	5.34	5.38	-5.45	5.50	5.52	5.55	5.56
1.60	0.00	0.00	2.03	3.83	4.54	4.92	5.08	5.17	5.23	5.27	5.33	5.38	5.41	5.43	5.44
1.61	0.00	0.00	1.87	3.69	4.41	4.81	4.97	5.06	5.12	5.16	5.22	5.27	5.30	5.32	5.33
1.62	0.00	0.00	1.72	3.57	4.30	4.69	4.86	4.95	5.01	5.04	5.11	5.16	5.19	5.21	5.23
1.63	0.00	0.00	1.57	3.44	4.18	4.58	4.75	4.84	4.90	4.94	5.01	5.06	5.08	5.11	5.12
1.64	0.00	0.00	1.42	3.31	4.06	4.47	4.64	4.73	4.79	4.83	4.90	4.95	4.98	5.00	5.01
1.65	0.00	0.00	1.28	3.19	3.95	4.36	4.53	4.62	4.68	4.72	4.79	4.85	4.87	4.90	4.91
1.66	0.00	0.00	1.15	3.07	3.84	4.25	4.43	4.52	4.58	4.62	4.69	4.74	4.77	4.80	4.81
1.67	0.00	0.00	1.02	2.95	3.73	4.15	4.32	4.42	4.48	4.52	4.59	4.64	4.67	4.70	4.71
1.68	0.00	0.00	0.89	2.84	3.62	4.05	4.22	4.32	4.38	4.42	4.49	4.55	4.57	4.60	4.61
1.69	0.00	0.00	0.77	2.73	5.52	3.94	4.12	4.22	4.28	4.32	4.39	4.45	4.47	4.50	4.51
1.70	0.00	0.00	0.66	2.62	3.41	3.84	4.02	4.12	4.18	4.22	4.30	4.35	4.38	4.41	4.42
1.71	0.00	0.00	0.55	2.51	3.31	3.75	3.93	4.02	4.09	4.13	4,20	4.26	4.29	4.31	4.32
1.72	0.00	. 0.00	0.45	2.41	3.21	3.65	3.83	3.93	3.99	4.04	4.11	4.17	4.19	4.22	4.23
1.73	0.00	0.00	0.36	2.30	3.11	3.56	3.74	3.84	3.90	3.94	4.02	4.08	4.10	4.13	4.14
1.74	0.00	0.00	0.27	2.20	3.02	3.46	3.65	3.75	3.81	3.85	3.93	3.99	4.01	4.04	4.05
1.75	0.00	0.00	0.19	2.11	2.93	3.37	3.56	3.66	3.72	3.77	3.84	3.90	3.93	3.95	3.97
1.76 1.77	0.00	0.00	0.12	2.01 1.92	2.83	3.28	3.47	3.57	3.63	3.68	3.76 3.67	3.81	3.84	3.87	3.88
1.78	0.00	0.00	0.06 0.02	1.83	2.74 2.66	3.20 3.11	3.38	3.48 3.40	3.55 3.47	3.59 3.51	3.59	3.73 3.64	3.76 3.67	3.78 3.70	3.80 3.71
1.79	0.00	0.00	0.00	1.74	2.57	3.03	3.21	3.32	3.38	3.43	3.51	3.56	3.59	3.62	3.63
1.80	0.00	0.00	0.00	1.65	2.49	2.94	3.13	3.24	3.30	3.35	3.43	3.48	3.51	3.54	3.55
1.81	0.00	0.00	0.00	1.57	2.40	2.86	3.05	3.16	3.22	3.27	3.35	3.40	3.43	3.46	3.47
1.82	0.00	0.00	0.00	1.49	2.32	2.79	2.98	3.08	3.15	3.19	3.27	3.33	3.36	3.38	3.40
1.83		0.00	0.00	1.41	2.25	2.71	2.90	3.00	3.07	3.11	3.19	3.25	3.28	3.31	3.32
1.84	0.00	0.00	0.00	1.34	2.17	2.63	2.82	2.93	2.99	3.04	3.12	3.18	3.21	3.23	3.25
1.85	0.00	0.00	0.00	1.26	2.09	2.56	2.75	2.85	2.92	2.97	3.05	3.10	3.13	3.16	3.17
1.86	0.00	0.00	0.00	1.19	2.02	2.48	2.68	2.78	2.85	2.89	2.97	3.03	3.06	3.09	3.10
1.87	0.00	0.00	0.00	1.12	1.95	2.41	2.61	2.71	2.78	2.82	2.90	2.96	2.99	3.02	3.03
1.88	0.00	0.00	0.00	1.06	1.88	2.34	2.54	2.64	2.71	2.75	2.83	2.89	2.92	2.95	2.96
1.89	0.00	0.00	0.00	0.99	1.81	. 2.28	2.47	2.57	2.64	2.69	2.77	2.83	2.85	2.88	2.90

^{&#}x27;Values tabulated are read in percent.

Table B-5—Continued

Table for Estimating the Lot Percent Nonconforming Using Standard Deviation Method¹

No. No.	Q _U or							Sar	nple S	ize			··		• ,	
191 0.00 0.00 0.00 0.00 0.87 1.68 2.14 2.34 2.44 2.51 2.56 2.63 2.69 2.72 2.75 2.75 1.92 0.00 0.00 0.00 0.00 0.81 1.62 2.08 2.27 2.38 2.45 2.49 2.57 2.63 2.66 2.69 2.70 1.93 0.00 0.00 0.00 0.76 1.56 2.02 2.21 2.32 2.38 2.43 2.51 2.57 2.60 2.63 2.64 1.94 0.00 0.00 0.00 0.00 0.70 1.50 1.96 2.15 2.25 2.32 2.37 2.45 2.51 2.54 2.56 2.58 1.95 0.00 0.00 0.00 0.00 0.65 1.44 1.90 2.09 2.19 2.26 2.31 2.39 2.45 2.48 2.50 2.52 2.31 2.39 2.45 2.48 2.50 2.52 2.31 2.39 2.45 2.48 2.50 2.52 2.31 2.39 2.45 2.48 2.50 2.52 2.31 2.39 2.45 2.46 2.46 2.46 2.46 2.40 2		3	4	5	7	10	15	20	25	30	35	50	75	100	150	200
1-92 0.00 0.00 0.00 0.00 0.81 1.62 2.08 2.27 2.38 2.45 2.49 2.57 2.63 2.66 2.69 2.70	1.90	0.00	0.00	0.00	0.93	1.75	2.21	2.40	2.51	2.57	2.62	2.70	2.76	2.79	2.82	2.83
193	1.91	0.00	0.00	0.00	0.87	1.68	2.14	2.34	2.44	2.51	2.56	2.63	2.69	2.72	2.75	2.77
1.94	1.92	0.00	0.00	0.00	0.81	1.62	2.08	2.27	2.38	2.45	2.49	2.57	2.63	2.66	2.69	2.70
1.95	1.93	0.00	0.00	0.00	0.76	1.56	2.02	2.21	2.32	2.38	2.43	2.51	2.57	2.60	2.63	2.64
1.95	1.94	0.00	0.00	0.00	0.70	1.50	1.96	2.15	2.25	2.32	2.37	2.45	2.51	2.54	2.56	2.58
196	1.95	0.00	0.00	0.00	0.65	1.44	1.90	2.09	2.19	2.26	2.31	2.39	2.45	2.48	2.50	2.52
1.97	1.96	0.00	0.00	0.00	0.60	1.38	1.84	2.03	2.14	2.20	2.25	2.33	2.39	2.42	2.44	2.46
1.98	1.97	0.00	0.00	0.00	0.56	1.33	1.78	1.97	2.08	1		2.27	2.33		2.39	
1.99	1.98	0.00	0.00	0.00	0.51	1.27	1.73	1.92	2.02	2.09	2.13	2.21	2.27		2.33	2.34
2.00	1.99	0.00	0.00	0.00	0.47	1.22	1.67	1.86	1.97	2.03		2.16	2.22	2.25	2.27	ŀ
2.02 0.00 0.00 0.00 0.36 i.07 i.52 i.71 i.81 i.87 i.92 2.00 2.06 2.09 2.11 2.13 2.03 0.00 0.00 0.00 0.00 0.29 0.98 i.42 1.61 i.71 i.77 i.82 i.90 i.96 i.99 2.01 2.03 2.05 0.00 0.00 0.00 0.00 0.26 0.94 i.37 1.56 i.66 i.73 i.77 i.85 i.91 i.94 i.96 i.99 2.06 0.00 0.00 0.00 0.00 0.00 0.23 0.90 i.33 i.51 i.61 i.68 i.72 i.86 i.89 i.92 i.93 2.07 0.00 0.00 0.00 0.21 0.86 i.22 i.41 i.52 i.59 i.63 i.71 i.77 i.79 i.82 i.84 2.08 0.00 0.00 0.00 0.016	L	0.00	0.00	0.00	0.43	1.17	1		1.91				2.16			1
2.03	2.01	0.00	0.00	0.00	0.39	1.12	1.57	1.76	1.86	1.93	1.97	2.05	2.11	2.14	2.17	2.18
2.04 0.00 0.00 0.00 0.29 0.98 1.42 1.61 1.71 1.77 1.82 1.90 1.96 1.99 2.01 2.03 2.05 0.00 0.00 0.00 0.26 0.94 1.37 1.56 1.66 1.73 1.77 1.85 1.91 1.94 1.96 1.98 2.06 0.00 0.00 0.00 0.00 0.23 0.90 1.33 1.51 1.61 1.68 1.72 1.80 1.86 1.89 1.92 1.93 2.07 0.00 0.00 0.00 0.00 0.00 0.18 0.82 1.24 1.42 1.52 1.59 1.63 1.71 1.77 1.79 1.82 1.84 1.50 1.54 1.62 1.84 1.84 1.59 1.66 1.72 1.75 1.78 1.79 2.09 0.00 0.00 0.00 0.00 0.00 0.12 0.71 1.12 1.30 1.34	2.02	0.00	0.00	0.00	0.36	1.07	1.52	1.71	1.81	1.87	1.92	2.00	2.06	2.09	2.11	2.13
2.05 0.00 0.00 0.00 0.26 0.94 1.37 1.56 1.66 1.73 1.77 1.85 1.91 1.94 1.96 1.98 2.06 0.00 0.00 0.00 0.02 0.90 1.33 1.51 1.61 1.68 1.72 1.80 1.86 1.89 1.92 1.93 2.07 0.00 0.00 0.00 0.01 0.86 1.28 1.47 1.57 1.63 1.68 1.76 1.81 1.84 1.87 1.88 2.08 0.00 0.00 0.00 0.16 0.78 1.20 1.38 1.48 1.54 1.59 1.66 1.72 1.75 1.78 1.79 2.10 0.00 0.00 0.00 0.01 0.71 1.12 1.30 1.39 1.46 1.50 1.58 1.63 1.71 1.73 1.75 2.11 0.00 0.00 0.00 0.00 0.07 1.12 1.30	2.03	0.00	0.00	0.00	0.32	1.03	1.47	1.66	1.76	1.82	1.87	1.95	2.01	2.04	2.06	2.08
2.06 0.00 0.00 0.00 0.23 0.90 1.33 1.51 1.61 1.68 1.72 1.80 1.86 1.89 1.92 1.93 2.07 0.00 0.00 0.00 0.00 0.21 0.86 1.28 1.47 1.57 1.63 1.68 1.76 1.81 1.84 1.87 1.88 2.08 0.00 0.00 0.00 0.01 0.82 1.24 1.42 1.52 1.59 1.63 1.71 1.77 1.79 1.82 1.84 2.09 0.00 0.00 0.00 0.01 0.14 0.74 1.16 1.38 1.48 1.54 1.59 1.66 1.72 1.75 1.78 1.79 2.10 0.00 0.00 0.00 0.01 0.71 1.12 1.30 1.31 1.46 1.50 1.58 1.63 1.66 1.69 1.79 2.12 0.00 0.00 0.00 0.01 0.67	2.04	0.00	0.00	0.00	0.29	0.98	1.42	1.61	1.71	1.77	1.82	1.90	1.96	1.99	2.01	2.03
2.07 0.00 0.00 0.00 0.21 0.86 1.28 1.47 1.57 1.63 1.68 1.76 1.81 1.84 1.87 1.88 2.08 0.00 0.00 0.00 0.00 0.18 0.82 1.24 1.42 1.52 1.59 1.63 1.71 1.77 1.79 1.82 1.84 2.09 0.00 0.00 0.00 0.16 0.78 1.20 1.38 1.48 1.54 1.59 1.66 1.72 1.75 1.78 1.79 2.10 0.00 0.00 0.00 0.01 0.74 1.16 1.34 1.44 1.50 1.54 1.62 1.68 1.71 1.73 1.75 2.11 0.00 0.00 0.00 0.00 0.01 0.67 1.08 1.26 1.35 1.42 1.46 1.54 1.59 1.62 1.65 1.66 2.12 0.00 0.00 0.00 0.00 0.00	2.05	0.00	0.00	0.00	0.26	0.94	1.37	1.56	1.66	1.73	1.77	1.85	1.91	1.94	1.96	1.98
2.08 0.00 0.00 0.00 0.18 0.82 1.24 1.42 1.52 1.59 1.63 1.71 1.77 1.79 1.82 1.84 2.09 0.00 0.00 0.00 0.16 0.78 1.20 1.38 1.48 1.54 1.59 1.66 1.72 1.75 1.78 1.79 2.10 0.00 0.00 0.00 0.14 0.74 1.16 1.34 1.44 1.59 1.66 1.72 1.75 1.78 1.79 2.11 0.00 0.00 0.00 0.12 0.71 1.12 1.30 1.39 1.46 1.50 1.58 1.63 1.66 1.69 1.70 2.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.10 1.12 1.30 1.39 1.46 1.50 1.55 1.58 1.61 1.62 2.13 0.00 0.00 0.00 0.00	2.06	0.00	0.00	0.00	0.23	0.90	1.33	1.51	1.61	1.68	1.72	1.80	1.86	1.89	1.92	1.93
2.09 0.00 0.00 0.16 0.78 1.20 1.38 1.48 1.54 1.59 1.66 1.72 1.75 1.78 1.79 2.10 0.00 0.00 0.00 0.14 0.74 1.16 1.34 1.44 1.50 1.54 1.62 1.68 1.71 1.73 1.75 2.11 0.00 0.00 0.00 0.12 0.71 1.12 1.30 1.39 1.46 1.50 1.58 1.63 1.66 1.69 1.70 2.12 0.00 0.00 0.00 0.01 0.67 1.08 1.26 1.35 1.42 1.46 1.54 1.59 1.62 1.65 1.66 2.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.58 1.61 1.62 2.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	2.07	0.00	0.00	0.00	0.21	0.86	1.28	1.47	1.57	1.63	1.68	1.76	1.81	1.84	1.87	1.88
2.10 0.00 0.00 0.00 0.14 0.74 1.16 1.34 1.44 t.50 1.54 1.62 1.68 1.71 1.73 1.75 2.11 0.00 0.00 0.00 0.01 0.71 1.12 1.30 1.39 1.46 1.50 1.58 1.63 1.66 1.69 1.70 2.12 0.00 0.00 0.00 0.00 0.08 0.64 1.04 1.22 1.31 1.38 1.42 1.50 1.55 1.58 1.61 1.62 2.14 0.00 0.00 0.00 0.07 0.61 1.00 1.18 1.28 1.34 1.38 1.46 1.51 1.54 1.57 1.58 2.15 0.00 0.00 0.00 0.06 0.58 0.97 1.14 1.24 1.30 1.38 1.42 1.47 1.50 1.53 1.54 2.16 0.00 0.00 0.00 0.05 0.55 0.93	2.08	0.00	0.00	0.00	0.18	0.82	1.24	1.42	1.52	1.59	1.63	1.71	1.77	1.79	1.82	1.84
2.11 0.00 0.00 0.00 0.12 0.71 1.12 1.30 1.39 1.46 1.50 1.58 1.63 1.66 1.69 1.70 2.12 0.00 0.00 0.00 0.10 0.67 1.08 1.26 1.35 1.42 1.46 1.54 1.59 1.62 1.65 1.66 2.13 0.00 0.00 0.00 0.08 0.64 1.04 1.22 1.31 1.38 1.42 1.50 1.55 1.58 1.61 1.62 2.14 0.00 0.00 0.00 0.06 0.58 0.97 1.14 1.24 1.30 1.34 1.46 1.51 1.54 1.57 1.58 2.15 0.00 0.00 0.00 0.06 0.58 0.97 1.14 1.24 1.30 1.34 1.42 1.47 1.50 1.53 1.54 2.16 0.00 0.00 0.00 0.05 0.55 0.93 1.10	2.09	0.00	0.00	0.00	0.16	0.78	1.20	1.38	1.48	1.54	1.59	1.66	1.72	1.75	1.78	1.79
2.12 0.00 0.00 0.00 0.10 0.67 1.08 1.26 1.35 1.42 1.46 1.54 1.59 1.62 1.65 1.66 2.13 0.00 0.00 0.00 0.08 0.64 1.04 1.22 1.31 1.38 1.42 1.50 1.55 1.58 1.61 1.62 2.14 0.00 0.00 0.00 0.07 0.61 1.00 1.18 1.28 1.34 1.38 1.46 1.51 1.54 1.57 1.58 2.15 0.00 0.00 0.00 0.06 0.58 0.97 1.14 1.24 1.30 1.34 1.42 1.47 1.50 1.53 1.54 2.16 0.00 0.00 0.00 0.05 0.55 0.93 1.10 1.20 1.26 1.30 1.38 1.43 1.46 1.49 1.50 2.17 0.00 0.00 0.00 0.00 0.03 0.49 0.87	2.10	0.00	0.00	0.00	0.14	0.74	1.16	1.34	1.44	L.50	1.54	1.62	1.68	1.71	1.73	1.75
2.13 0.00 0.00 0.00 0.08 0.64 1.04 1.22 1.31 1.38 1.42 1.50 1.55 1.58 1.61 1.62 2.14 0.00 0.00 0.00 0.00 0.061 1.00 1.18 1.28 1.34 1.38 1.46 1.51 1.54 1.57 1.58 2.15 0.00 0.00 0.00 0.06 0.58 0.97 1.14 1.24 1.30 1.34 1.42 1.47 1.50 1.53 1.54 2.16 0.00 0.00 0.00 0.05 0.55 0.93 1.10 1.20 1.26 1.30 1.38 1.43 1.46 1.49 1.50 2.17 0.00 0.00 0.00 0.00 0.04 0.52 0.90 1.07 1.16 1.22 1.27 1.34 1.40 1.42 1.45 1.46 2.18 0.00 0.00 0.00 0.00 0.00 0.00	, ,	0.00	0.00	0.00	0.12	0.71	1.12	1.30	1.39	1.46	1.50	1.58	1.63	1.66	1.69	1.70
2.14 0.00 0.00 0.00 0.07 0.61 1.00 1.18 1.28 1.34 1.38 1.46 1.51 1.54 1.57 1.58 2.15 0.00 0.00 0.00 0.06 0.58 0.97 1.14 1.24 1.30 1.34 1.42 1.47 1.50 1.53 1.54 2.16 0.00 0.00 0.00 0.05 0.55 0.93 1.10 1.20 1.26 1.30 1.38 1.43 1.46 1.49 1.50 2.17 0.00 0.00 0.00 0.04 0.52 0.90 1.07 1.16 1.22 1.27 1.34 1.40 1.42 1.45 1.46 2.18 0.00 0.00 0.00 0.03 0.49 0.87 1.03 1.13 1.19 1.23 1.30 1.36 1.39 1.41 1.42 2.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00		;		0.00		0.67	1.08	1.26	1.35	1.42	1.46	1.54	1.59	1.62	1.65	1.66
2.15 0.00 0.00 0.06 0.58 0.97 1.14 1.24 1.30 1.34 1.42 1.47 1.50 1.53 1.54 2.16 0.00 0.00 0.00 0.05 0.55 0.93 1.10 1.20 1.26 1.30 1.38 1.43 1.46 1.49 1.50 2.17 0.00 0.00 0.00 0.04 0.52 0.90 1.07 1.16 1.22 1.27 1.34 1.40 1.42 1.45 1.46 2.18 0.00 0.00 0.00 0.03 0.49 0.87 1.03 1.13 1.19 1.23 1.30 1.36 1.39 1.41 1.42 2.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.437 0.803 0.968 1.061 1.120 1.061 1.233 1.287 1.314 1.340 1.352 2.21 0.000 0.000 0	2.13	0.00	0.00	0.00	0.08	0.64	1.04	1.22	1.31	1.38	1.42	1.50	1.55	1.58	1.61	1.62
2.16 0.00 0.00 0.00 0.05 0.55 0.93 1.10 1.20 1.26 1.30 1.38 1.43 1.46 1.49 1.50 2.17 0.00 0.00 0.00 0.04 0.52 0.90 1.07 1.16 1.22 1.27 1.34 1.40 1.42 1.45 1.46 2.18 0.00 0.00 0.00 0.03 0.49 0.87 1.03 1.13 1.19 1.23 1.30 1.36 1.39 1.41 1.42 2.19 0.00 0.00 0.00 0.02 0.46 0.83 1.00 1.09 1.15 1.20 1.27 1.32 1.35 1.38 1.39 2.20 0.000 0.000 0.001 0.417 0.803 0.968 1.061 1.120 1.061 1.233 1.287 1.314 1.340 1.352 2.21 0.000 0.000 0.000 0.000 0.000 0.000 0.000		1 1			3	1		1			4					1
2.17 0.00 0.00 0.00 0.04 0.52 0.90 1.07 1.16 1.22 1.27 1.34 1.40 1.42 1.45 1.46 2.18 0.00 0.00 0.00 0.03 0.49 0.87 1.03 1.13 1.19 1.23 1.30 1.36 1.39 1.41 1.42 2.19 0.00 0.00 0.00 0.02 0.46 0.83 1.00 1.09 1.15 1.20 1.27 1.32 1.35 1.38 1.39 2.20 0.000 0.000 0.000 0.015 0.437 0.803 0.968 1.061 1.120 1.061 1.233 1.287 1.314 1.340 1.352 2.21 0.000 0.000 0.000 0.010 0.413 0.772 0.936 1.028 1.087 1.128 1.199 1.253 1.279 1.305 1.318 2.22 0.000 0.000 0.000 0.000 0.389 0	1 1	i l														
2.18 0.00 0.00 0.00 0.03 0.49 0.87 1.03 1.13 1.19 1.23 1.30 1.36 1.39 1.41 1.42 2.19 0.00 0.00 0.00 0.02 0.46 0.83 1.00 1.09 1.15 1.20 1.27 1.32 1.35 1.38 1.39 2.20 0.000 0.000 0.000 0.015 0.437 0.803 0.968 1.061 1.120 1.061 1.233 1.287 1.314 1.340 1.352 2.21 0.000 0.000 0.000 0.010 0.413 0.772 0.936 1.087 1.128 1.199 1.253 1.279 1.305 1.318 2.22 0.000 0.000 0.000 0.006 0.389 0.734 0.905 0.996 1.054 1.095 1.166 1.219 1.245 1.271 1.284 2.23 0.000 0.000 0.000 0.000 0.002 0.345 <td></td> <td>1</td> <td></td> <td> </td> <td></td> <td></td>		1														
2.19 0.00 0.00 0.00 0.02 0.46 0.83 1.00 1.09 1.15 1.20 1.27 1.32 1.35 1.38 1.39 2.20 0.000 0.000 0.000 0.015 0.437 0.803 0.968 1.061 1.120 1.061 1.233 1.287 1.314 1.340 1.352 2.21 0.000 0.000 0.000 0.010 0.413 0.772 0.936 1.087 1.128 1.199 1.253 1.279 1.305 1.318 2.22 0.000 0.000 0.000 0.006 0.389 0.734 0.905 0.996 1.054 1.095 1.166 1.219 1.245 1.271 1.284 2.23 0.000 0.000 0.000 0.003 0.366 0.715 0.874 0.965 1.023 1.063 1.134 1.186 1.212 1.238 1.250 2.24 0.000 0.000 0.000 0.000 0.345	1 1										1			1	1	
2.20 0.000 0.000 0.000 0.0015 0.437 0.803 0.968 1.061 1.120 1.061 1.233 1.287 1.314 1.340 1.352 2.21 0.000 0.000 0.000 0.010 0.413 0.772 0.936 1.028 1.087 1.128 1.199 1.253 1.279 1.305 1.318 2.22 0.000 0.000 0.000 0.006 0.389 0.734 0.905 0.996 1.054 1.095 1.166 1.219 1.245 1.271 1.284 2.23 0.000 0.000 0.000 0.003 0.366 0.715 0.874 0.965 1.023 1.063 1.134 1.186 1.212 1.238 1.250 2.24 0.000 0.000 0.000 0.002 0.345 0.687 0.845 0.935 0.992 1.032 1.102 1.154 1.180 1.205 1.218 2.25 0.000 0.000 0.000 0	t i	1														
2.21 0.000 0.000 0.000 0.010 0.413 0.772 0.936 1.028 1.087 1.128 1.199 1.253 1.279 1.305 1.318 2.22 0.000 0.000 0.000 0.006 0.389 0.734 0.905 0.996 1.054 1.095 1.166 1.219 1.245 1.271 1.284 2.23 0.000 0.000 0.000 0.003 0.366 0.715 0.874 0.965 1.023 1.063 1.134 1.186 1.212 1.238 1.250 2.24 0.000 0.000 0.000 0.002 0.345 0.687 0.845 0.935 0.992 1.032 1.102 1.154 1.180 1.205 1.218 2.25 0.000 0.000 0.000 0.001 0.324 0.660 0.816 0.905 0.962 1.002 1.071 1.123 1.148 1.173 1.186 2.26 0.000 0.000 0.000 0.		ļ												_		—
2.22 0.000 0.000 0.000 0.000 0.006 0.389 0.734 0.905 0.996 1.054 1.095 1.166 1.219 1.245 1.271 1.284 2.23 0.000 0.000 0.000 0.003 0.366 0.715 0.874 0.965 1.023 1.063 1.134 1.186 1.212 1.238 1.250 2.24 0.000 0.000 0.000 0.002 0.345 0.687 0.845 0.935 0.992 1.032 1.102 1.154 1.180 1.205 1.218 2.25 0.000 0.000 0.000 0.001 0.324 0.660 0.816 0.905 0.962 1.002 1.071 1.123 1.148 1.173 1.186 2.26 0.000 0.000 0.000 0.304 0.634 0.789 0.876 0.933 0.972 1.041 1.092 1.117 1.142 1.154 2.27 0.000 0.000 0.000 0.	1 1	ll l									1 1			1		
2.23 0.000 0.000 0.000 0.000 0.003 0.366 0.715 0.874 0.965 1.023 1.063 1.134 1.186 1.212 1.238 1.250 2.24 0.000 0.000 0.000 0.002 0.345 0.687 0.845 0.935 0.992 1.032 1.102 1.154 1.180 1.205 1.218 2.25 0.000 0.000 0.000 0.001 0.324 0.660 0.816 0.905 0.962 1.002 1.071 1.123 1.148 1.173 1.186 2.26 0.000 0.000 0.000 0.000 0.304 0.634 0.789 0.876 0.933 0.972 1.041 1.092 1.117 1.142 1.154 2.27 0.000 0.000 0.000 0.285 0.609 0.762 0.848 0.904 0.943 1.011 1.062 1.087 1.112 1.124 2.28 0.000 0.000 0.000 0.		}	1]					
2.24 0.000 0.000 0.000 0.002 0.345 0.687 0.845 0.935 0.992 1.032 1.102 1.154 1.180 1.205 1.218 2.25 0.000 0.000 0.000 0.001 0.324 0.660 0.816 0.905 0.962 1.002 1.071 1.123 1.148 1.173 1.186 2.26 0.000 0.000 0.000 0.000 0.304 0.634 0.789 0.876 0.933 0.972 1.041 1.092 1.117 1.142 1.155 2.27 0.000 0.000 0.000 0.285 0.609 0.762 0.848 0.904 0.943 1.011 1.062 1.087 1.112 1.124 2.28 0.000 0.000 0.000 0.267 0.585 0.735 0.821 0.876 0.915 0.982 1.033 1.058 1.082 1.095		ll i	1								l i					
2.25 0.000 0.000 0.000 0.001 0.324 0.660 0.816 0.905 0.962 1.002 1.071 1.123 1.148 1.173 1.186 2.26 0.000 0.000 0.000 0.000 0.304 0.634 0.789 0.876 0.933 0.972 1.041 1.092 1.117 1.142 1.155 2.27 0.000 0.000 0.000 0.285 0.609 0.762 0.848 0.904 0.943 1.011 1.062 1.087 1.112 1.124 2.28 0.000 0.000 0.000 0.267 0.585 0.735 0.821 0.876 0.915 0.982 1.033 1.058 1.082 1.095		!	1								1 3					1
2.26 0.000 0.000 0.000 0.000 0.000 0.304 0.634 0.789 0.876 0.933 0.972 1.041 1.092 1.117 1.142 1.155 2.27 0.000 0.000 0.000 0.000 0.285 0.609 0.762 0.848 0.904 0.943 1.011 1.062 1.087 1.112 1.124 2.28 0.000 0.000 0.000 0.267 0.585 0.735 0.821 0.876 0.915 0.982 1.033 1.058 1.082 1.095		il .		1									i .	ł		1.186
2.27 0.000 0.000 0.000 0.000 0.000 0.285 0.609 0.762 0.848 0.904 0.943 1.011 1.062 1.087 1.112 1.124 1.242 1.095		il I	l	l					1		1	l .			1	1.155
2.28 0.000 0.000 0.000 0.000 0.267 0.585 0.735 0.821 0.876 0.915 0.982 1.033 1.058 1.082 1.095			1		1				1			f	i	1		1.124
		il '	1	1	i .			i	1		İ			f	ŧ	i i
<u>- [4.42 [0.900] 0.900] 0.000</u> 0.400 0.430 <u> </u> 0.301 0.710 0.794 0.849 0.867 0.934 1.004 1.029 1.033 1.003	2.29	0.000	0.000	0.000	0.000	0.250	0.561	0.710	ነ	0.849	ì	0.954	1.004	1.029	1.053	1

'Values tabulated are read in percent.

Table B-5—Continued

Table for Estimating the Lot Percent Nonconforming Using Standard Deviation Method¹

Q _{ti}	T						Sa	mple S	ize		· · · ·	-			
Q _L	3	4	5	7	10	15	20	25	30	35	50	75	100	150	200
2.30	0.000	0.000	0.000	0.000	0.233	0.538	0.685	0.769	0,823	0.861	0.927	0.977	1.001	1.025	1.037
2.31	0.000	0.000	0.000	0.000	0.218	0.516	0.661	0.743	0.797	0.834	0.900	0.949	0.974	0.998	1.009
2.32	0.000	0.000	0.000	0.000	0.203	0.495	0.637	0.719	0.772	0.809	0.874	0.923	0.947	0.971	0.982
2.33	0.000	0.000	0.000	0.000	0.189	0.474	0.614	0.695	0.748	0.784	0.848	0.897	0.921	0.944	0.956
2.34	0.000	0.000	0.000	0.000	0.175	0.454	0.592	0.672	0.724	0.760	0.824	0.872	0.895	0.919	0.930
2.35	0.000	0.000	0.000	0.000	0.163	0.435	0.571	0.650	0.701	0.736	0.799	0.847	0.870	0.893	0.905
2.36	0.000	0.000	0.000	0.000	0.151	0.416	0.550	0.628	0.678	0.714	0.776	0.823	0.846	0.869	0.880
2.37	0.000	0.000	0.000	0.000	0.131	0.398	0.530	0.606	0.656	0.691	0.753	0.799	0.822	0.845	0.856
1 1	1			l .											
2.38	0.000	0.000	0.000	0.000	0.128	0.381	0.510	0.586	0.635	0.670	0.730	0.777	0.799	0.822	0.833
2.39	0.000	0.000	0.000	0.000	0.118	0.364	0.491	0.566	0.614	0.648	0.709	0.754	0.777	0.799	0.810
2.40	0.000	0.000	0.000	0.000	0.109	0.348	0.473	0.546	0.594	0.628	0.687	0.732	0.755	0.777	0.787
2.41	0.000	0.000	0.000	0.000	0.100	0.332	0.455	0.527 0.509	0.575	0.608	0.667	0.711	0.733	0.755	0.766 0.744
2.42	0.000	0.000	0.000	0.000	0.091	0.317	0.437 0.421	0.309	0.555	0.588 0.569	0.646 0.627	0.691	0.712	0.734	0.744
2.44	0.000	0.000	0.000	0.000	0.083	0.302	0.404	0.474	0.519	0.551	0.608	0.651	0.672	0.693	0.724
2.45	0.000	0.000	0.000	0.000	0.076	0.235	0.389	0.457	0.501	0.533	0.589	0.632	0.653	0.673	0.684
2.46	0.000	0.000	0.000	0.000	0.063	0.262	0.373	0.440	0.484	0.516	0.571	0.613	0.634	0.654	0.664
2.47	0.000	0.000	0.000	0.000	0.057	0.249	0.359	0.425	0.468	0.499	0.553	0.595	0.615	0.636	0.646
2.48	0.000	0.000	0.000	0.000	0.051	0.237	0.345	0.409	0.452	0.482	0.536	0.577	0.597	0.617	0.627
2.49	0.000	0.000	0.000	0.000	0.046	0.226	0.331	0.394	0.436	0.466	0.519	0.560	0.580	0.600	0.609
2.50	0.000	0.000	0.000	0.000	0.041	0.214	0.317	0.380	0.421	0.451	0.503	0.543	0.563	0.582	0.592
2.51	0.000	0.000	0.000	0.000	0.037	0.204	0.305	0.366	0.407	0.436	0.487	0.527	0.546	0.565	0.575
2.52	0.000	0.000	0.000	0.000	0.033	0.193	0.292	0.352	0.392	0.421	0.472	0.511	0.530	0.549	0.559
2.53	0.000	0.000	0.000	0.000	0.029	0.184	0.280	0.339	0.379	0.407	0.457	0.495	0.514	0.533	0.542
2.54	0.000	0.000	0.000	0.000	0.026	0.174	0.268	0.326	0.365	0.393	0.442	0.480	0.499	0.517	0.527
2.55	0.000	0.000	0.000	0.000	0.023	0.165	0.257	0.314	0.352	0.379	0.428	0.465	0.484	0.502	0.511
2.56	0.000	0.000	0.000	0.000	0.020	0.156	0.246	0.302	0.340	0.366	0.414	0.451	0.469	0.487	0.496
2.57	0.000	0.000	0.000	0.000	0.017	0.148	0.236	0.291	0.327	0.354	0.401	0.437	0.455	0.473	0.482
2.58	0.000	0.000	0.000	0.000	0.015	0.140	0.226	0.279	0.316	0.341	0.388	0.424	0.441	0.459	0.468
2.59	0.000	0.000	0.000	0.000	0.013	0.133	0.216	0.269	0.304	0.330	0.375	0.410	0.428	0.445	0.454
2.61	0.000	0.000	0.000	0.000	0.009	0.123	0.198	0.238	0.282	0.307	0.351	0.385	0.402	0.419	0.428
2.62	0.000	0.000	0.000	0.000	0.008	0.112	0.198	0.248	0.282	0.307	0.339	0.373	0.390	0.419	0.428
2.63	0.000	0.000	0.000	0.000	0.007	0.112	0.181	0.236	0.262	0.285	0.328	0.361	0.378	0.394	0.402
2.64	0.000	0.000	0.000	0.000	0.006	0.099	0.172	0.220	0.252	0.275	0.317	0.350	0.366	0.382	0.390
2.65	0.000	0.000	0.000	0.000	0.005	0.094	0.165	0.211	0.242	0.265	0.307	0.339	0.355	0.371	0.379
2.66	0.000	0.000	0.000	0.000	0.004	0.088	0.157	0.202	0.233	0.256	0.296	0.328	0.344	0.359	0.367
2.67	0.000	0.000	0.000	0.000	0.003	0.083	0.150	0.194	0.224	0.246	0.286	0.317	0.333	0.348	0.356
2.68	0.000	0.000	0.000	0.000	0.002	0.078	0.143	0.186	0.216	0.237	0.277	0.307	0.322	0.338	0.345
2.69	0.000	0.000	0.000	0.000	0.002	0.073	0.136	0.179	0.208	0.229	0.267	0.297	0.312	0.327	

^{&#}x27;Values tabulated are read in percent.

Table B-5—Continued

Table for Estimating the Lot Percent Nonconforming Using Standard Deviation Method¹

Q _U							Sa	mple S	ize						
QL	3	4	-5	7	10	15	20	25	30	35	50	75	100	150	200
2.70	0.000	0.000	0.000	0.000	0.001	0.069	0.130	0.171	0.200	0.220	0.258	0.288	0.302	0.317	0.325
2.71	0.000	0.000	0.000	0.000	100.0	0.064	0.124	0.164	0.192	0.212	0.249	0.278	0.293	0.307	0,315
2.72	0.000	0.000	0.000	0.000	0.001	0.060	0.118	0.157	0.184	0.204	0.241	0.269	0.283	0.298	0.305
2.73	0.000	0.000	0.000	0.000	0.001	0.057	0.112	0.151	0.177	0.197	0.232	0.260	0.274	0.288	0.296
2.74	0.000	0.000	0.000	0.000	0.000	0.053	0.107	0.144	0.170	0.189	0.224	0.252	0.266	0.279	0.286
2.75	0.000	0.000	0.000	0.000	0.000	0.049	0.102	0.138	0.163	0.182	0.216	0.243	0.257	0.271	0.277
2.76	0.000	0.000	0.000	0.000	0.000	0.046	0.097	0.132	0.157	0.175	0.209	0.235	0.249	0.262	0.269
2.77	0.000	0.000	0.000	0.000	0.000	0.043	0.092	0.126	0.151	0.168	0.201	0.227	0.241	0.254	0.260
2.78	0.000	0.000	0.000	0.000	0.000	0.040	0.087	0.121	0.145	0.162	0.194	0.220	0.223	0.246	0.252
2.79	0.000	0.000	0.000	0.000	0.000	0.037	0.083	0.115	0.139	0.156	0.187	0.212	0.225	0.238	0.244
2.80	0.000	0.000	0.000	0.000	0.000	0.035	0.079	0.110	0.133	0.150	0.181	0.205	0.218	0.230	0.237
2.81	0.000	0.000	0.000	0.000	0.000	0.032	0.075	0.105	0.128	0.144	0.174	0.198	0.211	0.223	0.229
2.82	0.000	0.000	0.000	0.000	0.000	0.030	0.071	0.101	0.122	0.138	0.168	0.192	0.204	0.216	0.222
2.83	0.000	0.000	0.000	0.000	0.000	0.028	0.067	0.096	0.117	0.133	0.162	0.185	0.197	0.209	0.215
2.84	0.000	0.000	0.000	0.000	0.000	0.026	0.064	0.092	0.112	0.128	0.156	0.179	0.190	0.202	0.208
2.85	0.000	0.000	0.000	0.000	0.000	0.024	0.060	880.0	0.108	0.122	0.150	0.173	0.184	0.195	0.201
2.86	0.000	0.000	0.000	0.000	0.000	0.022	0.057	0.084	0.103	0.118	0.145	0.167	0.178	0.189	0.195
2.87	0.000	0.000	0.000	0.000	0.000	0.020	0.054	0.080	0.099	0.113	0.139	0.161	0.172	0.183	0.188
2.88	0.000	0.000	0.000	0.000	0.000	0.019	0.051	0.076	0.094	0.108	0.134	0.155	0.166	0.177	0.182
2.89	0.000	0.000	0.000	0.000	0.000	0.017	0.048	0.073	0.090	0.104	0.129 0.125	0.150 0.145	0.160	0.171	0.176 0.171
2.91	0.000	0.000	0.000	0.000	0.000	0.015	0.043	0.066	0.083	0.096	0.120	0.140	0.150	0.160	0.165
2.92	0.000	0.000	0.000	0.000	0.000	0.013	0.041	0.063	0.079	0.092	0.115	0.135	0.145	0.155	0.160
2.93	0.000	0.000	0.000	0.000	0.000	0.012	0.038	0.060	0.076	0.088	0.111	0.130	0.140	0.149	0.154
2.94	0.000	0.000	0.000	0.000	0.000	0.011	0.036	0.057	0.072	0.084	0.107	0.125	0.135	0.144	0.149
2.95	0.000	0.000	0.000	0.000	0.000	0.010	0.034	0.054	0.069	0.081	0.103	0.121	0.130	0.140	0.144
2.96	0.000	0.000	0.000	0.000	0.000	0.009	0.032	0.051	0.066	0.077	0.099	0.117	0.126	0.135	0.140
2.97	0.000	0.000	0.000	0.000	0.000	0.009	0.030	0.049	0.063	0.074	0.095	0.112	0.121	0.130	0.135
2.98	0.000	0.000	0.000	0.000	0.000	0.008	0.028	0.046	0.060	0.071	0.091	0.108	0.117	0.126	0.130
2.99 3.00	0.000	0.000	0.000	0.000	0.000	0.007	0.027	0.044	0.057	0.068	0.088	0.104	0.113	0.122	0.126 0.122
3.01	0.000	0.000	0.000	0.000	0.000	0.006	0.023	0.042	0.053	0.062	0.081	0.101	0.105	0.113	0.122
3.02	0.000	0.000	0.000	0.000	0.000	0.005	0.022	0.048	0.050	0.059	0.078	0.093	0.101	0.110	0.114
3.03	0.000	0.000	0.000	0.000	0.000	0.005	0.022	0.036	0.048	0.057	0.075	0.090	0.098	0.106	0.110
3.04	0.000	0.000	0.000	0.000	0.000	0.004	0.019	0.034	0.045	0.054	0.072	0.087	0.094	0.102	0.106
3.05	0.000	0.000	0.000	0.000	0.000	0.004	0.018	0.032	0.043	0.052	0.069	0.083	0.091	0.099	0.103
3.06	0.000	0.000	0.000	0.000	0.000	0.003	0.017	0.030	0.041	0.050	0.066	0.080	0.088	0.095	0.099
3.07	0.000	0.000	0.000	0.000	0.000	0.003	0.016	0.029	0.039	0.047	0.064	0.077	0.085	0.092	0.096
3.08	0.000	0.000	0.000	0.000	0.000	0.003	0.015	0.027	0.037	0.045	0.061	0.074	0.081	0.089	0.092
3.09	0.000	0.000	0.000	0.000	0.000	0.002	0.014	0.026	0.036	0.043	0.059	0.072	0.079	0.086	0.089

^{&#}x27;Values tabulated are read in percent.

Table B-5—Continued

Table for Estimating the Lot Percent Nonconforming Using Standard Deviation Method¹

Qu							Sa	mple S	ize						
or Q _L	3	4	5	7	10	15	20	25	30	35	50	75	100	150	200
3.10	0.000	0.000	0.000	0.000	0.000	0.002	0.013	0.024	0.034	0.041	0.056	0.069	0.076	0.083	0.086
3.11	0.000	0.000	0.000	0.000	0.000	0.002	0.012	0.023	0.032	0.039	0.054	0.066	0.073	0.080	0.083
3.12	0.000	0.000	0.000	0.000	0.000	0.002	0.011	0.022	0.031	0.038	0.052	0.064	0.070	0.077	0.080
3.13	0.000	0.000	0.000	0.000	0.000	0.002	0.011	0.021	0.029	0.036	0.050	0.061	0.068	0.074	0.077
3.14	0.000	0.000	0.000	0.000	0.000	0.001	0.010	0.019	0.028	0.034	0.048	0.059	0.065	0.071	0.075
3.15	0.000	0.000	0.000	0.000	0.000	0.001	0.009	0.018	0.026	0.033	0.046	0.057	0.063	0.069	0.072
1 1		0.000	0.000	0.000	0.000	0.001	0.009	0.017	0.025	0.031	0.044	0.055	0.060	0.066	0.069
3.16	0.000	!	l i		!					0.030	0.042	0.053	0.058	0.064	0.067
3.17	0.000	0.000	0.000	0.000	0.000	0.001	0.008	0.016	0.024	1					
3.18	0.000	0.000	0.000	0.000	0.000	0.001	0.007	0.015	0.022	0.028	0.040	0.050	0.056	0.062	0.065
3.19	0.000	0.000	0.000	0.000	0.000	0.001	0.007	0.015	0.021	0.027	0.038	0.049	0.054	0.059	0.062
3.20	0.000	0.000	0.000	0.000	0.000	0.001	0.006	0.014	0.020	0.026	0.037	0.047	0.052	0.057	0.060 0.058
3.21	0.000	0.000	0.000	0.000	0.000	0.000	0.006	0.013	0.019	0.024	0.035 0.034	0.045 0.043	0.050 0.048	0.055 0.053	0.056
3.22 3.23	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.012	0.013	0.023	0.034	0.043	0.046	0.051	0.054
3.24	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.011	0.016	0.021	0.031	0.040	0.044	0.049	0.052
3.25	0.000	0.000	0.000	0.000	0.000	0.000	0.004	0.010	0.015	0.020	0.030	0.038	0.043	0.048	0.050
3.26	0.000	0.000	0.000	0.000	0.000	0.000	0.004	0.009	0.015	0.019	0.028	0.037	0.041	0.046	0.048
3.27	0.000	0.000	0.000	0.000	0.000	0.000	0.004	0.009	0.014	0.018	0.027	0.035	0.040	0.044	0.046
3.28	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.008	0.013	0.017	0.026	0.034	0.038	0.042	0.045
3.29	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.008	0.012	0.016	0.025	0.032	0.037	0.041	0.043
3.30	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.007	0.012	0.015	0.024	0.031	0.035	0.039	0.042
3.31	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.007	0.011	0.015	0.023	0.030	0.034	0.038	0.040 0.038
3.32	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.006	0.010	0.014	0.022	0.029	0.032	0.036 0.035	0.038
3.33	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.006 0.006	0.010	0.013	0.021	0.027	0.031	0.033	0.036
3.35	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.005	0.009	0.013	0.019	0.025	0.029	0.032	0.034
3.36	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.005	0.008	0.011	0.018	0.024	0.028	0.031	0.033
3.37	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.005	0.008	0.011	0.017	0.023	0.026	0.030	0.032
3.38	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.004	0.007	0.010	0.016	0.022	0.025	0.029	0.031
3.39	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.004	0.007	0.010	0.016	0.021	0.024	0.028	0.029
3.40	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.004	0.007	0.009	0.015	0.020	0.023	0.027	0.028
3.41	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.003	0.006	0.009	0.014	0.020	0.022	0.026	0.027
3.42	1	0.000	0.000	0.000	0.000	0.000	0.001	0.003	0.006	0.008	0.014	0.019	0.022	0.025	0.026
3.43	l	0.000	0.000	0.000	0.000	0.000	0.001	0.003	0.005	0.008	1	1	0.021	0.024	0.025
3.44	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.003	0.005	0.007	0.012	0.017	0.020	0.023	0.024
3.45	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.003	0.005	0.007	0.012	0.016	0.019	0.022	0.023
3.46	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.005	0.007	0.011	0.016	0.018	0.021	0.022
3.47	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.006	0.011	0.015	0.018	ľ	0.022
3.48	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.006 0.005	1		0.017	i .	1
3.49	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.004	0.003	0.010	0.014	0.010	V.019	0.020

^{&#}x27;Values tabulated are read in percent.

Table B-5—Continued

Table for Estimating the Lot Percent Nonconforming Using Standard Deviation Method¹

Q _U							Sa	mple S	ize						
Q _L	3	4	5	7	10	15	20	25	30	35	50	75	100	150	200
3.50	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.003	0.005	0.009	0.013	0.015	0.018	0.019
3.51	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.003	0.005	0.009	0.013	0.015	0.017	0.018
3.52	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.002	0.003	0.005	0.008	0.012	0.014	0.016	0.018
3.53	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.003	0.004	0.008	0.011	0.014	0.016	0.017
i i												}	1		
3.54	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.003	0.004	0.008	0.011	0.013	0.015	0.016
3.55	0.000	0.000	0.000	0.000	0.000	0.000	0.000	100.0	0.003	0.004	0.007	0.011	0.012	0.015	0.016
3.56	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.007	0.010	0.012	0.014	0.015
3.57	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.006	0.010	0.011	0.013	0.014
3.58	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.006	0.009	0.011	0.013	0.014
3.59	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.006	0.009	0.010	0.012	0.013
3.60	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.006	0.008	0.010	0.012	0.013
3.61	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.005	0.008	0.010	0.011	0.012
3.62	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.005	0.008	0.009	0.011	0.012
3.63	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.005	0.007	0.009	0.010	0.011
3.64	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.004	0.007	0.008	0.010	0.011
3.65	0.000	0.000	0.000	0.000	0.000	0.000	0.000	100.0	0.001	0.002	0.004	0.007	0.008	0.010	0.010
3.66	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.006	0.008	0.009	0.010
3.67	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	100.0	0.002	0.004	0.006	0.007	0.009	0.010
3.68	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.006	0.007	0.008	0.009
3.69	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.005	0.007	0.008	0.009
3.70	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.005	0.006	0.008	0.008
3.71	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.003	0.005	0.006	0.007	0.008
3.72	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.003	0.005	0.006	0.007	0.008 0.007
3.73	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.003	0.003	0.005	0.007	0.007
3.75	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.003	0.004	0.005	0.006	0.007
3.76	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.004	0.005	0.006	0.007
3.77	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.004	0.005	0.006	0.006
3.78	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.004	0.005	0.006
3.79	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.004	0.005	0.006
3.80	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.004	0.005	0.006
3.81	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.004	0.005	0.005
3.82	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.004	0.005	0.005
3.83	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.004	0.004	0.005
3.84	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.003	0.003	0.004	0.005
3.85	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.003	0.004	0.004
3.87	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.004	0.004
3.88	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.003	0.004
3.89	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.003	0.004
3.90	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.003	0.004

^{&#}x27;Values tabulated are read in percent.

Table B-6
Values of F for Maximum Standard Deviation (MSD)

Sample	Acceptable Quality Levels (in percent nonconforming)													
size	T	.10	.15	.25	.40	.65	1.00	1.50	2.50	4.00	6.50	10.00		
3									.436	.453	.475	.502		
4							.338	.353	.374	.399	.432	.472		
5			-		.281	.294	.308	.323	.346	.372	.408	.452		
7		.224	.231	.242	.253	.266	.280	.295	.318	.345	.381	.425		
10	.200	.206	.214	.224	.235	.247	.261	.275	.298	.324	.359	.403		
15	.188	.195	.202	.212	.222	.235	.248	.262	.284	.309	.344	.386		
20	.183	.190	.197	.206	.217	.229	.242	.256	.277	.302	.336	.377		
25	.180	.187	.194	.203	.213	.225	.238	.252	.273	.298	.331	.372		
30	.179	.185	.192	.201	.211	.223	.236	.249	.271	.295	.329	.369		
35	.176	.182	.189	.198	.208	.220	.232	.246	.267	.291	.324	.364		
50	.172	.178	.185	.194	.204	.215	.227	.241	.261	.285	.317	.357		
75	.168	.174	.181	.190	.199	.211	.223	.236	.256	.279	.311	.349		
100	.167	.173	.179	.188	.198	.209	.220	.233	.253	.276	.308	.346		
150	.164	.170	.176	.185	.195	.206	.217	.230	.250	.273	.304	.341		
200	.164	.168	.176	.185	.194	.205	.217	.230	.249	.272	.303	.340		

The MSD may be obtained by multiplying the factor F by the difference between the upper specification limit U and lower specification limit L. The formula is MSD = F(U - L). The MSD serves as a guide for the magnitude of the estimate of lot standard deviation when using plans for the double specification limit case, based on the estimate of lot standard deviation of unknown variability. The estimate of lot standard deviation, if it is less than the MSD, helps to insure, but does not guarantee, lot acceptability.

NOTE: There is a corresponding acceptability constant in Table B-1 for each value of F. For reduced inspection, find the acceptability constant of Table B-2 in Table B-1 and use the corresponding value of F.

All AQL values are in percent nonconforming. T denotes plan used exclusively on tightened inspection and provides symbol for identification of appropriate OC curve.

APPENDIX B Definitions

Symbol	Read	Definition
n		Sample size for a single lot.
$\overline{\mathbf{x}}$	X bar	Sample mean. Arithmetic mean of sample measurements from a single lot.
		$\overline{X} - \frac{\Sigma X}{n}$
S		Estimate of lot standard deviation. Standard deviation of sample
		measurements from a single lot. (See Examples in Section B.)
		$s = \sqrt{\frac{\sum X^2 - (\sum X)^2}{n}}$
U		Upper specification limit.
L		Lower specification limit.
k		The acceptability constant given in Tables B-1 and B-2.
Q_{υ}	Q sub U	Quality index for use with Table B-5.
Q_L	Q sub L	Quality index for use with Table B-5.
$\mathbf{p}_{\mathbf{U}}$	p sub U	Sample estimate of the lot percent nonconforming above U from Table B-5.
p_L	p sub L	Sample estimate of the lot percent nonconforming below L from Table B-5.
p		Total sample estimate of the lot percent nonconforming $p = p_u + p_L$.
M		Maximum allowable percent nonconforming for sample estimates given in
		Tables B-3 and B-4.
$M_{\scriptscriptstyle m U}$	M sub U	Maximum allowable percent nonconforming above U given in Tables B-3 and B-4. (For use when different AQL values for U and L are specified.)
M_L	M sub L	Maximum allowable percent nonconforming below L given in Tables B-3 and B-4. (For use when different AQL values for U and L are specified.)
p	p bar	Sample estimate of the process percent nonconforming, i.e., the estimated process average.
$\overline{\mathbf{p}}_{oldsymbol{u}}$	p bar sub U	The estimated process average for an upper specification limit.
\overline{p}_{L}	p bar sub L	The estimated process average for a lower specification limit.
F		A factor used in determining the Maximum Standard Deviation (MSD). The F values are given in Table B-6.
>	Greater than	Greater than.
<	Less than	Less than.
Σ	Sum of	Sum of.
Т		AQL symbol denoting plan used exclusively on tightened inspection (provides identification of appropriate OC curve).

SECTION C VARIABILITY UNKNOWN—RANGE METHOD

Part I SINGLE SPECIFICATION LIMIT

C1. SAMPLING PLAN FOR SINGLE SPECIFICATION LIMIT

This part of the Standard describes the procedures for use with plans for a single specification limit when variability of the lot with respect to the quality characteristic is unknown and the range method is used. The acceptability criterion is given in two equivalent forms. These are identified as Form 1 and Form 2.

- C1.1 <u>Use of Sampling Plans</u>. To determine whether the lot meets the acceptability criterion with respect to a particular quality characteristic and AQL value, the applicable sampling plan shall be used in accordance with the provisions of Section A, General Description of the Sampling Plans, and those in this part of the Standard.
- C1.2 <u>Drawing of Samples</u>. All samples shall be drawn in accordance with paragraph A7.2.
- C1.3 <u>Determination of Sample Size Code Letter</u>. The sample size code letter shall be selected from Table A-2 in accordance with paragraph A7.1.

C2. SELECTING THE SAMPLE PLAN WHEN FORM 1 IS USED

- C2.1 <u>Master Sampling Tables</u>. The master sampling tables for plans based on variability unknown for a single specification limit when using the range method are Tables C-1 and C-2. Table C-1 is used for normal and tightened inspection and Table C-2 for reduced inspection.
- C2.2 Obtaining the Sample Plan. The sampling plan consists of a sample size and an associated acceptability constant. The sampling plan is obtained from Master Table C-1 or C-2.
- C2.2.1 <u>Sample Size</u>. The sample size n is shown in the master table corresponding to each sample size code letter.
- C2.2.2 Acceptability Constant. The acceptability constant k, corresponding to the sample size mentioned in paragraph C2.2.1, is indicated in the column of the master table corresponding to the applicable AQL value. Table C-1 is entered from the top for normal inspection and from the bottom for

tightened inspection. Sampling plans for reduced inspection are provided in Table C-2.

C3. LOT-BY-LOT ACCEPTABILITY PROCEDURES WHEN FORM 1 IS USED²

- C3.1 Acceptability Criterion. The degree of conformance of a quality characteristic with respect to a single specification limit shall be judged by the quantity $(U \overline{X})/\overline{R}$ or $(\overline{X} L)/\overline{R}$.
- C3.2 <u>Computation</u>. The following quantity shall be computed: $(U \overline{X}) / \overline{R}$ or $(\overline{X} L) / \overline{R}$, depending on whether the specification limit is an upper or a lower limit, where

U is the upper specification limit, \underline{L} is the lower specification limit, \overline{X} is the sample mean, and \overline{R} is the average range of the sample.

In this Standard, \overline{R} is the average range of subgroup ranges. Each of the subgroups consists of 5 measurements, except for those plans with sample size 3, 4, or 7 in which case the subgroup size is the same as the sample size and the sample range is used as \overline{R} . In computing \overline{R} , the order of the sample measurements as made must be retained. Subgroups of consecutive measurements must be formed and the range of each subgroup obtained. \overline{R} is the average of the individual subgroup ranges.

C3.3 Acceptability Criteria. Compare the quantity $(U-\overline{X})/\overline{R}$ or $(\overline{X}-L)/\overline{R}$ with the acceptability constant k. If $(U-\overline{X})/\overline{R}$ or $(\overline{X}-L)/\overline{R}$ is equal to or greater than k, the lot meets the acceptability criterion; if $(U-\overline{X})/\overline{R}$ or $(\overline{X}-L)/\overline{R}$ is less than k or negative, then the lot does not meet the acceptability criterion.

C4. SUMMARY FOR OPERATION OF SAMPLING PLAN WHEN FORM 1 IS USED

The following steps summarize the procedures to be followed:

- (1) Determine the sample size code letter from Table A-2 by using the lot size and the inspection level.
- (2) Obtain plan from Master Table C-1 or C-2 by selecting the sample size n and the acceptability constant k.

¹See Appendix C for definitions of all symbols used in the sampling plans based on variability unknown—range method.

²See Example C-1 for a complete example of this procedure.

- (3) Select at random the sample of n units from the lot; inspect and record the measurement of the quality characteristic for each unit of the sample.
- (4) Compute the sample mean \overline{X} and the average range of the sample \overline{R} , and also compute the quantity $(U-\overline{X})/\overline{R}$ for an upper specification limit U or the quantity $(\overline{X}-L)/\overline{R}$ for a lower specification limit L.
- (5) If the quantity $(U-\overline{X})/\overline{R}$ or $(\overline{X}-L)/\overline{R}$ is equal to or greater than k, the lot meets the acceptability criterion; if $(U-\overline{X})/\overline{R}$ or $(\overline{X}-L)/\overline{R}$ is less than k or negative, then the lot does not meet the acceptability criterion.

C5. SELECTING THE SAMPLING PLAN WHEN FORM 2 IS USED

- C5.1 <u>Master Sampling Tables</u>. The master sampling tables for plans based on variability unknown for a single specification limit when using the range method are Tables C-3 and C-4 of Part II. Table C-3 is used for normal and tightened inspection and Table C-4 for reduced inspection.
- C5.2 Obtaining the Sampling Plan. The sampling plan consists of a sample size and an associated maximum allowable percent nonconforming. The sampling plan is obtained from Master Table C-3 or C-4.
- C5.2.1 <u>Sample Size</u>. The sample size n is shown in the master table corresponding to each sample size code letter.
- C5.2.2 Maximum Allowable Percent Nonconforming. The maximum allowable percent nonconforming M for sample estimates corresponding to the sample size mentioned in paragraphs C5.2.1 is indicated in the column of the master table corresponding to the applicable AQL value. Table C-3 is entered from the top for normal inspection and from the bottom for tightened inspection. Sampling plans for reduced inspection are provided in Table C-4.

C6. LOT-BY-LOT ACCEPTABILITY PROCEDURES WHEN FORM 2 IS USED

C6.1 <u>Acceptability Criterion</u>. The degree of conformance of a quality characteristic with respect to a single specifica-

tion limit shall be judged by the percent of nonconforming product outside the upper or lower specification limit. The percentage of nonconforming product is estimated by entering Table C-5 with the quality index and the sample size.

- C6.2 <u>Computation of Quality Index</u>. The quality index $Q_U = (U \overline{X})c/\overline{R}$ shall be computed if the specification limit is an upper limit U, or $Q_L = (\overline{X} L)c/\overline{R}$ if it is a lower limit L. The quantities, \overline{X} and \overline{R} , are the sample mean and average range of the sample, respectively. The computation of \overline{R} is explained in paragraph C3.2. The factor c is provided in Master Tables C-3 and C-4 corresponding to the sample size code letter.
- C6.3 Estimate of Percent Nonconforming in Lot. The quality of a lot shall be expressed by p_U , the estimated percent nonconforming in the lot above the upper specification limit, or by p_L , the estimated percent nonconforming below the lower specification limit. The estimated percent nonconforming p_U or p_L is obtained by entering Table C-5 with Q_U or Q_L and the appropriate sample size.
- C6.4 <u>Acceptability Criterion</u>. Compare the estimated lot percent nonconforming p_U or p_L with the maximum allowable percent nonconforming M. If p_U or p_L is equal to or less than M, the lot meets the acceptability criterion; if p_U or p_L is greater than M or if Q_U or Q_L is negative, then the lot does not meet the acceptability criterion.

C7. SUMMARY OF OPERATION OF SAMPLING PLAN WHEN FORM 2 IS USED

The following steps summarize the procedures to be followed:

- (1) Determine the sample size code letter from Table A-2 by using the lot size and the inspection level.
- (2) Obtain plan from Master Table C-3 or C-4 by selecting the sample size n, the factor c, and the maximum allowable percent nonconforming M.
- (3) Select at random the sample of n units from the lot; inspect and record the measurement of the quality characteristic on each unit of the sample.

³See Example C-2 for a complete example of this procedure.

- (4) Compute the sample mean \overline{X} and the average range of the sample \overline{R} .
- (5) Compute the quality index $Q_U = (U \overline{X})c/\overline{R}$ if the upper specification limit U is specified, or $Q_L = (\overline{X} L)c/\overline{R}$ if the lower specification limit L is specified.
- (6) Determine the estimated lot percent nonconforming p_L or p_U from Table C-5.
- (7) If the estimated lot percent nonconforming p_L or p_U is equal to or less than the maximum allowable percent nonconforming M, the lot meets the acceptability criterion; if p_L or p_U is greater than M or if Q_U or Q_L is negative, then the lot does not meet the acceptability criterion.

EXAMPLE C-1

Example of Calculations

Single Specification Limit—Form 1

Variability Unknown—Range Method

Example: The lower specification limit for electrical resistance of a certain electrical component is 620 ohms.

A lot of 100 items is submitted for inspection. Inspection Level II, normal inspection, with AQL = .4% is to be used. From Tables A-2 and C-1 it is seen that a sample of size 10 is required. Suppose that values of the sample resistances in the order reading from left to right are as follows:

$$643, 651, 619, 627, 658, (R_1 = 658 - 619 = 39)$$

 $670, 673, 641, 638, 650, (R_2 = 673 - 638 = 35)$

and compliance with the acceptability criterion is to be determined.

Line	Information Needed	Value Obtained	Explanation
1	Sample Size n	10	,
2	Sum of Measurements: ∑X	6470	
3	Sample Mean (\overline{X}): $\Sigma X/n$	647	6470/10
4	Average Range (\bar{R}): $\Sigma R/no.$ of subgroups	37	(39 + 35)/2
5	Specification Limit (Lower): L	620	
6	The quantity: $(\overline{X} - L)/\overline{R}$.730	(647 – 620)/37
7	Acceptability Constant: k	.811	See Table C-1
8	Acceptability Criterion: Compare (\overline{X} – L)/ \overline{R} with k	.730 < .811	See Para. C3.3
	* * * * * * * * * * * * * * * * * * * *		

The lot does not meet the acceptability criterion, since $(\bar{X} - L)/\bar{R}$ is less than k.

NOTE: If a single upper specification limit U is given, then compute the quantity $(U - \overline{X})/\overline{R}$ in line 6 and compare it with k; the lot meets the acceptability criterion if $(U - \overline{X})/\overline{R}$ is equal to or greater than k.

EXAMPLE C-2

Example of Calculations

Single Specification Limit—Form 2

Variability Unknown-Range Method

Example: A lower specification limit for electrical resistance of a certain electrical component is 620 ohms.

A lot of 100 items is submitted for inspection. Inspection Level II, normal inspection, with AQL

= .4% is to be used. From Tables A-2 and C-1 it is seen that a sample of size 10 is required.

Suppose the values of the sample resistances in the order reading from left to right are as follows:

$$643, 651, 619, 627, 658, (R_1 = 658 - 619 = 39)$$

 $670, 673, 641, 638, 650, (R_2 = 673 - 638 = 35)$

and compliance with the acceptability criterion is to be determined.

Line	Information Needed	Value Obtained	Explanation
1	Sample size n	10	
2	Sum of Measurements: ΣX	6470	
3	Sample Mean \overline{X} : $\Sigma X/n$	647	6470/10
4	Average Range \bar{R} : $\Sigma R/no$. of subgroups	37	(39 + 35)/2
5	Factor c	2.405	See Table C-3
6	Specification Limit (Lower): L	620	
7	Quality Index: $Q_L = (\overline{X} - L)c/\overline{R}$	1.76	(647 – 620)2.405/37
8	Est. of Lot Percent Ncf.: pt	2.54%	See Table C-5
9	Max. Allowable Percent Ncf.: M	1.14%	See Table C-3
10	Acceptability Criterion: Compare pt. with M	2.54% > 1.14%	See Para. C6.4

The lot does not meet the acceptability criterion, since p_L is greater than M.

NOTE: If a single upper specification limit U is given, then compute the quality index $Q_U = (U - \widetilde{X})c/\widetilde{R}$ in line 7 and obtain the estimate of lot percent nonconforming p_U . Compare p_U with M; the lot meets the acceptability criterion, if p_U is equal to or less than M.

Range Method

Master Table for Normal and Tightened Inspection for Plans Based on Variability Unknown (Single Specification Limit—Form 1) Table C-1

Sample	1			Acce	Acceptable Quality Levels (normal inspection)	Quality	y Level	nou) sı	nal ins	pection	(c		
size	size	Т	.10	.15	.25	.40	.65	1.00	1.50	2.50	4.00	6.50	10.00
letter		k	k	k	k	k	ĸ	k	k	·k	k	k	k
В	3						_	*	*	587	.502	.401	.296
۲	4		-				→	.651	.598	.525	.450	.364	.276
D	5				_	→	.663	.614	565	.498	.431	.352	272
ш	7			-	.702	629	.613	.569	.525	.465	.405	.336	.266
Ω,	10	~	-	916	.863	.811	.755	.703	.650	.579	.507	.424	.341
Ŋ	15	1.04	666	856.	606	.850	792	738	684	.610	.536	.452	368
H	25	1.10	1.05	1.0.1	.951	968.	.835	977.	.723	.647	.571	.484	398
I	30	1.10	1.06	1.02	956.	.904	.843	787.	.730	.654	775.	.490	.403
r	40	1.13	1.08	1.04	976	.921	.860	803	.746	899.	.591	.503	.415
×	09	1.16	1.11	1.06	1.00	.948	888.	.826	892:	689	019	.521	.432
ר	85	1.17	1.13	1.08	1.02	.962	668.	.839	.780	.701	.621	.530	.441
Σ	115	1.19	1.14	1.09	1.03	576.	116.	.851	.791	.711	.631	.539	.449
z	175	1.21	1.16	1.11	1.05	966	.929	898.	208	97.	.644	.552	.460
Ь	230	1.21	1.16	1.12	1.06	966.	.931	.870	808	.728	.646	.553	.462
		.10	.15	.25	.40	59.	1.00	1.50	2.50	4.00	6.50	10.00	
				Acce	Acceptable Quality Levels (tightened inspection)	Quality	Level	s (tight	ened in	nspection	ou)		

All AQL values are in percent nonconforming. T denotes plan used exclusively on tightened inspection and provides symbol for identification of appropriate OC curve. Use first sampling plan below arrow; that is, both sample size as well as k value. When sample size equals or exceeds lot size, every item in the lot must be inspected.

Master Table for Reduced Inspection for Plans Based on Variability Unknown (Single Specification Limit—Form 1) Table C-2

Sample	,				Acce	ptable	Qualit	Acceptable Quality Levels	ls.			
size	Sample	01.	.15	.25	.40	59:	1.00	1.50	2.50	4.00	6.50	10.00
letter		4	يد	ᅪ	×	k	k	k	k	k	k	k
В	3							.587	.502	.401	.296	178
C	3							.587	.502	.401	.296	.178
D	3							.587	.502	.401	.296	.178
m	3					-	→	.587	.502	.401	.296	.178
江	4			_	*	.651	.598	.525	.450	.364	.276	.176
ß	5		-	*	699'	.614	.565	.498	.431	.352	.272	.184
Н	7	-	.702	629	.613	.569	.525	.465	.405	.336	.266	681.
Ι	10	916	.863	.811	.755	.703	.650	.579	.507	.424	.341	.252
J	15	958	.903	.850	262'	.738	.684	.610	.536	.452	368	.276
*	25	1.01	.951	968.	835	<i>6LL</i> '	.723	.647	172.	484	398	305
T	30	1.02	956	904	.843	787	.730	.654	.577	.490	.403	.310
×	35	1.02	.964	806.	.848	.791	.734	.658	.581	.494	.406	.313
z	09	1.06	1.00	.948	288.	.826	.768	689	019	.521	.432	336
Д	85	1.08	1.02	.962	668.	.839	.780	.701	.621	.530	.441	.345

All AQL values are in percent nonconforming.

Use first sampling plan below arrow; that is, both sample size as well as k value. When sample size equals or exceeds lot size, every item in the lot must be inspected.

Part II DOUBLE SPECIFICATION LIMIT

C8. SAMPLING PLAN FOR DOUBLE SPECIFICATION LIMIT

This part of the Standard describes the procedures for use with plans for a double specification limit when variability of the lot with respect to the quality characteristic is unknown and the range method is used.

C8.1 <u>Use of Sampling Plans</u>. To determine whether the lot meets the acceptability criterion with respect to a particular quality characteristic and AQL value(s), the applicable sampling plan shall be used in accordance with the provisions of Section A, General Description of Sampling Plans, and those in this part of the Standard.

C9. SELECTING THE SAMPLING PLAN

A sampling plan for each AQL value shall be selected from Table C-3 or C-4 as follows:

- C9.1 <u>Determination of Sample Size Code Letter</u>. The sample size code letter shall be selected from Table A-2 in accordance with paragraph A7.1.
- C9.2 <u>Master Sampling Tables</u>. The master sampling tables for plans based on variability unknown for a double specification limit when using the range method are Tables C-3 and C-4. Table C-3 is used for normal and tightened inspection and Table C-4 for reduced inspection.
- C9.3 Obtaining Sampling Plan. A sampling plan consists of a sample size and the associated maximum allowable percent nonconforming. The sampling plan to be applied in inspection shall be obtained from Master Table C-3 or C-4.
- C9.3.1 <u>Sample Size</u>. The sample size n is shown in the master tables corresponding to each sample size code letter.
- C9.3.2 Maximum Allowable Percent Nonconforming. The maximum allowable percent nonconforming for sample estimates of percent nonconforming for the lower, upper, or both specification limits combined, corresponding to the sample size mentioned in paragraph C9.3.1, is shown in the column of the master table corresponding to the applicable AQL value(s). If different AQLs are assigned to each specification limit, designate the maximum allowable percent nonconforming by M_L for the lower limit, and by M_U for the upper limit. If one AQL is assigned to both limits com-

bined, designate the maximum allowable percent nonconforming by M. Table C-3 is entered from the top for normal inspection and from the bottom for tightened inspection. Sampling plans for reduced inspection are provided in Table C-4.

C10. DRAWING OF SAMPLES

Samples shall be selected in accordance with paragraph A7.2.

C11. LOT-BY-LOT ACCEPTABILITY PROCEDURES

C11.1 <u>Acceptability Criterion</u>. The degree of conformance of a quality characteristic with respect to a double specification limit shall be judged by the percent of nonconforming product. The percentage of nonconforming product is estimated by entering Table C-5 with the quality index and the sample size.

C11.2 Computation of Quality Indices. The quality indices $Q_U = (U - \overline{X})c/\overline{R}$ and $Q_L = (\overline{X} - L)c/\overline{R}$ shall be computed, where

U is the upper specification limit, L is the lower specification limit, c is a factor provided in Tables C-3 and C-4, \overline{X} is the sample mean, and \overline{R} is the average range of the sample.

In this Standard, \bar{R} is the average range of the subgroup ranges. Each of the subgroups consists of 5 measurements, except for those plans with sample size 3, 4, or 7 in which case the subgroup size is the same as the sample size and the sample range is used as \bar{R} . In computing \bar{R} , the order of the sample measurements as made must be retained. Subgroups of consecutive measurements must be formed and the range of each subgroup obtained. \bar{R} is the average of the individual subgroup ranges.

C11.3 Percent Nonconforming in the Lot. The quality of a lot shall be expressed in terms of the lot percent nonconforming. Its estimate will be designated by p_L , p_U , or p_L . The estimate p_U indicates conformance with respect to the upper specification limit, p_L with respect to the lower specification limit, and p_U for both specification limits combined. The estimate p_L and p_U shall be determined by entering Table

C-5, respectively with Q_L and Q_U and the sample size. The estimate p shall be determined by adding the corresponding estimated percents nonconforming p_L and p_U found in the table.

C12. ACCEPTABILITY CRITERION AND SUMMARY FOR OPERATION OF SAMPLING PLANS

- C12.1 One AQL Value for Both Upper and Lower Specification Limit Combined.
- C12.1.1 Acceptability Criterion. Compare the estimated lot percent nonconforming $p = p_U + p_L$ with the maximum allowable percent nonconforming M. If p is equal to or less than M, the lot meets the acceptability criterion; if p is greater than M or if either Q_U or Q_L or both are negative, then the lot does not meet the acceptability criterion.
- C12.1.2 <u>Summary for Operation of Sampling Plan</u>. In cases where a single AQL value is established for the upper and lower specification limit combined for a single quality characteristic, the following steps summarize the procedures to be used:
- (1) Determine the sample size code letter from Table A-2 by using the lot size and the inspection level.
- (2) Select plan from Master Table C-3 or C-4. Obtain the sample size n, the factor c, and the maximum allowable percent nonconforming M.
- (3) Select at random the sample of n units from the lot; inspect and record the measurement of the quality characteristic on each unit of the sample.
- (4) Compute the sample mean \overline{X} and average range of the sample \overline{R} .
- (5) Compute the quality indices $Q_U = (U \overline{X})c/\overline{R}$ and $Q_L = (\overline{X} L)c/\overline{R}$.
- (6) Determine the estimated lot percent nonconforming $p = p_U + p_L$ from Table C-5.
- (7) If the estimated lot percent nonconforming p is equal to or less than the maximum allowable percent nonconforming M, the lot meets the acceptability criterion; if p is

greater than M or if either Q_U or Q_L or both are negative, then the lot does not meet the acceptability criterion.

- C12.2 <u>Different AQL Values for Upper and Lower Specification Limit.</u>
- C12.2.1 Acceptability Criteria. Compare the estimated lot percents nonconforming p_L and p_U with the corresponding maximum allowable percents nonconforming M_L and M_U ; also compare $p = p_L + p_U$ with the larger of M_L and M_U . If p_L is equal to or less than M_L , p_U is equal to or less than M_U , and p is equal to or less than the larger of M_L and M_U , the lot meets the acceptability criteria; otherwise, the lot does not meet the acceptability criteria. If either Q_L or Q_U or both are negative, then the lot does not meet the acceptability criteria.
- C12.2.2 <u>Summary for Operation of Sampling Plan</u>. In cases where a different AQL value is established for the upper and lower specification limit for a single quality characteristic, the following steps summarize the procedures to be used:
- (1) Determine the sample size code letter from Table A-2 by using the lot size and inspection level.
- (2) Select the sampling plan from Master Table C-3 or C-4. Obtain the sample size n, the factor c, and the maximum allowable percent nonconforming M_U and M_L , corresponding to AQL values for the upper and lower specification limits, respectively.
- (3) Select at random the sample of n units from the lot; inspect and record the measurement of the quality characteristic on each unit in the sample.
- (4) Compute the sample mean \overline{X} and average range of the sample \overline{R} .
- (5) Compute the quality indices $Q_U = (U \overline{X})c/\overline{R}$ and $Q_L = (\overline{X} L)c/\overline{R}$.
- (6) Determine the estimated lot percents nonconforming p_U and p_L , corresponding to the percents nonconforming above the upper and below the lower specification limits. Also determine the combined percent nonconforming $p = p_U + p_L$.

⁴See Example C-3 for a complete example of this procedure.

⁵See Example C-4 for a complete example of this procedure.

- (7) If all three of the following conditions:
 - (a) p_U is equal to or less than M_U ,
 - (b) p_L is equal to or less than M_L ,
 - (c) p is equal to or less than the larger of M_L and M_U,

are satisfied, the lot meets the acceptability criteria; otherwise the lot does not meet the acceptability criteria. If either Q_L or Q_U or both are negative, then the lot does not meet the acceptability criteria.

EXAMPLE C-3

Example of Calculations

Double Specification Limit

Variability Unknown—Average Range Method

One AQL Value for Both Upper and Lower Specification Limit Combined

Example: The specifications for electrical resistance of a certain electrical component is 650.0 ± 340 ohms. A lot of 100 items is submitted for inspection. Inspection Level II, normal inspection, with AQL = .4% is to be used. From Tables A-2 and C-3 it is seen that a sample of size 10 is required. Suppose the values of the sample resistance in the order reading from left to right are as follows:

$$643, 651, 619, 627, 658, (R_1 = 658 - 619 = 39)$$

 $670, 673, 641, 638, 650, (R_2 = 673 - 638 = 35)$

and compliance with the acceptability criterion is to be determined.

Lot	Information Needed	Value Obtained	Explanation
1	Sample Size: n	10	
2	Sum of Measurements: ΣX	6470	
3	Sample Mean $\overline{X}: \Sigma X/n$	647	6470/10
4	Average Range \tilde{R} : $\Sigma R/no$. of subgroups	37	(39 + 35)/2
5	Factor c	2.405	See Table C-3
6	Upper Specification Limit: U	680	
7	Lower Specification Limit: L	620	•
8	Quality Index: $Q_U = (U - \overline{X})c/\overline{R}$	2.15	(680 – 647)2.405/37
9	Quality Index: $Q_L = (\overline{X} - L)c/\overline{R}$	1.76	(647 – 620)2.405/37
10	Est, of Lot Percent Ncf. above U: pu	.35%	See Table C-5
11	Est, of Lot Percent Ncf. below L: pL	2.54%	See Table C-5
12	Total Est. Percent Ncf. in Lot: $p = p_U + p_L$	2.89%	.35% + 2.54%
13	Max. Allowable Percent Ncf.: M	1.14%	See Table C-3
14	Acceptability Criterion: Compare $p = p_U + p_L$ with M	2.89% > 1.14%	See Para. C12.1.2(7)

The lot does not meet the acceptability criterion, since $p = p_U + p_L$ is greater than M.

EXAMPLE C-4

Example of Calculations

Double Specification Limit

Variability Unknown—Average Range Method

Different AQL Values for Upper and Lower Specification Limits

Example: The specifications for electrical resistance of a certain electrical component is 650.0 ± 30 ohms. A lot of 100 items is submitted for inspection. Inspection Level II, normal inspection, with AQL = 2.5% for the upper and AQL = 1% for the lower specification limit is to be used. From Tables A-2 and C-3 it is seen that a sample of size 10 is required. Suppose the values of the sample resistances in the order reading from left to right are as follows:

643, 651, 619, 627, 658,
$$(R_1 = 658 - 619 = 39)$$

670, 673, 641, 638, 650, $(R_2 = 673 - 638 = 35)$

and compliance with the acceptability criteria is to be determined.

Line	Information Needed	Value Obtained	Explanation
1	Sample Size: n	10	
2	Sum of Measurements: ΣX	6470	
3	Sample Mean \overline{X} : $\Sigma X/n$	647	6470/10
4	Average Range \overline{R} : $\Sigma R/no$. of subgroups	37	(39 + 35)/2
5	Factor c	2.405	See Table C-3
6	Upper Specification Limit: U	680	
7	Lower Specification Limit: L	620	
8	Quality Index: $Q_U = (U - \overline{X}) c / \overline{R}$	2.15	(680 - 647)2.405/37
9	Quality Index: $Q_L = (\overline{X} - L)c/\overline{R}$	1.76	(647 – 620)2.405/37
10	Est. of Lot Percent Ncf. above U: p _U	.35%	See Table C-5
11	Est. of Lot Percent Ncf. below L: pL	2.54%	See Table C-5
12	Total Est. Percent Ncf. in Lot: $p = p_U + p_L$	2.89%	.35% + 2.54%
13	Max. Allowable Percent Ncf. above U: M _U	7.42%	See Table C-3
14	Max. Allowable Percent Ncf. below L: M _L	3.23%	See Table C-3
15	Acceptability Criteria: (a) Compare pu with Mu	.35% < 7.42%	See Para. C12.2.2(7)(a)
	(b) Compare p_L with M_L	2.54% < 3.23%	See Para. C12.2.2(7)(b)
	(c) Compare p with M _U	2.89% < 7.42%	See Para. C12.2.2(7)(c)

The lot meets the acceptability criteria, since 15(a), (b), and (c) are satisfied; i.e., $p_U < M_U$, $p_L < M_L$, and $p < M_U$.

Table C-3

Master Table for Normal and Tightened Inspection for Plans Based on Variability Unknown (Double Specification Limit and for Form 2—Single Specification Limit)

					Acce	ptable	Acceptable Quality Levels (normal inspection)	y Leve	ls (nor	mal ins	pection	(i		
Sample size code letter	Sample	factor	T	.10	.15	.25	.40	59.	1.00	1.50	2.50	4.00	6.50	10.00
			W	M	M	М	Σ	Σ	М	Σ	M	M	Σ	Σ
В	6	0.910							-	A	7.59	18.86	26.94	33.69
C	4	2.234						-	1.53	5.50	10.92	16.45	22.86	29.45
Q	5	2.474				-	->	1.42	3.44	5.93	9:90	14.47	20.27	26.59
田	7	2.830			-	.28	- 88	1.99	3.46	5.32	8.47	12.35	12.35 17.54 23.50	23.50
F	10	2.405	→	>	.23	.58	1.14	2.05	3.23	4.77	7.42	10.79	15.49 21.06	21.06
Ð	51	2.379	.136	.253	.430	981.	1.30	2.10	3.11	4.44	92.9	9.76	14.09	19.30
Н	25	2.358	.214	.336	.506	.827	1.27	1.95	2.82	3.96	5.98	8.65	12.59	17.48
H	30	2.353	.240	.366	.537	958.	1.29	1.96	2.81	3.92	5.88	8.50	12.36	17.19
ſ	40	2.346	.252	375	.539	.842	1.25	1.88	2.69	3.73	5.61	8.11	11.84	16.55
×	09	2.339	.244	.356	.504	.781	1.16	1.74	2.47	3.44	5.17	7.54	11.10	15.64
1	82	2.335	.242	.350	.493	.755	1.12	1.67	2.37	3.30	4.97	7.27	10.73	15.17
M	115	2.333	.230	.333	.468	.718	1.06	1.58	2.25	3.14	4.76	6.99	10.37	14.74
Z	5/1	2.331	.210	.303	.427	559′	.972	1.46	2.08	2.93	4.47	09.9	68.6	9.89 14.15
ď	230	2.330	.215	.308	.432	199.	976.	1.47	2.08	2.92	4.46	6.57	9.84	14.10
			.10	.15	.25	.40	.65	1.00	1.50	2.50	4.00	6.50	10.00	
					Accel	ptable	Acceptable Quality Levels (tightened inspection)	Level	s (tight	ened in	nspectiv	on)		

All AQL values are in percent nonconforming. T denotes plan used exclusively on tightened inspection and provides symbol for identification of appropriate OC curve. Use first sampling plan below arrow; that is, both sample size as well as M value. When sample size equals or exceeds lot size, every item in the lot must be inspected.

Master Table for Reduced Inspection for Plans Based on Variability Unknown (Double Specification Limit and Form 2—Single Specification Limit) Table C-4

-Market

				▼	ccepta	ble Qu	Acceptable Quality Levels (normal inspection)	evels (normal	inspec	tion)		
Sample size code letter	Sample size	c factor	.10	31.	.25	.40	.65	1.00	1.50	2.50		4.00 6.50 10.00	10.00
-			М	M	Σ	Σ	Σ	Σ	Σ	M	M	Σ	Σ
В	3	1.910							7.59	7.59 18.86	26.94	26.94 33.69 40.47	40.47
၁	3	1.910							7.59	7.59 18.86		26.94 33.69	40.47
Q	3	016:1							7.59	18.86	7.59 18.86 26.94 33.69 40.47	33.69	40.47
ш	3	1.910					>	>	7.59	18.86	7.59 18.86 26.94 33.69 40.47	33.69	40.47
Ľί	4	2.234				>	1.53	5.50	10.92	16.45		22.86 29.45	36.90
ß	5	2.474		1	*	1.42	3.44	5.93	9.90	14.47	9.90 14.47 20.27 26.59 33.95	26.59	33.95
H	7	2.830	>	.28	68.	1.99	3.46	5.32	8.47	12.35	8.47 12.35 17.54 23.50 30.66	23.50	30.66
I	10	2.405	.23	.58	1.14	2.05	3.23	4.77	7.42	10.79	7.42 10.79 15.49 21.06 27.90	21.06	27.90
J	15	2.379	.430	.786	1.30	2.10	3.11	4.44	6.76		9.76 14.09 19.30 25.92	19.30	25.92
K	25	2.358	.506	.827	1.27	1.95	2.82	3.96	5.98	8.65		12.59 17.48 23.79	23.79
٦	30	2.353	.537	.856	1.29	1.96	2.81	3.92	5.88	8.50	8.50 12.36 17.19 23.42	17.19	23.42
M	35	2.349	.564	.883	1.33	1.98	2.82	3.90	5.85	8.42	8.42 12.24 17.03 23.21	17.03	23.21
Z	09	2.339	504	.781	1.16 1.74	1.74	2.47	3.44	5.17		7.54 11.10 15.64 21.63	15.64	21,63
Ъ	85	2.335	.493	755	1.12	1.67	2.37	3.30	4.97	- 1	7.27 10.73 15.17 21.05	15.17	21.05

All AQL values are in percent nonconforming.

Use first sampling plan below arrow; that is, both sample size as well as M value. When sample size equals or exceeds lot size, every item in the lot must be inspected.

Table C-5
Table for Estimating the Lot Percent Nonconforming Using Range Method¹

Q_{U}							Sa	mple S	ize						
Or Q	3	4	5	7	10	15	25	30	35	40	60	85	115	175	230
0	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00
.1	47.24	46.67	46.44	46.29	46.20	46.13	46.08	46.07	46.06	46.05	46.04	46.03	46.03	46.02	46.02
.2	44.46	43.33	42.90	42.60	42.42	42.29	42.19	42.17	42.16	42.15	42.12	42.10	42.10	42.08	42.08
.3	41.63	40.00	39.37	38.95	38.70	38.51	38.38	38.34	38.32	38.31	38.27	38.26	38.24	38.23	38.22
.31	41.35	39.67	39.02	38.59	38.33	38.14	38.00	37.96	37.94	37.93	37.89	37.88	37.86	37.85	37.84
32	41.06	39.33	38.67	38.23	37.96	37.77	37.63	37.59	37.57	37.55	37.51	37.50	37.48	37.47	37.46 37.09
.33	40.77	39.00	38.32	37.87	37.60	37.39	37.25	37.21	37.19 36.82	37.18 36.80	37.14 3 6 .76	37.12 36.74	· 37.11 36.73	37.09 36.71	36.71
.34	40.49	38.67	37.97	37.51	37.23	37.02	36.88 36.50	36.84 36.46	36.44	36.43	36.39	36.37	36.36	36.34	36.33
.35	40.20	38.33	37.62	37.15	36.87 36.50	36.65 36.29	36.13	36.09	36.07	36.05	36.01	35.99	35.97	35.96	35.96
.36	39.91 39.62	38.00 37.67	37.28 36.93	36.79 36.43	36.14	35.92	35.76	35.72	35.70	35.68	35.64	35.62	35.61	35.59	35.59
.38	39.33	37.33	36.58	36.07	35.78	35.55	35.39	35.35	35.33	35.31	35.27	35.25	35.24	35.22	35.22
.39	39.03	37.00	36.23	35.72	35.41	35.19	35.02	34.98	34.96	34.94	34.90	34.88	34.87	34.85	34.85
.40	38.74	36.67	35.88	35.36	35.05	34.82	34.66	34.62	34.59	34.58	34.53	34.51	34.49	34.48	34.48
.41	38.45	36.33	35.54	35.01	34.69	34.46	34.29	34.25	34.23	34.21	34.17	34.14	34.12	34.11	34.11
.42	38.15	36.00	35.19	34.65	34.33	34.10	33.93	33.89	33.86	33.85	33.80	33.78	33.77	33.75	33.74
.43	37.85	35.67	34.85	34.30	33.98	33.74	33.57	33.53	33.50	33.48	33.44	33.41	33.39	33.38	33.38
.44	37.56	35.33	34.50	33.95	33.62	33.38	33.21	33.17	33.14	33.12	33.08	33.05	33.03	33.02	33.02
.45	37.26	35.00	34.16	33.60	33.27	33.02	32.85	32.81	32.78	32.76	32.72	32.69	32.67	32.66	32.66
.46	36.96	34.67	33.81	33.24	32.91	32.66	32.49	32.45	32.42	32.40	32.36	32.33	32.31	32.30	32.30
.47	36.66	34.33	33.47	32.89	32.56	32.31	32.13	32.09	32.06	32.04	32.00	31.97	31.95	31.94	31.94
-48	36.35	34.00	33.12	32.55	32.21	31.96	31.78	31.74	31.71	31.69	31.64	31.62	31.61	31.59	31.58
.49	36.05	33.67	32.78	32.20	31.86	31.60	31.42	31.38	31.35	31.33	31.29	31.26	31.24	31.23	31.23
.50	35.75	33.33	32.44	31.85	31.51	31.25	31.07	31.03	31.00	30.98	30.94	30.91	30.89	30.88	30.87
.51	35.44	33.00	32.10	31.51	31.16	30.90	30.72	30.68	30.65	30.63	30.59	30.55	30.55	30.53	30.52
.52	35.13	32.67	31.76	31.16	30.81	30.55	30.37	30.33	30.30	30.28	30.24	30.21	30.19	30.18	30.17
.53	34.82	32.33	31.42	30.82	30.46	30.21	30.02	29.98	29.95	29.93	29.89	29.86	29.84	29.83	29.83
.54	34.51	32.00	31.08	30.47	30.12	29.86	29.68	29.64	29.61	29.59	29.54	29.52	29.50	29.48	29.48
.55	34.20	31.67	30.74	30.13	29.78	29.52	29.33	29.29	29.26	29.24	29.20	29.17	29.15	29.14	29.14
.56	33.88	31.33	30.40	29.79	29.44	29.18	28.99	28.95	28.9 2	28.90	28.86	28.83	28.81	28.80	28.79
.57	33.57	31.00	30.06	29.45	29.09	28.83	28.65	28.61	28.58	28.56	28.52	28.49	28.47	28.46	28.45
.58	33.25	30.67	29.73	29.11	28.76	28.50	28.31	28.27	28.24	28.22	28.18	28.15	28.13	28.12	28.12
.59	32.93	30.33	29.39	28.77	28.42	28.16	27.97	27.93	27.91	27.89	27.84	27.82	27.80	27.78	27.78
.60	32.61	30.00	29.05	28.44	28.08	27.82	27.64	27.60	27.57	27.55	27.51	27.48	27.46	27.45	27.45
.61	32.28	29.67	28.72	28.10	27.75	27.49	27.31	27.27	27.24	27.22	27.17	27.15	27.14	27.12	27.11
.62	31.96	29.33	28.39	27.77	27.41	27.16	26.97	26.93	26.91	26.89	26.84	26.82	26.81	26.79	26.78
.63	31.63	29.00	28.05	27.44	27.08	26.82	26.64	26.60	26.58	26.56	26.51	26.49	26.48	26.46	26.45
.64	31.30	28.67	27.72	27.11	26.75	26.50	26.32	26.28	26.25	26.23	26.19	26.16	26.14	26.13	26.13
.65	30.97	28.33	27.39	26.78	26.42	26.17	25.99	25.95	25.92	25.90	25.86	25.84	25.83	25.81	25.80
.66	30.63	28.00	27.06	26.45	26.10	25.84	25.67	25.63	25.60	25.58	25.54	25.52	25.50	25.48	25.48
.67	30.30	27.67	26.73	26.12	25.77	25.52	25.34	25.30	25.28	25.26	25.22	25.20	25.18	25.16	25.16
.68	29.96	27.33	26.40	25.79	25.45	25.20	25.02	24.98	24.96	24.94	24.90	24.88	24.87	24.85	24.84
.69	29.61	27.00	26.07	25.47	25.12	24.88	24.71	24.67	24.64	24.62	24.58	24.56	24.55	24.53	24.53

^{&#}x27;Values tabulated are read in percent.

Table C-5—Continued

Table for Estimating the Lot Percent Nonconforming Using Range Method¹

Q _U			_				Sai	mple S	ize						\neg
Or Q	3	4	5	7	10	15	25	30	35	40	60	85	115	175	230
.70	29.27	26.67	25.74	25.14	24.80	24.56	24.39	24.35	24.32	24.31	24.27	24.25	24.24	24.22	24.21
.71	28.92	26.33	25.41	24.82	24,48	24.24	24.07	24.03	24.01	23.99	23.95	23.93	23.91	23.90	23.90
.72	28.57	26.00	25.09	24.50	24.17	23.93	23.76	23.72	23.70	23.68	23.64	23.62	23.60	23.59	23.59
.73	28.22	25.67	24.76	24.18	23.85	23.61	23.45	23.41	23.39	23.37	23.33	23.32	23.30	23.29	23.29
.74	27.86	25.33	24.44	23.86	23.54	23.30	23.14	23.10	23.08	23.07	23.03	23.01	23.00	22.98	22.98
.75	27.50	25.00	24.11	23.55	23.22	22.99	22.84	22.80	22.78	22.76	22.72	22.71	22.69	22.68	22.68
.76	27.13	24.67	23.79	23.23	22.91	22.69	22.53	22.49	22.47	22.46	22.42	22.41	22.39	22.38	22.38
.77	26.77	24.33	23.47	22.92	22,60	22.38	22.23	22.19	22.17	22.16	22.12	22.11	22.09	22.08	22.08
.78	26.39	24.00	23.15	22.60	22.30	22.08	21.93	21.90	21.88	21.86	21.83	21.81	21.80	21.78	21.78
.79	26.02	23.67	22.83	22.29	21.99	21.78	21.64	21.60	21.58	21.57	21.53	21.52	21.50	21.49	21.49
.80	25.64	23.33	22.51	21.98	21.69	21.48	21.34	21.30	21.28	21.27	21.24	21.22	21.22	21.20	21.20
.81	25.25	23.00	22.19	21.68	21.39	21.18	21.04	21.01	20.99	20.98	20.95	20.93	20.93	20.91	20.91
.82	24.86	22.67	21.87	21.37	21.09	20.89	20.75	20.72	20.70	20.69	20.66	20.64	20.64	20.62	20.62
.83	24.47	22.33	21.56	21.06	20.79	20.59	20.46	20.43	20.41	20.40	20.37	20.36	20.35	20.34	20.34
.84	24.07	22.00	21.24	20.76	20.49	20.30	20.17	20.15	20.13	20.12	20.09	20.08	20.06	20.06	20.06
.85	23.67	21.67	20.93	20.46	20.20	20.01	19.89	19.87	19.85	19.84	19.81	19.79	19.79	19.78	19.78
.86	23.26	21.33	20.62	20.16	19.90	19.73	19.60	19.58	19.57	19.56	19.54	19.52	19.51	19.50	19.50
.87	22.84	21.00	20.31	19.86	19.61	19.44	19.32	19.31	19.29	19.28	19.25	19.24	19.24	19.22	19.22
.88	22.42	20.67	20.00	19.57	19.33	19.16	19.04	19.03	19.01	19.00	18.98	18.97	18.96	18.95	18.95
.89	21.99	20.33	19.69	19.27	19.04	18.88	18.77	18.75	18.74	18.73	18.70	18.69	18.69	18.68	18.68
.90	21.55	20.00	19.38	18.98	18.75	18.60	18.50	18.48	18.47	18.46	18.43	18.42	18.42	18.41	18.41
.91	21.11	19.67	19.07	18.69	18.47	18.32	18.22	18.21	18.20	18.19	18.17	18.17	18.16	18.15	18.15
.92	20.66	19.33	18.77	18.40	18.19	18.05	17.96	17.95	17.93	17.92	17.90	17.89	17.89	17.88	17.88
.93	20.20	19.00	18.46	18.11	17.91	17.78	17.69	17.68	17.67	17.66	17.65	17.63	17.63	17.62	17.62
.94	19.74	18.67	18.16	17.82	17.64	17.51	17.43	17.42	17,41	17.40	17.39	17.37	17.37	17.36	17.36
.95	19.25	18.33	17.86	17.54	17.36	17.24	17.17	17.16	17.15	17.14	17.13	17.12	17.12	17.11	17.11
.96	18.76	18.00	17.56	17.26	17.09	16.98	16.91	16.90	16.89	16.88	16.87	16.86	16.86	16.86	16.86
.97	18.25	17.67	17.25	16.97	16.82	16.71	16.65	16.64	16.63	16.63	16.62	16.61	16.61	16.60	16.60
.98	17,74	17.33	16.96	16.70	16.55	16.45	16.39	16.38	16.38	16.37	16.37	16.36	16.36	16.36	16.36
.99	17.21	17.00	16.66	16.42	16.28	16.19	16.14	16.13	16.13	16.12	16.12	16.11	16.11	16.11	16.11
1.00	16.67	16.67	16.36	16.14	16.02	15.94	15.89	15.88	15.88	15.88	15.87	15.87	15.87	15.87	15.87
1.01	16.11	16.33	16.07	15.87	15.76	15.68	15.64	15.63	15.63	15.63	15.63	15.62	15.62	15.62	15.62
1.02	15.53	16.00	15.78	15.60	15.50	15.43	15.40	15.39	15.39	15.39	15.39	15.38	15.38	15.38	15.38
1.03	14.93	15.67	15.48	15.33	15.24	15.18	15.15	15.15	15.15	15.15	15.15	15.15	15.15	15.15	15.15
1 .	14.31	15.33	15.19	15.06	14.98	14.94	14.91	14.91	14.91	14.91	14.91	14.91	14.91	14.91	14.91
	13.66	15.00	14.91	14.79	14.73	14.69	14.67	14.67	14.67	14.67	14.68	14.68	14.68	14.68	14.68
1.06	11	14.67	14.62	14.53	14.73	!		14.67	14.67	14.67	14.44	14.45	14.08	14.45	14.45
1	ll .			ı	1	14.45	14.44	1	1	1	1	ł	14.43	j .	14.22
1.07	12.27	14.33	14.33	14.27	14.23	14.21	14.20	14.21	14.21	14.21	14.21	14.22	1	14.22	1 1
1.08	11.51	14.00	14.05	14.01	13.98	13.97	13.97	13.98	13.98	13.98	13.99	13.99	13.99	14.00	14.00
1.09	10.71	13.67	13.76	13.75	13.74	13.73	13.74	13.75	13.75	13.75	13.76	13.77	13.77	13.78	13.78

^{&#}x27;Values tabulated are read in percent.

Table C-5—Continued

Table for Estimating the Lot Percent Nonconforming Using Range Method¹

Q _U or							Sa	mple S	ize						
QL	3	4	5	7	10	15	25	30	35	40	60	85	115	175	230
1.10	9.84	13.33	13.48	13.50	13.49	13.50	13.52	13.52	13.52	13.53	13.54	13.55	13.55	13.56	13.56
1.11	8.89	13.00	13.20	13.24	13.25	13.27	13.29	13.30	13.30	13.31	13.32	13.32	13.33	13.34	13.34
1.12	7.82	12.67	12.93	12.99	13.02	13.04	13.07	13.08	13.08	13.09	13.10	13.12	13.12	13.12	13.12
1.13	6.60	12.33	12.65	12.74	12.78	12.81	12.85	12.86	12.86	12.87	12.89	12.89	12.90	12.91	12.91
1.14	5.08	12.00	12.37	12.49	12.55	12.59	12.63	12.64	12.65	12.66	12.67	12.69	12.69	12.70	12.70
1.15	0.29	11.67	12.10	12.25	12.31	12.37	12.42	12.43	12.44	12.45	12.46	12.48	12.48	12.49	12.49
1.16	0.00	11.33	11.83	12.00	12.08	12.15	12.21	12.22	12.23	12.24	12.25	12.27	12.28	12.29	12.29
1.17	0.00	11.00	11.56	11.76	11.86	11.93	12.00	12.01	12.02	12.03	12.06	12.07	12.07	12.08	12.08
1.18	0.00	10.67	11.29	11.52	11.63	11.71	11.79	11.80	11,81	11.82	11.84	11.86	11.88	11.88	11.88
1.19	0.00	10.33	11.02	11.29	11.41	11.50	11.58	11.60	11.61	11.62	11.65	11.66	11.68		11.69
1.20	0.00	10.00	10.76	11.05	11.19	11.29	11.38	11.40	11.01	11.02	11.03	11.47	11.08	11.69	11.49
1.21	0.00	9.67	10.50	10.82	10.97	11.08	11.18	11.20	11.21	11.22	11.26	11.27	11.29	11.30	11.30
1.22	0.00	9.33	10.23	10.59	10.76	10.88	10.98	11.00	11.02	11.03	11.06	11.08	11.09	11.10	11.10
1.23	0.00	9.00	9.97	10.36	10.54	10.67	10.78	10.80	10.82	10.84	10.87	10.89	10.90	10.91	10.01
1.24	0.00	8.67	9.72	10.13	10.33	10.47	10.58	10.61	10.63	10.64	10.68	10.70	10.71	10.73	10.73
1.25	0.00	8.33	9.46	9.91	10.12	10.27	10.39	10.42	10.44	10.46	10.49	10.51	10.52	10.54	10.54
1.26	0.00	8.00	9.21	9.69	9.92	10.08	10.20	10.24	10,26	10.27	10.31	10.33	10.34	10.36	10.36
1.27	0.00	7.67	8.96	9.47	9.71	9.88	10.01	10.05	10.07	10.09	10.13	10.15	10.17	10.18	10.18
1.28	0.00	7.33	8.71	9.25	9.51	9.69	9.83	9.87	9.89	9.90	9.95	9.97	9.99	10.00	10.00
1.29	0.00	7.00	8.46	9.04	9.31	9.50	9.64	9.68	9.71	9.72	9.77	9.79	9.81	9.83	9.83
1.30	0.00	6.67	8.21	8.83	9.11	9.32	9.47	9.51	9.53	9.55	9.59	9.62	9.64	9.65	9.65
1.31	0.00	6.33	7.97	8.62	8.92	9.13	9.29	9.33	9.35	9.37	9.42	9.45	9.47	9.48	9.48
1.32	0.00	6.00	7.73	8.41	8.73	8.95	9.11	9.15	9.18	9.20	9.25	9.28	9.30	9.31	9.31
1.33	0.00	5.67	7.49	8.20	8.54	8.77	8.94	8.98	9.01	9.03	9.08	9.11	9.13	9.14	9.15
1.34	0.00	5.33	7.25	8.00	8.35	8.59	8.77	8.81	8.84	8.86	8.91	8.94	8.96	8.98	8.98
1.35	0.00	5.00	7.02	7.80	8.16	8.41	8.60	8.64	8.67	8.69	8.75	8.78	8.80	8.82	8.82
1.36	0.00	4.67	6.79 6.56	7.60 7.40	7.98 7.80	8.24 8.07	8.43 8.27	8.48 8.31	8.51	8.53	8.59	8.62	8.64	8.66	8.66
1.38	0.00	4.00	6.33	7.21	7.62	7.90	8.11	8.15	8.34 8.18	8.37 8.21	8.43 8.26	8.46 8.30	8.48 8.32	8.50 8.34	8.50 8.35
1.39	0.00	3.67	6.10	7.02	7.45	7.73	7.95	7.99	8.02	8.05	8.11	8.14	8.17	8.19	8.19
1.40	0.00	3.33	5.88	6.83	7.27	7.57	7.79	7.84	7.88	7.90	7.96	8.00	8.02	8.03	8.04
1.41	0.00	3.00	5.66	6.65	7.10	7.41	7.63	7.68	7.71	7.74	7.81	7.85	7.87	7.88	7.89
1.42	0.00	2.67	5.44	6.46	6.93	7.25	7.48	7.53	7.56	7.59	7.66	7.70	7.72	7.74	7.74
1.43	0.00	2.33	5.23	6.28	6.76	7.09	7.33	7.38	7.41	7.44	7.51	7.54	7.57	7.59	7.60
1.44	0.00	2.00	5.01	6.10	6.60	6.93	7.18	7.24	7.28	7.30	7.37	7.41	7.43	7.45	7.46
1.45	0.00	1.67	4.81	5.93	6.44	6.78	7.03	7.09	7.13	7.15	7.23	7.27	7.29	7.30	7.32
1.46	0.00	1.33	4.60	5.75	6.28	6.63	6.89	6.95	6.99	7.01	7.09	7.13	7.15	7.17	7.18
1.47	0.00	1.00	4.39	5.58	6.12	6.48	6.74	6.80	6.85	6.87	6.95	6.99	7.01	7.03	7.04
1.48	0.00	0.67	4.19	5.41	5.96	6.34	6.60	6.66	6.71	6.73	6.81	6.85	6.87	6.89	6.90
1.49	0.00	0.33	3.99	5.24	5.81	6.19	6.47	6.53	6.57	6.60	6.67	6.72	6.74	6.76	6.77

^{&#}x27;Values tabulated are read in percent.

Table C-5—Continued

Table for Estimating the Lot Percent Nonconforming Using Range Method¹

1.51 0. 1.52 0. 1.53 0. 1.54 0. 1.55 0. 1.56 0.	00.00 00.00 00.00 00.00 00.00 00.00	4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	5 3.80 3.61 3.42 3.23 3.05 2.87 2.69	7 5.08 4.92 4.76 4.60 4.45 4.30	5.66 5.51 5.37 5.22 5.08	6.05 5.91 5.77 5.64	6.33 6.19 6.06	30 6.39 6.25	35 6.43 6.30	40 6.46	60 6.54	85 6.58	6.61	175 6.63	230 6.64
1.51 0. 1.52 0. 1.53 0. 1.54 0. 1.55 0. 1.56 0.	.00 (0.00) .00 (0.00) .00 (0.00) .00 (0.00)	0.00 0.00 0.00 0.00 0.00	3.61 3.42 3.23 3.05 2.87	4.92 4.76 4.60 4.45	5.51 5.37 5.22	5.91 5.77	6.19	6.25	1		6.54	6.58	6.61	6.63	6.64
1.52 0. 1.53 0. 1.54 0. 1.55 0. 1.56 0.	00 00.00 00 00.00 00 00.00 00 00.00	0.00 0.00 0.00 0.00 0.00	3.42 3.23 3.05 2.87	4.76 4.60 4.45	5.37 5.22	5.77			430	1				0.00	
1.53 0. 1.54 0. 1.55 0. 1.56 0.	.00 (0.00 .00 (0.00 .00 (0.00 .00 (0.00	0.00 0.00 0.00 0.00	3.23 3.05 2.87	4.60 4.45	5.22		6.06		0.30	6.33	6.41	6.45	6.48	6.50	6.51
1.54 0. 1.55 0. 1.56 0.	.00 (0 .00 (0 .00 (0	0.00 0.00 0.00	3.05 2.87	4.45		5.64		6.12	6.17	6.20	6.28	6.32	6.35	6.37	6.38
1.55 0. 1.56 0.	.00 00.	0.00 0.00	2.87	ſ	5.00		5.93	5.99	6.04	6.07	6.15	6.20	6.22	6.25	6.26
1.56 0.	.00 0	0.00		4 30	1	5.50	5.80	5.86	5.91	5.95	6.03	6.07	6.10	6.12	6.14
1 11	.00	1	2.69		4.94	5.37	5,68	5.74	5.79	5.82	5.90	5.95	5.98	6.00	6.01
	- 1	0.00	1	4.15	4.81	5.24	5.55	5.62	5.67	5.70	5.78	5.83	5.86	5.88	5.89
1 11	.00 (2.52	4.01	4.67	5.11	5.43	5.50	5.55	5.58	5.66	5.71	5.74	5.77	5.79
1 11		0.00	2.35	3.86	4.54	4.99	5.31	5.38	5.43	5.46	5.55	5.59	5.62	5.65	5.66
		0.00	2.19	3.72	4.41	4.86	5.19	5.26	5.31	5.34	5.43	5.48	5.51	5.53	5.55
1 11		0.00	2.03	3.58	4.28	4.74	5.08	5.14	5.19	5.23	5.32	5.36	5.39	5.42	5.43
1 14	3	0.00	1.87	3.45	4.16	4.62	4.96	5.03	5.08	5.12	5.20	5.25	5.28	5.31	5.32
1 11		0.00	1.72	3.31	4.03	4.51	4.85	4.92	4.97	5.01	5.09	5.14	5.17	5.20	5.22
F 11	1	0.00	1.57	3.18	3.91	4.39	4.74	4.81	4.86	4.90	4.99	5.04	5.07	5.10	5.12
1 11		0.00	1.42	3.06	3.79	4.28	4.63	4.70	4.75	4.79	4.88	4.93	4.96	4.99	5.00
1 11	- 1	0.00	1.28	2.93	3.68	4.17	4.52	4.59	4.64	4.68	4.77	4.83	4.86	4.89	4.91
1 11	- 1	0.00	1.15	2.81	3.56	4.06	4.41	4.49	4.54	4.58	4.67	4.72	4.75	4.79	4.81
1 11	,	0.00	1.02	2.69	3.45	3.95	4.31	4.39	4.44	4.48	4.57	4.62	4.65	4.69	4.71
]]	I	0.00	0.89	2.57	3.34	3.85	4.21	4.29	4.34	4.38	4.47	4.53	4.56	4.59	4.61
		0.00	0.77	2.46	3.23	3.74	4.10	4.19	4.24	4.28	4.37	4,43	4.46	4.49	4.51
		0.00	0.55	2.24	3.02	3.54	4.00 3.92	4.09 3.99	4.14	4.18 4.09	4.28 4.18	4.33 4.24	4.36 4.27	4.40 4.30	4.42 4.31
1 11	- 1	0.00	0.45	2.13	2.92	3.45	3.82	3.90	3.95	3.99	4.09	4.15	4.18	4.30	4.23
	- 1	0.00	0.36	2.03	2.82	3.35	3.73	3.81	3.86	3.90	4.09	4.13	4.18	4.12	4.14
] []		0.00	0.27	1.93	2.73	3.26	3.63	3.72	3.77	3.81	3.91	3.97	4.00	4.03	4.05
4 41		0.00	0.19	1.83	2.63	3.16	3.54	3.63	3.68	3.72	3.82	3.88	3.91	3.94	3.96
1 11	i	0.00	0.12	1.73	2.54	3.07	3.45	3.54	3.59	3.63	3.74	3.79	3.82	3.86	3.88
1 11	- 1	0.00	0.06	1.64	2.45	2.99	3.37	3.45	3.51	3.55	3.65	3.71	3.74	3.77	3.79
1 11	I	0.00	0.02	1.55	2.36	2.90	3.28	3.37	3.43	3.47	3.57	3.62	3.65	3.69	3.71
1.79 0.	.00	0.00	0.00	1.46	2.27	2.81	3.20	3.28	3.34	3.38	3.49	3.54	3.57	3.61	3.63
1.80 0.	.00 (0.00	0.00	1.38	2.19	2.73	3.11	3.20	3.26	3.30	3.41	3.46	3.49	3.53	3.55
1.81 0.	.00 0	0.00	0.00	1.29	2.10	2.65	3.03	3.12	3.18	3.22	3.33	3.38	3.41	3.45	3.47
1.82 0.	.00 (0.00	0.00	1.21	2.02	2.57	2.96	3.05	3.11	3.15	3.25	3.31	3.34	3.37	3.39
1.83 0.	.00 6	0.00	0.00	1.14	1.94	2.49	2.88	2.97	3.03	3.07	3.17	3.23	3.26	3.30	3.32
1.84 0.	.00 0	0.00	0.00	1.06	1.87	2.42	2.80	2.89	2.95	2.99	3.10	3.16	3.19	3.22	3.24
1.85 0.	.00 0	0.00	0.00	0.99	1.79	2.34	2.73	2.82	2.88	2.92	3.03	3.08	3.11	3.15	3.17
1.86 0.	.00	0.00	0.00	0.92	1.72	2.27	2.66	2.75	2.81	2.85	2.95	3.01	3.04	3.08	3.10
1.87 0.	.00 }	0.00	0.00	0.86	1.65	2.20	2.59	2.68	2.74	2.78	2.88	2.94	2.97	3.01	3.03
1.88 0.	.00	0.00	0.00	0.79	1.58	2.13	2.52	2.61	2.67	2.71	2.81	2.87	2.90	2.94	2.96
1.89 0.	.00	0.00	0.00	0.73	1.51	2.06	2.45	2.54	2.60	2.64	2.75	2.81	2.84	2.87	2.89

^{&#}x27;Values tabulated are read in percent.

Table C-5—Continued

Table for Estimating the Lot Percent Nonconforming Using Range Method¹

$Q_{_{\mathrm{U}}}$							Sa	mple S	ize .						
or Q	3	4	5	7	10	15	25	30	35	40	60	85	115	175	230
1.90	0.00	0.00	0.00	0.67	1.45	1.99	2.38	2.47	2.53	2.57	2.68	2.74	2.77	2.81	2.83
1.91	0.00	0.00	0.00	0.62	1.38	1.93	2.32	2.41	2.47	2.51	2.61	2.67	2.70	2.74	2.76
1.92	0.00	0.00	0.00	0.56	1.32	1.86	2.25	2.34	2.41	2.45	2.55	2.61	2.64	2.68	2.70
1.93	0.00	0.00	0.00	0.51	1.26	1.80	2.19	2.28	2.34	2.38	2.49	2.55	2.58	2.61	2.63
1.94	0.00	0.00	0.00	0.46	1.20	1.74	2.13	2.22	2.28	2.32	2.43	2.49	2.52	2.55	2.57
1.95	0.00	0.00	0.00	0.42	1.15	1.68	2.07	2.16	2.22	2.26	2.37	2.43	2.46	2.49	2.51
1.96	0.00	0.00	0.00	0.37	1.09	1.62	2.01	2.10	2.16	2.20	2.31	2.37	2.40	2.43	2.45
1.97	0.00	0.00	0.00	0.33	1.04	1.57	1.95	2.04	2.10	2.14	2.25	2.31	2.34	2.38	2.40
1.98	0.00	0.00	0.00	0.30	0.99	1.51	1.90	1. 9 9	2.05	2.09	2.19	2.25	2.28	2.32	2.34
1.99	0.00	0.00	0.00	0.26	0.94	1.46	1.84	1.93	1.99	2.03	2.14	2.20	2.23	2.26	2.28
2.00	0.00	0.00	0.00	0.23	0.89	1.41	1.79	1.88	1.94	1.98	2.08	2.14	2.17	2.21	2.23
2.01	0.00	0.00	0.00	0.20	0.84	1.36	1.74	1.83	1.89	1.93	2.03	2.09	2.12	2.16	2.18
2.02	0.00	0.00	0.00	0.17	0.80	1.31	1.69	1.78	1.83	1.87	1.98	2.04	2.07	2.10	2.12
2.03	0.00	0.00	0.00	0.14	0.75	1.26	1.64	1.73	1.78	1.82	1.93	1.99	2.02	2.05	2.07
2.04	0.00	0.00	0.00	0.12	0.71	1.21	1.59	1.68	1.73	1.77	1.88	1.94	1.97	2.00	2.02
2.05	0.00	0.00	0.00	0.10	0.67	1.17	1.54	1.63	1.69	1.73	1.83	1.89	1.92	1.95	1.97
2.06	0.00	0.00	0.00	0.08	0.63	1.12	1.49	1.58	1.64	1.68	1.78	1.84	1.87	1.91	1.93
2.07	0.00	0.00	0.00	0.06	0.60	1.08	1.45	1.54	1.59	1.63	1.74	1.79	1.82	1.86	1.88
2.08	0.00	0.00	0.00	0.05	0.56	1.04	1.40	1.49	1.55	1.59	1.69	1.75	1.78	1.81	1.83
2.09	0.00	0.00	0.00	0.03	0.53	1.00	1.36	1.45	1.50	1.54	1.64	1.70	1.73	1.77	1.79
2.10	0.00	0.00	0.00	0.02	0.49	0.96	1.32	1.41	1.46	1.50	1.60	1.66	1.69	1.72	1.74
2.11	0.00	0.00	0.00	0.01	0.46	0.92	1.28	1.36	1.42	1.46	1.56	1.61	1.64	1.68	1.70
2.12	0.00	0.00	0.00	0.00	0.43	0.88	1.24	1.32	1.38	1.42	1.52	1.57	1.60	1.64	1.66
2.13	0.00	0.00	0.00	0.00	0.40	0.85	1.20	1.28	1.34	1.38	1.48	1.53	1.56	1.60	1.62
2.14	0.00	0.00	0.00	0.00	0.38	0.81	1.16	1.25	1.30	1.34	1.44	1.49	1.52	1.56	1.58
2.15	0.00	0.00	0.00	0.00	0.35	0.78	1.13	1.21	1.26	1.30	1.40	1.45	1.48	1.52	1.54
2.16	0.00	0.00	0.00	0.00	0.32	0.75	1.09	1.17	1.22	1.26	1.36	1.41	1.44	1.48	1.50
2.17	0.00	0.00	0.00	0.00	0.30	0.71	1.06	1.13	1.18	1.22	1.32	1.38	1.41	1.44	1.46
2.18	0.00	0.00	0.00	0.00	0.28	0.68	1.02	1.10	1.15	1.19	1.28	1.34	1.37	1.40	1.41
2.19	0.00	0.00	0.00	0.00	0.26	0.65	0.99	1.06	1.11	1.15	1.25	1.30	1.33	1.37	1.39
2.20	0.000	0.000	0.000	0.000	0.236	0.625	0.954	1.030	1.083	1.122	1.214	1.267	1.299	1.330	1.346
2.21	0.000	0.000	0.000	0.000	0.217	0.597	0.922	0.997	1.058	1.089	1.180	1.233	1.265	1.295	1.311
2.22	0.000	0.000	0.000	0.000	0.199	0.570	0.891	0.966	1.018	1.056	1.147	1.199	1.231	1.261	1.277
2.23		0.000	0.000	0.000	0.182		0.861		0.986			1.167	!		1.244
2.24	0.000	0.000	0.000	0.000	0.166	0.519	0.831	0.905	0.956	0.994	1.083	1.135	1.165	1.195	1.211
2.25	0.000	0.000	0.000	0.000	0.150	0.495	0.802	0.875	0.926	0.964	1.052	1.104	1.134	1.163	1.179
2.26	0.000	0.000	0.000	0.000	0.136	0.471	0.775	0.847	0.897	0.935	1.022	1.073	1.103	1.132	1.148
2.27	0.000	0.000	0.000	0.000	0.123	0.449	0.748	0.819	0.869	0.906	0.993	1.043	1.073	1.103	1.118
2.28	0.000	0.000	0.000	0.000	0.111	0.427	0.722	0.792	0.841	0.878	0.964	1.014	1.044	1.073	1.088
2.29	0.000	0.000	0.000	0.000	0.099	0.406	0.697	0.766	0.814	0.851	0.936	0.986	1.015	1.044	1.059

^{&#}x27;Values tabulated are read in percent.

Table C-5—Continued

Table for Estimating the Lot Percent Nonconforming Using Range Method¹

Q _U or							Sa	mple S	ìze						
Q _L	3	4	_5	7_	10	15	25	30	35	40	60	85	115	175	230
2.30	0.000	0.000	0.000	0.000	0.089	0.386	0.672	0.741	0.789	0.825	0.909	0.959	0.988	1.016	1.031
2.31	0.000	0.000	0.000	0.000	0.079	0.367	0.648	0.716	0.763	0.799	0.882	0.931	0.960	0.988	1.003
2.32	0.000	0.000	0.000	0.000	0.070	0.348	0.624	0.691	0.739	0.774	0.856	0.905	0.934	0.962	0.976
2.33	0.000	0.000	0.000	0.000	190.0	0.330	0.601	0.668	0.715	0.750	0.831	0.879	0.908	0.935	0.950
2.34	0.000	0.000	0.000	0.000	0.054	0.313	0.579	0.645	0.691	0.720	0.807	0.854	0.882	0.909	0.924
2.35	0.000	0.000	0.000	0.000	0.047	0.296	0.558	0.623	0.669	0.703	0.782	0.829	0.857	0.884	0.889
2.36	0.000	0.000	0.000	0.000	0.040	0.280	0.538	0.602	0.646	0.680	0.759	0.806	0.833	0.860	0.874
2.37	0.000	0.000	0.000	0.000	0.035	0.265	0.518	0.580	0.624	0.658	0.736	0.782	0.809	0.836	0.850
2.38	0.000	0.000	0.000	0.000	0.029	0.250	0.498	0.560	0.604	0.637	0.714	0.759	0.787	0.813	0.827
2.39	0.000	0.000	0.000	0.000	0.025	0.236	0.479	0.541	0.584	0.616	0.693	0.737	0.764	0.791	0.804
2.40	0.000	0.000	0.000	0.000	0.021	0.223	0.461	0.521	0.564	0.596	0.671	0.715	0.742	0.769	0.782
2.41	0.000	0.000	0.000	0.000	0.017	0.210	0.443	0.503	0.545	0.577	0.651	0.695	0.721	0.747	0.760
2.42	0.000	0.000	0.000	0.000	0.014	0.198	0.426	0.485	0.526	0.557	0.631	0.674	0.701	0.726	0.739
2.43	0.000	0.000	0.000	0.000	0.011	0.186	0.410	0.467	0.508	0.539	0.611	0.654	0.679	0.705	0.718
2.44	0.000	0.000	0.000	0.000	0.009	0.175	0.393	0.450	0.491	0.521	0.593	0.635	0.660	0.685	0.698
2.45	0.000	0.000	0.000	0.000	0.007	0.165	0.378	0.434	0.473	0.503	0.573	0.616	0.641	0.665	0.678
2.46	0.000	0.000	0.000	0.000	0.005	0.154	0.362	0.417	0.456	0.486	0.556	0.597	0.622	0.646	0.659
2.47	0.000	0.000	0.000	0.000	0.004	0.145	0.348	0.403	0.441	0.470	0.538	0.579	0.604	0.627	0.640
2.48	0.000	0.000	0.000	0.000	0.003	0.136	0.333	0.387	0.425	0.454	0.522	0.562	0.586	0.609	0.622
2.49	0.000	0.000	0.000	0.000	0.002	0.127	0.321	0.372	0.409	0.438	0.504	0.545	0.569	0.593	0.605
2.50	0.000	0.000	0.000	0.000	0.001	0.118	0.307	0.358	0.395	0.423	0.489	0.528	0.552	0.575	0.587
2.51	0.000	0.000	0.000	0.000	0.001	0.111	0.294	0.345	0.381	0.409	0.473	0.512	0.536	0.558	0.570
2.52	0.000	0.000	0.000	0.000	0.000	0.103	0.282	0.331	0.367	0.394	0.458	0.497	0.519	0.542	0.553
2.53	0.000	0.000	0.000	0.000	0.000	0.096	0.270	0.319	0.354	0.381	0.444	0.481	0.503	0.526	0.537
2.54	0.000	0.000	0.000	0.000	0.000	0.089	0.258	0.306	0.340	0.367	0.428	0.466	0.488	0.510	0.522
2.55	0.000	0.000	0.000	0.000	0.000	0.083	0.247	0.294	0.328	0.354	0.415	0.451	0.473	0.495	0.506
2.56	0.000	0.000	0.000	0.000	0.000	0.077	0.237	0.283	0.316	0.341	0.401	0.437	0.459	0.480	0.491
2.57	0.000	0.000	0.000	0.000	0.000	0.071	0.227	0.272	0.304	0.328	0.388	0.424	0.445	0.466	0.477
2.58	0.000	0.000	0.000	0.000	0.000	0.066	0.217	0.261	0.292	0.317	0.376	0.411	0.432	0.452	0.463
2.59	0.000	0.000	0.000	0.000	0.000	0.061	0.207	0.251	0.282	0.305	0.363	0.397	0.418	0.439	0.449
2.60	0.000	0.000	0.000	0.000	0.000	0.056	0.198	0.240	0.271	0.294	0.351	0.385	0.406	0.426	0.436
2.61	0.000	0.000	0.000	0.000	0.000	0.052	0.189	0.231	0.260	0.283	0.339	0.372	0.393	0.413	0.423
2.62	0.000	0.000	0.000	0.000	0.000	0.048	0.181	0.221	0.250	0.273	0.327	0.360	0.381	0.400	0.410
2.63	1		0.000	l	l ;	1	0.173	0.212	l	0.263	0.316		0.368		0.398
2.64		0.000	0.000	0.000	0.000	0.040	0.164	0.203		0.253	0.306	0.338	0.357	0.376	0.386
2.65	0.000	0.000	0.000	0.000	0.000	0.037	0.157	0.195		0.244	0.295	0.327	0.346	0.365	0.375
2.66	0.000	0.000	0.000	0.000	0.000	0.034	0.149	0.186	0.213	0.234	0.285	0.316	0.335	0.353	0.363
2.67	0.000	0.000	0.000	0.000	0.000	0.031	0.143	0.179	i	0.225	0.275	0.305	0.324	0.342	0.352
2.68	0.000	0.000	0.000	0.000	0.000	0.028	0.136	0.171	0.197	0.217	0.266	0.296	0.314	0.332	0.342
2.69	0.000	0.000	0.000	0.000	0.000	0.025	0.129	0.164	0.190	0.209	0.257	0.286	0.304	0.321	0.331

^{&#}x27;Values tabulated are read in percent.

Table C-5—Continued

Table for Estimating the Lot Percent Nonconforming Using Range Method¹

$Q_{\rm U}$															
or Q	3	4	5	7	10	15	25	30	35	40	60	85	115	175	230
2.70	0.000	0.000	0.000	0.000	0.000	0.023	0.123	0.156	0.182	0.201	0.248	0.277	0.295	0.311	0.321
2.71	0.000	0.000	0.000	0.000	0.000	0.021	0.117	0.150	0.174	0.193	0.239	0.267	0.285	0.302	0.311
2.72	0.000	0.000	0.000	0.000	0.000	0.019	0.111	0.143	0.167	0.185	0.231	0.259	0.275	0.292	0.301
2.73	0.000	0.000	0.000	0.000	0.000	0.017	0.106	0.137	0.160	0.178	0.222	0.250	0.266	0.283	0.292
2.74	0.000	0.000	0.000	0.000	0.000	0.015	0.101	0.131	0.153	0.171	0.215	0.241	0.258	0.274	0.282
2.75	0.000	0.000	0.000	0.000	0.000	0.014	0.096	0.125	0.147	0.164	0.207	0.233	0.248	0.266	0.274
2.76	0.000	0.000	0.000	0.000	0.000	0.012	0.091	0.120	0.141	0.158	0.200	0.225	0.241	0.257	0.265
2.77	0.000	0.000	0.000	0.000	0.000	0.011	0.086	0.114	0.135	0.152	0.192	0.217	0.232	0.249	0.257
2.78	0.000	0.000	0.000	0.000	0.000	0.010	180.0	0.109	0.130	0.146	0.185	0.210	0.226	0.241	0.249
2.79	0.000	0.000	0.000	0.000	0.000	0.008	0.077	0.103	0.124	0.140	0.179	0.202	0.218	0.233	0.241
2.80	0.000	0.000	0.000	0.000	0.000	0.007	0.074	0.099	0.118	0.134	0.172	0.196	0.210	0.225	0.233
2.81	0.000	0.000	0.000	0.000	0.000	0.007	0.070	0.094	0.113	0.129	0.165	0.189	0.204	0.218	0.226
2.82	0.000	0.000	0.000	0.000	0.000	0.006	0.066	0.090	0.109	0.123	0.159	0.183	0.194	0.211	0.219
2.83	0.000	0.000	0.000	0.000	0.000	0.005	0.062	0.085	0.103	0.118	0.154	0.176	0.190	0.204	0.212
2.84	0.000	0.000	0.000	0.000	0.000	0.004	0.059	0.082	0.099	0.113	0.148	0.170	0.184	0.197	0.205
2.85	0.000	0.000	0.000	0.000	0.000	0.004	0.055	0.078	0.095	0.109	0.143	0.164	0.178	0.191	0.198
2.86	0.000	0.000	0.000	0.000	0.000	0.003	0.053	0.074	0.091	0.104	0.137	0.159	0.172	0.185	0.192
2.87	0.000	0.000	0.000	0.000	0.000	0.003	0.050	0.070	0.087	0.100	0.132	0.152	0.166	0.179	0.185
2.88	0.000	0.000	0.000	0.000	0.000	0.002	0.047	0.067	0.082	0.095	0.127	0.147	0.160	0.173	0.179
2.89	0.000	0.000	0.000	0.000	0.000	0.002	0.044	0.064	0.079	0.091	0.122	0.142	0.155	0.167	0.173
2.90	0.000	0.000	0.000	0.000	0.000	0.002	0.042	0.061	0.075	0.088	0.117	0.138	0.149	0.161	0.168
2.91	0.000	0.000	0.000	0.000	0.000	0.001	0.039	0.057	0.072	0.084	0.112	0.132	0.145	0.156	0.162
2.92	0.000	0.000	0.000	0.000	0.000	100.0	0.037	0.055	0.069	0.080	0.107	0.127	0.140	0.151	0.157
2.93	0.000	0.000	0.000	0.000	0.000	0.001	0.035	0.052	0.066	0.077	0.104	0.123	0.134	0.146	0.151
2.94	0.000	0.000	0.000	0.000	0.000	0.001	0.033	0.049	0.062	0.073	0.100	0.118	0.129	0.141	0.146
2.95	0.000	0.000	0.000	0.000	0.000	100.0	0.031	0.047	0.059	0.070	0.096	0.114	0.125	0.136	0.142
2.96	0.000	0.000	0.000	0.000	0.000	0.001	0.029	0.044	0.056	0.067	0.092	0.110	0.121	0.132	0.137
2.97	0.000	0.000	0.000	0.000	0.000	0.000	0.027	0.042	0.054	0.064	0.088	0.105	0.116	0.127	0.132
2.98	0.000	0.000	0.000	0.000	0.000	0.000	0.025	0.039	0.051	0.061	0.085	0.101	0.112	0.123	0.128
2.99	0.000	0.000	0.000	0.000	0.000	0.000	0.024	0.038	0.049	0.058	0.082	0.098	0.108	0.119	0.124
3.00	0.000	0.000	0.000	0.000	0.000	0.000	0.022	0.036	0.047	0.056	0.078	0.094	0.105	0.115	0.120
3.01	0.000	0.000	0.000	0.000	0.000	0.000	0.022	0.034	0.044	0.053	0.075	0.091	0.101	0.111	0.116
3.02	0.000	0.000	0.000	0.000	0.000	0.000	0.020	0.032	0.042	0.050	0.072	0.087	0.097	0.107	0.112
3.03	0.000	0.000	0.000	0.000	0.000	0.000	0.019	0.030	0.040	0.048	0.069	0.084	0.094	0.103	0.108
3.04	0.000	0.000	0.000	0.000	0.000	0.000	0.017	0.028	0.038	0.045	0.066	0.081	0.090	0.099	0.104
3.05	0.000	0.000	0.000	0.000	0.000	0.000	0.016	0.027	0.036	0.043	0.064	0.078	0.086	0.096	0.101
3.06	0.000	0.000	0.000	0.000	0.000	0.000	0.015	0.025	0.034	0.041	0.061	0.075	0.083	0.092	0.097
3.07	0.000	0.000	0.000	0.000	0.000	0.000	0.014	0.024	0.032	0.039	0.059	0.072	0.080	0.089	0.094
3.08	0.000	0.000	0.000	0.000	0.000	0.000	0.013	0.022	0.030	0.037	0.056	0.069	0.077	0.086	0.091
3.09	0.000	0.000	0.000	0.000	0.000	0.000	0.012	0.021	0.029	0.036	0.054	0.067	0.075	0.083	0.088

^{&#}x27;Values tabulated are read in percent.

Table C-5—Continued

Table for Estimating the Lot Percent Nonconforming Using Range Method^t

Q _U							Sa	mple S	ize						
\tilde{Q}_L	3	4	5	7	10	15	25	30	35	40	60	85	115	175	230
3.10	0.000	0.000	0.000	0.000	0.000	0.000	0.011	0.020	0.027	0.034	0.051	0.064	0.072	0.080	0.085
3.11	0.000	0.000	0.000	0.000	0.000	0.000	0.011	0.019	0.026	0.032	0.050	0.061	0.069	0.077	0.082
3.12	0.000	0.000	0.000	0.000	0.000	0.000	0.010	0.018	0.025	0.031	0.048	0.060	0.067	0.074	0.079
3.13	0.000	0.000	0.000	0.000	0.000	0.000	0.010	0.017	0.024	0.029	0.046	0.057	0.064	0.072	0.075
3.14	0.000	0.000	0.000	0.000	0.000	0.000	0.009	0.015	0.022	0.028	0.044	0.055	0.062	0.069	0.073
3.15	0.000	0.000	0.000	0.000	0.000	0.000	0.008	0.014	0.021	0.026	0.042	0.053	0.060	0.067	0.070
3.16	0.000	0.000	0.000	0.000	0.000	0.000	0.008	0.014	0.020	0.025	0.040	0.051	0.057	0.064	0.067
3.17	0.000	0.000	0.000	0.000	0.000	0.000	0.007	0.013	0.019	0.024	0.038	0.049	0.056	0.062	0.065
3.18	0.000	0.000	0.000	0.000	0.000	0.000	0.006	0.012	0.017	0.022	0.036	0.046	0.053	0.060	0.063
3.19	0.000	0.000	0.000	0.000	0.000	0.000	0.006	0.012	0.017	0.021	0.034	0.044	0.052	0.057	0.060
3.20	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.011	0.016	0.020	0.033	0.043	0.049	0.055	0.058
3.21	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.010	0.015	0.019	0.032	0.041	0.047	0.053	0.056
3.22	0.000	0.000	0.000	0.000	0.000	0.000	0.004	0.009	0.014	0.018	0.031	0.040	0.045	0.051	0.054
3.23	0.000	0.000	0.000	0.000	0.000	0.000	0.004	0.009	0.013	0.017	0.029	0.037	0.043	0.049	0.052
3.24	0.000	0.000	0.000	0.000	0.000	0.000	0.004	0.009	0.013	0.016	0.028	0.037	0.042	0.047	0.050
3.25	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.008	0.012	0.015	0.027	0.035	0.040	0.046	0.049
3.26	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.007	0.011	0.015	0.025	0.033	0.039	0.044	0.047
3.27	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.007	0.011	0.014	0.024	0.032	0.037	0.042	0.045
3.28	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.006	0.010	0.013	0.023	0.031	0.036	0.040	0.043
3.29	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.006	0.009	0.012	0.023	0.029	0.034	0.039	0.042
3.30	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.005	0.009	0.012	0.021	0.028	0.033	0.037	0.040
3.31	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.005	800.0	0.011	0.021	0.027	0.032	0.036	0.039
3.32	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.004	0.007	0.010	0.020	0.026	0.030	0.034	0.037
3.33	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.004	0.007	0.010	0.019	0.025	0.029	0.033	0.036
3.34	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.004	0.007	0.009	0.018	0.024	0.028	0.032	0.035
3.35	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.004	0.006	0.009	0.017	0.023	0.027	0.031	0.033
3.36	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.004	0.006	0.008	0.016	0.022	0.026	0.030	0.032
3.37	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.004	0.006	0.008	0.015	0.021	0.024	0.028	0.031
3.38	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.003	0.005	0.007	0.014	0.019	0.024	0.027	0.030
3.39	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.003	0.005	0.007	0.014	0.019	0.022	0.027	0.029
3.40 3.41	0.000	0.000	0.000	0.000	0.000	0.000	100.0	0.003	0.005	0.007	0.013	0.018	0.021	0.026	0.028
3.42	0.000	0.000	1	0.000	0.000	0.000	0.001	0.002	0.004	0.006	0.012	0.018	0.021	0.025	0.027
3.43			0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.006	0.012	0.017	0.020	0.024	0.026
3.44	0.000	0.000	0.000	0.000		0.000	0.001	0.002	0.004	0.005	0.011	0.016	0.019		0.025
3.45	0.000	0.000	0.000	0.000	0.000	0.000	100.0	0.002	0.004	0.005	0.011	0.015	0.018	0.022	0.024
3.46	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.005	0.011	0.014	0.017	0.021	0.023
3.47	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.005	0.010	0.014	0.017	0.020	1 1
3.48	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.004	0.010	0.014	0.016	0.019	0.021
3.49	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.004	0.009	0.013	0.015	0.018	0.020
J. 77	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.003	0.004	0.009	0.012	0.013	0.018	0.020

^{&#}x27;Values tabulated are read in percent.

Table C-5—Continued

Table for Estimating the Lot Percent Nonconforming Using Range Method¹

Q_{υ}							Sa	mple S	ize						
OT Q _L	3	4	5	7	10	_15	25_	30	35	40	60	85	115	175	230
3.50	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.008	0.012	0.014	0.017	0.019
3.51	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.008	0.011	0.014	0.016	0.018
3.52	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.007	0.010	0.013	0.016	0.017
3.53	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.007	0.010	0.013	0.015	0.016
3.54	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.007	0.010	0.012	0.014	0.015
3.55	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.006	0.009	0.012	0.014	0.015
3.56	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.006	0.009	0.011	0.013	0.014
3.57	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.005	0.008	0.011	0.012	0.013
3.58	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.005	0.008	0.010	0.012	0.013
3.59	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.005	0.008	0.010	0.011	0.012
3.60	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.005	0.007	0.009	0.011	0.012
3.61	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.004	0.007	0.009	0.011	0.011
3.62	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.004	0.007	0.009	0.010	0.011
3.63	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.004	0.006	0.008	0.010	0.010
3.64	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.003	0.006	0.008	0.009	0.010
3.65	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.003	0.006	0.008	0.009	0.010
3.66	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.003	0.005	0.007	0.009	0.009
3.67	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.003	0.005	0.007	0.008	0.009
3.68	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.003	0.005	0.006	0.008	0.008
3.69	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.006	0.008	0.008
3.70	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.006	0.007	0.008
3.71	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.006	0.007	0.007
3.72	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.006	0.007	0.007
3.73	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.006	0.007	0.007
3.74	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.005	0.006	0.007
3.75	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.005	0.006	0.006
3.76	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.005	0.006	0.006
3.77	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.005	0.006	0.006
3.78	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.003	0.004	0.005	0.005
3.79	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.003	0.003	0.005	0.005
3.80	0.000	0.000	0.000	0:000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.003	0.003	0.005	0.005
3.81	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.003	0.003	0.005	0.005
3.82	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.003	0.003	0.005	0.005
3.83	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.003	0.003	0.004	0.004
3.84	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.004	0.004
3.85	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.004	0.004
3.86	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.004	0.004
3.87	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.004	0.004
3.88	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.004	0.004
3.89	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.003	0.003
3.90	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.003	0.003

^{&#}x27;Values tabulated are read in percent.

Table C-6
Values of f for Maximum Average Range (MAR)

Sample	Acceptable Quality Levels (in percent nonconforming) T 10 15 25 40 65 100 150 250 400 650 1000														
size	T	.10	.15	.25	.40	.65	1.00	1.50	2.50	4.00	6.50	10.00			
3	1								.833	.865	.907	.958			
4				1			756_	.788	.836	.891	.965_	1.056			
5						.730	.764	.801	.857	.923	1.011	1.118			
7				.695	.727	.765	.804	.846	.910	.985	1.086	1.209			
10			.529	.553	.579	.610	.642	.677	.730	.793	.876	.977			
15	.460	.477	.493	.517	.542	.572	.602	.637	.688	.748	.830	.928			
25	.432	.447	.463	.486	.509	.537	.567	.600	.649	.707	.785	.879			
30	.426	.442	.457	.480	.503	.531	.560	.593	.642	.699	.776	.870			
35	.423	.438	.454	.476	.499	.527	.556	.588	.637	.694	.771	.864			
40	.417	.432	.447	.469	.492	.519	.548	.580	.628	.684	.761	.852			
50	.411	.426	.441	.463	.486	.503	.542	.573	.621	.676	.752	.843			
60	.405	.419	.434	.455	.478	.505	.533	.564	.608	.666	.740	.830			
85	.398	.412	.427	.448	.470	.497	.525	.555	.602	.656	.729	.818			
115	.392	.406	.421	.442	.464	.490	.517	.548	.594	.648	.720	.808			
175	.384	.399	.413	.434	.455	.481	.508	.538	.584	.637	.708	.794			
230	.384	.397	.412	.432	.454	.480	.507	.536	.582	.633	.706	.792			

The MAR may be obtained by multiplying the factor f by the difference between the upper specification limit U and lower specification limit L. The formula is MAR = f(U - L). The MAR serves as a guide for the magnitude of the average range of the sample when using plans for the double specification limit case, based on the average range of the sample of unknown variability. The average range of the sample, if it is less than the MAR, helps to insure, but does not guarantee, lot acceptability.

NOTE: There is a corresponding acceptability constant in Table C-1 for each value of f. For reduced inspection, find the acceptability constant of Table C-2 in Table C-1 and use the corresponding value of f.

All AQL values are in percent nonconforming. T denotes plan used exclusively on tightened inspection and provides symbol for identification of appropriate OC curve.

APPENDIX C Definitions

Symbo	ol Read	Definitions
n		Sample size for a single lot.
$\overline{\mathbf{X}}$	X bar	Sample mean. Arithmetic mean of sample measurements from a single lot.
R		Range. The difference between the largest and smallest measurements in a subgroup. In this Standard, the subgroup size is 5 except for those plans in which $n = 3$, 4, or 7, in which case the subgroup is the same as the sample size.
$\mathbf{R}_{\scriptscriptstyle 1}$		Range of the first subgroup.
R_2		Range of the second subgroup.
Ŕ	R bar	Average range. The arithmetic mean of the range values of the subgroups of the sample measurements from a single lot.
U		Upper specification limit.
L		Lower specification limit.
k		The acceptability constant given in Tables C-1 and C-2.
С		A factor used in determining the quality index when using the range method. The c values are given in Tables C-3 and C-4.
\mathbf{Q}_{U}	Q sub U	Quality Index for use with Table C-5.
Q_{L}	Q sub L	Quality index for use with Table C-5.
$\mathbf{p}_{\mathbf{U}}$	p sub U	Sample estimate of the lot percent nonconforming above U from Table C-5.
\mathbf{p}_{L}	p sub L	Sample estimate of the lot percent nonconforming below L from Table C-5.
p		Total sample estimate of the lot percent nonconforming $p = p_U + p_L$.
M		Maximum allowable percent nonconforming for sample estimates given in Tables C-3 and C-4.
$M_{\rm U}$	M sub U	Maximum allowable percent nonconforming above U given in Tables C-3 and C-4. (For use when different AQL values for U and L are specified.)
M_L	M sub L	Maximum allowable percent nonconforming below L given in Tables C-3 and C-4. (For use when different AQL values for U and L are specified.)
$\overline{\mathbf{p}}$	p bar	Sample estimate of the process percent nonconforming, i.e., the estimated process average.
$ar{p}_{U}$	p bar sub U	The estimated process average for an upper specification limit.
$\overline{\mathbf{p}}_{L}$	p bar sub L	The estimated process average for a lower specification limit.
f	-	A factor used in determining the Maximum Average Range (MAR). The f values are given in Table C-6.
>	Greater than	Greater than.
<	Less than	Less than.
Σ	Sum of	Sum of.
Т		AQL symbol denoting plan used exclusively on tightened inspection (provides identification of appropriate OC curve).

SECTION D VARIABILITY KNOWN

Part I SINGLE SPECIFICATION LIMIT

D1. SAMPLING PLAN FOR SINGLE SPECIFICATION LIMIT

This part of the Standard describes the procedures for use with plans for a single specification limit when variability of the lot with respect to the quality characteristic is known. The acceptability criterion is given in two equivalent forms. These are identified as Form 1 and Form 2.

- D1.1 <u>Use of Sampling Plans</u>. To determine whether the lot meets the acceptability criterion with respect to a particular quality characteristic and AQL value, the applicable sampling plan shall be used in accordance with the provisions of Section A, General Description of Sampling Plans, and those in this part of the Standard.
- D1.2 <u>Drawing of Samples</u>. All samples shall be drawn in accordance with paragraph A7.2.
- D1.3 <u>Determination of Sample Size Code Letter</u>. The sample size code letter shall be selected from Table A-2 in accordance with paragraph A7.1.

D2. SELECTING THE SAMPLING PLAN WHEN FORM 1 IS USED

- D2.1 <u>Master Sampling Tables</u>. The master sampling tables for plans based on variability known for a single specification limit are TAbles D-1 and D-2. Table D-1 is used for normal and tightened inspection and Table D-2 for reduced inspection.
- D2.2 Obtaining Sampling Plan. The sampling plan consists of a sample size and an associated acceptability constant. The sampling plan is obtained from Master Table D-1 and D-2.
- D2.2.1 <u>Sample Size</u>. The sample size n is shown in the master table corresponding to each sample size code letter and AQL.
- D2.2.2 Acceptability Constant. The acceptability constant k, corresponding to the sample size mentioned in paragraph D2.2.1, is indicated in the column of the master table corresponding to the applicable AQL value. Table D-1 is entered from the top for normal inspection and from the bottom for

tightened inspection. Sampling plans for reduced inspection are provided in Table D-2.

D3. LOT-BY-LOT ACCEPTABILITY PROCEDURES WHEN FORM 1 IS USED²

- D3.1 <u>Acceptability Criterion</u>. The degree of conformance of a quality characteristic with respect to a single specification limit shall be judged by the quantity $(U \overline{X})/\sigma$ or $(\overline{X} L)/\sigma$.
- D3.2 <u>Computation</u>. The following quantity shall be computed: $(U \overline{X})/\sigma$ or $(\overline{X} L)/\sigma$, depending on whether the specification limit is an upper or a lower limit, where

U is the upper specification limit, L is the lower specification limit, \overline{X} is the sample mean, and σ is the known variability.

D3.3 <u>Acceptability Criteria</u>. Compare the quantity $(U-\overline{X})/\sigma$ or $(\overline{X}-L)/\sigma$ with the acceptability constant k. If $(U-\overline{X})/\sigma$ or $(\overline{X}-L)/\sigma$ is equal to or greater than k, the lot meets the acceptability criterion; if $(U-\overline{X})/\sigma$ or $(\overline{X}-L)/\sigma$ is less than k or negative, then the lot does not meet the acceptability criterion.

D4. SUMMARY FOR OPERATION OF SAMPLING PLAN WHEN FORM 1 IS USED

The following steps summarize the procedures to be followed:

- (1) Determine the sample size code letter from Table A-2 by using the lot size and the inspection level.
- (2) Obtain plan from Master Table D-1 or D-2 by selecting the sample size n and the acceptability constant k.
- (3) Select at random the sample of n units from the lot; inspect and record the measurement of the quality characteristic for each unit of the sample.
- (4) Compute the sample mean \overline{X} , and also compute the quantity $(U \overline{X})/\sigma$ for an upper specification limit U or the quantity $(\overline{X} L)/\sigma$ for a lower specification limit L.
- (5) If the quantity $(U \overline{X})/\sigma$ or $(\overline{X} L)/\sigma$ is equal to or greater than k, the lot meets the acceptability criterion; if

See Appendix D for definitions of all symbols used in the sampling plans based on variability known.

²See Example D-1 for a complete example of this procedure.

 $(U-\overline{X})/\sigma$ or $(\overline{X}-L)/\sigma$ is less than k or negative, then the lot does not meet the acceptability criterion.

D5. SELECTING THE SAMPLING PLAN WHEN FORM 2 IS USED

- D5.I <u>Master Sampling Tables</u>. The master sampling tables for plans based on variability known for a single specification limit are Tables D-3 and D-4 of Part II. Table D-3 is used for normal and tightened inspection and Table D-4 for reduced inspection.
- D5.2 Obtaining the Sampling Plan. The sampling plan consists of a sample size and an associated maximum allowable percent nonconforming. The sampling plan is obtained from Master Table D-3 or D-4.
- D5.2.1 <u>Sample Size</u>. The sample size n is shown in the master table corresponding to each sample size code letter.
- D5.2.2 <u>Maximum Allowable Percent Nonconforming.</u> The maximum allowable percent nonconforming M for sample estimates corresponding to the sample size mentioned in paragraph D5.2.1 is indicated in the column of the master table corresponding to the applicable AQL value. Table D-3 is entered from the top for normal inspection and from the bottom for tightened inspection. Sampling plans for reduced inspection are provided in Table D-4.

D6. LOT-BY-LOT ACCEPTABILITY PROCEDURES WHEN FORM 2 IS USED³

- D6.1 Acceptability Criterion. The degree of conformance of a quality characteristic with respect to a single specification limit shall be judged by the percent of nonconforming product outside the upper or lower specification limit. The percentage of nonconforming product is estimated by entering Table D-5 with the quality index.
- D6.2 <u>Computation of Quality Index</u>. The quality index $Q_U = (U \overline{X})v/\sigma$ shall be computed if the specification limit is an upper limit U, or $Q_U = (\overline{X} L)v/\sigma$ if it is a lower limit L. The quantities, \overline{X} and σ , are the sample mean and known variability, respectively. The factor v is provided in Tables D-3 and D-4 corresponding to the sample size.

- D6.3 Estimate of Percent Nonconforming in Lot. The quality of a lot shall be expressed by p_U , the estimated percent nonconforming in the lot above the upper specification limit, or by p_L , the estimated percent nonconforming below the lower specification limit. The estimated percent nonconforming p_U or p_L is obtained by entering Table D-5 with Q_U or Q_L .
- D6.4 Acceptability Criterion. Compare the estimated lot percent nonconforming p_U or p_L with the maximum allowable percent nonconforming M. If p_U or p_L is equal to or less than M, the lot meets the acceptability criterion; if p_U or p_L is greater than M or if Q_U or Q_L is negative, then the lot does not meet the acceptability criterion.

D7. SUMMARY FOR OPERATION OF SAMPLING PLAN WHEN FORM 2 IS USED

The following steps summarize the procedures to be followed:

- (1) Determine the sample size code letter from Table A-2 by using the lot size and inspection level.
- (2) Obtain plan from Master Table D-3 or D-4 by selecting the sample size n, the factor v, and the maximum allowable percent nonconforming M.
- (3) Select at random the sample of n units from the lot; inspect and record the measurement of the quality characteristic on each unit of the sample.
 - (4) Compute the sample mean \overline{X} .
- (5) Compute the quality index $Q_U = (U \overline{X})v/\sigma$ if an upper specification limit U is specified, or $Q_L = (\overline{X} L)v/\sigma$ if a lower specification limit L is specified.
- (6) Determine the estimated lot percent nonconforming p_U or p_L from Table D-5.
- (7) If the estimated lot percent nonconforming p_U or p_L is equal to or less than the maximum allowable percent nonconforming M, the lot meets the acceptability criterion; if p_U or p_L is greater than M or if Q_U or Q_L is negative, then the lot does not meet the acceptability criterion.

³See Example D-2 for a complete example of this procedure.

EXAMPLE D-1

Example of Calculations

Single Specification Limit—Form 1

Variability Known

Example: The specified minimum yield point for certain steel castings is 58,000 psi. A lot of 500 items is submitted for inspection. Inspection Level II, normal inspection, with AQL = 1.5% is to be used. The variability σ is known to be 3000 psi. From Tables A-2 and D-1 it is seen that a sample of size 10 is required. Suppose the yield points of the sample specimens are:

62,500; 60,500; 68,000; 59,000; 65,500 62,000; 61,000; 69,000; 58,000; 64,500;

and compliance with the acceptability criterion is to be determined.

Line	Information Needed	Value Obtained	Explanation
1	Sample Size: n	10	
2	Known Variability: σ	3,000	
3	Sum of Measurements: ∑X	630,000	
4	Sample Mean \vec{X} : $\Sigma X/n$	63,000	630,000/10
5	Specification Limit (Lower): L	58,000	
6	The Quantity: $(\overline{X} - L)/\sigma$	1.67	(63,000 – 58,000)/3000
7	Acceptability Constant: k	1.70	See Table D-1
8	Acceptability Criterion: Compare $(\overline{X} - L)/\sigma$ with k	1.67 < 1.70	See Para. D3.3

The lot does not meet the acceptability criterion, since $(\overline{X}-L)/\sigma$ is less than k.

NOTE: If a single upper specification limit U is given, then compute the quantity $(U - \overline{X})/\sigma$ in line 6 and compare it with k; the lot meets the acceptability criterion if $(U - \overline{X})/\sigma$ is equal to or greater than k.

EXAMPLE D-2 Example of Calculations Single Specification Limit—Form 2 Variability Known

Example: The specified minimum yield point for certain steel castings is 58,000 psi. A lot of 500 items is submitted for inspection. Inspection Level II, normal inspection, with AQL = 1.5% is to be used. The variability σ is known to be 3000 psi. From Tables A-2 and D-1 it is seen that a sample of size 10 is required. Suppose the yield points of the sample specimens are:

62,500; 60,500; 68,000; 59,000; 65,500; 62,000; 61,000; 69,000; 58,000; 64,500;

and compliance with the acceptability criterion is to be determined.

Line	Information Needed	Value Obtained	Explanation
1	Sample Size: n	10	
2	Known Variability: σ	3,000	
3	Sum of Measurements: ∑X	630,000	•
4	Sample Mean \overline{X} : $\Sigma X/n$	63,000	630,000/10
5	Factor: v	1.054	
6	Specification Limit (Lower): L	58,000	
7	Quality Index: $Q_L = (\overline{X} - L)v/\sigma$	1.76	(63,000 - 58,000)1.054
			3,000
8 .	Est. of Lot Percent: Ncf.: pL	3.92%	See Table D-5
9	Max. Allowable Percent Ncf.: M	3.63%	See Table D-3
10	Acceptability Criterion: Compare p_L with M	3.92% > 3.63%	See Para. D6.4

The lot does not meet the acceptability criterion, since p_L is greater than M.

NOTE: If a single upper specification limit U is given, then compute the quality index $Q_U = (U - \overline{X})v/\sigma$ in line 7 and obtain the estimate of the percent nonconforming p_U . Compare p_U with M; the lot meets the acceptability criterion if p_U is equal to or less than M.

Table D-1

Master Table for Normal and Tightened Inspection for Plans Based on Variability Known (Single Specification Limit—Form 1)

Sample			Acc	eptable	Quali	ty Leve	ls (nor	mal ins	pectio	n)		_
size code		T		10	.]	15	.2	25	.4	0	.6	5
letter	n	k	n	k	n	k	n	k	n	k	n	k
В												
C											,	•
D							1		,		2	1.5
E					,		2	1.94	2	1.81	3	1.6
F		†	1		_3	2.19	3	2.07	3	1.91	4	1.8
G	3	2.49	4	2.39	4	2.30	4	2.14	5	2.05	5	1.8
Н	4	2.55	5	2.46	5	2.34	6	2.23	6	2.08	7	1.9
I	6	2.59	6	2.49	6	2.37	7	2.25	8	2.13	8	1.9
J	7	2.63	8	2.54	9	2.45	9	2.29	10	2.16	11	2.0
K	11	2.72	11	2.59	12	2.49	13	2.35	14	2.21	16	2.0
L	15	2.77	16	2.65	17	2.54	19	2.41	21	2.27	23	2.1
M	20	2.80	22	2.69	23	2.57	25	2.43	27	2.29	30	2.1
N	30	2.84	31	2.72	34	2.62	37	2.47	40	2.33	44	2.1
P	40	2.85	42	2.73	45	2.62	49	2.48	54	2.34	59	2.1
	.10 .15 .25 .40 .65 1.00											
	Acceptable Quality Levels (tightened inspection)											

All AQL values are in percent nonconforming. T denotes plan used exclusively on tightened inspection and provides symbol for identification of appropriate OC curve.

Use first sampling plan below arrow; that is, both sample size as well as k value. When sample size equals or exceeds lot size, every item in the lot must be inspected.

Table D-1—Continued

Master Table for Normal and Tightened Inspection for Plans Based on Variability Known
(Single Specification Limit—Form 1)

Sample			Acc	eptable	Quali	ty Leve	ls (no	rmal in:	spectio	n)		
size code	1	.00	1	.50	2	.50	4.	00	6.	.50	10.	.00
letter	n	k	n	k	n	k	n	k	n	k	n	k
В		Y	١			•		Ť		Y		Ť
С	2	1.36	2	1.25	2	1.09	2	.936	3	.755	3	.57
D	2	1.42	2	1.33	3	1.17	3	1.01	3	.825	4	.64
E	3	1.56	3	1.44	4	1.28	4	1.11	5	.919	5	.72
F	4	1.69	4	1.53	5_	1.39	5	1.20	6	.991	7	.79
G	6	1.78	6	1.62	7	1.45	8	1.28	9	1.07	11	.87
H	7	1.80	8	1.68	9	1.49	10	1.31	12	1.11	14	.90
I	9	1.83	10	1.70	11	1.51	13	1.34	15	1.13	17	.924
J	12	1.88	14	1.75	15	1.56	18	1.38	20	1.17	24	.964
K	17	1.93	19	1.79	22	1.61	25	1.42	29	1.21	33	.995
L	25	1.97	28	1.84	32	1.65	36	1.46	42	1.24	49	1.03
M	33	2.00	36	1.86	42	1.67	48	1.48	55	1.26	64	1.05
N	49	2.03	54	1.89	61	1.69	70	1.51	82	1.29	95	1.07
P	65	2.04	71	1.89	81	1.70	93	1.51	109	1.29	127	1.07
	1.5	50	2.5	0	4.0	0	6.:	50	10.0	00		
		Accep	otable	Quality	Level	s (tight	ened i	nspection	on)			

Use first sampling plan below arrow; that is, both sample size as well as k value. When sample size equals or vexceeds lot size, every item in the lot must be inspected.

Table D-2
Master Table for Reduced Inspection for Plans Based on Variability Known
(Single Specification Limit—Form 1)

Sample	_			Accepta	ble Qu	ality L	evels			
size code	.1	0	.1	15	.2	:5	.4	10	.6	5
letter	n	k	л	k	n	k	n	k	n	k
В										
C			_			'				
D										
E	·								1	
F						l:			_ 2	1.36
G	ļ		1		1		2	1.58	2	1.42
Н	1		2	1.94	2	1.81	3	1.69	3	1.56
I	3	2.19	3	2.07	3	1.91	4	1.80	4	1.69
J	4	2.30	4	2.14	5	2.05	5	1.88	6	1.78
K	5	2.34	6	2.23	6	2.08	7	1.95	7	1.80
L	6	2.37	7	2.25	8	2.13	8	1.96	9	1.83
M	7	2.38	8	2.26	9	2.13	10	1.99	11	1.86
N	12	2.49	13	2.35	14	2.21	16	2.07	17	1.93
P	17	2.54	19	2.41	21	2.27	23	2.12	25	1.97

Use first sampling plan below arrow; that is, both sample size as well as k value. When sample size equals or exceeds lot size, every item in the lot must be inspected.

Table D-2—Continued

Master Table for Reduced Inspection for Plans Based on Variability Known
(Single Specification Limit—Form 1)

Sample				A	Accepta	able Qu	ality I	.evels				
size code	1.	00	1.	.50	2.	.50	4	1.0	6	.5	10	.00
letter	n	k	n	k	n	k	n	k	n	k	n	k
В												
C												
D												
E	'	1	,	,	ļ ,	,	,	∤	,	,	ì	∤
F	2	1.25	2	1.09	2	.936	3	.755	3	.573	4	.344
G	2	1.33	3	1.17	3	1.01	3	.825	4	.641	4	.429
Н	3	1.44	4	1.28	4	1.11	5	.919	5	.728	6	.515
II	4	1.53	5	1.39	5	1.20	6	.991	7	.797	8	.584
J	6	1.62	7	1.45	8	1.28	9	1.07	11	.877	12	.649
K	8	1.68	9	1.49	10	1.31	12	1.11	14	.906	16	.685
L	10	1.70	11	1.51	13	1.34	15	1.13	17	.924	20	.706
M	12	1.72	13	1.53	15	1.35	18	1.15	21	.942	21	.719
N	19	1.79	22	1.61	25	1.42	29	1.21	33	.995	38	.770
P	28	1.84	32	1.65	36	1.46	42	1.24	49	1.03	56	.803

Use first sampling plan below arrow; that is, both sample size as well as k value. When sample size equals or exceeds lot size, every item in the lot must be inspected.

Part II DOUBLE SPECIFICATION LIMIT

D8. SAMPLING PLAN FOR DOUBLE SPECIFICATION LIMIT

This part of the Standard describes the procedures for use with plans for a double specification limit when variability of the lot with respect to the quality characteristic is known.

D8.1 <u>Use of Sampling Plans</u>. To determine whether the lot meets the acceptability criterion with respect to a particular quality characteristic and AQL value(s), the applicable sampling plan shall be used in accordance with the provisions of Section A, General Description of Sampling Plans, and those in this part of the Standard.

D8.2 Initial Review for Combined Double Specification Limits. Before implementing a sampling plan for combined double specification limits when the process variability is known, it is mandatory to carry out a check that the process standard deviation, σ , does not exceed the Maximum Process Standard Deviation (MPSD) derived from Table D-6 that corresponds to the specified AQL. If σ is greater than the MPSD, the process average is known to be excessive, and lots shall be judged not acceptable without samples being drawn. If σ does not exceed the MPSD, it is an indication that the process average may be acceptable, and sampling inspection should be carried out in order to determine lot acceptability. To make the comparison, the following procedure is recommended:

- (1) Determine the standardized MPSD from Table D-6 for the given AQL.
- (2) Multiply the standardized MPSD by the specification interval U L to obtain the MPSD.
- (3) Compare the process standard deviation, σ , with this calculated MPSD.

D9. SELECTING THE SAMPLING PLAN

A sampling plan for each AQL value shall be selected from Table D-3 or D-4 as follows:

D9.1 <u>Determination of Sample Size Code Letter</u>. The sample size code letter shall be selected from Table A-2 in accordance with paragraph A7.1.

D9.2 <u>Master Sampling Tables</u>. The master sampling tables for plans based on variability known for a double specification limit are Tables D-3 and D-4. Table D-3 is used for

normal and tightened inspection and Table D-4 for reduced inspection

D9.3 Obtaining Sampling Plan. A sampling plan consists of a sample size and an associated maximum allowable percent nonconforming. The sampling plan to be applied in inspection shall be obtained from Master Table D-3 or D-4.

D9.3.1 <u>Sample Size</u>. The sample size n is shown in the master tables corresponding to each sample size code letter and AQL.

D9.3.2 Maximum Allowable Percent Nonconforming. The maximum allowable percent nonconforming for sample estimates of percent nonconforming for the lower, upper, or both specification limits combined, corresponding to the sample size mentioned in paragraph D9.3.1, is shown in the column of the master table corresponding to the applicable AQL value(s). If different AQLs are assigned to each specification limit, designate the maximum allowable percent nonconforming by M_L for the lower limit, and by M_U for the upper limit. If one AQL is assigned to both limits combined, designate the maximum allowable percent nonconforming by M. Table D-3 is entered from the top for normal inspection and from the bottom for tightened inspection. Sampling plans for reduced inspection are provided in Table D-4.

D10. DRAWING OF SAMPLES

Samples shall be selected in accordance with paragraph A7.2.

D11. LOT-BY-LOT ACCEPTABILITY PROCEDURES

D11.1 Acceptability Criterion. The degree of conformance of a quality characteristic with respect to a double specification limit shall be judged by the percent of nonconforming product. The percentage of nonconforming product is estimated by entering Table D-5 with the quality index.

D11.2 <u>Computation of Quality Indices</u>. The quality indices $Q_U = (U - \overline{X})v/\sigma$ and $Q_U = (\overline{X} - L)v/\sigma$ shall be computed, where

U is the upper specification limit,

L is the lower specification limit,

v is the factor provided in Tables D-3 and D-4,

 \overline{X} is the sample mean, and σ is the known variability. D11.3 Percent Nonconforming in the Lot. The quality of a lot shall be expressed in terms of the lot percent nonconforming. Its estimate will be designated by p_L , p_U , or p_L . The estimate p_U indicates conformance with respect to the upper specification limit, p_L with respect to the lower specification limit, and p_L for both specification limits combined. The estimates p_L and p_U shall be determined by entering Table D-5, respectively with Q_L and Q_L . The estimate p_L shall be determined by adding the corresponding estimated percents nonconforming p_L and p_U found in the table

D12. ACCEPTABILITY CRITERION AND SUMMARY FOR OPERATION OF SAMPLING PLANS

D12.1 One AQL value for both Upper and Lower Specification Limit Combined.

D12.1.1 <u>Acceptability Criterion</u>. Compare the estimated lot percent nonconforming $p = p_U + p_L$ with the maximum allowable percent nonconforming M. If p is equal to or less than M, the lot meets the acceptability criterion; if p is greater than M or if Q_U or Q_L , or both are negative, then the lot does not meet the acceptability criterion.

D12.1.2 <u>Summary of Operation of Sampling Plan</u>. In cases where a single AQL value is established for the upper and lower specification limit combined for a single quality characteristic, the following steps summarize the procedures to be used:

- (1) Determine the sample size code letter from Table A-2 by using the lot size and the inspection level.
- (2) Select plan from Master Table D-3 or D-4. Obtain the sample size n, the factor v, and the maximum allowable percent nonconforming M.
- (3) Select at random the sample of n units from the lot; inspect and record the measurement of the quality characteristic on each unit of the sample.
 - (4) Compute the sample mean \overline{X} .
- (5) Compute the quality indices $Q_U = (U \overline{X})v/\sigma$ and $Q_1 = (\overline{X} L)v/\sigma$.

- (6) Determine the estimated lot percent nonconforming $p = p_U + p_U$ from Table D-5.
- (7) If the estimated lot percent nonconforming p is equal to or less than the maximum allowable percent nonconforming M, the lot meets the acceptability criterion; if p is greater than M or if Q_U or Q_L or both are negative, then the lot does not meet the acceptability criterion.

D12.2 <u>Different AQL Values for Upper and Lower Specification Limit.</u>

D12.2.1 Acceptability Criteria. Compare the estimated lot percents nonconforming p_L and p_U with the corresponding maximum allowable percents nonconforming M_L and M_U ; also compare $p = p_L + p_U$ with the larger of M_L and M_U . If p_L is equal to or less than M_L , p_U is equal to or less than M_U , and p is equal to or less than the larger of M_L and M_U , the lot meets the acceptability criteria; otherwise, the lot does not meet the acceptability criteria. If either Q_L or Q_U or both are negative, then the lot does not meet the acceptability criteria.

D12.2.2 <u>Summary of Operation of Sampling Plan</u>. In cases where a different AQL value is established for the upper and lower specification limit for a single quality characteristic, the following steps summarize the procedures to be used:

- (1) Determine the sample size code letter from Table A-2 by using the lot sizes and inspection level.
- (2) Select the sampling plan from Master Table D-3 or D-4. Obtain the sample size n and the factor v, corresponding to the larger of the two AQL values, and also the maximum allowable percent nonconforming M_U and M_L, corresponding to the AQL values for the upper and lower specification limits, respectively.
- (3) Select at random the sample of n units from the lot; inspect and record the measurement of the quality characteristic on each unit in the sample.
 - (4) Compute the sample mean \overline{X} .
- (5) Compute the quality indices $Q_U = (U \overline{X})v/\sigma$ and $Q_U = (\overline{X} L)v/\sigma$.

⁴See Example D-3a for a complete example of this procedure.

⁵See Example D-4a for a complete example of this procedure.

- (6) Determine the estimated lot percents nonconforming p_U and p_L corresponding to the percents nonconforming above the upper and below the lower specification limits. Also determine the combined percent nonconforming $p = p_U + p_L$.
 - (7) If all three of the following conditions:
 - (a) p_U is equal to or less than M_U,
 - (b) p_L is equal to or less than M_L,

(c) p is equal to or less than the larger of M_L and M_U ,

are satisfied, the lot meets the acceptability criteria; otherwise, the lot does not meet the acceptability criteria. If either Q_L or Q_U or both are negative, then the lot does not meet the acceptability criteria.

EXAMPLE D-3a

Example of Calculations Double Specification Limit Variability Known

One AQL Value for Both Upper and Lower Specification Limit Combined

Example: The specified maximum and minimum yield points for certain steel castings are 67,000 and 58,000 psi, respectively. A lot of 500 items is submitted for inspection. Inspection Level II, normal inspection, with AQL = 1.5% is to be used. The variability σ is known to be 3,000 psi.

Line	Information Needed	Value Obtained	Explanation
1	Upper Specification Limit: U	67,000	
2	Lower Specification Limit: L	58,000	
3	Known Variability: σ	3,000	
4	Factor for Maximum Process Standard Deviation for an AQL of 1.5%: F σ	0.194	See Table D-6
5	Maximum Process Standard Deviation: $MPSD = F \sigma (U - L)$	1,746	0.194 (67,000 – 58,000)
6	Mandatory check: Compare σ with MPSD	3,000 > 1,746	

The process fails the mandatory check that σ does not exceed the MPSD, so sampling inspection is pointless and submitted lots should not be accepted.

EXAMPLE D-3b

Example of Calculations Double Specification Limit Variability Known

One AQL Value for Both Upper and Lower Specification Limit Combined

Example: The specified maximum and minimum yield points for certain steel castings are 70,000 and 54,000 psi, respectively. A lot of 500 items is submitted for inspection. Inspection Level II, normal inspection, with AQL = 1.5% is to be used. The variability σ is known to be 3,000 psi.

Line	Information Needed	Value Obtained	Explanation
1	Upper Specification Limit: U	70,000	
2	Lower Specification Limit: L	54,000	
3	Known Variability: σ	3,000	
4	Factor for Maximum Process Standard Deviation for an AQL of 1.5%: F σ	0.194	See Table D-6
5	Maximum Process Standard Deviation: $MPSD = F \sigma (U - L)$	3,104	0.194 (70,000 – 54,000)
6	Mandatory check: Compare σ with MPSD	3,000 > 3,104	

The process satisfies the mandatory check that σ does not exceed the MPSD. It follows that there is a possibility, though not a certainty, that the lot is acceptable. Lot acceptability is determined by sampling. From Tables A-2 and D-3, it is seen that a sample of size 10 is required. Suppose the yield points of the sample specimens are:

62,500; 60,500; 68,000; 59,000; 65,500; 62,000; 61,000; 69,000; 58,000; 64,500;

and compliance with the acceptability criterion is to be determined.

Line	Information Needed	Value Obtained	Explanation
7	Sample size: n	10	See Tables A-2 and D-3
8	Sum of Measurements: ΣX	630,000	
9	Sample Mean: $\overline{X} = \sum X/n$	63,000	630,000/10
10	Factor: v	1.054	See Table D-3
11	Quality Index: $Q_U = (U - \overline{X})v/\sigma$	2.459	(70,000 - 63,000) 1.054/3,000
12	Quality Index: $Q_L = (\overline{X} - L)v/\sigma$	3,162	(63,000 – 54,000) 1.054/3,000
13	Est. of Lot % Ncf. Above U: pu	0.697%	See Table D-5
14	Est. of Lot % Ncf. Below L: pL	0.078%	See Table D-5
15	Total Est. % Ncf. in Lot: $p = p_U + p_L$	0.775%	0.697% + 0.078%
16	Max. Allowable Est. % Ncf.: M	3.63%	See Table D-3
17	Acceptability Criterion: Compare p with M	0.775% < 3.63%	

The lot meets the acceptability criterion, since $p = p_U + p_L$ is less than M.

EXAMPLE D-4

Example of Calculations

Double Specification Limit

Variability Known

Different AQL Values for Upper and Lower Specification Limits

Example: The specified maximum and minimum yield points for certain steel castings are 67,000 psi and 58,000 psi, respectively. A lot of 500 items is submitted for inspection. Inspection Level II, normal inspection with AQL = 1% for the upper and AQL = 2.5% for the lower specification limit is to be used. The variability σ is known to be 3,000 psi. From Tables A-2 and D-3 it is seen that a sample of size 11 corresponding to the sample size code letter, I, and the AQL value of 2.5% is required. Suppose the yield points of the sample specimens are:

62,500; 60,500; 64,000; 59,000; 65,500; 62,000; 61,000; 60,631; 68,000; 62,000; 63,000

and compliance with the acceptability criteria is to be determined.

Information Needed	Value Obtained	Explanation
Sampla Siza: n	11	
•		
-		
Sample Mean X :ΣX/n	61,648	678,131/11
Factor: v	1.049	See Table D-3
Upper Specification Limit: U	67,000	
Lower Specification Limit: L	58,000	
Quality Index: $Q_U = (U - \overline{X})v/\sigma$	1.87	(67,000 - 61,648)1.049/3,0
Quality Index: $Q_L = (\overline{X} - L)v/\sigma$	1.28	(61,648 - 58,000)1.049/3,0
Est. of Lot Percent Ncf. Above U: pu	3.07%	See Table D-5
Est. of Lot Percent Ncf. Below L: pL	10.03%	See Table D-5
Total Est. Percent Ncf. in Lot $p = p_U + p_L$	13.10%	3.07% + 10.03%
Max. Allowable Percent Ncf. Above U: Mu	2.59%	See Table D-3
Max. Allowable Percent Ncf. Below L: M _L	5.60%	See Table D-3
Acceptability Criteria:		
(a) Compare p _U with M _U	3.07% > 2.59%	See Para. D12.2.2(7)(a)
(b) Compare p _L with M _L	10.03% > 5.60%	See Para. D12.2.2(7)(b)
(c) Compare p with M _L	13.10% > 5.60%	See Para. D12.2.2(7)(c)
	Sample Size: n Known Variability: σ Sum of Measurements: ΣX Sample Mean $\overline{X}:\Sigma X/n$ Factor: ν Upper Specification Limit: ν Lower Specification Limit: ν Quality Index: ν Quality Index: ν Quality Index: ν Quality Index: ν Est. of Lot Percent Ncf. Above ν Est. of Lot Percent Ncf. Below ν Total Est. Percent Ncf. in Lot ν Max. Allowable Percent Ncf. Above ν Max. Allowable Percent Ncf. Below ν	Sample Size: n 11 Known Variability: σ 3,000 Sum of Measurements: ΣX 678,131 Sample Mean \overline{X} : $\Sigma X/n$ 61,648 Factor: v 1.049 Upper Specification Limit: U 67,000 Lower Specification Limit: L 58,000 Quality Index: $Q_U = (U - \overline{X})v/\sigma$ 1.87 Quality Index: $Q_L = (\overline{X} - L)v/\sigma$ 1.28 Est. of Lot Percent Ncf. Above U : p_U 3.07% Est. of Lot Percent Ncf. Below L : p_L 10.03% Total Est. Percent Ncf. in Lot $p = p_U + p_L$ 13.10% Max. Allowable Percent Ncf. Above U : M_U 2.59% Max. Allowable Percent Ncf. Below L : M_L 5.60% Acceptability Criteria: (a) Compare p_U with M_U 3.07% > 2.59% (b) Compare p_L with M_L 10.03% > 5.60%

The lot does not meet the acceptability criteria, since 15(a), (b) and (c) are not satisfied; i.e., $p_U > M_U$, $p_L > M_L$, and $p > M_L$.

Master Table for Normal and Tightened Inspection for Plans Based on Known Variability (Double Specification Limit and Form 2—Single Specification Limit) Table D-3

Sample						Accepta	ple (Qual	Acceptable Quality Levels (normal inspection)	els (t	norm	al insp	ectio	(ig				
size code		Т			07.			51.			.25			8.			59.	
letter	u	М	۸	u	М	>	u	Σ	>	_	Σ	>	u	М	>	c	Σ	>
В																		
၁	-																<u>-</u>	
Q											-			-		2	1.28	1.414
田								-		7	310	1.414	2	.510	.510 1,414	₹	1.94	1.225
ĬŦ,		>			*		Э	369	1.225	3	568	1.225	æ	959.	959 1.225	4	.88	1.155
Ö	т	114	1.225	4	.290	1.155	4	399	1.155	4	189'	1,155	5	1.09	1.118	5	1.76	1.118
Ħ	4	191	1.155	5	.296	1.118	N.	445	1.118	9	127.	1.095	9	1.14	1.095	7	1.75	1.080
_	اع	.230	1.095	9	.321	1.095	9	.478	1.095	7	756	1.080	οc	1.14	1.069	80	1.80	1.069
J	7	226	1.080	∞	.330	1,069	6	.469	1.061	6	.760	190'1	01	1.14	1.054	11	1.73	1.049
K		217	1.049	=	.326	1.049	12	.461	1.045	13	721	1.041	14	1.08	1.038	9	1.62	1.033
٦.	15	211	1.035	91	308	1.033	13	438	1:031	6	.673	1.027	21	8.1	1.025	23	1.51	1.023
Σ	20	202	1.026	22	296	1.024	23	.423	1.023	25	655	1.021	27	086	1.019	30	1.47	1.017
Z	93	193	1.017	31	.283	1.017	34	397	1.015	37	519.	1.014	40	.921	1.013	44	1.39	1.012
Ь	6	961	1,013	42	.285	1.012	45	.402	1.011	49	970	1.010	54	.920	920 1.009	59	1.39	1,009
		.10			.15			.25	~		.40			.65			1.00	0
					A	cceptab	le Q	ualii	Acceptable Quality Levels (tightened inspection)	ls (ti	ghter	ed ins	pecti	(uo				

All AQL values are in percent nonconforming. T denotes plan used exclusively on tightened inspection and provides symbol for identification of appropriate OC curve.

Use first sampling plan below arrow; that is, both sample size as well as M value. When sample size equals or exceeds lot size, every item in the lot must be inspected.

Master Table for Normal and Tightened Inspection for Plans Based on Known Variability (Double Specification Limit and Form 2—Single Specification Limit) Table D-3—Continued

						Accentable Quality Levels (normal inspection)	hie		ity Lev	els (norm	al inst	rectic	(E				
size		100			1.50	0		2.50		Ĺ	4.00			6.50			10.00	
code	u	Σ	>	=	Σ	>		Σ	>	=	Σ	>	E	Σ	>	E	Σ	>
В		-			-			-			-			-			-	
ບ	7	2.73	1.414	2	3.90	1.414	2	6.11	1.414	2	9.27	1.414	3	17.74	1.225	3	24.22	1.225
D	2	2.23	1,414	7	3.00	1.414	3	7.56	1.225	3	10.79	1.225	3	15.60	1.225	4	76.22	1.155
ш	æ	2.76	1.225	т	3.85	1.225	4	66.9	1.155	4	9.97	1,155	'n	15.21	1.118	5	20.80	1.118
ഥ	4	2.58	1.155	4	3.87	1.155	5	6.05	1.118	5	8.92	1.118	9	13.89	1.095	7	19.46	1.080
g	9	2.57	1,095	9	3.77	1.095	۷	5.83	1.080	8	8.62	1.069	6	12.88	190'1	Ξ	17.88	1.049
H	7	2.62	1.080	00	3.68	690'1	6	5.68	190'1	9	8.43	1.054	12	12.35	12,35 1,045	4	17.36	1.038
I	6	2.59	1,061	01	3.63	1.054	=	5.60	1.049	13	8.13	1.041	13	12.04	1.035	17	17.05	1.031
ſ	12	2.49	1.045	14	3.43	1.038	15	5.34	1.035	18	7.72	1.029	20	11.57	1.026	24	16.23	1.022
K	<u> </u>	2.35	1.031	61	3.28	1.027	22	4.98	1.024	25	7.34	1.021		10.93	1.018	33	15.61	1.016
r	25	2.19	1.021	28	3.05	1.018	32	32 4.68	1.016	36	6.95	1.014	42	10.40	10.40 1.012	49	49 14.87 1.010	0101
M	33	2.12	1.016	36	2.99	1.014	42	4.55	1.012	48	6.75	1.011	55	10.17	10.17	64	14.58	1.008
Z	67	2.00	1.010	54	2.82	1.009	19	61 4.35	1.008	20	6.48	1.007	82	9.76	9.76 1.006	95	14.09	1.005
Р	65	2.00	1.008	71	2.82	1.007	<u>8</u>	81 4.34	1.006	93	6.46	1.005	1.09	9.73	9.73 1.005	127	127 14.02	1.004
		1.50	(2.50	0		4.	4.00		6.50	(10.00	(
					A	Acceptable Quality Levels (tightened inspection)	le C	Juali	ty Leve	ls (ti	ghter	ned ins	pect	ion)				

Use first sampling plan below arrow; that is, both sample size as well as M value. When sample size equals or veceeds lot size, every item in the lot must be inspected.

Master Table for Reduced Inspection for Plans Based on Known Variability (Double Specification Limit and Form 2—Single Specification Limit) Table D-4

10	Sample						Accel	ptab	le Qu	Acceptable Quality Levels	vels					
n w m M w m M w m M w m M w m M w m M w m M w m M w m M w m M w m M w m M w m M w	size			0		-	5		.2;	16		.4	(.65	
3 369 1.225 3 568 1.225 3 9 1.18 1.18 1.18 6 2.57 6 47 309 1.18 6 1.18 6 1.18 1.18 1.15 4 2.58 12 3.445 1.155 4 6 1.18 5 1.18 6 1.18 6 2.57 5 4.45 1.118 6 7.75 1.095 6 1.14 1.069 8 1.88 1.155 4 2.58 6 4.78 1.118 6 7.75 1.095 6 1.14 1.069 8 1.88 1.069 9 2.59 7 3.09 1.118 5 1.09 6 1.14 1.069 8 1.88 1.15 9 2.59 7 3.09 1.118 5 1.09 1.14 1.069 8 1.88 1.069 9 2.59 8 1.080 8 1.14 1.069 8 1.88 1.069 9 <td< td=""><td>letter</td><td>u</td><td>Σ</td><td>></td><td><u>_</u></td><td>Σ</td><td>۸</td><td>u</td><td>M</td><td>></td><td>u</td><td>M</td><td>^</td><td>=</td><td>Σ</td><td>^</td></td<>	letter	u	Σ	>	<u>_</u>	Σ	۸	u	M	>	u	M	^	=	Σ	^
3 .369 1.225 3 .568 1.225 3 .959 1.225 4 1.88 1.155 4 2.58 5 .445 1.118 6 .721 1.095 6 1.14 1.069 8 1.80 1.069 9 2.59 7 .507 1.080 8 .791 1.069 9 1.18 1.061 1.0 1.79 1.054 11 2.57 12 .461 1.045 13 .721 1.091 14 1.08 1.038 16 1.62 1.033 17 2.35 17 .438 1.031 19 .673 1.027 21 1.00 1.025 23 1.51 1.023 25 2.19	8															
4 4 4 5 1.213 1.414 2 5.10 1.414 2 5.10 1.414 2 2.128 1.414 2 2.73 3 3.69 1.225 3 .568 1.225 3 .599 1.225 4 1.58 1.75 3 2.76 4 .399 1.155 4 .681 1.155 5 1.09 1.118 5 1.76 1.118 6 2.57 5 .445 1.118 6 .721 1.095 6 1.14 1.095 7 1.75 1.080 7 2.62 6 .478 1.096 7 .756 1.080 8 1.14 1.069 8 1.80 1.059 7 2.62 12 .461 1.045 1.18 1.069 8 1.80 1.059 9 2.53 12 .461 1.046 1.041 1.4 1.08 1.069 9 1.059 1.05 1.059 1.059 1.059 1.059 1.059 1.059<	၁															
4 4 4 5 1.28 1.414 2 5.10 1.414 2 5.10 1.414 3 1.94 1.225 3 2.75 3 .369 1.225 3 .568 1.225 3 .959 1.225 4 1.88 1.155 4 2.58 4 .399 1.125 4 .681 1.155 5 1.09 1.118 5 1.76 1.118 6 2.57 5 .445 1.118 6 .721 1.095 6 1.14 1.069 8 1.80 1.05 7 2.62 6 .478 1.095 7 .756 1.080 8 1.14 1.069 8 1.80 1.069 9 2.59 7 .507 1.080 8 1.14 1.069 8 1.80 1.059 9 2.59 12 .461 1.045 13 1.021 1.041 14 1.08 1.031 17 2.35 17 .438 1.031	D															
4 4 4 2 1.28 1.414 2 2.73 3 .369 1.225 3 .568 1.225 3 .959 1.225 4 1.88 1.155 4 2.51 4 .399 1.155 4 .681 1.155 5 1.09 1.118 5 1.76 1.118 6 2.57 5 .445 1.118 6 .721 1.095 6 1.14 1.095 7 1.75 1.080 7 2.62 6 .478 1.096 7 .756 1.080 8 1.14 1.069 8 1.80 1 2.53 12 .461 1.045 1.3 1.069 8 1.80 1.059 9 1.58 1.059 9 2.59 12 .461 1.046 1.3 1.041 1.4 1.08 1.059 1.059 1.059 1.059 1.059 1.059 1.059	ш														-	
3 3.69 1.215 3 1.5414 2 510 1.414 2 550 1.414 3 1.94 1.225 3 2.76 4 399 1.225 3 .959 1.225 4 1.88 1.155 4 2.58 5 .445 1.155 4 .681 1.155 5 1.09 1.118 5 1.76 1.118 6 2.57 6 .478 1.095 7 .756 1.080 8 1.14 1.069 8 1.80 1.069 9 2.59 12 .461 1.045 13 .721 1.041 14 1.08 8 1.80 10 2.59 17 .481 1.045 13 .721 1.041 14 1.08 8 1.80 10 2.59 17 .481 1.045 13 .721 1.041 14 1.08 1.62 1.033 17 2.35 17 .438 1.031 19 .673 10 1.060	Ţ,											-		2	2.73	1.414
3 369 1.215 3 959 1.215 4 1.88 1.155 4 2.510 1.414 3 1.94 1.225 3 2.76 4 .399 1.125 3 .959 1.225 4 1.88 1.155 4 2.58 5 .445 1.118 6 .721 1.095 6 1.118 5 1.76 1.118 6 2.57 6 .478 1.095 7 .756 1.080 8 1.14 1.069 8 1.80 10.69 9 2.59 7 .507 1.080 8 .791 1.069 9 1.18 1.061 10 1.79 10 2.59 12 .461 1.045 13 1.021 1.041 1.08 1.038 16 1.033 17 2.35 17 .438 1.031 19 .673 1.027 21 1.00 1.025 23	Ð								*		2	1.28	i .	2	2.23	1.414
3 .369 1.225 3 .568 1.225 3 .959 1.225 4 1.155 4 1.18 5 1.16 6 2.58 4 .399 1.115 5 1.09 1.118 5 1.76 1.118 6 2.57 5 .445 1.118 6 .721 1.095 6 1.14 1.069 8 1.80 1.06 9 2.59 6 .478 1.095 7 .756 1.080 8 1.14 1.069 8 1.80 1.069 9 2.59 7 .507 1.080 8 .791 1.069 9 1.18 1.061 10 1.79 10 2.57 12 .461 1.045 13 .721 1.041 14 1.08 1.021 1.03 17 2.35 17 .438 1.031 19 .673 1.020 1.025 23 1.51 1.023 25 2.19	H		-		7			7	.510	1.414	6	1.94		3	2.76	1.225
4 .399 1.155 4 .681 1.155 5 1.09 1.118 5 1.76 1.118 6 2.57 5 .445 1.118 6 .721 1.095 6 1.14 1.095 7 1.75 1.080 7 1.069 8 1.80 1.069 9 2.59 7 .507 1.080 8 .791 1.069 9 1.18 1.061 10 1.79 105 9 2.59 12 .461 1.045 13 .721 1.041 14 1.08 1.031 17 2.35 17 .438 1.031 19 .673 1.027 21 1.00 1.025 23 1.51 1.023 25 2.19	I	6	.369			.568		3	926		4	1.88		4	2.58	1.155
5 .445 1.118 6 .721 1.095 6 1.14 1.095 7 1.75 1.095 8 1.14 1.095 7 1.75 1.080 8 1.14 1.069 8 1.80 1.05 9 2.59 7 .507 1.080 8 .791 1.069 9 1.18 1.061 10 1.79 11 2.57 12 .461 1.045 13 .721 1.041 14 1.08 1.033 16 1.033 17 2.35 17 .438 1.031 19 .673 1.027 21 1.00 1.025 23 1.51 1.023 25 2.19	ſ	4	399				1.155	5	1.09	1.118	رى د	1.76		9	2.57	1.095
6 478 1.095 7 756 1.080 8 1.14 1.069 8 1.80 1.069 9 2.59 7 507 1.080 8 791 1.069 9 1.18 1.061 10 1.79 1.054 11 2.57 12 .461 1.045 13 .721 1.041 14 1.08 1.031 16 1.033 17 2.35 17 .438 1.031 19 .673 1.027 21 1.00 1.025 23 1.51 1023 25 2.19	K	\$.445			721	1.095		1.14	1.095	7	1.75	1.080	7		1,080
7 .507 1.080 8 .791 1.069 9 1.18 1.061 10 1.79 1.054 11 2.57 12 .461 1.045 13 .721 1.041 14 1.08 1.038 16 1.62 1.033 17 2.35 17 .438 1.031 19 .673 1.027 21 1.00 1.025 23 1.51 1.023 25 2.19	7	9				.756		90	1.14	1,069	∞	1.80	1.069	6		1.061
12 .461 1.045 13 .721 1.041 14 1.08 1.038 16 1.62 1.033 17 2.35 17 4.38 1.031 19 .673 1.027 21 1.00 1.025 23 1.51 1.023 25 2.19	M	7	.507					\dashv	1.18	1.061	9	1.79				1,049
17 438 1.031 19 673 1.027 21 1.00 1.025 23 1.51 1.023 25 2.19	Z	12			13	.721		4	1.08		16	1.62	1.033	17	2.35	1.031
	ፈ	17	.438		19	.673		21		1.025	23	1.51	1.023	25	2.19	1.021

All AQL values are in percent nonconforming.

Use first sampling plan below arrow; that is, both sample size as well as M value. When sample size equals or exceeds lot size, every item in the lot must be inspected.

Master Table for Reduced Inspection for Plans Based on Known Variability (Double Specification Limit and Form 2—Single Specification Limit) Table D-4—Continued

					_		22	55		69	45	33	79	22	13	6 9
	00	>					1,225	1,155	1.095	1.069	1.045	1.033	1.026	1.022	1.013	1.009
	10.00	Σ				-	33.67	31.01	28.64	26.64	24.88	23.96	23.43	23.13	21.77	56 20.90
		u					4	4	9	80	12	9	20	24	38	26
	_	>					24.22 1.225	1.155	1.118	1.080	1.049	1.038	17.05 1.031	16.71 1.025	33 15.61 1.016	49 14.87 1.010
	6.5	M				-	24.22	22 97	20.80	19.46	17.88	17.36	17.05	16.71	15.61	14.87
		n					3	4	S	7	Ξ	4	17	21	33	49
/els		^					1.225	1.225	5 15.21 1.118	1.095	1.061	1.045	1.035	11.88 1.029	29 10.93 1.018	42 10.40 1.012
y Lev	4.0	M				-	17.74	15.60	15.21	13.89	12.88	12.35	12.04	11.88	10.93	10.40
ualit		u					3	6	35	9	6	12	-5	18	29	42
Acceptable Quality Levels	0	۸					1.414	1.225	1.155	1.118	1.069	1.054	1.041	1.035	1.021	1.014
ccepi	2.50	M		_		-	9.27	10.79	76.6	8.92	8.62	8.43	8.13	8.13	7.34	6.95
Ā		u					2	3	4	5	8	10	13	15	25	36
!	0	Ą					1.414	1.225	1.155	1.118	1.080	1.061	1.049	1.041	1.024	1.016
	1.50	М				-	6.11	7.56	6.99	6.05	5.83	89'5	5.60	5.58	4.98	4.68
		n					2	3	4	5	7	6	=	13	22	32
	0	^					1.414	1.414	1.225	1.155	1,095	1.069	1.054	1.045	1.027	1.018
	1.00	Σ				-	3.90	3.00	3,85	3.87	3.77	3.68	3.63	3.61	3.28	3.05
		u					7	2	6	4	9	8	2	12	19	78
Sample	size	letter	В	၁	D	ш	Ľ	9	H	-	J	Ж	<u>.,</u>	×	Z	Д

All AQL values are in percent nonconforming.

Use first sampling plan below arrow; that is, both sample size as well as M value. When sample size equals or exceeds lot size, every item in the lot must be inspected.

Table for Estimating the Lot Percentage Nonconforming for Plans Based on Known Variability' Table D-5

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0		Γ	8		80	89	2		7.	9	96	9	9.	5	ξ	2	35	35	4	72	7	7	7	8	33	8	ဥ
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	ನೌಕನ		00.00	90.00	00.00	00.00	00.00		90.00			8				00.00		00.00				00.00	00.00		00.00	00.00	00.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0 - 0		3.76		3.78	3.79	3.80							6							3.94	3.95		3.97	3.98		4.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3		0.022	0.022	0.021	0.020	0.019	0.019	0.018	0.017	0.017	0.016	0.015	0.015	0.014	0.014	0.013	0.013	0.012	0.012	0.011	0.011	0.010	0.010	0.010	0.00	0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	000	┢╴		520	23	540	55 0	3.56 10			3.59	99.		62 0			3.65 0	99%	3.67		9.69	3.70 0	3.71		3.73	3.74	3.75
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		┢╴	056	0543	052 3	020	048	047	945	643	25	040	660	038	960	035	034	032	031	030	029	028		970	025	924	023
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	ತ್ತಿತ್ತ				.98	00 63	90	00	32 00	33		32	36 00			39 00	00	41 00	42 00	63	44 00	45 00	46 00	47	48	49 00	20 00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		├		26 3.2	22	18	14 3.3	11 3.3	3.3	93.3	3.0	97		33	87	33				74 3.	71	69 3.4	99	3,	62 3.	90	58 3.
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	ರ್. ರ	L		8	8	8	00.1	00.1	9	8	8	000	00.0	00	00.0	0.0	0000	000	00.0	0.0	0.0	0.00		8	90.0	8	00.0
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		L	3.01	3.02	3.03	3.04	3.05	3.06	3.07	3.08	3.09	3.10	3.11	3.12	3.13	3.14	3.15		3.17			3.20	3.21	3.22	3.23	3.24	5 3.25
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	ا جہ ب		00.286	00.280	00.272	30.264	00.256	30.248	00.240	30.233	30.226	20.219	30.212	30,20€	90.196	00.193	00.187	30.18	30.17	00.16	00.16	90.15	00.15	90.14	90.14	00.13	90.13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0	┌	2.76	2.77	2.78	2.79	2.80	2.81	2.82	2.83	2.84	2.85	2.86	2.87	2.88	2.89	2.90 (2.92	2.93	2.94	2.95	2.96	2.97	2.98	2.99	3.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							539		.508	1,494	.480			440		415			379	368	357	.347		326	.317	.307	3.298
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ಶಿಕರ	 -	51	25	53 00	54 00	55 00	26 00		28 00	29 00	99	61 00	62 00	63	64 00	65 00	99		8	90			72.00	73 00		75.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-	N	60 2.	30 2.	2	72 2.	2 44	17.2	300	2.	39 2.	314 2.	89	366.2.	342 2.	320 2.	798 2.	76 2.	755 2.	734	714 2.	395 2	376 2	357 2.	339 2	321 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ರ್ಥಿನ	_	1.1	<u>ē</u>	30.1	9	901.0	1 01.0	201.0	300	4 00.6	5 00.5	6 00.9	<u>8</u>	8	900	0 00.6	1 00.7	2 00.	9	8	5 00	6 00.	9	8 80	9.00	000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		<u> </u>	2.2	9 2.2	8 2.2	8 2.2	8 2.3(0 2.3	32.3	6 2.3	2.3	6 2.3	3 2.3	0 2.3	92.3	8 23	N	9 2.4	2.4	2.4	96 2.4	20 2.4	5 2.4	2.4	7 2.4	55 2.4	22.5
QU QU<	2,5,7		02.22	02.16	02.11	05.06	02.01	01.97	01.92	01.87	01.83	01,78	01.74	01.70	01.65	19.10	01.57	01.53	01.50	01.46	01.42	01.38	01.35	01.32	01.28	01.25	01.22
QU QU<				2.02	2.03	2.04	2.05	2.06	2.07	2.08	2.09	2.10	2.11	2.12	2.13	2.14			2.17	2.18	2.19	2.20	2.21	2.22	2.23	2,24	2.25
QU QU<	, ,		3.920	3.836	3.754	3.673	3.593	3.515	3.438	3.362	3.288	3.216	3.144	3.074	3.005	2.938	2.872	2.807	2.743	2.680	2,619	2.559	2.500	2.445	2.385	2.330	2.275
QU QU<	Q 2 Q			.77	78	73	.80	.81		83			98		0 88					8	9			97	98		00
QU QU<	,		552	426	<u> </u>	178	057	938	821	705	592	480-	370	262	155	050	947		7461	648	551	457	363	272	182	93	900
QU QU<	ನ್ಮಿನ	-					2 06																				
QU QU<		<u> </u>	_	_	_=_	53 1.5	50 1.5		-	76	12	51 1.6		34 1.6	79	26 1.6	76 1.6	_		36 1.6	93	53 1.7		78		17	81 1.7
Q ₁ O ₁ O ₂ O ₃ O ₄ O ₅ O ₅ O ₅ O ₆ O ₆ O ₇ O ₇ O ₇ O ₈ O ₈ O ₈ O ₈ O ₈ O ₈ O ₈ O ₈	ನಿಕಿನ	L					9.8																				
Q ₁ Or Or Or Or Or Or Or Or Or Or Or Or Or		L	51.26	51.27	31.28	71.29	9.13	71.31	1.32	7	5	71.35	01.36	1.37	1.38	4	71.40	21.41	01.42	1.43	21.44	71.45	41.46	31.47	54.	91.49	51.50
Q ₁ Or Or Or Or Or Or Or Or Or Or Or Or Or	2:2		15.62	15.38		14.91				14.00	13.78	13.56			12.92	12.71	12.50		•				11.31			10.74	
QU QU QU Or Or Or 50.000 Or Or 50.000 Or Or 49.601 26 39.743 51 30.593 76 48.602 27 39.358 52 30.153 77 48.803 28 38.591 53 29.806 78 48.805 28 38.591 53 29.460 78 48.405 29 38.591 54 29.460 79 47.210 32 37.070 58 28.744 81 47.210 32 37.070 58 28.766 83 46.812 33 37.070 58 28.766 83 46.812 33 37.070 58 28.096 83 46.812 33 37.070 58 28.765 83 46.812 33 35.942 61 27.093 86 45.224 37 35.569 62 26.763 87 44.433 39 34.827 64 26.109 89 44.433 39 34.827 64 26.109 89 44.433 39 35.197 69 24.826<	330		10.1	1.02	1.03	1.04	1.05	1.06	1.07		1,09	1.10	1.11			1.14		1,16	1.17	1.18	1.19	20	121	1.22	1.23		1.25
QU QU QU Or Or Or 50.000 Or Or 50.000 Or Or 49.601 26 39.743 51 30.593 76 48.602 27 39.358 52 30.153 77 48.803 28 38.591 53 29.806 78 48.805 28 38.591 53 29.460 78 48.405 29 38.591 54 29.460 79 47.210 32 37.070 58 28.744 81 47.210 32 37.070 58 28.766 83 46.812 33 37.070 58 28.766 83 46.812 33 37.070 58 28.096 83 46.812 33 37.070 58 28.765 83 46.812 33 35.942 61 27.093 86 45.224 37 35.569 62 26.763 87 44.433 39 34.827 64 26.109 89 44.433 39 34.827 64 26.109 89 44.433 39 35.197 69 24.826<			.363	:065	.770	.476	.186	.897	119	327	.045	766	489	215	943	.673	406	141	628.	619.	361	7.106	3,853	3.602	3.354	109	.866
QU Or Or Or Or Or Or Or Or Or Or Or Or Or	ರೌಶರ					_																	_				8
QU Or Or Or Or Or Or Or Or Or Or Or Or Or		_	.7		90	09	16	3, 47,		3.	92								43	325				376	57	365	363 1.
QU Or 50.000 49.601 26 39.743 49.202 .27 39.358 48.803 .28 38.591 48.405 .29 38.591 48.405 .30 38.209 47.210 .30 38.209 46.812 .33 37.070 46.812 .33 37.070 46.813 .39 36.317 47.224 .41 34.090 42.858 .43 33.360 42.858 .43 33.360 43.6005 .48 31.207 40.517 .49 31.207	ಶಿಶಶ			30.1		29.4	29.1	28.7		1 28.C	27.7	27.4				26.1				24.6		24.1	23.6	23.6	23.2	1 22.5	\$ 22.6
QU 601 601 6000 6000 6000 6000 6000 6000		<u> </u>					9.55																	8 .72			
QU 601 601 6000 6000 6000 6000 6000 6000	ા ∂ક્ર⊀		39.74	39.35	38.97	38.59	38.20	37.82	37.44	37.07	36.69.	36.31	35.94	35.56	35.19	34.82	34,45	34.09	33.72	33.36	32.99	32.63	32.27	31.91	31.56	31.20	30,85
Q _U Or O					.28							.35	96'										L				
00 00 10 00 40 00 00 00 11 11 11 11 11 11 11 11 11 11	ىر ياد	000.0	9.601	9.202	3.803	3.405	3.006	7.608	7.210	5.812	5.414	3.017	5.620	5.224	4.828	4.433	4.038	3.644	3.251	2.858	2.465	2.074	1.683	1.294	0.905	0.517	0.129
	000	.00 5	2	20.	80.	<u>4</u>	.05	.06 4	07	80. ₹	60 ₹	5 4	1 -	12	13.4	4	.15	16.4	17 4:	.18	19	8	214	22	23	24	.25

'Values tabulated are read in percent.

Table D-6
Value of $F \sigma$ for Maximum Process Standard Deviation

AQL (% Ncf)	.10	.15	.25	.40	.65	1.00	1.50	2.50	4.00	6.50	10.0
Fσ	0.147	0.152	0.157	0.165	0.174	0.184	0.194	0.206	0.223	0.243	0.271

The MPSD may be obtained by multiplying the factor $F \sigma$ by the difference between the upper specification limit U and the lower specification limit L. The formula is MPSD = $F \sigma$ (U – L).

The MPSD indicates the greatest allowable magnitude of the process standard deviation when using plans for the double specification limit case with known variability. If the process standard deviation is less than the MPSD, there is a possibility but not a certainty that the lot will be accepted.

APPENDIX D Definitions

Symbol	Read	Definitions
n		Sample size for a single lot.
$\vec{\mathbf{x}}$	X bar	Sample mean. Arithmetic mean of sample measurements from a single lot.
σ	Sigma	Known variability. The predetermined variability of the quality characteristic which will be used with the variability known acceptability plans.
U ·		Upper specification limit.
L		Lower specification limit.
k		The acceptability constant given in Tables D-1 and D-2.
v		A factor used in determining the quality indices when using the known variability acceptability plan. The v values are given in TAbles D-3 and D-4.
\mathbf{Q}_{U}	Q sub U	Quality Index for use with Table D-5.
Q_L	Q sub L	Quality Index for use with Table D-5.
₽∪	p sub U	Sample estimate of the lot percent nonconforming above U from Table D-5.
PL	p sub L	Sample estimate of the lot percent nonconforming below L from Table D-5.
p		Total sample estimate of the lot percent nonconforming $p = p_U + p_L$.
M		Maximum allowable percent nonconforming for sample estimates given in Tables D-3 and D-4.
M _U	M sub U	Maximum allowable percent nonconforming above U given in Tables D-3 and D-4. (For use when different AQL values for U and L are specified.)
M _L	M sub L	Maximum allowable percent nonconforming below L given in Tables D-3 and D-4. (For use when different AQL values for U and L are specified.)
p	p bar	Sample estimates of the process percent nonconforming, i.e., the estimated process average.
$\widetilde{\boldsymbol{p}_{\boldsymbol{U}}}$	p bar sub U	The estimated process average for an upper specification limit.
\overline{p}_{L}	p bar sub L	The estimated process average for a lower specification limit.
<	Less than	Less than.
>	Greater than	Greater than.
Σ	Sum of	Sum of.
T		AQL symbol denoting plan used exclusively on tightened inspection (provides identification of appropriate OC curve).

SECTION E APPENDIX Match with ANSI Z1.4

E1. INTRODUCTION

The original version of this variables inspection standard (Z1.9-1972) corresponded directly to the military standard MIL-STD-414 dated 11 June 1957, just as the attributes inspection standard ANSI Z1.4 corresponded to MIL-STD-105D, dated 29 April 1963. The plans contained in these variables and attributes standards were, however, not matched. Subsequent to the promulgation of these standards, the International Organization for Standardization Working Group C, in June 1974, presented a procedure for roughly matching the MIL-STD-414 and MIL-STD-105D Normal plans by a realignment of the MIL-STD-414 code letters.* It is this realignment which is used as a basis of the present ANSI/ASQC Z1.9-1993.

The extent to which the plans of ANSI/ASQC Z1.9-1993 match those of Z1.4 is shown in the following tables which give:

Table 1—Matching Code Letters Table
Table 2—ANSI/ASQC Z1.9-1993 percentage
points for the 95, 50, 10th percentiles.

Table 3—ANSI Z1.4 percentage points for the 95, 50, 10th percentiles.

Table 4—Difference between ANSI/ASQC

Z1.9-1993 and Z1.4 percentiles.

The percentage points are the percents nonconforming having probability of acceptance equal to the percentiles shown. Table 4 can be employed by the user to determine

the practical significance of the difference in the operating

characteristics of the corresponding plans in ANSI Z1.4

and ANSI/ASQC Z1.9-1993.

Procedures for switching to and from tightened or reduced inspection were taken directly from MIL-STD-105D, eliminating the use of limit numbers for reduced inspection and also the procedure allowing termination of reduced inspection without either acceptance or rejection criteria being met.

E2. TABLES

Tables showing the extent to which ANSI/ASQC Z1.9-1993 matches Z1.4 follow.

^{*}Working Group C, ISO/TC69, "Sampling by Variables," April 1974, Draft.

E2—Tables

Table 1
Matching Code Letters and
ANSI/ASQC Z1.9 Sample Size

Z1.9-1993 Sample Size, Normal Inspection, Level II	Z1.9-1993 New Code Letter	Z1.9-1993 (414) Old Code Letter	Z1.4 (105D) Matched Code Letter
3	В	В	В
4	C	C	С
5	D	D	D
7	Е	Е	E
10	F	F	F
15	G	G	G
20	Н	Н	Н
25	I	I	Н
35	J	K	J
50	K	M	K
75	L	N	L
100	M	О	М
150	N	P	N
200	P	Q	P

Table 2
ANSI/ASQC Z1.9-1993 Percentage Points in Terms of Percent Nonconforming

Probability	Z1.9-1993											
of	Code							ality Leve				
Acceptance	Letter	.10	.15	.25	.40	.65	1.00	1.50	2.50	4.00	6.50	10.00
95.0									1.04	1.89	3.52	6.02
50.0	В								16.68	20.30	25.22	30.97
10.0									49.34	52.83	57.24	62.08
95.0							.44	.69	1.32	2.29	4.13	6.85
50.0	C						9.52	11.28	14.44	17.93	22.89	28.61
10.0							34.88	37.26	41.15	45.05	50.13	55.55
95.0						.28	.46	.77	1.38	2.43	4.30	7.1 I
50.0	D					6.34	7.82	9.71	12.47	15.97	20.75	26.40
10.0						<u>25.94</u>	28.40	31.24	34.98	39.25	44.55	50.32
95.0				.11	.18	.32	.53	.83	1.50	2.65	4.57	7.46
50.0	E			2.89	3.72	4.83	6.18	7.69	10.28	13.66	18.11	23.53
10.0				14.42	16.33	18.60	21.09	23.58	27.43	31.93	37.28	43.25
95.0			.07	.12	.21	.36	.57	.94	1.65	2.83	4.84	7.81
50.0	F		1.53	2.08	2.79	3.77	4.82	6.33	8.62	11.69	15.91	21.09
10.0			7.95	9.44_	11.15	13.23	15.23	17.84	21.40	25.66	30.99	36.98
95.0		.06	.09	.15	.25	.45	.68	1.09	1.91	3.09	5.30	8.41
50.0	G	.90	1.17	1.57	2.20	3.09	3.99	5.32	7.51	10.15	14.27	19.25
10.0		4.31	5.07	6.13	7.58	9.41	11.12	13.38	16.77	20.48	25.76	31.63
95.0		.07	.11	.17	.29	.49	.79	1.21	2.07	3.39	5.69	8.88
50.0	Н	.76	1.01	1.38	1.90	2.69	3.66	4.81	6.86	9.51	13.49	
10.0		3.16	3.85	<u>4.73</u>	5.88	7.46	9.23	11.14	14.25	17.94	23.01	28,70
95.0	_	.08	.12	.20	.32	.56	.85	1.28	2.23	3.61	5.98	9.27
50.0	I	.68	.89	1.28	1.73	2.53	3.39	4.47	6.54	9.12	13.00	17.74
10.0		2.55	3.08	3.99	4.93	6.46	7.97	9.73	12.81	16.34	21.24	26.82
95.0	_	.09	.13	.23	.36	.60	.94	1.40	2.38	3.80	6.21	9.65
50.0	J	.59	.76	1.10	1.54	2.21	3.05	4.05	5.98	8.41	12.10	16.82
10.0		1.90	2.29	3.02	3.87	5.10	6.50_	8.07	10.85	14.11	18.71	24.23
95.0		.10	.15	.26	.40	.64	1.02	1.49	2.51	4.04	6.52	10.00
50.0	K	.19	.65	.98	1.37	1.94	2.76	3.68	5.48	7.90	11.45	16.00
10.0		1.36	1.70	2.35	3.07	4.03	5.33	6.72	9.23	12.39	16.72	21.98
95.0		.11	.17	.27	.43	.70	1.06	1.58	2.62	4.18	6.81	10.34
50.0	L	.40	.56	.82	1.19	1.74	2.43	3.34	5.02	7.29	10.84	15.24
10.0		.97	1.27	1.74_	2.37	3.24	4.28	5.58	7.82	10.70	14.94	19.95
95.0	1.6	.12	.18	.29	.47	.74	1.12	1.66	2.73	4.31	6.97	10.51
50.0	M	.37	.51	.77	1.12	1.64	2.31	3.18	4.80	7.00	10.45	14.75
10.0		.80	1.05	1.50	2.06	2.86	3.81	5.01	7.11	9.84	13.89	18.73
95.0	N.T	.13	.19	.31	.48	.77	1.18	1.73	2.82	4.41	7.07	10.80
50.0	N	.32	.46	.69	1.00	1.48	2.14	2.96	4.49	6.59	9.90	14.28
10.0		.62	.85	1.21	1.68	2.36	3.26	4.34	6.26	8.78	12.58	17.44
95.0	Τ.	.143	.210	.344	.534	.84	1.25	1.86	3.00	4.66	7.40	11.22
50.0	P	.321	.445	.683	1.000	1.48	2.08	2.96	4.48	6.58	9.88	14.27
10.0		.571	<u>.763</u>	1.116	1.567	2.22	3.02	4.12	5.98	8.45	12.19	16.98

Table 3
ANSI/ASQC Z1.4 (MIL-STD-105D) Percentage Points in Terms of Percent Nonconforming

Probability of	Z1.4 Code						0	V. Y				
	Letter	10		25		-	table Qua	-		4.00	c =0	10.00
Acceptance	Letter	.10	.15	.25	.40	.65	1.00	1.50	2.50	4.00	6.50	10.00
95.0										1.70		
50.0	В									20.6		
10.0										53.6		
95.0									1.02			7.63
50.0	С								12.9			31.4
10.0									36.9			58.4
95.0				'' '				.64			2.64	11.1
50.0	D							8.30			20.1	32.1
10.0	-							25.0			40.6	53.9
95.0							.394			2.81	6.63	11.3
50.0	E						5.19			12.6	20.0	27.5
10.0	_						16.2			2 <u>6.8</u>	36.0	44.4
95.0						.256	10.2		1.80	4.22	7.13	14.0
50.0	F	٠.				3.41			8.25	13.1	18.1	27.9
10.0	1		•			10.9			18.1	24.5	30.4	41.9
				.	.161	10.9		1.13	2.59	4.39	8.50	13.1
95.0 50.0	G											
50.0	0				2.14			5.19	8.29	11.4	17.5	23.7
10.0				102	6.94		710	13.38	15.8	19.7	27.1	34.1
95.0 50.0	Н			.103			.712	1.66	2.77	5.34	8.20	12.9
50.0	п			1.38			3.33	5.31	7.30	11.3	15.2	21.2
10.0				4.50		444	7.56	10.3	12.9	17.8	22.4	29.1
95.0	Y		.064 .863			.444 2.09	1.03 3.33	1.73 4.57	3.32 7.06	5.06 9.55	7.91 13.3	11.9 18.3
50.0	J		2.84			4.78	6.52	8.16	11.3	14.2	18.6	24.2
10.0		0410										
95.0	TZ.	.0410)		.284	.654	1.09	2.09	3.19	4.94	7.40	11.9
50.0	K	.554			1.34	2.14	2.94	4.54	6.14	8.53	11.7	17.3 [\]
10.0		1.84			3.11	4.26	5.35	7.42	9.42	12.3	16.1	22.5
95.0	•			.178	.409	.683	1.31	1.99	3.09	4.62	7.45	
50.0	L			.839	1.34	1.84	2.84	3.84	5.33	7.33	10.8	
10.0	 			1.95	2.66	3.34	4.64	5.89	7.70	10.1	14.1	
95.0			.112	.259	.433	.829	1.26	1.96	2.94	4.73		
50.0	M		.532	.848	1.17	1.80	2.43	3.39	4.66	6.88		
10.0			1.23	1.69	2.12	2.94	3.74	4.89	6.39	8.95		
95.0		.071	.164	.273	.523	.796	1.23	1.85	2.98			
50.0	N	.336	.535	.734	1.13	1.53	2.13	2.93	4.33			
10.0		.778	1.06	1.34	1.86	2.35	3.08	4.03	5.64		_	
95.0		.102	.171	.327	.498	.771	1.16	1.86				-
50.0	P	.334	.459	.709	.959	1.33	1.83	2.71				
10.0	<u>.</u>	.665	.835	1.16	1.47	1.93	2.52	3.52				
95.0		.109	.209	.318	.494	.740	1.19					
50.0	Q	.294	.454	.614	.853	1.17	1.73					
10.0	<u> </u>	.534	.742	.942	1.23	1.61	2.25					
95.0		.131	.199	.309	.462	.745						
50.0	Q	.284	.384	.533	.733	1.08						
10.0	~	.464	.589	.770	1.01	1.41						
						• =						

Table 4
Difference in Percentage Points—ANSI/ASQC Z1.9-1993 Minus Z1.4 (105D)

Probability of	Z1.4 Code	Z1.9-1993 Code						11 0 25					
Acceptance	Letter	Letter	.10	.15	.25	.40	Accepta .65	ible Qualit 1.00	y Level	2.50	4.00	6.50	10.00
95.0						_					.19		
50.0	В	В									30		
10.0											<u>–.77</u>		70
95.0 50.0	C	C								.30 1.54			−.78 −2.79
10.0	C	C								4.25			-2.79 -2.85
95.0						· .			.13	7.23		1.66	-3.99
50.0	D	D							1.41			.65	-5.70
10.0				_					6.24			3.95	-3.58
95.0								.136			16	-2.06	-3.84
50.0	E	E						.99			1.06	-1.89	-5.70
10.0							.	4.89			5.13	1.28	-1.15
95.0	-	Г					.104			15	-1.39	-2.29	-6 .19
50.0	F	F					.36			.37	-1.41	-2.19	-6.81
10.0	1					000	2.33		0.4	3.30	1.16	.59	<u>-4.52</u>
95.0	G	G				.089			04	68	-1.30	-3.20	-4.69
50.0	U	G				.06 64			.13	76	-1.25	-3.23 -1.34	-4.45 -2.47
10.0 95.0					.067	04		.078	1.78 45	<u>.97</u> 70	78 	$\frac{-1.34}{-2.51}$	<u>-2.47</u> -4.02
50.0	Н	Н			.000			.33	5 0	44	-1.79	-1.71	-2.89
10.0		•			.23			1.67	.84	1.35	.14	61	<u>40</u>
95.0		,			.23_			.138	38	54	-1.73	-2.22	-3.63
50.0	I	I						.06	84	76	-2.18	-2.20	-3.46
10.0								.41	_ <u>.57</u>	09	-1.46	-1.16	_2.28_
95.0				.066			.156	09	33	94	-1.26	-1.70	-2.25
50.0	J	J		103			.12	28	52	-1.08	-1.14	-1.20	-1.48
10.0				<u>55</u>			.32	<u>–.02</u>	09	45	09	.11	.03
95.0			.059			.116	- .014	07	60	68	90	—.88	-1.90
50.0	K	K	364			.03	20	18	86	66	63	25	-1.30
10.0			48			04	23	02	- .70		.09	.62	<u> </u>
95.0	T	Ŧ			.092	.021	.017	25	41	47	44	64	
50.0	L	L			019	−.15	10	41	50	-,31	~.04	.04	
10.0				068	21	- <u>.29</u>	<u>10</u>	<u></u>	31 30	.12	.60	84	
95.0	M	M		.068 022	.031 078	.037	089 16		30 21	21	42		
50.0 10.0_	141	141		022 18	078 19	05 06	16 - <u>-</u> .08	12 07 _	−.21 .12	.14	.12 89		
95.0			.059	.026	,037	043			12	<u>12</u>	.07		
50.0	N	N	016		044	÷.13	05	.03	.03	.16			
10.0	* '	- '	1 <u>58</u>		13	18	<u>01</u>	18 _	.31	.62			
95.0			.041	.039	.017	.036			.00				
50.0	P	P	013		026	.041		.25	.25				
10.0			094		- .044	.097			.60				

, · . •

AMERICAN NATIONAL STANDARD

SAMPLING PROCEDURES AND TABLES FOR INSPECTION BY ATTRIBUTES

AMERICAN SOCIETY FOR QUALITY CONTROL

611 East Wisconsin Avenue

Milwaukee, WI 53202

Ž, .

AMERICAN NATIONAL STANDARD

Sampling Procedures and Tables for Inspection by Attributes

Prepared by
American Society for Quality Control Standards Committee
For
AMERICAN NATIONAL STANDARDS COMMITTEE
Z-1 ON QUALITY ASSURANCE

Sponsor and Secretariat
AMERICAN SOCIETY FOR QUALITY CONTROL

Abstract

Sampling Procedures and Tables for Inspection by Attributes is an acceptance sampling system to be used with switching rules on a continuing stream of lots for AQL specified. It provides tightened, normal, and reduced plans to be applied for attributes inspection for percent nonconforming or nonconformities per 100 units.

AMERICAN NATIONAL STANDARD: An American National Standard implies a consensus of those substantially concerned with its scope and provisions. An American National Standard is intended as a guide to aid the manufacturer, the consumer, and the general public. The existence of an American National Standard does not in any respect preclude anyone, whether he has approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard. American National Standards are subject to periodic review and users are cautioned to obtain the latest editions.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken to reaffirm, revise, or withdraw this standard no later than five years from the date of publication. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.

Published by
AMERICAN SOCIETY FOR QUALITY CONTROL
611 EAST WISCONSIN AVENUE
MILWAUKEE, WISCONSIN 53202

© 1993 by the AMERICAN SOCIETY FOR QUALITY CONTROL

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

Printed in the United States of America

Foreword

(This foreword is not a part of American National Standard —Sampling Procedures and Tables for Inspection by Attributes, Z1.4-1993)

This standard is a revision of ANSI Z1.4-1971, "Sampling Procedures and Tables for Inspection by Attributes," which corresponds directly to MIL-STD-105E. The present revision ANSI/ASQC Z1.4-1993 was undertaken to modernize terminology and to emphasize the system aspect of the procedure through incorporation of the operating characteristic curves and other measures computed for scheme performance reflecting the basic strategy including the switching rules.

All tables, table numbers, and procedures used in MIL-STD-105E were retained. The tables are unchanged to make the tabular content completely compatible with MIL-STD-105E. Modifications from the MIL-STD-105E format beyond editorial refinements include:

- 1) Substitution of the word "nonconformity" for "defect" throughout, in conformance with ANSI/ASQC A2-1978. Substitution of the word "nonacceptance" for "rejection" when it refers to a result of following the procedure. Forms of the word "reject" are retained when they refer to actions the customer may take. The term "rejection number" is retained when it refers to the nomenclature on Tables II, III, IV and X to be consistent with tables of the same numbers in MIL-STD-105E.
- Presentation of the switching rules to put them in conformance with ANSI Z1.9-1980, the ANSI version of MIL-STD-414. This includes an option for reduced inspection

without use of limit numbers (as in ANSI Z1.9-1980). Use without the limit numbers improves the performance of a scheme by accepting more lots at the AQL, with no change in discrimination below the indifference quality level.

- 3) Introduction of the following tables:
 - Table XI Average Outgoing Quality Limit Factors for ANSI Z1.4 Scheme Performance (Single Sampling)
 - Table XII Limiting Quality for ANSI Z1.4 Scheme Performance for which $P_a = 10$ Percent (Single Sampling)
 - Table XIII Limiting Quality for ANSI Z1.4 Scheme Performance for which $P_a = 5$ Percent (Single Sampling)
 - Table XIV Average Sample Size Tables for ANSI Z1.4 Scheme Performance (Single Sampling)
 - Table XV Scheme Performance with Switching Rules—for each Code Letter showing
 - Operating Characteristic Curves for ANSI Z1.4 Scheme Performance
 - Tabulated Values for Operating Characteristic Curves for ANSI Z1.4 Scheme Performance
- 4) The titles of Tables V-A and V-B have been changed to read, "Approximate values for average outgoing quality limits." These are different from the titles in MIL-STD-105E.
- 5) The tables contained in this Standard cover situations where the quality level is specified in percentages as low as 0.01%. It should be noted that 0.01% is equal to 100 parts per million (PPM). Sampling procedures for quality levels of fewer PPM are not included in this Standard.

6) Substitution of

Section 2

Definitions and Terminology

for

Section 2

Classification of Defects

and Defectives

Reference is made to classification of nonconformities in Section 6.3.

- 7) Reference to the use of operating properties of the scheme and the meaning of scheme performance is made in Section 11.
- 8) Addition of Section 11.6 spelling out proper use of individual plans when extracted from the ANSI Z1.4 system as a whole.
- 9) Addition of Figure 1 showing the switching procedure to enhance understanding of the switching aspect of the system.
- 10) Addition of replotted OC curves.

Note: A compatible and interchangeable standard for variables inspection is ANSI Z1.9-1993.

Suggestions for improvement of this standard will be welcome. They should be sent to the sponsor, ASQC, 611 East Wisconsin Avenue, Milwaukee, WI 53202.

Committee members serving as writers and editors of this standard were:

Joseph M. Califano, Chairperson Michael Yargosz August Mundel Harrison Wadsworth Edward G. Schilling

Table of Contents

Paragraph		Pag
1.	SCOPE	
2.	DEFINITIONS AND TERMINOLOGY	1
3.	PERCENT NONCONFORMING AND NONCONFORMITIES PER HUNDRED UNITS	
4.	ACCEPTABLE QUALITY LEVEL (AQL)	2
5.	SUBMISSION OF PRODUCT	
6.	ACCEPTANCE AND NON-ACCEPTANCE	
7.	DRAWING OF SAMPLES.	
8.	NORMAL, TIGHTENED, AND REDUCED INSPECTION	
9.	SAMPLING PLANS	
10.	DETERMINATION OF ACCEPTABILITY	
11.	SUPPLEMENTARY INFORMATION	6
	Tables	
Table I	Sample Size Code Letters.	10
Table II-A	Single Sampling Plans for Normal Inspection (Master Table)	
Table II-B	Single Sampling Plans for Tightened Inspection (Master Table)	
Table II-C	Single Sampling Plans for Reduced Inspection (Master Table)	
Table III-A	Doubling Sampling Plans for Normal Inspection (Master Table)	
Table III-B	Double Sampling Plans for Tightened Inspection (Master Table)	
Table III-C	Double Sampling Plans for Reduced Inspection (Master Table)	16
Table IV-A	Multiple Sampling Plans for Normal Inspection (Master Table)	17
Table IV-B	Multiple Sampling Plans for Tightened Inspection (Master Table)	19
Table IV-C	Multiple Sampling Plans for Reduced Inspection (Master Table)	
Table V-A	Factors for Determining Approximate Values for Average Outgoing Quality Limits for Normal Inspection (Single Sampling)	23
Table V-B	Factors for Determining Approximate Values for Average Outgoing Quality Limits for Tightened Inspection (Single Sampling)	
Table VI-A	Limiting Quality (in percent nonconforming) for Which P _a = 10 Percent (for Normal Inspection, Single Sampling)	
Table VI-B		
Table VII-A	Limiting Quality (in percent nonconforming) for Which P _a = 5 Percent (for Normal Inspection, Single Sampling)	
Table VII-B	Limiting Quality (in nonconformities per hundred units) for Which P _a = 5 Percent (for Normal Inspection, Single Sampling)	
Table VIII	Limit Numbers for Reduced Inspection	29
Table IX	Average Sample Size Curves for Double and Multiple Sampling Plans	
	(normal and tightened inspection)	30
Table X-A	Sample Size Code Letter A—Individual Plans	
Table X-B	Sample Size Code Letter B-Individual Plans	
Table X-C	Sample Size Code Letter C-Individual Plans	

ANSI/ASQC Standard Z1.4-1993

Table X-D	Sample Size Code Letter D—Individual Plans	
Table X-E	Sample Size Code Letter E—Individual Plans	39
Table X-F	Sample Size Code Letter F—Individual Plans	41
Table X-G	Sample Size Code Letter G—Individual Plans	
Table X-H	Sample Size Code Letter H-Individual Plans	
Table X-J	Sample Size Code Letter J—Individual Plans.	
Table X-K	Sample Size Code Letter K—Individual Plans	
Table X-L	Sample Size Code Letter L—Individual Plans	
Table X-M	Sample Size Code Letter M—Individual Plans	
Table X-N	Sample Size Code Letter N-Individual Plans	
Table X-P	Sample Size Code Letter P—Individual Plans	
Table X-Q	Sample Size Code Letter Q—Individual Plans	
Table X-R	Sample Size Code Letter R—Individual Plans	
Table X-S	Sample Size Code Letter S—Individual Plans	63
Table XI	Average Outgoing Quality Limit Factors for ANSI-Z1.4 Scheme Performance	
	(Single Sampling)	64
Table XII	Limiting Quality for ANSI-Z1.4 Scheme Performance for Which	
	P _a = 10 Percent (Single Sampling)	65
Table XIII	Limiting Quality for ANSI-Z1.4 Scheme Performance for Which	
	P _a = 5 Percent (Single Sampling)	66
Table XIV	Average Sample Size Tables for ANSI-Z1.4 Scheme Performance (Single	
	Sampling)	67
Table XV-A	Sample Size Code Letter A—Scheme Performance	71
Table XV-B	Sample Size Code Letter B—Scheme Performance	
Table XV-C	Sample Size Code Letter C—Scheme Performance	
Table XV-D	Sample Size Code Letter D—Scheme Performance	
Table XV-E	Sample Size Code Letter E—Scheme Performance	
Table XV-F	Sample Size Code Letter F—Scheme Performance	
Table XV-G	Sample Size Code Letter G—Scheme Performance	
Table XV-H	Sample Size Code Letter H—Scheme Performance	
Table XV-J	Sample Size Code Letter J—Scheme Performance	79
Table XV-K	Sample Size Code Letter K—Scheme Performance	
Table XV-L	Sample Size Code Letter L—Scheme Performance	
Table XV-M	Sample Size Code Letter M—Scheme Performance	82
Table XV-N	Sample Size Code Letter N—Scheme Performance	83
Table XV-P	Sample Size Code Letter P—Scheme Performance	84
Table XV-Q	Sample Size Code Letter Q—Scheme Performance	85
Table XV-R	Sample Size Code Letter R—Scheme Performance	
INDEX OF TH	RMS WITH SPECIAL MEANINGS	87

SAMPLING PROCEDURES AND TABLES FOR INSPECTION BY ATTRIBUTES

1. SCOPE

- 1.1 PURPOSE. This publication establishes sampling plans and procedures for inspection by attributes. When specified by the responsible authority, this publication shall be referenced in the specification, contract, inspection instructions, or other documents and the provisions set forth herein shall govern. The "responsible authority" shall be designated in one of the above documents, as agreed to by the purchaser and seller or producer and user.
- 1.2 APPLICATION. Sampling plans designated in this publication are applicable, but not limited, to inspection of the following:
 - a. End items.
 - b. Components and raw materials.
 - c. Operations
 - d. Materials in process.
 - e. Supplies in storage.
 - Maintenance operations.
 - g. Data or records.
 - h. Administrative procedures.

These plans are intended primarily to be used for a continuing series of lots or batches. The plans may also be used for the inspection of isolated lots or batches, but, in this latter case, the user is cautioned to consult the operating characteristic curves to find a plan which will yield the desired protection (see 11.6).

- 1.3 INSPECTION. Inspection is the process of measuring, examining, testing, or otherwise comparing the unit of product (see 1.5) with the requirements.
- 1.4 INSPECTION BY ATTRIBUTES. Inspection by attributes is inspection whereby either the unit of product is classified simply as conforming or nonconforming, or the

number of nonconformities in the unit of products is counted, with respect to a given requirement or set of requirements.

1.5 UNIT OF PRODUCT. The unit of product is the unit inspected in order to determine its classification as conforming or nonconforming or to count the number of nonconformities. It may be a single article, a pair, a set, a length, an area, an operation, a volume, a component of an end product, or the end product itself. The unit of product may or may not be the same as the unit of purchase, supply, production, or shipment.

2. DEFINITIONS AND TERMINOLOGY

The definitions and terminology employed in this standard are in accord with ANSI/ASQC Standard A2-1987 (Terms, Symbols, and Definitions for Acceptance Sampling). The following two definitions are particularly important in applying the standard.

- DEFECT: A departure of a quality characteristic from its intended level or state that occurs with a severity sufficient to cause an associated product or service not to satisfy intended normal, or fore seeable, usage requirements.
- NONCONFORMITY: A departure of a quality characteristic from its intended level or state that occurs with severity sufficient to cause an associated product or service not to meet a specification requirement.

These acceptance sampling plans for attributes are given in terms of the percent or proportion of product in a lot or batch that depart from some requirement. The general terminology used within the document will be given in terms of percent of nonconforming units or number of nonconformities, since these terms are likely to constitute the most widely used criteria for acceptance sampling.

In the use of this standard it is helpful to distinguish between:

 an individual sampling plan—a specific plan that states the sample size or sizes to be used, and the associated acceptance criteria.

ANSI/ASQC Standard Z1.4-1993

- b. a sampling scheme—a combination of sampling plans with switching rules and possi bly a provision for discontinuance of inspection. In this standard the terms "sampling scheme" and "scheme performance" will be used in the restricted sense described in Sec. 11.1.
- a sampling system—a collection of sampling schemes. This standard is a sampling system indexed by lot-size ranges, inspection levels, and AQLs.

3. PERCENT NONCONFORMING AND NONCONFORMITIES PER HUNDRED UNITS

- 3.1 EXPRESSION OF NONCONFORMANCE. The extent of nonconformance of product shall be expressed either in terms of percent nonconforming or in terms of nonconformities per hundred units.
- 3.2 PERCENT NONCONFORMING. The percent nonconforming of any given quantity of units of product is one hundred times the number of nonconforming units divided by the total number of units of product, i.e.:

Percent nonconforming = $\frac{\text{Number nonconforming}}{\text{Number of units inspected}} \times 100$

3.3 NONCONFORMITIES PER HUNDRED UNITS. The number of nonconformities per hundred units of any given quantity of units of product is one hundred times the number of nonconformities contained therein (one or more nonconformities being possible in any unit of product) divided by the total number of units of product, i.e.:

Nonconformities per hundred units = $\frac{\text{Number of nonconformities}}{\text{Number of units inspected}} \times 100$

It is assumed that nonconformities occur randomly and with statistical independence within and between units.

4. ACCEPTABLE QUALITY LEVEL (AQL)

- **4.1** USE. The AQL together with the Sample Size Code Letter, is used for indexing the sampling plans provided herein.
- **4.2 DEFINITION.** The AQL is the maximum percent non-conforming (or the maximum number of nonconformities per hundred units) that, for purposes of sampling inspection, can be considered satisfactory as a process average (see 11.2).

4.3 NOTE ON THE MEANING OF AQL. When a consumer designates some specific value of AQL for a certain nonconformity or group of nonconformities, it indicates to the supplier that the consumer's acceptance sampling plan will accept the great majority of the lots or batches that the supplier submits, provided the process average level of percent nonconforming (or nonconformities per hundred units) in these lots or batches be no greater than the designated value of AQL. Thus, the AQL is a designated value of percent nonconforming (or nonconformities per hundred units) that the consumer indicates will be accepted most of the time by the acceptance sampling procedure to be used. The sampling plans provided herein are so arranged that the probability of acceptance at the designated AQL value depends upon the sample size, being generally higher for large samples than for small ones, for a given AQL.

Note that AQL is a parameter of the sampling scheme and should not be confused with process average which describes the operating level of the manufacturing process. It is expected that the process average will be less than or equal to the AQL to avoid excessive rejections under this system.

It is necessary to refer to the operating characteristic curves of the scheme and its constituent plans, to determine what protection the consumer will have.

The AQL alone does not describe the protection to the consumer for individual lots or batches, but more directly relates to what might be expected from a series of lots or batches, provided the steps indicated in this publication are taken.

- 4.4 LIMITATION. The designation of an AQL shall not imply that the supplier has the right to knowingly supply any nonconforming unit of product.
- 4.5 SPECIFYING AQLs. The AQL to be used will be designated in the contract or by the responsible authority. Different AQLs may be designated for groups of nonconformities considered collectively, or for individual nonconformities. For example, Group A may include nonconformities of a type felt to be of the highest concern for the product or service and therefore be assigned a small AQL value; Group B may include nonconformities of the next highest degree of concern and therefore be assigned a larger AQL value than for Group A and smaller than that of Group C, etc. The classification into groups should be appropriate to the quality requirements of the specific situation. An AQL for a group of nonconformities may be designated in addition to AQLs for individual nonconformities,

or subgroups, within that group. AQL values of 10.0 or less may be expressed either in percent nonconforming or in nonconformities per hundred units; those over 10.0 shall be expressed in nonconformities per hundred units only.

4.6 PREFERRED AQLs. The values of AQLs given in these tables are known as preferred AQLs. If, for any product, an AQL be designated other than a preferred AQL, these tables are not applicable.

5. SUBMISSION OF PRODUCT

- 5.1 LOT OR BATCH. The term lot or batch shall mean "inspection lot" or "inspection batch," i.e., a collection of units of product from which a sample is to be drawn and inspected to determine conformance with the acceptability criteria, and may differ from a collection of units designated as a lot or batch for other purposes (e.g., production, shipment, etc).
- 5.2 FORMATION OF LOTS OR BATCHES. The product shall be assembled into identifiable lots, sublots, batches, or in such other manner as may be prescribed (see 5.4). Each lot or batch shall, as far as is practicable, consist of units of product of a single type, grade, class, size, and composition, manufactured under essentially the same conditions, and at essentially the same time.
- 5.3 LOT OR BATCH SIZE. The lot or batch size is the number of units of product in a lot or batch.
- 5.4 PRESENTATION OF LOTS OR BATCHES. The formation of the lots or batches, lot or batch size, and the manner in which each lot or batch is to be presented and identified by the supplier shall be designated or approved by the responsible authority. As necessary, the supplier shall provide adequate and suitable storage space for each lot or batch, equipment needed for proper identification and presentation, and personnel for all handling of product required for drawing of samples.

6. ACCEPTANCE AND NON-ACCEPTANCE

6.1 ACCEPTABILITY OF LOTS OR BATCHES. Acceptability of a lot or batch will be determined by the use of a sampling plan or plans associated with the designated AQL or AQLs.

In the use of this standard a statement that a lot is acceptable means simply that sample results satisfy the standard's acceptance criteria. The acceptance of a lot is not intended to provide information about lot quality. If a stream of lots

from a given process is inspected under an acceptance sampling scheme such as provided in this standard, some lots will be accepted and others will not. If all incoming lots are assumed to be at the same process average and if the nonconforming items that are discovered and replaced by conforming items during sample inspection are ignored, it will be found that both the set of accepted lots and the set of non-accepted lots will have the same long run average quality as the original set of lots submitted for inspection. Inspection of incoming lots whose quality levels vary around a fixed long run average quality level will divide the lots into a set of accepted lots and a set of non-accepted lots, but it will be found that the long run average quality of the accepted lots is only slightly better than the long run average quality of the non-accepted lots. Replacement of the nonconforming items that are discovered during sample inspection does not alter this finding because the samples are a small fraction of the lots.

The purpose of this standard is, through the economic and psychological pressure of lot non-acceptance, to induce a supplier to maintain a process average at least as good as the specified AQL while at the same time providing an upper limit on the consideration of the consumer's risk of accepting occasional poor lots. The standard is not intended as a procedure for estimating lot quality or for segregating lots.

In acceptance sampling, when sample data do not meet the acceptance criteria, it is often stated that the lot is to be "rejected". In this connection, the words "to reject" generally are used. Rejection in an acceptance sampling sense means to decide that a batch, lot or quantity of product, material or service has not been shown to satisfy the acceptance criteria based on the information obtained from the sample(s).

In acceptance sampling, the words "to reject" generally are used to mean "to not accept" without direct implication of product usability. Lots which are "rejected" may be scrapped, sorted (with or without nonconforming units being replaced), reworked, re-evaluated against more specific usability criteria, held for additional information, etc. Since the common language usage of "reject" often results in an inference of unsafe or unusable product, it is recommended that "not accept" be understood rather than "reject" in the use of this standard.

The word "non-acceptance" is used here for "rejection" when it refers to the result of following the procedure. Forms of the word "reject" are retained when they refer to actions the customer may take, as in "rejection number".

ANSI/ASQC Standard Z1.4-1993

- 6.2 NONCONFORMING UNITS. The right is reserved to reject any unit of product found nonconforming during inspection whether that unit of product forms a part of a sample or not, and whether the lot or batch as a whole is accepted or rejected. Rejected units may be repaired or corrected and resubmitted for inspection with the approval of, and in the manner specified by, the responsible authority.
- 6.3 SPECIAL RESERVATION FOR DESIGNATED NONCONFORMITIES. Since most acceptance sampling involves evaluation of more than one quality characteristic, and since these may differ in importance in terms of quality and/or economic effects, it is often desirable to classify the types of nonconformity according to agreed upon groupings. Specific assignment of types of nonconformities to each class is a function of agreement on specific sampling applications. In general, the function of such classification is to permit the use of a set of sampling plans having a common sample size, but different acceptance numbers for each class having a different AQL, such as in Tables II, III, and IV.

The supplier may be required at the discretion of the responsible authority to inspect every unit of the lot or batch for designated classes of nonconformities. The right is reserved to inspect every unit submitted by the supplier for specified nonconformities, and to reject the lot or batch immediately, when a nonconformity of this class is found. The right is reserved also to sample, for specified classes of nonconformities, lots or batches submitted by the supplier and to reject any lot or batch if a sample drawn therefrom is found to contain one or more of these nonconformities.

6.4 RESUBMITTED LOTS OR BATCHES. Lots or batches found unacceptable shall be resubmitted for reinspection only after all units are re-examined or re-tested and all nonconforming units are removed or nonconformities corrected. The responsible authority shall determine whether normal or tightened inspection shall be used on reinspection and whether reinspection shall include all types or classes of nonconformities or only the particular types or classes of nonconformities which caused initial rejection.

7. DRAWING OF SAMPLES

7.1 SAMPLE. A sample consists of one or more units of product drawn from a lot or batch, the units of the sample being selected at random without regard to their quality. The number of units of product in the sample is the sample size.

- 7.2 SAMPLING. When appropriate, the number of units in the sample shall be selected in proportion to the size of sublots or subbatches, or parts of the lot or batch, identified by some rational criterion. In so doing, the units from each part of the lot or batch shall be selected at random, as defined in ANSI/ASQC Standard A2-1987.
- 7.3 TIME OF SAMPLING. Samples may be drawn after all the units comprising the lot or batch have been produced, or samples may be drawn during production of the lot or batch.
- 7.4 DOUBLE OR MULTIPLE SAMPLING. When double or multiple sampling is to be used, each sample shall be selected over the entire lot or batch.

8. NORMAL, TIGHTENED AND REDUCED INSPECTION

- **8.1 INITIATION OF INSPECTION.** Normal inspection will be used at the start of inspection unless otherwise directed by the responsible authority.
- 8.2 CONTINUATION OF INSPECTION. Normal, tightened or reduced inspection shall continue unchanged on successive lots or batches except where the switching procedures given below require change.

8.3 SWITCHING PROCEDURES.

- **8.3.1 NORMAL TO TIGHTENED.** When normal inspection is in effect, tightened inspection shall be instituted when 2 out of 5 consecutive lots or batches have been non-acceptable on original inspection (i.e., ignoring resubmitted lots or batches for this procedure).
- **8.3.2 TIGHTENED TO NORMAL.** When tightened inspection is in effect, normal inspection shall be instituted when 5 consecutive lots or batches have been considered acceptable on original inspection.
- **8.3.3** NORMAL TO REDUCED. When normal inspection is in effect, reduced inspection shall be instituted providing that all of the following conditions are satisfied:
 - a. The preceding 10 lots or batches (or more, as indicated by the note to Table VIII) have been on normal inspection and all have been accepted on original inspection; and

- b. The total number of nonconforming units (or nonconformities) in the samples from the preceding 10 lots or batches (or such other number as was used for condition "a" above) is equal to or less than the applicable number given in Table VIII. If double or multiple sampling is in use, all samples inspected should be included, not "first" samples only; and
- c. Production is at a steady rate; and
- Reduced inspection is considered desirable by the responsible authority.
- **8.3.4 REDUCED TO NORMAL.** When reduced inspection is in effect, normal inspection shall be instituted if any of the following occur on original inspection:
 - a. A lot or batch is rejected; or
 - A lot or batch is considered acceptable under the procedures for reduced inspection given in 10.1.4; or
 - c. Production becomes irregular or delayed; or
 - Other conditions warrant that normal inspection shall be instituted.
- 8.4 DISCONTINUATION OF INSPECTION. In the event that 10 consecutive lots or batches remain on tightened inspection (or such other number as may be designated by the responsible authority), inspection under the provisions of this document should be discontinued pending action to improve the quality of submitted material.
- 8.5 LIMIT NUMBERS FOR REDUCED INSPECTION. When agreed upon by responsible authority for both parties to the inspection, that is, the supplier and the end item customer, the requirements of 8.3.3b may be dropped. This action will have little effect on the operating properties of the scheme.
- **8.6** SWITCHING SEQUENCE. A schematic diagram describing the sequence of application of the switching rules is shown in Figure 1.

9. SAMPLING PLANS

9.1 SAMPLING PLAN. A sampling plan indicates the number of units of product from each lot or batch which are to be inspected (sample size or series of sample sizes) and the criteria for determining the acceptability of the lot or batch (acceptance and rejection numbers).

9.2 INSPECTION LEVEL. The inspection level determines the relationship between the lot or batch size and the sample size. The inspection level to be used for any particular requirement will be prescribed by the responsible authority. Three inspection levels: I, II and III are given in Table I for general use. Unless otherwise specified, Inspection Level II will be used. However, Inspection Level I may be specified when less discrimination is needed, or Level III may be specified for greater discrimination. Four additional special levels: S-1, S-2, S-3, and S-4, are given in the same table and may be used where relatively small sample sizes are necessary and large sampling risks can or must be tolerated.

NOTE: In the designation of inspection levels S-1 to S-4, care must be exercised to avoid AQLs inconsistent with these inspection levels.

- 9.3 CODE LETTERS. Sample sizes are designated by code letters. Table I shall be used to find the applicable code letter for the particular lot or batch size and the prescribed inspection level.
- 9.4 OBTAINING SAMPLING PLAN. The AQL and the code letter shall be used to obtain the sampling plan from Tables II, III, or IV. When no sampling plan is available for a given combination of AQL and code letter, the tables direct the user to a different letter. The sample size to be used is given by the new code letter not by the original letter. If this procedure leads to different sample sizes for different classes of nonconformities, the code letter corresponding to the largest sample size derived may be used for all classes of nonconformities when designated or approved by the responsible authority. As an alternative to a single sampling plan with an acceptance number of 0, the plan with an acceptance number of 1 with its correspondingly larger sample size for a designated AQL (where available), may be used when designated or approved by the responsible authority.
- 9.5 TYPES OF SAMPLING PLANS. Three types of sampling plans: Single, Double and Multiple, are given in Tables II, III and IV, respectively. When several types of plans are available for a given AQL and code letter, any one may be used. A decision as to type of plan, either single, double, or multiple, when available for a given AQL and code letter, will usually be based upon the comparison between the administrative difficulty and the average sample sizes of the available plans. The average sample size of multiple plans is less than for double (except in the case corresponding to single acceptance number 1) and both of these are always less than a single sample size (see Table IX). Usually the administrative difficulty for single sam-

ANSI/ASQC Standard Z1.4-1993

pling and the cost per unit of the sample are less than for double or multiple.

10. DETERMINATION OF ACCEPTABILITY

10.1 PERCENT NONCONFORMING INSPECTION. To determine acceptability of a lot or batch under percent nonconforming inspection, the applicable sampling plan

nonconforming inspection, the applicable sampling plan shall be used in accordance with 10.1.1, 10.1.2, 10.1.3 and 10.1.4.

10.1.1 SINGLE SAMPLING PLAN. The number of sample units inspected shall be equal to the sample size given by the plan. If the number of nonconforming units found in the sample is equal to or less than the acceptance number, the lot or batch shall be considered acceptable. If the number of nonconforming units is equal to or greater than the rejection number, the lot or batch shall be considered not acceptable.

10.1.2 DOUBLE SAMPLING PLAN. The number of sample units first inspected shall be equal to the first sample size given by the plan. If the number of nonconforming units found in the first sample is equal to or less than the first acceptance number, the lot or batch shall be considered acceptable. If the number of nonconforming units found in the first sample is equal to or greater than the first rejection number, the lot or batch shall be considered not acceptable. If the number of nonconforming units found in the first sample is between the first acceptance and rejection numbers, a second sample of the size given by the plan shall be inspected. The number of nonconforming units found in the first and second samples shall be accumulated. If the cumulative number of nonconforming units is equal to or less than the second acceptance number, the lot or batch shall be considered acceptable. If the cumulative number of nonconforming units is equal to or greater than the second rejection number, the lot or batch shall be considered not acceptable.

10.1.3 MULTIPLE SAMPLE PLAN. Under multiple sampling, the procedure shall be similar to that specified in 10.1.2, except that the number of successive samples required to reach a decision might be more than two.

10.1.4 SPECIAL PROCEDURE FOR REDUCED INSPECTION. Under reduced inspection, the sampling procedure may terminate without making a decision. In these circumstances, the lot or batch will be considered acceptable, but normal inspection will be reinstated starting with the next lot or batch (see 8.3.4(b)).

10.2 NONCONFORMITIES PER HUNDRED UNITS INSPECTION. To determine the acceptability of a lot or batch under Nonconformities per Hundred Units inspection, the procedure specified for Percent Nonconforming inspection above shall be used, except that the word "nonconformities" shall be substituted for "nonconforming units".

11. SUPPLEMENTARY INFORMATION

11.1 OPERATING CHARACTERISTIC CURVES.

Operating characteristic curves and other measures of performance presented in this standard are of two types. Those for the individual plans that represent the elements of the schemes are presented in Tables V, VI, VII, IX, and X. Analogous curves and other measures of overall scheme performance when the switching rules are used are given in Tables XI, XII, XIII, XIV, and XV. Scheme performance is defined as the composite proportion of lots accepted at a stated percent nonconforming when the switching rules are applied. The term scheme performance is used here in a very restrictive sense. It refers to how the ANSI Z1.4 scheme of switching rules would operate at a given process level under the assumption that the process stays at that level even after switching to tightened inspection or discontinuation of inspection. This gives a conservative "worst case" description of the performance of the scheme for use as a base-line in the sense that if the psychological and economic pressures associated with the switching rules are considered, the protection of the scheme may be somewhat better than that shown.

Operating characteristic curves are given in Table X for individual sampling plans for normal and tightened inspection. The operating characteristic curve for unqualified acceptance under reduced inspection can be found by using the AQL index of the normal plan with the sample size(s) and acceptance number(s) of the reduced plan. The curves shown are for single sampling; curves for double and multiple sampling are matched as closely as practicable. The O.C. curves shown for AQLs greater than 10.0 are based on the Poisson distribution and apply for nonconformities per hundred units inspection; those for AQLs of 10.0 or less and sample sizes of 80 or less are based on the binomial distribution and apply for percent nonconforming inspection; those for AQLs of 10.0 or less and sample sizes larger than 80 are based on the Poisson distribution and apply either for nonconformities per hundred units inspection, or for percent nonconforming inspection (the Poisson distribution being an adequate approximation to the binomial distribution under these conditions). Tabulated values corresponding to selected values of probabilities of acceptance (P_a in percent) are given for each of the curves shown, and, in addition, are indexed for tightened inspection, and also show values for nonconformities per hundred units for AQLs of 10.0 or less and sample sizes of 80 or less.

The operating characteristic curves for scheme performance shown in Table XV indicate the percentage of lots or batches which may be expected to be accepted under use of the switching rules with the various sampling plans for a given process quality subject to the restrictions stated above. The operating characteristic curves of scheme performance are based on the use of limit numbers in switching to reduced inspection and are approximately correct when the limit numbers for reduced inspection are not used under Option 8.5. The curves also assume a return to tightened inspection when inspection is resumed after discontinuation has been imposed. This is also true of average outgoing quality limit and average sample size for ANSI Z1.4 scheme performance.

Note that the operating characteristic curve for scheme performance is approximately that of the normal plan for low levels of percent nonconforming and that of the tightened plan for high levels of percent nonconforming. Use of the reduced plan increases scheme probability of acceptance only for extremely low levels of percent nonconforming.

- 11.2 PROCESS AVERAGE. The process average is the average percent nonconforming or average number of nonconformities per hundred units (whichever is applicable) of product submitted by the supplier for original inspection. Original inspection is the first inspection of a particular quantity of product as distinguished from the inspection of product which has been resubmitted after prior rejection. When double or multiple sampling is used, only first sample results shall be included in the process average calculation.
- 11.3 AVERAGE OUTGOING QUALITY (AOQ). The AOQ is the average quality of outgoing product including all accepted lots or batches, plus all lots or batches which are not accepted after such lots or batches have been effectively 100 percent inspected and all nonconforming units replaced by conforming units.
- 11.4 AVERAGE OUTGOING QUALITY LIMIT (AOQL). The AOQL is the maximum of the AOQs for all possible incoming qualities for a given acceptance sampling plan. AOQL values are given in Table V-A for each of the single sampling plans for normal inspection and in Table V-B for each of the single sampling plans for tightened inspection. AOQL values for ANSI Z1.4 scheme performance are given in Table XI subject to the restrictions of 11.1. They show the average outgoing quality limits for

scheme performance when using single sampling. AOQL will be slightly higher when the limit numbers for reduced inspection are not used under Option 8.5.

sample size curves for double and multiple sampling as compared to the single sampling plan for each acceptance number are in Table IX. These show the average sample sizes which may be expected to occur under the various sampling plans for a given process quality level. The curves assume no curtailment of inspection and are approximate to the extent that they are based upon the Poisson distribution, and that the sample sizes at each stage for double and multiple sampling are assumed to be 0.631n and 0.25n respectively, where n is the equivalent single sample size. Average sample size tables for ANSI Z1.4 scheme performance are given in Table XIV. They show the average sample size for scheme performance when using single sampling.

11.6 LIMITING QUALITY PROTECTION.

11.6.1 USE OF INDIVIDUAL PLANS. This standard is intended to be used as a system employing tightened, normal, and reduced inspection on a continuing series of lots to achieve consumer protection while assuring the producer that acceptance will occur most of the time if quality is better than the AQL.

11.6.2 IMPORTANCE OF SWITCHING RULES.

Occasionally specific individual plans are selected from the standard and used without the switching rules. This is not the intended application of the ANSI Z1.4 system and its use in this way should not be referred to as inspection under ANSI Z1.4. When employed in this way, this document simply represents a repository for a collection of individual plans indexed by AQL. The operating characteristics and other measures of a plan so chosen must be assessed individually for that plan from the tables provided.

11.6.3 LIMITING QUALITY TABLES. If the lot or batch is of an isolated nature, it is desirable to limit the selection of sampling plans to those, associated with a designated AQL value, that provide not less than a specified limiting quality protection. Sampling plans for this purpose can be selected by choosing a Limiting Quality (LQ) and a consumer's risk to be associated with it. Limiting Quality is the percentage of nonconforming units (or nonconformities) in a batch or lot for which for purposes of acceptance sampling, the consumer wishes the probability of acceptance to be restricted to a specified low value.

ANSI/ASQC Standard Z1.4-1993

Tables VI and VII give process levels for which the probabilities of lot acceptance under various sampling plans are 10 percent and 5 percent respectively. If a different value of consumer's risk is required, the O.C. curves and their tabulated values may be used. For individual lots with percents nonconforming or nonconformities per 100 units equal to the specified Limiting Quality (LQ) values, the probabilities of lot acceptance are less than 10 percent in the case of plans listed in Table VI and less than 5 percent in the case of plans listed in Table VII. When there is reason for avoiding more than a limiting percentage of nonconforming units (or nonconformities) in a lot or batch, Tables VI and VII may be useful for fixing minimum sample sizes to be associated with the AQL and Inspection Level specified for the inspection of a series of lots or batches. For example, if an LQ of 5 percent is desired for individual lots with an associated P_a of 10 percent or less, then if an AQL of 1.5 percent is

designated for inspection of a series of lots or batches, Table VI indicates that the minimum sample size must be that given by Code Letter M.

Where there is interest in a limiting process level, Tables XII and XIII, which give LQ values and ANSI Z1.4 scheme performance, may be used in a similar way to fix minimum sample sizes.

In the case of an isolated lot, it is preferable for the customer to adapt a sampling plan with a small consumer's risk. The ideal method of calculating the sample size and risk is by use of the hypergeometric probability function. ANSI/ASQC Q3 contains sampling plans that have been calculated on this basis and therefore provide a more accurate set of tables for these situations.

Lots Remain on TIGHTENED 10 Consecutive Discontinue Inspection Under Z1.4 Tightened 5 Consecutive Lots Accepted Consecutive Lots Not Accepted • 2 out of 5 FIGURE 1 **NORMAL** START Other Conditions Warrant less than Limit Number Approved by Responsible Authority Total Nonconforming Lot Accepted but Nonconformities found lie between Ac (Optional), and • Production Steady, Production Irregular, · Lot not Accepted, or Preceding 10 Lots and Re of Plan, or Accepted, with and REDUCED **SWITCHING**

Switching Rules for ANSI Z1.4 System

RULES

نع (T		· · · · · · · · · · · · · · · · · · ·			
(See 9.2 and 9.3)	on levels	H	m U Q	пπр	H'nX	JZZ	9 Q R
S)	General inspection levels	 	∀ m ∪	Оыг	D H	メリダ	z d O
	Ğ	I	A A B	OUD	п н О	πгЖ	JΣZ
}		S-4	ВАВ	OOD	ппг	O O H	×
	tion levels	S-3	BAA	a U U	ООЫ	ᄧᄺᄺ	OOH
	Special inspection levels	S-2	444		000	000	ыны
		S-1	444	K M M	0 B B	υυυ	000
		ų.	8 15 25	50 90 150	280 500 1200	3200 10000 35000	150000 500000 over
		Lot or batch size	5 5 5	to to	5 5 5	5 5 5	to to and
		Lot o	2 9 16	26 51 91	151 281 501	1201 3201 10001	35001 150001 500001
L	- .	<u> </u>		<u> </u>			

Table II-A—Single sampling plans for normal inspection (Master table)

(See 9.4 and 9.5) 30 31 44 45 000 21 22 30 31 44 45 14 15 21 22 30 31 44 45 8 10 11 14 15 21 22 30 31 44 45 250 7 8 10 11 14 15 21 22 30 31 20 Ac Re 5 6 7 8 10 11 14 15 22 22 8 Ac Re 10 11 14 15 21 22 4 6 8 65 6 5 L Ac Re 7 8 10 11 14 15 6 7 2 6 6 Ac Re 22 5 6 7 8 10 11 25 Acceptable Quality Levels (normal inspection) 7 17 - ~ ~ Ac Re 10 11 14 15 21 22 2 Ac Re ∞ = 2 2 <u>د</u> 5 ∓ 7 Ac Re 14 15 21 22 6.5 s ~ 0 Ac Re 10 11 14 15 21 22 4.0 4 40 90 - 0 Ac Re 21 22 2.5 8 13 15 -0 200 **~ 6 ₹** Ac Re 2 22 1.5 9 & = 4 2 2 ~ 2 Ac Re 10 11 14 15 21 22 0.1 4 0 00 0 6 v c Ac Re 7 8 10 11 14 15 0.65 21 22 Ac Re 0.40 6 8 11 0 m 4 10 11 14 15 ر 5 م Ac Re 0.25 606 Ac Re 0.15 2 6 5 ~ Ac Re 0.10 9 S Ac Re 0.065 _ 0 c, 0.040 Ac Re 7 0.025 Ac Re - 5 Ac Re 0.015 0.010 -0 Sample size 8 22 8 200 288 125 200 315 250 250 2000 size code letter CBA 口田丘 ÿ≖¬ Σιν ZAO ~

= Use first sampling plan below arrow. If sample size equals, or exceeds, lot or batch size, do 100 percent inspection.

Use first sampling plan above arrow.

Ac = Acceptance number.

Re = Rejection number.

SINGLE NORMAL PLANS

Table II-B—Single sampling plans for tightened inspection (Master table)

	1000	Ac Re	9-					•	
	650	Ac Re	18 19 27 28 41 42	4		-			
	400		28 23	41 42					
	250	Ac Re Ac Re	9 51 9 19	28					
	150	Ac Re A	6 8 9 12 13 18	18 19 27 27 28 41					
		Ac Re A	4 5 6 8 9 12	12 13 18 18 19 27					
	100	Re Ac	£ 4 0 £ 2 8	9 12 13 18 19					
	65	te Ac Re	432	6 8 9 9 12 13 13 18 19	61				
	40	e Ac Re	35-	2 8 2	18	***			
tion)	25	Ac Re Ac Re	2 3	3 4 5 6 8 9	12 13				
spec	13		1 2	2 3 3 4 5 6	8 9 12 13 18 19	4			
ed in	10	Ac Re		1 2 2 3 3 4	5 6 8 9 12 13	18 19			
hten	6.5	Ac Re	->	1 2 2 3	3 4 5 6 8 9	12 13			
Acceptable Quality Levels (tightened inspection)	4.0	Ac Re Ac Re Ac Re	>		2 3 3 4 5 6	8 9 12 13 18 19	-		
evel	2.5	Ac Re			1 2 2 3 3 4	5 6 8 9 1	¥ 19		
lity I	1.5			→ ⁻	3.5	4 9 0	13		
Qua	1.0 1	Ac Re Ac Re			2 - 2	6 8 3	9 12 13 18 19	-	
able	0.65	Ac Re A				3 3 4 5	6 8 9 12 13 18	61	
cept		Re Ac			0	32 - 28	4 S 6 8 9 12	13 18	
Ā	5 0.40	te Ac Re				2 2	£ 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9 12	
	0.25	Re Ac Re			- > 0	\	835	80	
	0.15	Ac R				•	1 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5 6	
	0.10	Ac Re Ac				→ -	2 - 2	3 4	
	0.065	Ac Re				- - 0	1 2	2 3	
;	0.040	Ac Re		<u>,, –</u>			1 O	1 2	
	0.025	Ac Re					- > -		1 2
	0.015	Ac Re Ac Re						-	
	0.010	Ac Re /					>	- 0	
	Sample 0		888	8 13 20	32 80 80	125 200 315	500 800 1250	2000	3150
Sample	size	letter	∀ ® O	Оаг	0 # h	ネコ区	240	~	

= Use first sampling plan below arrow. If sample size equals or exceeds lot or batch size, do 100 percent inspection.

A = Use first sampling plan above arrow.

Ac = Acceptance number.

Re = Rejection number.

SINGLE TIGHTENED PLANS

Table II-C-Single sampling plans for reduced inspection (Master table)

\sim								-	
6		1000	V	30 31 30 31					 -
(See 9.4 and 9.5)		650	Ac Re	14 15 21 22 14 15 21 22 14 17 21 24	4				
9.4		400	c Re	15 2 17 17 2	24				
See			Re A	3 14	17 21 24		 		
<u>ت</u>		250	Ac	10 11 10 11 10 13	14				
		150	Ac Re	7 8 7 8 7 10	10 13 14 17				
		100	Ac Re Ac Re Ac Re Ac Re Ac Re	5 6 5 8	7 10 10 13				
		9	Re A	4 5 9	5 8 7 7 10 10 10 10 13			<u>·</u>	
			ReAc	5 4 3 3	6 5 8 7 10 10	53			
	İ	40	Acı	222	3 7	0 1			
	ou)†	25	Ac Re	1 3	2 5 3 6 5 8	7 10 10 13			
	Acceptable Quality Levels (reduced inspection)†	15	AC RE AC RE AC RE AC RE AC RE AC RE	0 2 1 3	1 4 2 5 3 6	5 8 7 10 10 13	-		
	insp	10	c Re	0 2	62.40	~ ≈ ō	10 13		
	rced	6.5	Re		2 6 4	86.8			
	redi		e Ac	0	0	262	7 10		
) ste	4.0	Ac R	↓	0 2	# 5 E	5 8 7 10 10 13	—	
	Leve	2.5	Ac Re	0 1	♣ ♥ 0 2	1 3 1 4 2 5	3 6 5 8 7 10	10 13	
į	lity	1.5	c Re			2 6 4	× ~ ~	13	
	Qua		Ac Re Ac Re		0 -	3 1 0	4 S S	8 7 10 10 13	
i	ble	1.0	e Ac			0-	32-	5 7 10	
	epts	0.65	Ac R		-	0 2	1 3 1 4 2 5	3 6 5 8 7 10	10 13
	Acc	0.40	Ac Re				0 2 1 3 4 4	2 5 3 6 5 8	7 10
		0.25	Re Ac Re Ac Re				3 2 1	8 9	«
		15					2 1	3 1 4 2 5 3	6 5
		o o	Ac Re Ac				-	7 - 7	3
		0.10			<u>-</u>		ुं≺⊁	0 2 1 3	2 \$
		0.065	Ac Re				→	0 2 1 3	4
		0.040	Ac Re Ac Re				→ -	A 0 2	- 3
		0.025	Re /						7
			Ac Re Ac Re					0	
		0.015						→ ¯ ←	
		0.010	Ac Re						←
		Sample		2 2 2	en 40 ∞c	13 20 32	50 80 125	200 315 500	800
	Sample	size	letter	CBA	OHF	9 ± ¬	×ηΣ	ZªO	×

= Use first sampling plan below arrow. If sample size equals or exceeds lot or batch size, do 100 percent inspection.

Ac = Acceptance number.

Re = Rejection number.

⁼ Use first sampling plan above arrow.

t = If the acceptance number has been exceeded, but the rejection number has not been reached, accept the lot, but reinstate normal inspection (see 10.1.4).

Table III-A—Double sampling plans for normal inspection (Master table)

` [1000	Ac Re		5 31														
	 		*	38 25 38 36 36	57			**										
	650	Ac Re	*	37	25 25	-												
	\$	Ac Re	*	11 16 26 27	17 22 37 38	25 31 56 57	-											
	250	Ac Re Ac Re	*	7 11 18 19	1 16	17 22 37 38	25 31 56 57	-										
	150	Ac Re	*	9	13	11 16 1	3 22	_										
		Ş.	<u> </u>	7 5 9 12	9 7 13 18	11 11 61	16 17 27 37											
	100	Ac Re	*	€ 00	2 2	~ ≊	= %	*										
	65	Ac Re	*	2 5 6 7	3 7 8 9	5 9 12 13	7 11 18 19	11 16 26 27	-		-						-	_
	40	Ac Re	*	1 4 4 5	2 5	3.7	5 9 12 13	7 11 18 19	11 16 26 27	4								
(F)	25		*	0 3 3 4	1 4 4 5	2 5 6 7	3 7 8 9	5 9 12 13	7 11 18 19	11 16 26 27	*							_
Acceptable Quality Levels (normal inspection)	15	Ac Re Ac Re	-	0 2 1 2	0 3	1 4 4 5	2 5 6 7	3 7 8 9	5 9 12 13	7 11 18 19	11 16 26 27	+						
insp	01	_		•	7 7	w 4	4 20	2 5	~ 0	9	7 11 1	16	-					
mal		Se Ac			0 -	2 0 2 3	3 1	4 2 5 6	5 3	7 5 9 12	9 7	11 11 19 26	57 27					
non)	6.5	Ac Re Ac Re Ac Re	*	•	_	0 -	3 0	4	2 9	8 3	5 2	9 7 13 18	= %	তন				
els (4.0		-	*	*	→	0 2 1 2	3 4	4 4 S	2 5 6 7	8 9			11 16 26 27	*			
Le	2.5	Ac Re		-	*	4	-	0 2 1	3 4	1 4 4 5	2 S 6 7	3 7 8 9	5 9 12 13	7 11 18 19	11 16 26 27	~		
ality	1.5				→	*	 	+	0 2	0 3	1 4 4 S	2 5 6 7	3 7 8 9	2 2 9	7 11 18 19	11 16 26 27	<u> </u>	
e Qu	1.0	Ac Re Ac Re				→	*	+	•	2 2	8 4	4 %	2 6	3 7	2 3		11 16 26 27	+
otabl	0.65	Ac Re A					L	-	_	0 1	2 0	4 4	5 4	2 5	~ ~	<u>6 €</u>	<u>ه ه</u>	16
vcce											1 0	2 0 2	3 1	4 2 5 6	7 8	7 9 12	<u>ه د</u>	7 11 11 18 19 26
4	5 0.40	c Ac Re					_		*	•		0 -	0 m	- 4	2 9	7 8 3	9 5	9 7
	0.25	Ac Re					_		*	*	+	^	0 2 1 2	3 4	1 4 2 S		€ 00 1, 00	5 9 12 13
	0.15	Ac Re								→	*	•	-	0 2		4 4 5	6 2	
	0.10	Ac Re Ac									\	*	4	-	0 2 1 2	3 4	- 4 4 &	2 5 6 7
	0.065	Ac Re							_			-	*	•	-	0 2	3 3	1 4 4 5
	0.040	Ac Re A							_				—	*	•	-	7 7	ю 4
	0.025 0.															4	0 -	2 3
		Ac Re Ac Re	_												۲			0 -
	0.015														-	*	-	
	0.010	Ac Re	_													-	*	*
	Cumu- lative	size		24	~ v	20	∞ 20	2,5	28	2.2	8.8	8 2	125 250	200 400	315 630	1000	0091 008	1250 2500
	Sample			22		22	∞ ∞	22	22	22	នន	8 8	22.23	200	35.5	88	008	1250
	Sample		_	First	First Second	First Second	First	First	First Second	First	First	First	First Second	First	First	First	First Second	First
	Sample size code	letter T	<	m	ű	Ω	ш	GL.	D	=	-	×	٦	Σ	z	4	o	~
L			L.,	<u> </u>	L	<u> </u>		<u></u>	1	Ц	J		Щ.	Ь	1	1	1	-

= Use first sampling plan below arrow. If sample size equals or exceeds lot or batch size, do 100 percent inspection.

= Use corresponding single sampling plan (or alternatively, use double sampling plan below, where available), Ac = Use first sampling plan above arrow.
Ac = Acceptance number.
Re = Rejection number.

* = Use corresponding single sampling plants.

DOUBLE NORMAL PLANS

	1000	Ac Re	1	2 52 53	*									1					
	650	Ac Re	*	15 20 34 35	23 29 52 53	-									_				
	400		*	9 14 23 24	15 20 34 35	23 29 52 53	-												
	250	Ac Re Ac Re	*	6 10 15 16	9 14 23 24		23 29 52 53	-											_
	150	Ac Re	*	3 7	6 10	4 2	3 50	-											-
	001	Ac Re	*	2 5 1	3 7	6 10	4 4	-			_			_					_
	65	Ac Re A	*	4 v	s r	7	10	3 24	-										
	40	Ac Re A	*	е 4 - 4	5 6		7 6 12 15	10 9	14	_	_								_
2	25 ,	_		2 0 2 3	3 1	5 4 6	5 7	7 6 12 15	10 9 16 23	14 24									-
ectio	15	Ac Re Ac Re		0 -	2 0	1 4	5 6	5 3	7 6 12		4 2								
insp					0 -	2 0 2	ω 4 - 4	5 6	5 3	7 6 12 15	16 9 16 23	<u>4</u> 2							
ened	5 10	Re Ac Re				0 -	2 0 3	3 1 4	4 2 5 6	5 3 7 11		10 9 16 23	<u>4</u> ₹						
Acceptable Quality Levels (tightened inspection)	6.5	te Ac Re	-	*		-	0 -	2 0 2	4	2	5 3	7 6 12 15	9 23	4 45 4 4 4 7 8 7 8 8 9 8 9 9 9 9 9 9 9 9 9 9					
els (4.0	e Ac Re		_	*		-	0 7	3	1 4 5	7 9	3	5 1	٥ ي	★				
Lev	2.5	Ac Re			>	*		-	0 2 1 2	0 3	4 4	2 5 6 7	3 7		9 14 23 24	4			
nality	1.5	Ac Re				-	*	_	-	0 2	3 3	1 4 5	2 5 6 7	3 7		9 14 23 24	•		
e Q	1.0	Ac Re					-	*	_	-	0 2 1 2	3 4	1 4 4 5	2 5 6 7	3 7 11 12	6 10 15 16	9 14 23 24	•	
eptab	0.65	Ac Re						*	*		+	0 2 1 2	0 3 3 4		2 5 6 7	3 7	6 10 15 16	9 14 23 24	
Acc	0.40	Ac Re							-	*		\	0 2 1 2	0 3 3 4	1 4 4 5	2 S 6 7	3 7	6 10 15 16	
	0.25	Ac Re								-	*		-	0 2	3 4	1 4 4 S	2 5 6 7	3 7	
	0.15	Ac Re /									→	*			0 2 1 2	€ 4	5	_	_
	0.10	Ac Re			_							—	*		→	7 7	C 4	4 ×	
	0.065	Ac Re A											- -	*		-	2 3	4 4	
	0.040	Ac Re A													*		- 0	2 3	
	0.025 0.						_`									*		0 -	7 7
ļ	0.015 0.	Ac Re Ac Re																	0 -
	0.010	Ac Re Ac																	
<u> </u>				W 4	6.00	~ <u>a</u>	∞ ∞	<u>0</u> %	28	8.3	88	88	22.02	200 400	315	8 8 8	000	1250 *	2000 4000
<u> </u>	Je lative			7.7	E E	22	ao so	2 2	22	33	50	08	125				<u> </u>	L	<u>L</u> _
	e Sample	<u> </u>		<u> </u>										200	315	8 88	000	1250 1250	2000 2000
	Sample			First Second	First Second	First Second	First	First	First Second	Pirst Second	First Second	First	First Second	First	First Second	First Second	First	First	First
	Sample size code	Ce tter	<	В	၁	۵	Ŀ	tr.	9	H	J	Ж	L	Σ	z	4	0	~	S

DOUBLE TIGHTENED PLANS

■ Use first sampling plan below arrow. If sample size equals or exceeds lot or batch size, do 100 percent inspection.

Use corresponding single sampling plan (or alternatively, use double sampling plan below, where available).

Ac = Acceptance number. Re = Rejection number.

Table III-C-Double sampling plans for reduced inspection (Master table)

			<u>.</u>	-														
9.9	1	0001	Ac R	* *	* ~	_							-					
and		650	Ac Re	*	* *	+										-		_
(See 9.4 and 9.5)		400	Ac Re	*	* *	11 17 26 30	+											
(Se		250	Ac Re	*	* *	7 12 18 22	11 17 26 30	*										
		150	Ac Re	*	* *	\$ 10 12 16	7 12 1	•										
		<u>8</u>	Ac Re	* *	* *	3 8 8 12 1	5 10 12 16 1	4						-				
		.s	c Re	* '	* *	2 7 6 9	3 8 8 12 1	\$ 10 2 16	-									
		40	ACRE ACRE ACRE ACRE ACRE ACRE ACRE ACRE	* *	* *	1 5 4 7	2 7 3 8 6 9 8 12	3 8 8 12 1	5 10 12 16	~								
	<u></u>	22	c Re A	* 1	* *	0 4	1 5 4 7		3 8 8 12 1	5 10 12 16	-							
	ction	15	c Re A	- *	* *	0 4	0 4	1 5 4	2 7 6 9	3 8 8 12 1	\$ 10 12 16	4						
	insp	10	c Re A	-	*	0 3 (0 4 (3 6	1 5 2	2 7 6 9	3 8 8 12 13	5 10 12 16	-					
	Acceptable Quality Levels (reduced inspection)†	6.5	c Re A	*-	+	0 2 0	3	2	0 4 3 6	20	7	3 8 8 12 12	5 10 12 16	-				
	(red	0.4	c Re A	→ *	-	>	2 0	3 0	4 %	1 6 4	20	2 7 6 9	3 8 5	5 10 12 16	4			_
	evels	2.5	c Re A	-	*	+	0	2 0	3 0	5 3	6 4	2 5		3 8 5 8 12 12	5 10 12 16	-		
	lity L	1.5	Re A			*	+	0	2 0 2 0	3 0	5 3	6 1	2 ~	7	3 8 5 8 12 12	5 10 12 16	_	
	Qua		ReAG			<u> </u>			00	2 0 2	3 0	5 3	4 6 4	7 6	7 3	8 12 12	<u> </u>	
	ible (5 1.0	Ac Re Ac Re Ac Re			_	*	—	1	00	2 2 0	3 0	5 3 3	4 1 4	5 2 7	7 3 8 9 8 12	8 5 10 12 12 16	0 4
	cepta	0.65	c Ac I		-		→	*	+	-	0	2 0 2 2 0	0 -	0 6	4 1 6	5 2 7	9 3	8 5 10 12 12 16
	¥	0.40	e Ac Re					~	*	*	-	0 0	0 3	0 4 5	3	- 4	2 9	£ 80
		0.25	Ac Re Ac Re						-	*	+	1	0 2	0 4	0 4	3 6	1 5	2 7 6 9
		0.15	Ac Re							-	*	*	→		0 3	0 4 1 S	9 6	4
		0.10	Ac Re								-	*	+	-	0 2	0 3	0 4	3 6
		0.065	Ac Re								-	*	*	+	-	0 2 0 2	0 3	0 4 1 5
		0.040	Ac Re				_						-	*	-	†	0 2	0 3
		0.025												>	*	4	1	0 2 0 2
		0.015	Ac Re Ac Re			-									-	*	4	,
		0.010	Ac Re										-				*	-
			size			~ 4	e 2	2	∞ ∞	2%	88	E 2	88	8 <u>9</u>	125 250	92 0 2	313	88
•		Sample				77.7	m m	20.20	∞ ∞	5 5	22	22	88	80	13 13 13	92,92	25.5	88
		Sample				First	First	First Second	First Second	First	First	First	First	First Second	First Second	First Second	First Second	First
E		size S	letter	<	<u>س</u> ن	D F &	田田	TE O	D E W	E	-	× ×	J	E S	Z	4 S	O	α F 8
ED		n T		<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>	<u></u>		L	<u> </u>		1	

Use first sampling plan below arrow. If sample size equals or exceeds lot or batch size, do 100 percent inspection.
 Use first sampling plan above arrow.

A = Use first sampling pla
 Ac = Acceptance number.

Re = Rejection number.

= Use corresponding single sampling plan (or alternatively, use double sampling plan below, where available).

= If, after the second sample, the acceptance number has been exceeded, but the rejection number has not been reached, accept the lot, but reinstate normal inspection (see 10.1.4).

REDUCED PLANS

16

Table IV-A—Multiple sampling plans for normal inspection (Master table)

	0		+						
	1000	Ac Re	* ‡						
	650	Ac Re	* ‡‡						
	400	Ac Re	* ‡‡	6 16 17 27 29 39 40 49 53 58 65 68					
	-	Ac Re	<u> </u>	5524648	57. \$5 \$8 \$ \$				
	250		* ‡‡	4 = 2 2 2 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3	0 T 8 6 8 8 F			·	
	150	Ac Re	* ‡‡	25 29 31 33 33 38 33 38	27 1 1 1 2 2 3 4 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4			· · · · · · · · · · · · · · · · · · ·	
	100	Ac Re	* ‡‡	8 13 12 17 17 20 22 23 25 26	2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4			
	65	Ac Re	* ‡‡	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2 9 7 14 19 19 19 25 29 31 33 38 33 38	-		
	9	Ac Re	* ‡‡	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ı		-	
	25	Ac Re	* ‡‡	# - 0 E & C & C & C & C & C & C & C & C & C &	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -		7 - 4 - 7 - 7 - 7 - 12 - 7 - 13 - 13 - 13 - 13 - 13 - 13 - 13		
	15	Ac Re A	> ‡‡	# 0 - 1 1 4 4	*-525 4 2 2 2 2 4 2 4 2 5 2 4 2 5 2 2 5 2 5 2			1 7 8 13 11 12 17 19 19 19 19 19 19 19 19 19 19 19 19 19	2 9 7 14 13 19 19 25 25 29
(ion)	10	Ac Re A	→ ‡	#00-N04 #864440	*0-4848	4 2 2 2 2 2 4 4 4 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 4 8 5 5 5 4		1 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ıl inspec	6.5	Ac Re A	*	**************************************	#00-464 9664488		4 % % ८ % ७ छ	4 9 8 0 1 2 4	2 % S S S S S S S S S S S S S S S S S S
Acceptable Quality Levels (normal inspection)	4.0	Ac Re A	> *<		444666	0004488	ww42007	5 1 5 1 7 5 7 9 10 13 10 13	6 3 8 6 8 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
' Levels	2.5	Ac Re A	*		**000	~~~~~	2004488 #0-20040	**-126.22.27	4 × 0 × 0 0
Quality	┝┈┤	Ac Re Ac				##00	#00-4#4	0004488 #0-0040	# 4 50 50 t
eptable	2.1	Re					**004	400-4m4	*0~0.
Acc	5 1.0	Re Ac		*				2 1 0 0 * *	*00-44
	0.65	Ϋ́				*	-		**00
	0.40	Ac Re					*	-	
	0.25	Ac Re						*	
İ	0.15	Ac Re							*
ļ	0.10	Ac Re							
	0.065	Ac Re							
	0.040	Ac Re							
!	0.025	Ac Re A							
i	0.015 0	Ac Re Ac							
	0.010 0.	Ac Re Ac							
							10		
	Cumu- le lative		<u> </u>	7408077	28554	25 B X X X	<u> </u>	T(%); % % % % # ±	4 3€ ₹ ₹ ₹
	Sample		<u> </u>	000000		****	00 00 00 00 00 00	ឧតខាត្ត	22222
	Sample		ļ 	First Second Third Pourth Fifth Sixth Seventh	First Second Third Fourth Fifth Sixth Seventh	First Second Third Fourth Fifth Sixth Seventh	First Second Third Fourth Fifth Sixth Seventh	First Second Third Fourth Fifth Sixth Seventh	First Second Third Fifth Fifth
	Sample size code	etter	K m O	۵	ы	ĮT.	0	н	-
	, .				6	17 5	-232	281-504	50-120
					•	17 I	4 -	4	

= Use first sampling plan below arrow (refer to continuation of table on following page,

Re = Rejection number. # = Acceptance not permitted at this sample size.

Ac = Acceptance number.

when necessary.) If sample size equals or exceeds lot or batch size, do 100 percent inspection.

= Use first sampling plan above arrow.

++ = Use corresponding double sampling plan (or alternatively, use multiple sampling plan below. where available). = Use corresponding single sampling plan (or alternatively, use double sampling plan below, where available).

NORMAL **PLANS**

(See 9.4 and 9.5) Àc Re 900 650 Ac Re 8 Ac Re 250 Ac Re 150 Ac Re Table IV-A—Multiple sampling plans for normal inspection (Master table) 8 Ac Re \$ Ac Re 9 Ac Re 23 Acceptable Quality Levels (normal inspection) Ac Re 5 Ac Re 9 Ac Re 833811111 **ゥはりだめの第 .**6 Ac Re 4.0 2.5 (Continued) Ac Re ۲. Ac Re 0: Ac Re 0.65 Ac Re 0.40 *** Ac Re 0.25 Ac Re 0.15 Ac Re 0.10 Ac Re 0.065 Ac Re 0.040 Ac Re 0.025 Ac Re 0.015 Ac Re 0.010 Cumu-lative sample size 200 200 200 200 200 400 400 315 630 630 845 850 830 830 830 (3) **2** E 8 8 E E Sample 8888888 2222222 ន្តន្តន្តន្តន 88888888 Sumple First Second Third Fourth Fifth Sixth Seventh First Second Third Fourth Fifth Sixth Seventh First Second Third Fourth Fifth Sixth Seventh First Second Third Fourth Fifth Sixth Second First Second Third Fourth Fifth Sixth Seconth First Second Third Fourth Fifth Sixth Seventh First Second Third Fourth Fifth Sixth Seventh Sumpte size code MULTIPLE _1 z ¥ Σ 0 × 50, koz - 100, dz **NORMAL** bealest - confe 201-1000 no/25-100 18

PLANS

= Use first sampling plan below arrow. If sample size equals or exceeds lot or batch size, do 100 percent inspection.

= Acceptance number Ac

Rejection number, Re

Use first sampling plan above arrow (refer to preceding page, when necessary).

= Use corresponding single sample plan (or alternatively, use multiple plan below, where available).

Acceptance not permitted at this sample size

Table IV-B—Multiple sampling plans for tightened inspection (Master table)

		೫								}
	1000	e Ac Re	* ‡ -							
}	059	Ac Re	* ‡‡						·	
	§	Ac Re	* ‡‡	6 15 25 25 25 25 25 25 25 25 25 25 25 25 25	-					
	250	Ac Re	* ‡‡	24 10 10 10 10 10 10 10 10 10 10 10 10 10	22 8 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-				size
	150	Ac Re	* ‡‡	- 8 - 6 - 6 - 6 - 7 - 7 - 7 - 8 - 7 - 7 - 8 - 7 - 8 - 7 - 8 - 7 - 7 - 8 - 7 - 7 - 8 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	5728854	4				v. mple
	901	Ac Re	* ‡‡	222722	3333222	4				Use first sampling plan above arrow. Acceptance not permitted at this sample size
	65	Ac Re A	* ‡‡	4 L 9 L 2 L 2 L 2 L 2 L 2 L 2 L 2 L 2 L 2	2878500 23786 23786	325 22 ± 22 ≈ 33 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		·		abov ed at
	-			4 2 2 2 8 2 5 0 4 4 2 5 4	4 C 0 1 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	28212296 28212296 28212296				g plan sermit
	40	te Ac Re	* ‡‡	~~4×000 *-4×0000	4200000 0440004	4 - 9 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	33255	3882222		mplin not p
ction	23	e Ac Re	+ ‡ ‡	*0-4040	* 11 1	0 4 4 6 6 2 4	0 6 7 8 2	2325=0-	- 0.5 0.5 0.5	irst sa ptance
uspec	· =	Ac Re	-> ‡	#00-4W4	\$0-4646 6647000	# - 4 & & C & & Q	4 C C C C C C C C C C C C C C C C C C C	0 6 7 0 7 2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	33326	
led in	2	Ac Re		**000	#00-484 9884488	#0	#-000re	0 2 4 0 0 2 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 1	##
Acceptable Quality Levels (tightened inspection)	2	Ac Re	- * -		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	#00-464 4664486	# 0 - 1 W 4 A	# - 4.8.8.2.0 4.8.9.2.8.0.0	0 7 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
ls (tig	0.4	Ac Re	→ *			333555 333555	*00-4E4	#0-454 EC4597	# 02 C S C O O O O O O O O O O O O O O O O O	ζ.
eve	2.5	Ac Re		*			333555 333555	# 0 0 1 2 E 4 2 E E 4 4 2 2	# 0 1 2 E 4 4	essar
lity I	, \\ \Z	Ac Re			*			**00°**	#00-114 12004488	en ne
Oua	\ - -	2				*			инипппп	ge, wh
table	0.65	Ac Re Ac							**00	ng pa
Cep	- °						L *			ollowi tion.
Ĭ	<u> </u>	e Ac Re						<u> </u>		of table on follo
	0.25	Ac Re							*	of tabl
	0.15	Ac Re								ation c
	0.10	Ac Re								ontinu e, do
	0.065	Ac Re								r to co ch siz
	0.040	Ac Re						-		v (refe or ba
	0.025	Ac Re								v arrov eds lot
	0.015	Ac Re								below
	0.010	Ac Re								g plan
\vdash				4 4 0 to 5 to 4	E 0 0 21 22 88 2	novensa	* * * * * * * * * * * * * * * * * * *			mplin ize eq
-	Comu-		<u> </u>	 		202222	~ 5 4 K 8 4 K	2 3 8 2 3 8 2	8 4 8 8 8 8 <u>8 8 8 8 8 8 8 8 8 8 8 8 8 8</u>	Use first sampling plan below arrow (refer to continuation of table on following page, when necessary) If sample size equals or exceeds lot or batch size, do 100 percent inspection.
_	Sample	-		~~~~~	~~~	40 40 40 40 40 V	00 00 00 00 00 00	25555	222222	
	Sample			First Second Third Fourth Fifth Sixth Sixth	First Second Third Fourth Fifth Sixth Seventh	First Second Third Fourth Fifth Sixth Seventh	First Second Third Fourth Fifth Sixth Seventh	First Second Third Fourth Fifth Sixth Sixth	First Second Third Fourth Fifth Sixth Seventh	u ->-
	Sample size	letter	₹ ₩₩	۵	ы	tr.	5	×	-	
<u> </u>			i	L <u>.</u>	1	1	1 _	<u> </u>	1	j

Ac = Acceptance number. Re = Rejection number.

■ Use corresponding single sampling plan (or alternatively, use double sampling plan below, where available).

MULTIPLE TIGHTENED PLANS

19

Table IV-B—Multiple sampling plans for tightened inspection (Master table) (Continued)

(See 9.4 and 9.5)

	1000	Ac Re								· •, <u>-</u>
	-									
	650	e Ac Re								
	400	e Ac Re	—							
	250	Ac Re								
	150	Ac Re	—		· -					
	100	Ac Re	-							
	65	Ac Re				····································				
	40	Ac Re	—							·
	25	Ac Re A								
	15	Ac Re Ac								
(IIIC	Н		322728						<u>-</u>	
nspecti	2 10	de Ac Re	20 27 22 25 25 25 35 35 35 35 35 35 35 35 35 35 35 35 35	38882723			· · ·			
i lema	6.5	e Ac Re	2287	32222	************************					
vels (n	4.0	Ac Re	0240054 400545	0 6 7 2 2 2 2	22 25 27 29 33 33 33	←				
ality Le	2.5	Ac Re	#-000 4500 0000	0 2 4 0 0 2 4 4 0 0 1 2 4 2 1	3 0 0 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 9 - 1 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 3 3 3 3	-			
ıble Qu	1.5	Ac Re	#0=5644 6645495	# 425.00 420.00 420.00	0248 478 1245	0 6 3 9 7 12 10 15 14 17 18 20 21 22	6 12 6 12 16 22 22 25 27 29 32 33		<u>-</u>	
Acceptable Quality Levels (normal inspection)	1.0	Ac Re	#00-464 4664486	#0-2648 6648867	1 5 4 5 7 5 7 9 9 10			1 8 6 12 16 22 22 23 27 29 32 33	-	
,	0.65	Ac Re	333555		#0-5848 8848867		0 4 4 9 6 11 9 12 12 14 14 15		1 8 6 12 11 17 16 22 22 25 27 29 32 33	
	0,40	Ac Re		333555	#00=444 466448		# 4 1 5 2 6 3 7 5 8 9 10		0 6 3 9 6 7 12 7 12 18 20 21 22	
	0.25	Ac Re			0000000 0000000	400 4 4 8 8	#D	4200800	4 - 6 - 5 - 5 - 5	
	0.15		*			22200000	0mm44mm	464800C	4 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
	0.10	Ac Re Ac Re		<u>.</u>		2207	33322	400.4422 40-5643	264800 # −2680	
		Re Ac		*			**007	422555 42256	#0=####	
	0 0.065	e Ac Re			*			**008	*00-4	···
	5 0.040	Ac Re				*			N00##	
	0.025	Ac Re Ac Re					*		<u> </u>	**00
	0.015	1						*	4	
	0.010	Ac Re							*	
	Cumu- lative sample	size	22823823	8888888	8248888	22228222	62 62 62 52 54 62 62 62 62 54 62 62 62 62 62 62 62 62 62 62 62 62 62 6	315 630 1260 1260 1890 2205	35555555 35555555 3555555 35555 3555 3	8 5 2 2 5 8 8 8 8 8 8 8
-	Sample		2222222	8888888	8888888	2222222	8888888	315 315 315 315 315 315 315 315 315	8888888	0000000
	Sample Sa			<u> </u>				<u> </u>	First Second Third Fourth Fifth Slxth Seventh	First Second Third Fourth Fifth Sixth
	size code	letter	×	٦	Σ	z	۵	o	œ	S
	Sample size code	letter	×	_	Σ	z	م	o ·	α.	w

Use first sampling plan below arrow. If sample size equals or exceeds lot or batch size, do 100 percent inspection.

= Use first sampling plan above arrow (refer to preceding page, when

Ac = Acceptance number.

Re = Rejection number.

* = Use corresponding single sampling plan (or alternatively, use multiple sampling plan below, . where available).

= Acceptance not permitted at this sample size.

necessary).

MULTIPLE TIGHTENE PLANS

Table IV-C--Multiple sampling plans for reduced inspection (Master table)

			_					 -	
d 9.5		1000	Ac Re	* * -					
(See 9.4 and 9.5)		650	Ac Re	* * *					
e 9.		400	Ac Re	* * * ‡ -					
S		250	Ac Re /	++					
İ		}		* * * ‡‡					
		150	c Ac Re	* * * ‡ ‡	-				
		õ	Ac Re	* * * ‡ ‡	-				
		89	Ac Re	* * * ‡‡	0 % 0 % II 4 %				
		40	Ac Re	* * * ‡ ‡	0 S 1 7 7 2 1 2 2 1 2 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	0 0 0 3 9 0 6 12 8 15 14 20 18 20	-		
	ı)†	25	Ac Re	* * * ‡‡	4000=24	22222	2872200	-	
	ction	-\$	Ac Re Ac	 	4 N O L M D O	4 9 8 0 = 24 0 - 6 2 0 5	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	287529	
	uspe	13		** ‡‡	#0-4w40	#= 0 0 0 0 0	22 - 0 - 0 - 0	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2813296
	ed i	10	Ac Re	* ‡‡	*00-004	#0-0W40 480080	2	0 - 6 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0008=28
	educ	6.5	Ac Re Ac Re	* <> ‡‡	**000	#00-4W4 E486668	# 0 - 2 6 4 6 4 2 2 5 2 8 9 0	# - 4 % % C & 4 % % % E E E E	2 4 6 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	Acceptable Quality Levels (reduced inspection)†	4.0	Ac Re	> *	##000~- UUU44NN	##00~~N	#00~264 6489778	*0-4646 4567860	4 2 8 0 2 7 4
	Leve	2.5	Ac Re	* *	333555	##000 2664488	##00-12 6 # # 0 0 - 1	#00-264 645677#	400000
	lity	1.5	Ac Re			имини	NEWAANN	w 6 4 8 9 9 F	€48877 € #0-7648
			Ac Re Ac			**0000-	000**	**00	£00-264
ļ	able	5 1.0		*			**0000~	**000	**007
ļ	cept	0.65	Ac Re		*	*		**0000	##000
	Ac	0.40	Ac Re			*	—		##0000## 0000##
		0.25	Ac Re				*		
		0.15	Ac Re					*	-
		0.10	Ac Re /		_ -			>	*
		0.065	Ac Re A						
}		5 0.040	e Ac Re						
		0.025	Ac Re						
		0.015	Ac Re						
		0.010	Ac Re						
		lative			04000 <u>04</u>	2852063	232828 2	≈ 2 2 2 3 3 2 2 ×	2 8 8 3 8 2
		Sample		_ 	0000000		*****	00 00 00 00 00 00 00	222222
. }		Sample Si		<u> </u>	First Second Third Fourth Fifth Sixth Seventh	PPE-4W	_ gp # - e	_ F-= f	The Person
				 	Sixtl Sour	First Second Third Fourth Fifth Sixth Seventh	Fusi Second Third Pourh Fifth Sixth Seventh	First Second Third Fourth Fifth Sixth	First Second Third Fourth Fifth Sixth Seventh
l		size code	letter.	大百 〇〇 出	<u>т</u>	D D	π	<u> </u>	*
						21		·	

Ac = Acceptance number.

= Use first sampling plan below arrow (refer to continuation of table on following page, when necessary).

If sample size equals or exceeds lot or batch size, do 100 percent inspection.

Use first sampling plan above arrow.

Re = Rejection number.

= Acceptance not permitted at this sample size | If, after the final sample, the acceptance numb

= If, after the final sample, the acceptance number has been exceeded, but the rejection number has not been reached, accept the lot but reinstate normal inspection (see 10.1.4).

REDUCED **PLANS**

++ = Use corresponding double sampling plan (or alternatively, use multiple sampling plan below, where available). # = Use corresponding single sampling plan (or alternatively, use multiple sampling plan below, where available).

Table IV-C—Multiple sampling plans for reduced inspection (Master table) (Continued)

				·	-			_	
19.5		0001	Ac Re	<u></u>		<u></u>			
(See 9.4 and 9.5)		929	Ac Re	-					
e 9.4		400		—			·		
(Se			Ac Re Ac Re						
		250							
		150	Ac Re						
		901	Ac Re						
		\$9	Ac Re	-			···		
		9	Ac Re	4					
	n)†	25	Ac Re	-					
	Acceptable Quality Levels (reduced inspection)†	15	Ac Re	—					
	inspe	01	Ac Re A	—		······································			
	peo	-	Re	0022782					
	edu	6.5	e Ac Re	0 0	0000000				
	els (i	4.0	Ac Re	0 5 1 7 8 2 12 5 12 7 13 10 15	0 6 3 9 6 12 8 15 14 20 18 22	•			
	Lev	2.5	Ac Re	# 1 2 2 6 4 4 5 1 1 1 2 6 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 5 1 7 1 3 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 6 3 9 6 12 8 15 11 17 14 20 18 22	4		
(Commuteu)	ality	1.5	Ac Re	*0~254 4~0~80 0	* 1 2 2 5 6 4 9 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	0 5 1 7 3 9 5 12 7 13 10 15	0 6 3 9 6 12 8 15 11 17 14 20 18 22		
<i> </i>	S _o	0:1	Ac Re	#000 400 700 800 800	#0-2549 4597880	# 4 1 6 3 10 3 10 5 11 9 14	0 5 1 7 3 9 5 12 7 13 10 15	0 6 3 9 6 12 8 15 11 17 18 20 18 22	-
ž	table	0.65	Ac Re	w 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	642000	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4086254	0 5 1 7 3 9 5 12 7 13 10 15	0 6 3 9 6 12 6 12 11 17 18 22
	ccer	0.40	Ac Re A	6 € € € € € € € € € € € € € € € € € € €	₩ 4 2 3 5 4 5 4 5 4 5 4 5 6 5 6 5 6 5 6 5 6 6 6 6	£4827	4 5 9 5 5 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6	4 6 8 8 10 10 11 11 11 11 11 11 11 11 11 11 11	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	4			33355	\$ \$ 00 12	33 33 44 0 5 1 6 2 2 4 4 4 4 4 7 7 7 7	# 0 2 2 1 0 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	# 1 2 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		5 0.25	e Ac Re	**0000-	**090	**007	33 33 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 7 7 7 7	£ 4 2 2 5 7 5 8	4 2 0 2 8 6 0 8 6 6 8 6 6 6 6 6 6 6 6 6 6 6 6 6
		0.15	e Ac Re		******	**000	##0 0 2	#00-1264	*0-4646
		0.10	Ac Re	—		1000##	**0 0 4 4 2 3 3	## 3 0 4 0 5 1 6 2 7	#00-064 6480-08
[0.065	Ac Re	*	—		9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	##000	##002 EE48997
		0.040	Ac Re		*	-		33325	**000
		0.025	Ac Re			*	-	-	20000000000000000000000000000000000000
		0.015	Ac Re A				*	4	
		0.010	Ac Re A		·			*	
					T				0000000
		Lative sample		មន្ ខ្ទី <u>ខ</u> ៍ទី	228222		8 8 8 8 8 8		
ļ		Sample		222222	2222222	8888888	222222	ន្ទន្ទន្ទន្ទ	
		Sample		First Second Third Fourth Fifth Sixth Seventh	First Second Third Fourth Fifth Sixth Seventh	First Second Third Fourth Fifth Sixth Seventh	First Second Third Fourth Fifth Sixth Seventh	First Second Third Fourth Fifth Sixth	First Second Third Fourth Sixth Seventh
		size code	letter	د	×	z	e.	o	~
LE (D		n -		<u> </u>	<u> </u>	<u> </u>	1	<u></u>	L

= Use first sampling plan below arrow. If sample size equals, or exceeds, lot or batch size, do 100 percent inspection.

Use first sampling plan above arrow (refer to preceding page when necessary).

Ac = Acceptance number.

Re = Rejection number.

= Acceptance not permitted at this sample size

= If, after the final sample, the acceptance number has been exceeded, but the rejection number has not been reached, accept the lot, but reinstate normal inspection (see 10.1.4).

Table V-A—Factors for Determining Approximate Values for Average Outgoing Quality Limits for Normal Inspection (Single Sampling)

$\overline{}$					 		Z	
11.4		1000	0011					
(See 11.4)		650	730					
		400	470 490 430	410				
		250	330 310 290	270				
		150	220 220 190	180				
		100	160 150 130	120				
		65	97	82 72 73				
		40	69	56 50 47	46	:		
		25	42 46 39	40 34 33	82 83			
		15	28	24 22	21 19 18			
	<u></u>	01	17	17 15 16	14 13	12		
	/ Leve	6.5	<u>&c</u>	11 11 9.7	9.9	7.5		
	uality	4.0	12	6.5	6.1 6.3 5.6	5.2 4.7 4.7	 -	
	able C	2.5	7.4	4.2	3.9	3.6 3.3 3.0	2.9	
	Acceptable Quality Level	1.5		4.6	2.7	2.5	1.9	
	∢	1.0		2.8	1.7	1.6 1.5 1.4	12 13	
		0.65		8.1	11	1.1 0.97 1.00	0.90 0.82 0.75	0.73
		0.40			7:	0.67	0.63 0.56 0.52	0.47
		0.25			0.74	0.42	0.39	0,33
		0.15			0.46	0.27	0.27	0.22
		0.10				0.29	0.17 0.17 0.16	0.16
		0.065				0.18	0.11	0.097
		0.040				0.12	0.067	0.069 0.097
		0.025		·			0.074	0.042
		0.015					0.046	
	,	0.010					0.029	
	Sample size		3 3 3	8 13 20	32 50 80	125 200 315	500 800 1250	2000
	Code		B	D E	G H J	ХJЖ	Z c O	×
						·	·	

(See 11.4) 1 - Sample size Lot or Batch size Note: For a more accurate AOQL, the above values must be multiplied by

AOQL NORMAL PLANS (See 11.4)

Table V-B-Factors for Determining Approximate Values for Average Outgoing Quality Limits for Tightened Inspection (Single Sampling)

970 909 620 650 610 8 410 8 380 380 8 270 250 250 250 8 8 8 8 5 8 150 150 55 8 5 8 8 8 8 & & & 8 3 4 8 39 츙 **5 4 5** ង ង 52 23 2 2 2 9 9 9 7 17 18 19 3 9.9 = = 2.9 6. 6.6 2 Acceptable Quality Level 6.5 6.3 6.4 6.4 6.4 6.9 2 3.9 4.1 7.4 4.2 4.0 2.6 2.7 2.4 2.5 4.6 2.5 2.6 2.5 2.5 1.6 1.6 1.7 1.6 1.6 1.6 2.8 <u>.</u> 1.1 1.0 0.99 Ξ 0 660 <u>~</u> 1.0 0.63 0,65 0.69 0.62 0.62 1.2 0.39 0.74 0.42 0.40 0.40 0.27 0.24 0.26 0.46 0.27 0.25 0.17 0.17 0.16 0.16 0.15 0.29 0.097 0.18 0.11 0,10 0.069 0.065 0.067 0.042 0.074 0.040 0.046 0,025 0.027 0.015 0.029 0.010 0.018 3150 Sample size 32 50 80 125 200 315 13 250 250 250 Code Letter z 2 0 5 H - $\mathbf{z} \rightarrow \mathbf{z}$ R S Y E U Д Ш ц

1 - Sample size Note: For a more accurate AOQL, the above values must be multiplied by

(See 11.4)

AOQL TIGHTENED PLANS

Table VI-A—Limiting Quality (in percent nonconforming) for Which $P_a = 10$ Percent (for Normal Inspection, Single Sampling)

	 1						
0.7	으	58	2 4 3	26 28	33		
(256 11.0)	6.5	8	1 % %	2 2 2	5 47		
	4.0	24	22	18 20	12 10 9.0		
}	2.5	37	82	13	9.4 7.7 6.4	5.6	
	1.5		25	12 10 8.2	7.4 5.9 4.9	3.5	
₅₅	1.0		91	7.6	5.4 4.6 3.7	3.1 2.5 2.3	<u> </u>
Acceptable Quality Level	0.65		11	8. 8.	3.3	2.4 1.9 1.6	1.4
\\	0.40			6.9	3.1 2.7 2.1	13	0.1
able (0.25			4.5	2.0	1.2	11.0
ccept	0.15			2.8	1.2	1.1 0.84 0.74	0.59
\	0.10				∞ ;	0.78 0.67 0.53	0.46
	0.065				1.2	0.49	0.33
	0.040				0.73	0.31	0.27
	0.025					0.46	0.20
	0.015		_	<u></u>		0.29	
	0.010			_		0.18	<u> </u>
Sample		0 m m	8 (3	32 50 80	125 200 315	500 800 1250	2000
Code		4 % O	Оыг	G H J	׬Σ	2 4 0	×

Table VI-B—Limiting Quality (in nonconformities per hundred units) for Which $P_a = 10$ Percent (for Normal Inspection, Single Sampling)

5								
11.0]	1000	1800	,				
(See 11.6)	ļ	650	1400 1300 1100					
_		400	0001 040 770	0.19				
,		250	077 670 560	480				
		150	590 510 400	350				
		100	460 390 310	250			-	
		65	330 310 240	961 041 041	L			
		40	270 220 190	150 120 100	88			
		25	200 180 130	120 91 77	63 56			
	,	15	130	84 71 59	48 40 35			
	vel	10	78	67 51 46	37 31 25	23		
	Acceptable Quality Level	6.5	120	49 41 33	29 24 19	16		
	\ualit	4.0	14	30	21 19 15	12 10 9.0		
	ible (2.5	46	20	17 13 12	9.4 7.7 6.4	5.6	
	cepta	1.5		53	11 8.4	7.4 5.9 4.9	3.5	
	Ac	0'1		82	7.8	5.4 4.6 3.7	3.1 2.5 2.3	
		0.65		12	4.9	4.3 3.3 2.9	2.4 1.9 1.6	7.
		0.40			7.2	3.1 2.7 2.1	1.9 1.5 1.2	0:1
		0.25			4.6	2.0	1.3 1.2 0.94	0.77
		0.15			2.9	1.2	1.1 0.84 0.74	0.59
		0.10				8 .	0.78 0.67 0.53	0.46
		0.065				1.2	0.49	0.33
		0.040				0.73	0.31	0.27
		0.025					0.46	0.20
		0.015				·	0.29	
		0.010					0.18	
	Sample		5 8 2	, 13 20	32	125 200 315	500 800 1250	2000
	Code		A C	ÇHF	G TH C	ЖIJЖ	zeo	≃ .

Table VII-A—Limiting Quality (in percent nonconforming) for Which $P_a = 5$ Percent (for Normal Inspection, Single Sampling)

						,			,							
	2	·	8	90 95	46	37	32	56	2							
	6.5	87		47	34	30	22	20	92	15						
	4.0	29		32	788	23	20	91	4	=	9.6					
	2.5	,	£		22	∞_	15	13	=	8.5	7.0	9				<u> </u>
	1.5			31		4	2	9.4	8.4	9.9	5.4	4.4	3.8	_		
	1.0			21			9.1	7.7	6.2	5.3	4.2	3.4	2.7	2.4		·
Leve	0.65				4			5.8	5.0	3.9	3.3	2.6	2.1	<u>∞</u>	<u> </u>	1.5
uality	0.40			<u>. </u>		6.8			3.8	3.2	2.5	2.1	9.	4.		=
able Q	0.25			 -			5.8			2.4	2.0	9.	1.3	=		0.85
Acceptable Quality Level	0.15			·				3.7		_	1.5	1.3	0.97	0.84		99.0
★	01.0		<u>.</u>						2.4			0.95	0.79	0.62		0.53
	0.065							•		5.1			0.59	0.50		0.39
	0.040										0.95			0.38		0,32
	0.025		_									09:0			L	0.24
	0.015								-			·	0.38			<u></u>
	0.010								-					0.24		_
Sample size		2 6 6	2	8 []	50	32	90	8	125	200	315	200	800	1250		2000
Code		₹ æ ₹	٦	O EE	ír.	g	I	-	~	٦.	Σ	z		o	1	~

Table VII-B—Limiting Quality (in nonconformities per hundred units) for Which $P_a = 5$ Percent (for Normal Inspection, Single Sampling)

Code Supple Code	<u> </u>							· · · · · · · · · · · · · · · · · · ·
Supplied (2012) 6025 6040 6055 610 615 625 644 655 16 15 25 440 65 10 15 25 44	9.11	1000	1900					
Supplied (2012) 6025 6040 6055 610 615 625 644 655 16 15 25 440 65 10 15 25 44	See	059	1500 1400 1100					
Sumple 2 2 3 40 6005 0.10 0.005 0.10 0.15 0.25 0.40 6.65 1.0 1.5 2.5 40 6.5 1.0 15 0.25 0.40 0.005 0.10 0.15 0.25 0.40 0.005 0.10 0.15 0.25 0.40 0.005 0.10 0.15 0.25 0.40 0.005 0.10 0.15 0.25 0.40 0.005 0.10 0.15 0.25 0.40 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.1		6	1100 1000 810	0.29		. 		
Sumple 2 2 3 3 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9	i	250	850 730 610	510				
Sumple 2 2 3 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		120	660 570 440	380				
Acceptable Quality Level 2		8	530 440 340	270				
Acceptable Quality Level 2		89	390 350 260	210 170 150				
Sumple 1.22		64	320 260 210	160 130 110	\$6			
Sumple 2 0.010 0.015 0.025 0.040 0.085 0.10 0.15 0.25 0.40 0.65 1.0 1.5 2.3 38 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		22	240 210 160	130 100 85	68			
Sumple 2		15	160	99 18	53 44 38			
Sumple 2 3 5 8 8 13 20 125 20 30 30 30 30 30 30 30 30 30		01	95	79 60 53	41 34 27	24		
Sumple 2 3 5 8 8 13 20 125 20 30 30 30 30 30 30 30 30 30	, Leve	23	051	55 48 39	33 26 21	18		
Sumple 2 3 5 8 8 13 20 125 20 30 30 30 30 30 30 30 30 30	- Quality	0.4	100	37	24 21 16	14 11 9.6		
Sumple 2 3 5 8 8 13 20 125 20 30 30 30 30 30 30 30 30 30	able (2.5		24	20 16 13	8.5 7.0	6.1	
Sumple 2 3 5 8 8 13 20 125 20 30 30 30 30 30 30 30 30 30	ccept	1.5		38	15 13 9.7	8.4 6.6 5.4	4 6. 4 86	
Sumple 2 3 3 5 8 8 13 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	<	1.0		23	9.5	6.2 5.3 4.2	3.4 2.7 2.4	
Sample 2 2 3 3 5 8 113 20 80 80 80 80 80 80 80 80 80 80 80 80 80		0.65		15	5.9	5.0 3.9 3.3	2.6 2.1 1.8	1.5
Sample 2 3 3 3 5 8 13 20 125 8 10010 0.011		0.40			4.6	3.8 3.2 2.5	2.1 1.6 1.4	3
Sample 2 3 3 5 8 113 20 80 80 800 90.38 800 90.38 800 90.34 1250 90.30		0.25			0.9	2.4	1.6	0.85
Sample 2 2 3 3 5 8 113 20 80 80 800 800 90.24 1250 0.024 0.38 0.50 800 800 90.59		0.15			3.8	5:1	0.97 0.84	9.66
Sample 2 3 3 5 8 113 20 80 80 800 800 800 20040 9055 80 800 800 800 800 800 800 800 800 8		0.10		· · · · · · · · · · · · · · · · · · ·		2.4	0.95 0.79 0.62	0.53
Sample size 0.010 0.015 0.025 3 3 5 8 13 20 80 80 800 315 1250 0.24 2000 0.24		0.065				1.5	0.59	0.39
Sample size 0.010 0.015 2 3 3 3 5 50 80 800 800 800 800 800 800 800 800		0.040				0.95	0.38	0.32
Sample size 0.010 2 3 3 3 5 5 8 8 80 80 800 125 200 315 200 200 200		0.025					09:0	0.24
Sample size size size size size size size siz		0.015		· · · · · · · · · · · · · · · · · · ·			0.38	
6		0.010		·····························			0.24	
S S S S S S S S S S S S S S S S S S S	Sample	size		8 13	80 83	125 200 315	500 800 1250	2000
	Code	letter	CBD	DBF	В Т	자 그 조	zao	~

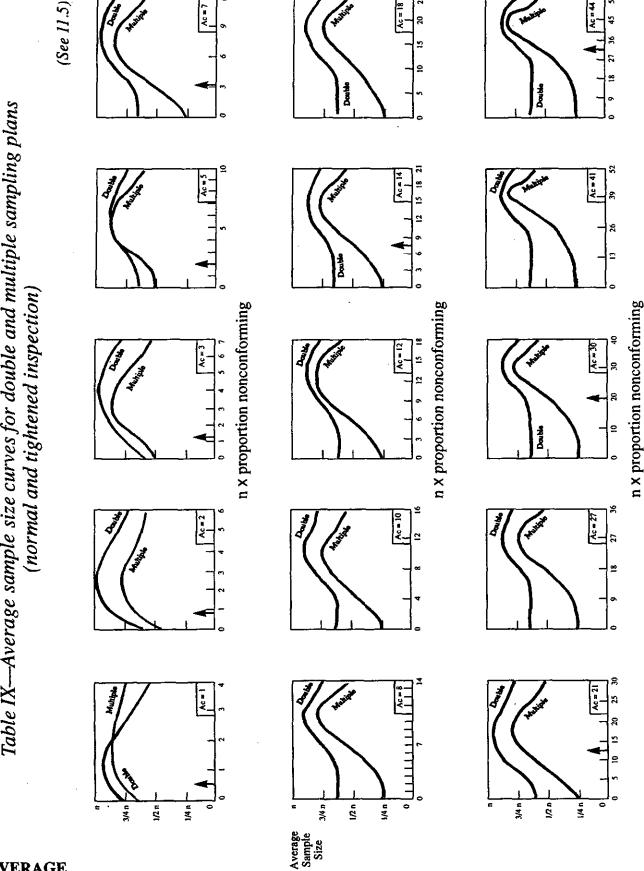

LQ (Nonconformities) 5% PLANS

Table VIII—Limit Numbers for Reduced Inspection

<u> </u>								
(See 4.7.3)	; 	001	277					
See	·	920	115 178 301	<u> </u>				
)		904	68 105 181	297				
		250	63 0110	181 301 471				
		150	23 % 23	105 177 277	<u> </u>			
		001	42 40 40	68 115 181				
		9	8 13 25	42 72 115	681			
		40	4 6 4	24 42 68	113			
i		25	286	14 25 40	68 110 181			_
		15	O → €	7 13 22	39 63 105	169		
	e e	9	0 0 7	4 6 7 1	24 40 68	110		
:	Acceptable Quality Level	6.5	* 00	2 4 8	25 42	69 115 186		
:	Qualit.	4.0	* * 0	0 7 4	8 14 24	40 68 111	<u>8</u> 2	
	able (2.5	* * *	0	4 7 14	24 40 67	181	
	ccept	1.5	* * *	* 0 0	3 7	13 22 38	63 105 169	
	• •	o:1	* * *	* * 0	0 7 4	7 14 24 24	68 110	181
	,	0.65	* * *	* * *	0 0 %	4 % 7	22 th 82	115
		0.40	* * *	* * *	* 0 0	2 4 8	4 4 4	68
:		0.25	* * *	* * *	* * 0	0 7 4	- 4 2	40
İ		0.15	* * *	* * *	* * *	0 -	33	38
		0.10	* * *	* * *	* * *	* 0 0	04.6	24 24
		0.065	* * *	* * *	* * *	* * 0	0 2 4	8 4
	•	0.040	* * *	* * *	* * *	* * *	0 0 7	4 %
	<u> </u>	0.025	* * *	* * *	* * *	* * *	* 0 0	o 4
		0.015	* * *	* * *	* * *	* * *	* * 0	0 -
		0.010	* * *	* * *	* * *	* * *	* * *	0 0
	Number of sample units	lots or batches	20-29 30-49 50-79	80–129 130–199 200–319	320–499 500–799 800–1249	1250-1999 2000-3149 3150-4999	5000–7999 8000–12499 12500–19999	20000-31499 31500 & Over

used for the calculation, provided that the lots or batches used are the most recent ones in sequence, that they have all been on normal inspection, and that none has been rejected while on original inspection. * = Denotes that the number of sample units from the last ten lots or batches is not sufficient for reduced inspection for this AQL. Is this instance more than ten lots or batches may be

LIMIT NUMBERS Table IX—Average sample size curves for double and multiple sampling plans

AVERAGE SAMPLE SIZE **PLANS**

Reference point, shows performance at AQL for normal inspection

Ac = Single sample acceptance number

A = Reference point, shows performance

n = Equivalent single sample size

Table X-A—Tables for sample size code letter: A INDIVIDUAL PLANS

PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P_a)

CHART A—OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS (Curves for double and multiple sampling are matched as closely as practicable)

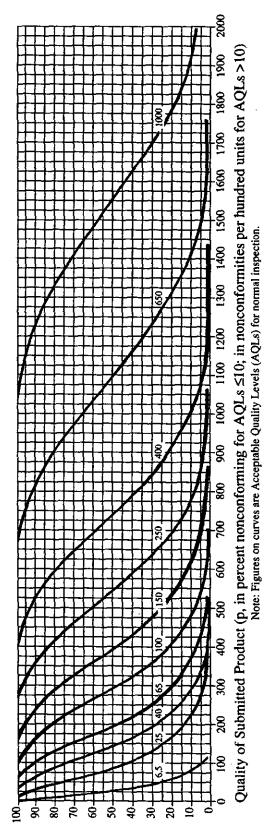


TABLE X.A-1—TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

					Acceptab	le Quality	Acceptable Quality Levels (normal inspection)	ormal insp	ection)						
6.5 6.5 25		25		40	65	100	150	X	250	×	400	×	625	×	1000
p (in percent nonconforming)						p (i	p (in nonconformities per hundred units)	formities	per hundr	ed units)					
0.501 0.503 7.43		7.43	اسا	21.8	41.2	89.3	145	175	239	305	374	517	629	829	<i>LL</i> 6
2.53 2.56 17.8		17.8		40.9	68.3	131	199	235	308	384	462	622	745	995	1122
5.13 5.27 26.6		26.6	[55.1	87.2	158	233	272	351	432	515	684	812	1073	1206
13.4 14.4 48.1		48.1		86.4	127	211	298	342	431	521	612	795	934	1214	1354
29.3 34.7 83.9	83.9			134	184	284	383	433	533	633	733	933	1083	1383	1533
50.0 69.3 135 1	135		_	196	255	371	484	540	681	761	870	1087	1248	1568	1728
68.4 115 194 2	194			266	334	464	589	650	770	886	1006	1238	1409	1748	9161
77.6 150 237 3	237		(n)	315	388	526	657	722	848	216	1094	1335	1512	1862	2035
90.0 230 332	332		4	420	502	655	800	870	1001	1141	1272	1529	1718	2088	2270
X 40	X 40	40		65	100	150	×	250	×	400	×	650	×	1000	X
	1			•	Acceptable	e Quality	Acceptable Quality Levels (tightened inspection)	htened in	spection)					i	

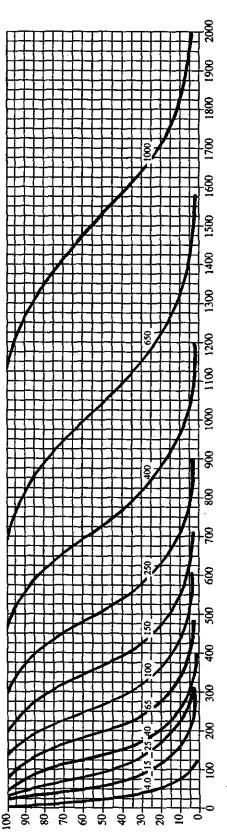
Note: Binomial distribution used for percent nonconforming computations; Polyton for normanides per lunified units.

Table X-A-2—Sampling Plans for Sample Size Code Letter: A

= Use next subsequent sample size code letter for which acceptance and rejection numbers are available.

Ac = Acceptance number

Re = Rejection number


* = Use single sampling plan above (or alternatively use code letter D).

(*) = Use single sampling (or alternatively use code letter B).

Table X-B—Tables for sample size code letter: B INDIVIDUAL PLANS

PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P_a)

CHART B-OPERATING CHARACTERISTICS CURVES FOR SINGLE SAMPLING PLANS (Curves for double and multiple sampling are matched as closely as practicable)

Quality of Submitted Product (p, in percent nonconforming for AQLs <10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection. TABLE X-B-1—TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

		l			Acceptab	de Quality	nable Quality Levels (normal inspection)	ormal inst	oection)								
4.0		4.0	15	25	40	65	100	×	150	×	250	×	400	×	929	×	1000
p (in percent nonconforming)							p(i	n noncon	formities	p(in nonconformities per hundred units)	ed units)						
0.33		0.335	4.95	14.5	27.4	59.5	6.96	117	159	203	249	345	419	572	651	746	102
1.70		1.71	11.8	27.3	45.5	87.1	133	157	206	256	308	415	495	663	748	1065	1152
3.45		3.51	17.7	36.7	58.2	105	155	181	234	288	343	456	541	716	804	1131	1222
9,14		65.6	32.0	57.6	84.5	141	199	228	287	347	408	530	623	809	903	1249	1344
20.6		23.1	55.9	89.1	122	189	256	289	356	422	489	622	722	922	1022	1389	1489
37.0		46.2	868	131	170	247	323	360	434	507	580	724	832	1045	1152	1539	1644
53.6		76.8	130	177	223	309	392	433	514	593	119	825	939	1165	1277	1683	1793
63.2		6.66	158	210	258	350	438	481	565	648	730	890	1008	1241	1356	1773	1886
78.5		154	221	280	335	437	533	580	1/9	761	848	1019	1145	1392	1513	1951	2069
6.5		6.5	25	40	65	100	×	150	×	250	×	400	×	650	X	1000	×
	ı				į	Acceptable	Acceptable Quality Levels (tightened inspection)	Levels (tig	thtened ins	spection)			ļ				

Note: Binomial distribution used for percent nonconforming computations; Poisson for nonconformities per hundred units.

B PLANS

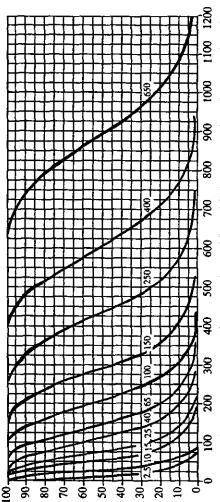
Table X-B-2—Sampling Plans for Sample Size Code Letter: B

Cumu-	lative sample	size	3	2 4	·		
	1000	Ac Re	44 45	25 31	+ +	×	-
	×	Ac Re	41 42		+ +	1000	
	650	Ac Re Ac Re	30 31 41 42	17 22	+ +	×	
	×	Ac Re	27 28	11 16 15 20 17 22 23 29 26 27 34 35 37 38 52 53	+ +	650	
	400	Ac Re Ac Re	22	11 16 26 27	++	×	
	×		18 19 21	9 14 11	+ +	400	
	250	Ac Re	14 15	7 11	+ +	×	(uc
(t	×	Ac Re	12 13	6 10	+ +	250	spectic
pection	150	Ac Re	10 11	5 9	+ +	×	ened in
nal ins	×	Ac Re	8 9	3 7	+ +	150	(tighte
s (norr	100	Ac Re	7 8	3 7 8 9	+ +	×	Acceptable Quality Levels (tightened inspection)
/ Level	65	Ac Re	5 6	2 5 6 7	+ +	100	\uality
Quality		Ac Re	3.4	1 4 4 5	+ +	65	table (
Acceptable Quality Levels (normal inspection)	25	Ac Re Ac Re	2 3	0 3	+ +	40	Accep
Acce	15	Ac Re	1 2	0 2 1 2	+ +	25	
· 	10	Ac Re		Code Letter C		15	
	×	Ac Re		Code Code Code Letter Letter A D C		10	
	6.5	Ac Re	112-	Code Letter		×	
	4.0	Ac Re	0 1	*	*	6.5	
	Less than 4.0	Ac Re	۵	Δ	۵	Less than 6.5	
Cumu-	lative sample	size	3	2 4			
•	Type of sampling	piani	Single	Double	Multiple		

= Use next subsequent sample size code letter for which acceptance and rejection numbers are available.

Ac = Acceptance number

Re = Rejection number


* = Use single sampling plan above (or alternatively use code letter B).

+ + = Use double sampling plan above (or alternatively use code letter D).

Table X-C—Tables for sample size code letter: C INDIVIDUAL PLANS

CHART C—OPERATING CHARACTERISTICS CURVES FOR SINGLE SAMPLING PLANS (Curves for double and multiple sampling are matched as closely as practicable)

> PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P_k)

Quality of Submitted Product (p, in percent nonconforming for AQLs ≤10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

TABLE X-C-1— TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

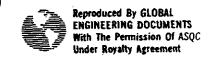
							Acc	eptable Qu	ality Leve	Acceptable Quality Levels (normal inspection)	inspection	(u						
Ф	2.5	10	2.5	01	15	25	40	65	×	001	×	150	×	250	X	400	×	650
	p (in percent nonconforming)	ercent orming)							p (in no	p (in nonconformities per hundred units)	ities per h	undred un	nits)					
0.66	0.201	3.27	0.201	2.97	8.72	16.5	37.5	58.1	70.1	95.4	122	150	207	251	343	391	898	618
95.0	1.02	7.64	1.03	7.11	16.4	27.3	52.3	79.6	93.9	123	154	185	249	298	398	449	639	169
0.06	2.09	11.2	2.11	10.6	22.0	34.9	63.0	93.1	109	140	173	206	273	325	429	482	619	733
75.0	5.59	19.4	5.75	19.2	34.5	50.7	84.4	119	137	172	208	245	318	374	485	542	749	806
50.0	12.9	31.4	13.9	33.6	53.5	73.4	113	153	173	213	253	293	373	433	553	613	833	893
25.0	24.2	45.4	27.7	53.9	78.4	102	148	194	216	260	304	348	435	499	627	169	923	986
10.0	36.9	58.4	46.1	77.8	106	134	185	235	260	308	356	403	495	564	669	992	1010	1076
5.0	45.1	65.7	59.9	94.9	126	155	210	263	289	339	389	438	534	605	745	814	1064	1131
1.0	60.2	77.8	92.1	133	168	201	262	320	348	403	456	509	612	687	835	806	1171	1241
	4.0	×	4.0	15	25	40	65	×	001	×	150	×	250	X	400	×	920	×
				!			Acce	ptable Que	ility Level	Acceptable Quality Levels (tightened inspection	d inspection	ur)	 					

Note: Binomial distribution used for percent nonconforming computations; Poisson for nonconformities per hundred units.

C PLANS

Table X-C-2-Sampling Plans for Sample Size Code Letter: C

Cumu- lative	sample size		8	m v			
	1000	Ac Re		Use Code Letter B	,	1000	
	050	Ac Re	44 45	25 31 56 57	++	×	
	<	Ac Re	30 31 41 42	9 14 11 16 15 20 17 22 23 29 25 31 23 24 26 27 34 35 37 38 52 53 56 57	+ +	650	
	90	Ac Re		17 22 37 38	+ +	×	
>	<	Ac Re	27 28	15 20 34 35	++	400	
	250	Ac Re Ac Re	22	11 16 26 27	++	×	
>			18 19 21	9 6 10 7 11 9 14 11 16 15 20 13 15 16 18 19 23 24 26 27 34 35	+ +	250	
	150	Ac Re	14 15	11 7	++	×	ection)
>	<	Ac Re	10 11 12 13 14 15	6 10	++	150	dsui p
	<u>s</u>	Ac Re	10 11	5 9	+ +	×	ghtene
>	<	Ac Re	6 8	3 7	+ +	100	vels (ti
		Ac Re	7 8	3.7	++	×	llity Le
	40	Ac Re	5 6	2 5 6 7	+++	65	Acceptable Quality Levels (tightened inspection)
	25	Ac Re	3 4	1 4 4 5	+ +	40	ceptal
	15	Ac Re Ac Re	2 3	3.4	+ +	25	Ϋ́
	9	Ac Re	1 2	0 2 1 2	+ +	15	
	6.5	Ac Re	21	Code Letter D		01	
>	<	Ac Re	2	-		6.5	
	4.0	Ac Re	43	Code Letter B		×	
		Ac Re	0 1	*	*	4.0	
Less than		Ac Re	D	D	D	Less than 4.0	
	sample size		S	9			
Type of	plan		Single	Double	Multiple		
		_			26		


∇ ≈ Use next subsequent sample size code letter for which acceptance and rejection numbers are available.

Ac = Acceptance number

Re = Rejection number

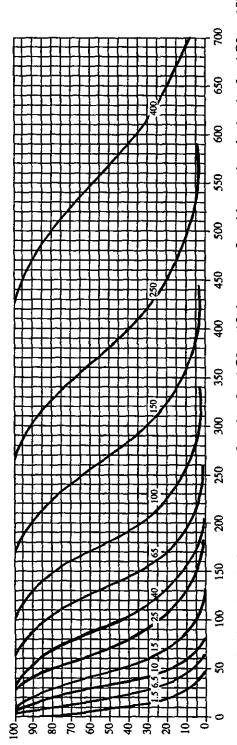
* = Use single sampling plan above (or alternatively use code letter F).

++ = Use double sampling plan above (or alternatively use code letter D).

AMERICAN NATIONAL STANDARD

SAMPLING PROCEDURES AND TABLES FOR INSPECTION BY VARIABLES FOR PERCENT NONCONFORMING

AMERICAN SOCIETY FOR QUALITY CONTROL


611 East Wisconsin Avenue

Milwaukee, WI 53202

Table X-D—Tables for sample size code letter: D INDIVIDUAL PLANS

PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P_g)

CHART D—OPERATING CHARACTERISTICS CURVES FOR SINGLE SAMPLING PLANS (Curves for double and multiple sampling are matched as closely as practicable)

Quality of Submitted Product (p, in percent nonconforming for AQLs <10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

TABLE X-D-1—TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

							Acc	sptable Qu	Acceptable Quality Levels (normal inspection)	ls (norma	l inspectio	ja (ja							
T _a	1.5	6.5	02	1.5	6.5	01	15	25	40	×	65	×	001	×	150	×	250	×	450
	200	p (in percent nonconforming)) (g)						i) q	p (in nonconformities per hundred units)	formities	per hundr	ed units)		-				
0.66	0.126	1.97	80.9	0.126	1.86	5.45	10.3	22.3	36.3	43.8	59.6	76.2	93.5	129	157	215	244	355	386
95.0	0.639	4.64	11.1	0.641	4.44	10.2	17.1	32.7	49.8	58.7	77.1	96.1	116	156	186	249	281	399	432
90.0	1.32	88'9	14.7	1.31	6.65	13.8	21.8	39.4	58.2	6.79	87.8	108	129	171	203	268	301	424	458
75.0	3.53	12.1	22.1	3.60	12.0	21.6	31.7	52.7	74.5	85.5	108	130	153	199	234	303	339	468	504
20.0	8.30	20.1	32.1	8.66	21.0	33.4	45.9	70.9	95.9	108	133	158	183	233	27.1	346	383	521	558
25.0	15.9	30.3	43.3	17.3	33.7	49.0	63.9	92.8	121	135	163	190	217	272	312	392	432	577	617
10.0	25.0	40.6	53.8	28.8	48.6	66.5	83.5	116	147	162	193	222	252	309	352	437	479	631	672
5.0	31.2	47.1	60.0	37.4	59.3	78.7	96.9	131	164	180	212	243	274	334	378	465	509	665	707
1.0	43.8	59.0	7.07	57.6	83.0	105	126	164	200	218	252	285	318	382	429	522	\$68	732	776
I	2.5	01	×	2.5	10	15	25	40	×	\$9	×	100	×	150	×	250	×	400	×
PL.							Q	ocentable	Ouslity I	Acceptable Quality I evels (tightened inspection)	stened ince	nection)							

Note: Binomial distribution used for percent nonconforming computations; Poisson for nonconformities per hundred units.

ANS

37

PLANS

Type of sampling

plan

Ac Re Ac Re 17 26 45 57 16 40 49 53 58 3 39 \$ 25 96 દ્ધ 4 9 Ac Re 29 53 5 11 19 16 25 19 27 26 36 34 37 46 42 52 23 4 9 Ac Re 31 2 22 38 250 36 17 37 27 8 4 10 17 7 Ac Re Ac Re Ac Re 31 37 2 35 9 28 33 7 × 3 2 6 5 61 25 16 23 29 7 Table X-D-2-Sampling Plans for Sample Size Code Letter: D 2 0 150 26 19 Π 11 17 113 25 ଧ ~ 7 61 22 25 12 22 2 9 14 ∞ × 9 **∞** 23 ø Ac Re 20 15 6 17 Ξ 8 13 2 8 ~ **8** 2 13 7 ব **-**-Ac Re Ac Re 14 17 2 12 15 13 2 ¢ Ø 2 2 12 9 0 m **(**~ Acceptable Quality Levels (normal inspection) 11 15 9 Ξ 3 13 Φ S 00 65 12 00 0 'n 0 က 9 Ac Re 2 = 12 6 4 -= 0 N 4 m 9 Ac Re 2 0 4 9 00 00 5 m ∞ 0 3 S **(**-Ac Re Q S ۲. 4 9 **[**~ 25 'n v 3 N N Ac Re 4 4 45 ~ 6 4 S 15 c 0 * d ACRE ACRE ACRE ACRE ACRE ACRE 3 3 4 a ~ 2 2 0 0 0 60 6.5 ~ N ო ~ ~ N ~ 0 0 0 Letter Code Use 4.0 E) Code Letter Use × Code Letter Use 2.5 C * 1.5 * 0 ess than Ac Re 1.5 \triangleright **>** sample Cumulative size 9 S 00 ~ 9

sample lative Cumu-

size

2

◁

N

◁

S

4

2 12

40 49 55

65 68

8

45 47 61

43 4

₽

33 38

31

8 32 33

53

23

7

20

2 21

7

2 7

2

9

9

Ξ 12

00

47 ۳, 6

ø

3 4

6

9 12 7

Multiple

77 78

8

37

25 26

22

18 19 14 17

15

13 14

2

(-ø

9

S

6

~

Higher than 400

×

8

×

250

×

150

×

8

 $\boldsymbol{ imes}$

જ

×

4

23

2

2

6.5

0.4

×

2.5

Less than 2.5

Acceptable Quality Levels (tightened inspection)

00

Use next preceding sample size code letter for which acceptance and rejection numbers are available. **1**1

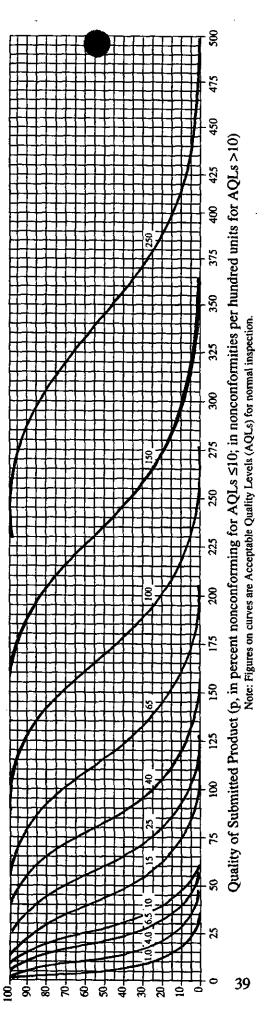
Double

Single

Use next subsequent sample size code letter for which acceptance and rejection numbers are available.

Acceptance number 11 Ac

Rejection number u # + &


Use single sampling plan above (or alternatively use code letter G),

Acceptance not permitted at this sample size.

Table X-E—Tables for sample size code letter: E INDIVIDUAL PLANS

PERCENT OF LOTS
EXPECTED TO BE
ACCEPTED (P_a)

CHART E-OPERATING CHARACTERISTICS CURVES FOR SINGLE SAMPLING PLANS (Curves for double and multiple sampling are matched as closely as practicable)

TABLE X-E-1--TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

				ĺ																
						į	Acce	Acceptable Qui	ality Leve	le Quality Levels (normal inspection)	Inspectio	(uı			İ					_
Pa	1.0	4.0	6.5	01	0.1	4.0	6.5	10	15	22	X	40	×	65	X	001	×	150	×	150
		p (in noncon	p (in percent nonconforming)							p (in no	nconform	iities per l	p (in nonconformities per hundred units)	nits)						
99.0	0.077	1.18	3.58	6.95	0.077	1.15	3.35	6.33	13.7	22.4	27.0	36.7	46.9	57.5	9.62	2:96	132	150	219	238
95.0	0.394	2.81	6.60	11.3	0.395	2.73	6.29	10.5	20.1	30.6	36.1	47.5	59.2	71.1	95.7	115	153	173	246	266
90.0	0.807	4.17	8.80	14.2	0.810	4.09	8.48	13.4	24.2	35.8	41.8	54.0	66.5	79.2	105	125	165	185	261	282
75.0	2,19	7.41	13.4	19.9	2.21	7.39	13.3	19.5	32.5	45.8	52.6	66.3	80.2	94.1	122	144	187	208	288	310
50.0	5,19	12.6	20.0	27.5	5.33	12.9	20.6	28.2	43.6	59.0	66.7	82.1	97.4	113	144	191	213	236	321	344
25.0	10.1	19.4	28.0	36.1	10.7	20.7	30.2	39.3	57.1	74.5	83.1	100	117	134	167	192	241	366	355	379
10.0	16.2	26.8	36.0	44.4	17.7	29.9	40.9	51.4	71.3	90.5	100	119	137	155	190	217	269	295	388	414
5.0	20.6	31.6	41.0	49.5	23.0	36.5	48.4	59.6	80.9	101	111	130	150	168	205	233	286	313	4 09	435
1.0	29.8	41.3	50.6	58.8	35.4	51.1	64.7	77.3	101	123	134	155	176	196	235	264	321	349	450	477
	1,5	6.5	10	×	1.5	6.5	01	15	25	×	40	×	65	×	100	×	150	×	250	×
PL			l				*	Acceptable Quality Levels (tightened inspection)	Quality L	evels (tigh	tened inst	ection)								

Note: Binomial distribution used for percent nonconforming computations; Poisson for nonconformities per hundred units.

TABLE X-E-2—SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: E

Cumu-	lative sample	size		8 13	3	9	6	12	15	18		
	Higher than 250	Ac Re	٧	٧	٥	_						Higher than 250
	250	Ac Re	44 45	25 31	91 9	17 27	29 39	40 49	53 58	65 68	77 78	×
	×	Ac Re	41 42	23 29	6 15	19 16 25	27 26 36	34 37 46	49 55	47 61 64	53 54 72 73	250
	150	Ac Re	30 31 41	17 22 37 38	4 12	11	19	27	36 40	45		×
	×	Ac Re	27 28	16 15 20 27 34 35	3 10	10 17	17 24	24 31	32 37	40 43	48 49	150
	100	Ac Re Ac Re	19 21 22	11 16	2 9	7 14	13 19	22 19 25	25 29	31 33	37 38	×
	×	1	18 19	9 14	1 8	6 12	11 17	16 22	22 25	27 29	32 33	100
	65	Ac Re	14 15	11 7	1 7	4 10	8 13	12 17	17 20	21 23	25 26	×
<u></u>	×	Ac Re	12 13	6 10	9.0	3 9	7 12	10 15	14 17	18 20	21 22	65
pection	40	Ac Re	10 11	5 9	0 5	3 8	6 10	8 13	11 15	14 14 17	18 19	×
nal ins	×	Ac Re	8 9	3 7	4 0	2 7	4 9	6 11	9 12	12 14	14 15	40
ls (nor	25	Ac Re	7 8	3.7	4 0	1 6	<i>د</i> مه	\$ 10	7 11	10 12	13 14	×
/ Level	15	Ac Re	5 6	2 5 6 7	#	1 5	2 6	3 7	8	1 9	9 10	25
Quality	10	Ac Re	3 4	1 4 4 5	#	0 3	4	2 5	3 6	4 6	6.7	15
Acceptable Quality Levels (normal inspection)	6.5	Ac Re Ac Re	2 3	3 4	# 2	0 3	0 3	4	2 4	3 5	\$ 4	01
Acce	4.0	Ac Re	1 2	0 2	# 2	# 2	0 2	0 3	1 3	1 3	2 3	6.5
	2.5	Ac Re		Code Letter	1						<u> </u>	4.0
	×	Ac Re Ac Re		Code Code Code Letter Letter D G F								2.5
	1.5	Ac Re	5	Code Letter D								×
	1.0	Ac Re	0 1	*	*						·= ·-	1.5
	Less than 1.0	Ac Re	Δ	Δ	٥							Less than
Cumu-		size	13	8	ъ	9	6	13	15	<u>&</u>	21	
	Type of sampling	promi	Single	Double			Multiple					

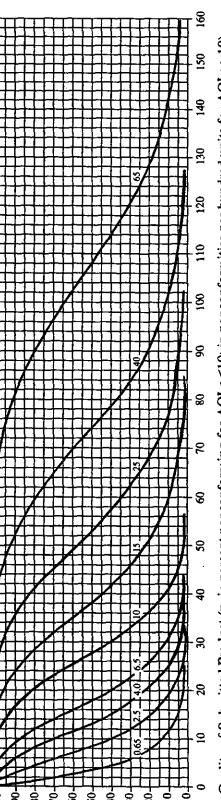
= Use next preceding sample size code letter for which acceptance and rejection numbers are available.

Acceptable Quality Levels (tightened inspection)

V = Use next subsequent sample size code letter for which acceptance and rejection numbers are available.

Use single sampling plan above (or alternatively use code letter H).

Acceptance not permitted at this sample size. Ac = Acceptance number
Re = Rejection number


* = Use single sampling p

= Acceptance not permit

Table X-F—Tables for sample size code letter: F INDIVIDUAL PLANS

PERCENT OF LOTS
EXPECTED TO BE
ACCEPTED (P_b)

CHART F-OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS (Curves for double and multiple sampling are matched as closely as practicable)

Quality of Submitted Product (p, in percent nonconforming for AQLs \$10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

TABLE X-F-1—TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

	65		62.9	74.5	81.2	93.4	108	125	141	151	172	×	
	×		51.7	62.2	68.4	79.5	93.3	109	124	133	153	\$9	
	40		37.4	46.2	51.5	61.2	73.3	87.0	101	109	127	×	
	×		30.5	38.4	43.2	52.1	63.3	76.1	88.9	97.2	114	40	
	25	red units	23.9	30.8	35.1	43.1	53.3	65.1	77.0	84.8	101	×	
	×	per hund	17.5	23.5	27.2	34.2	43.3	54.0	65.0	72.2	87.0	25	
ection)	15	ormities.	14.5	19.9	23.3	29.8	38.3	48,4	58.9	65.7	80.0	×	pection
Acceptable Quality Levels (normal inspection)	10	p (in nonconformities per hundred units)	8.93	13.1	15.8	21.1	28.4	37.1	46.4	52.6	65.5	15	Acceptable Quality Levels (tightened inspection
Levels (n	6.5	р (4.12	6.83	8.72	12.7	18.4	25.5	33.4	38.8	50.2	10	evels (tip
le Quality	4.0		2.18	4.09	5.51	8.65	13.4	19.6	26.6	31.5	42.0	6.5	Ouality I
Acceptab	2.5		0.743	1.78	2.66	4.81	8.39	13.5	19.4	23.7	33.2	4.0	Acceptable
	0.65		0.0503	0.256	0.527	1,44	3.47	6.93	11.5	15.0	23.0	1.0	,
	10		9.75	14.0	16.6	21.6	27.9	34.8	41.5	45.6	53.2	×	
	6.5	nforming)	4.36	7.14	9.03	12.8	18.1	24.2	30.4	34.4	42.1	10	
	4.0	ent nonco	2.27	4.22	5.64	8.70	13.1	18.7	24.5	28.3	35.8	6.5	
	2.5	p (in percent nonconforming)	0.759	1.80	2.69	4.81	8.25	12.9	18.1	21.6	28.9	4.0	
	0.65	1	0.0502	0.256	0.525	1.43	3.41	6.70	6:01	13.9	20.6	1.0	
	ď		0.66	95.0	90.0	75.0	50.0	25.0	10.0	5.0	1:0	}	

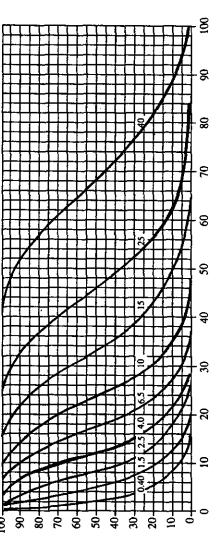
Note: Ringmist distribution and for percent nonconforming computations; Poisson for nonconformities per hundred units.

F

Table X-F-2—Sampling Plans for Sample Size Code Letter: F

·	Cumu- lative sample	size	92	13	S	2	15	20	25	30	35]	
	Higher 1 than 65 se		4	∢	◁							Higher than 65	
	. 29	Ac Re	21 22	11 16	2 9	7 14	91 81	19 25	25 29	31 33	37 38	×	
	×	Ac Re	18 19 2	9 14 1	8 1	6 12	11 17	16 22 19	22 25 25	27 29	32 33	65	
	6	Ac Re	14 15	11 8 19	-	4 10	8 13	12 17	17 20 2	21 23 2	25 26 3	×	
	×	Ac Re /	13	16	9 0	3 6	7 12	10 15 1	14 17 1	18 20 2	21 22 2	9	
ou)	25	Ac Re	11 12	9 6	~	•	10	13	15	17	19	×	tion)
specti	×	Ac Re A	9 10	7 5	4	7 3	9	11 8	12 11	2 14 14	115 18	25	inspeci
Acceptable Quality Levels (normal inspection)	15	Ac Re A	∞	7 3	4	6 2		10 6	11	12 12	14 14	×	Acceptable Quality Levels (tightened inspection)
ou) sla	01	Ac Re A	6 7	2 7 8	4	5	6 3	7 5	8	9 10	10 13	15	ls (tigh
ty Leve	6.5		4 &	2 4 6 2	3	3	4	5 3	6 5	6 7	7	10	/ Level
Quali	4.0	Ac Re Ac Re		2 4 4	2	3 0	3	4	4	5 4	5 6	6.5	Quality
ptable		Ac Re Ac	2 2	2 0 2 3	# 7	2 0	2	 	3	3	4	4.0	table (
Acce	5 2.5			- c - c	#	#	0	0	-	_	7	 	Acce
	1.5	Re Ac Re		e Code er Letter G								5 2.5	
	×	e Ac Re	· · · · · · · · · · · · · · · · · · ·	Code The H			·	-				1.5	
	1.0	Ac Re	•	Code Letter E								×	
	0.65	Ac Re	0 1	*	*							0:1	
	Less than 0.65	Ac Re	>	>	D							Less than	
Cumu-	lative sample	size	20	13	s	01	15	20	25	8	35		
	Type of sampling	pian	Single	Double			Multiple						

Δ = Use next preceding sample size code letter for which acceptance and rejection numbers are available.
 ∇ = Use next subsequent sample size code letter for which acceptance and rejection numbers are available.
 Ac = Acceptance number.
 Re = Rejection number.


* = Use single sampling plan above (or alternatively use code letter J).

= Acceptance not permitted at this sample size.

Table X-G—Tables for sample size code letter: G INDIVIDUAL PLANS

CHART G—OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

(Curves for double and multiple sampling are matched as closely as practicable) PERCENT OF LOTS EXPECTED TO BE ACCEPTED (Pg)

Quality of Submitted Product (p, in percent nonconforming for AQLs ≤10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

TABLE X-G-1—TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

1			,		1			_			_	$\overline{}$	1	1
	40		39.3	46.5	50.8	58.4	67.7	78.0	88.1	94.5	107	×		
	×		32.3	38.9	42.7	49.7	58.3	6.79	77.4	83.4	92.6	40		
	25		23.4	28.9	32.2	38.2	45.8	54.4	62.9	68.4	79.5	X		
	×		19.1	24.0	27.0	32.6	39.6	47.6	55.6	8.09	71.3	25	i :	S.
	15	inits)	14.9	19.3	21.9	26.9	33.3	40.7	48.1	53.0	63.0	×		ndred unit
	×	hundred	11.0	14.7	17.0	21.4	27.1	33.8	40.6	45.1	54.4	15		ties per hu
	01	nities per	80.6	12.4	14.6	18.6	24.0	30.3	36.8	41.1	50.0	×		псоперт
Acceptable Quality Levels (normal inspection)	6.5	p (in nonconformities per hundred units)	5.58	8.17	9.85	13.2	17.7	23,2	29.0	32.9	41.0	01	pection)	sson for no
(normal	4.0	p (in no	2.57	4.26	5.45	7.92	11.5	16.0	20.9	24.2	31.4	6.5	tened ins	ations; Poi
lity Levels	2.5		1.36	2.56	3.44	5.40	8.36	12.3	16.6	19.7	26.3	4.0	evels (tigl	ng comput
stable Qua	1.5		0.464	1.11	1.66	3.00	5.24	8.41	12.2	14.8	20.7	2.5	Quality L	псопботні
Accep	0.40		0.0314	0.160	0.329	0.899	2.17	4.33	7.20	9.36	14.4	0.65	Acceptable Quality Levels (tightened inspection)	for percent nonconforming computations; Poisson for nonconformities per hundred units.
	92		9.73	13.1	15.1	19.0	23.7	29.0	34.1	37.2	43.2	×	4 ,	
	6.5	ing)	5.88	8.50	10.2	13.4	17.5	22.3	27.1	30.1	36.0	10	;	distributio
	4.0	p (in percent nonconforming)	2.67	4.38	5.56	7.98	11.4	15.4	19.7	22.5	28.1	6.5		Note: Binomial distribution used
	2.5	percent no	1.40	2.60	3.49	5.42	8.27	11.9	15.8	18.4	23.8	4.0		Note
	1.5	p (in)	0.471	1.12	1.67	3.01	5.19	8.19	11.6	14.0	0.61	2.5		
	0.40		0.0314	0.160	0.329	568'0	2.14	4.24	6.94	8.94	13.4	0.65		
	Ъ		0.66	95.0	0.06	75.0	50.0	25.0	10.0	5.0	1.0			_
												P	LA	NS

43

Table X-G-2-Sampling Plans for Sample Size Code Letter: G

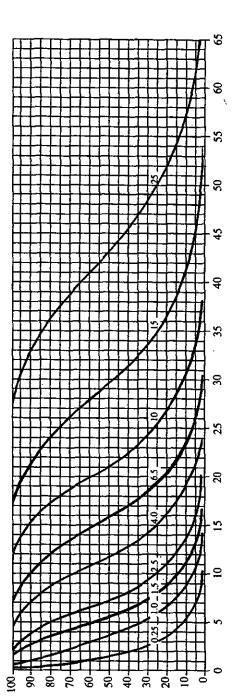
r	· •			T						<u> </u>			7	
) — is	size	32	20	40	80	16	24	32	5	48	56		
	Higher than 40	Ac Re	δ	۷		٧							Higher than 40	
	40	Ac Re	1 22	1 16	6 27	2 9	7. 14	13 19	19 25	25 29	31 33	37 38	×	
		<u>۷</u>	19 21	=	4 26		12 7	17 1		25 2	29 3		+ -	
	×	Ac Re	18 1	9 14	23 24	-	9	11 1	16 22	22 2	27 2	32 33	40	
	25	Ac Re	15	=	19	7	01	13	17	20	23	26	×	
			4	-	<u>∞</u>	_	4	00	12	17	121	22	\vdash	
	×	Ac Re	12 13	01 9	15 16	9 0	3 9	7 12	10 15	14 17	18 20	21 22	25	
tion.				6	13 1	s.	~	9		15_	17	6		ín)
bec	51	Ac Re	10 11	, v	12 1	0	٣	9	8	=	4	8	$ \times $	ctio
ins		Ac Re	6	7	12	.4	7	6	11	12	4	15	\ \	ıspe
mal	×		∞	60	Ξ	0	2	4	9	6	12	4	15	d in
non	2	Ac Re	80	7	6	4	9	∞	10	=	12	14	X	tene
) si			7	60	~	0		3	ν.	1	2_	13		ight
Acceptable Quality Levels (normal inspection)	6.5	Ac Re	5 6	2 5	6 7	# 4	1 5	2 6	3 7	\$	7 9	9 10	10	Acceptable Quality Levels (tightened inspection)
uality	4.0		3.4	4	. 5	1 3	ж	4	ν.	9	9 1	7 3	6.5	y Lev
0	1	¥			4				- 2	3	4	9	$\vdash\vdash$	ıalit
ptabl	2.5	Ac Re Ac Re	2 3	0 3	3 4	# 2	0 3	0 3	4	2 4	3 5	4 2	4.0	le Qu
9	1.5	Ac Re	2	7	2	2	7	7	ы	3	6		\ \sigma_1	otab
▼	1			0	-	#	#	0	0	_		7	2.5	ləss
	1.0	Ac Re	:	Code	Letter H								1.5	Ā
	×	Ac Re		Code	Letter								1.0	
	0.65	Ac Re	i.	Code	Letter Letter F J					_			×	
	0.40	Ac Re	0 1	*		*				•		-	0.65	
	Less than 0.40	Ac Re	D	D		Δ	·					····	Less than 0.65	
Cumu-		size	32	20	40	8	16	24	32	40	48	99		
Ē	Type of sampling	Pian	Single		Double			Multiple	•					

Δ = Use next preceding sample size code letter for which acceptance and rejection numbers are available.
 ∇ = Use next subsequent sample size code letter for which acceptance and rejection numbers are available.

= Use next subsequent sample size code letter for which acceptance and rejection numbers are available.

Acceptance number.

Rejection number. Ac = 1 Re = F


= Use single sampling plan above (or alternatively use code letter K).

Acceptance not permitted at this sample size.

Table X-H—Tables for sample size code letter: H INDIVIDUAL PLANS

PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P_a)

CHART H-OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS (Curves for double and multiple sampling are matched as closely as practicable)

Quality of Submitted Product (p, in percent nonconforming for AQLs \$10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

TABLE X-H-1—TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

					2	₹₽		6		~		Γ.	Γ-]
	25		25.1	29.8	32,5	37.4	43.3	49.9	56.4	60.5	68.7	×	j	
	×		20.7	24.9	27.3	31.8	37.3	43.5	49.5	53.4	61.1	25		
	15		15.0	18.5	20.6	24.5	29.3	34.8	40.3	43.8	50.9	×		
	×		12.2	15.4	17.3	20.8	25.3	30.4	35.6	38.9	45.6	15		
i	10	nits)	9.54	12.3	14.0	17.2	21.3	26.0	30.8	33.9	40.3	X		
	×	undred u	7.01	9.39	10.9	13.7	17.3	21.6	26.0	28.9	34.8	10		
	6.5	ties per h	5.81	7.96	9.31	11.9	15.3	19.4	23.5	26.3	32.0	×		
	4.0	p (in nonconformities per hundred units)	3.57	5.23	6.30	8.44	11.3	14.8	18.5	21.0	26.2	6.5		
(1	2.5	p (in non	1.65	2.73	3.49	5.07	7.34	10.2	13.4	15.5	20.1	4.0	ction)	
inspection	1.5	į	0.872	29.1	2.20	3.45	5.35	7.84	9.01	12.6	8.91	2.5	ened insp	
s (normal	1.0		0.297	0.711	1.06	1.92	3.36	5.39	7.78	9,49	13.3	1,5	vels (tight	
lity Levels	0.25		0.0201	0.103	0.210	0.575	1.39	2.77	4.61	5.99	9.21	0.40	uality Lev	
Acceptable Quality Levels (normal inspection)	01		10.1	12.9	14.5	17.5	21.2	25.2	29.1	31.6	36.3	×	Acceptable Quality Levels (tightened inspection)	
Accep	×		7.36	9.72	11.2	13.8	17.2	21.0	24.7	27.0	31.7	<u> </u>	Acc	
	6.5	(gı	6.07	8.22	9.54	12.0	15.2	18.8	22.4	24.7	29.2	×		
	4.0	p (in percent nonconforming)	3.69	5.36	6.43	8.51	11.3	14.5	17.8	19.9	24.2	6.5		
	2.5	cent non	1.68	2.78	3.53	5.10	7.29	10.0	12.9	14.8	18.7	4.0		
	1.5	p (in per	0.886	1.66	2.22	3,46	5.31	1.69.1		_		2.5		
	1.0		0.300 0	0.715	1.07	1.92		5.29 7.	7.56 10.3	9.14 12.1	.6 15.8			
	<u> </u>						33.3	Ş		6	12.6	1.5		
<u>.</u>	0.25		0.0201	0.103	0.211	0.574	1.38	2.73	4.50	5.82	8.80	0.40		
	P _a		0.66	95.0	90.0	75.0	50.0	25.0	10.0	5.0	1.0		PL	ı.

Note: Binomial distribution used for percent nonconforming computations; Poisson for nonconformities per hundred units.

45

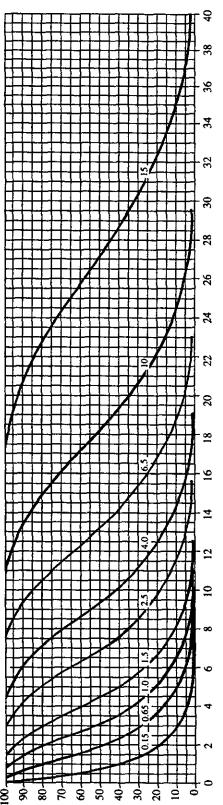
Table X-H-2—Sampling Plans for Sample Size Code Letter: H

Acceptable Quality Levels (normal inspection)	0.65 1.0 1.5 2.5 4.0 6.5 X 10 X 15 X 25 25 25 armple	ACRE ACRE ACRE ACRE ACRE ACRE ACRE ACRE	1 2 2 3 3 4 5 6 7 8 8 9 10 11 12 13 14 15 18 19 21 22 Δ 50	Use	Code 0 2 0 3 1 4 2 5 3 7 3 7 5 9 6 10 7 11 9 14 11 16 Δ 32	T Letter 1 2 3 4 4 5 6 7 8 9 11 12 12 13 15 16 18 19 23 24 26 27 64	#2 #2 #3 #4 04 04 05 06 17 18 29 A 13	# 2 0 3 0 3 1 5 1 6 2 7 3 8 3 9 4 10 6 12 7 14 26	0 2 0 3 1 4 2 6 3 8 4 9 6 10 7 12 8 13 11 17 13 19 39	0 3 1 4 2 5 3 7 5 10 6 11 8 13 10 15 12 17 16 22 19 25 52	1 3 2 4 3 6 5 8 7 11 9 12 11 15 14 17 17 20 22 25 25 29 65	1 3 3 5 4 6 7 9 10 12 12 14 17 18 20 21 23 27 29 31 33 78	2 3 4 5 6 7 9 10 13 14 14 15 18 19 21 22 25 26 32 33 37 38 91	5 1.0 1.5 2.5 4.0 6.5 X 10 X 15 X 25 X Higher than 25	
spect	×	1		1		12	4	7	6	=	12	14	15	0	
rmal in			∞	+	~	0	4	9	00	10	=	12		 -	
vels (nc	<u> </u>		9		S	7	4		9	7	<u>∞</u>	6	9		
lity Le	2.5	 	4	\top		5	m		4	~	9	9		4.0	
ole Qua	1.5	Ac Re					1							2.5	
cceptal	1.0	Ac Re	1 2			1 2	ł							1.5	
▼	0,65	Ac Re		Use	Code	Letter								1.0	
	×	Ac Re		Use	Code	Letter Letter G K								0.65	
	0.40	Ac Re		Ose	Code	Letter G						-		×	
	0.25	Ac Re	0		*		*							0.40	
	Less than 0.25	Ac Re	D		□		D			_				Less than 0.40	
Cumui-		size	20		32	\$	13	56	39	52	65	8/	16		
— —	4 50 50	blan –	Single		;	Double			Multiple	ļ.				1	

Δ = Use next preceding sample size code letter for which acceptance and rejection numbers are available.
 ∇ = Use next subsequent sample size code letter for which acceptance and rejection numbers are available.

Use next subsequent sample size code letter for which acceptance and rejection numbers are available.

Acceptance number.


Rejection number. Ac = . Use single sampling plan above (or alternatively use code letter L).

Acceptance not permitted at this sample size.

Table X-J—Tables for sample size code letter: J INDIVIDUAL PLANS

PERCENT OF LOTS EXPECTED TO BE ACCEPTED (Pg)

CHART J-OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS (Curves for double and multiple sampling are matched as closely as practicable)

Quality of Submitted Product (p, in percent nonconforming for AQLs <10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

TABLE X-J-1—TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

								4	Accepta	ble Qua	Acceptable Quality Levels (normal inspection)	els (no	mal ins	pection,	_							
ሚ	0.15	0.65	1.0	1.5	2.5	4.0	×	6.5	×	10	0.15	0.65	1.0	1.5	2.5	4.0	×	6.5	×	10	×	15
			ď	(in per	p (in percent nonconf		orming)							p (in n	onconfe	ormitie	p (in nonconformities per hundred units)	Indred 1	units)			
0.66	0.0126	0.187	0.550	1.04	2.28	3.73	4.51	6.17	7.93	9.76	0.0126	0.186	0.545	1.03	2.23	3.63	4.38	5.96	7.62	9.35	12.9	15.7
95.0	0.0641	0.446	1.03	1.73	3.32	5.07	6.00	167	68'6	6.11	0.064	0.444	1.02	1.71	3.27	4.98	5.87	1.7.1	19.6	11.6	15.6	18.6
90.0	0.132	0.667	1.39	2.20	3.99	5.91	6.90	8.95	11.0	13.2	0.132	0.665	1.38	2.18	3.94	5.82	6.79	8.78	10.8	12.9	17.1	20.3
75.0	0.359	1.201	2.16	3.18	5.30	7.50	19.8	10.9	13.2	15.5	0.360	1.20	2.16	3.17	5.27	7.45	8.55	10.8	13.0	15.3	19.9	23.4
50.0	0.863	2.09	3.33	4.57	7.06	9.55	10.8	13.3	15.8	18.3	998.0	2.10	3.34	4.59	7.09	9.59	10.8	13.3	15.8	18.3	23.3	27.1
25.0	1.72	3.33	4.84	6.30	9.14	11.9	13.3	16.0	18.6	21.3	1.73	3.37	4.90	6:39	9.28	12.1	13.5	16.3	19.0	21.7	27.2	31.2
10.0	2.84	4.78	6.52	8.16	11.3	14.3	15.7	18.6	21.4	24.2	2.88	4.86	9.65	8.35	9711	14.7	16.2	19.3	22.2	25.2	30.9	35.2
5.0	3.68	5.79	7.66	9.41	12.7	15.8	17.3	20.3	23.2	26.0	3.74	5.93	7.87	69.6	13.1	16.4	0'81	21.2	24.3	27.4	33.4	37.8
1.0	5.59	8.01	10.1	12.0	15.6	18.9	20.5	23.6	56.6	29.5	5.76	8.30	10.5	12.6	16.4	20.0	21.8	25.2	28.5	31.8	38.2	42.9
	0.25	0.1	1.5	2.5	4.0	×	6.5	×	10	×	0.25	1.0	1.5	2.5	4.0	×	6.5	×	10	×	15	×
								Ā	crentah	le Ous	Acceptable Quality Levels (tightened inspection)	ls (tioh	tened in	spection	(t			1				

Note: Binomial distribution used for percent nonconforming computations; Poisson for nonconformities per hundred units.

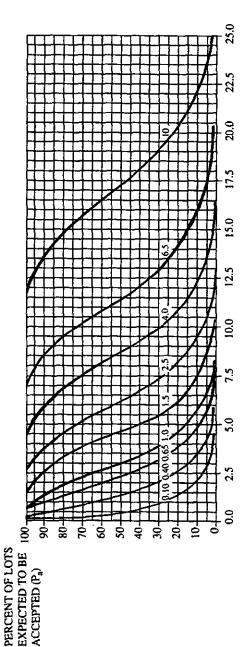
Table X-J-2—Sampling Plans for Sample Size Code Letter: J

r								<u> </u>					1	
ć	lative sample	size	80	50	8	22	40	99	8	190	120	140		
	Higher than 15	Ac Re	Δ	δ		Δ							Higher than 15	,
	15	Ac Re	22	16	72	6	14	19	25	29	33	38	×	
			21		26	2	7	. 23	19	25	31	37		
	×	Ac Re	19	14	24	∞ ∞	12	17	22	25	29	33	15	
			18	6	23	-	9	Ξ	9	22	27	32		
	01	Ac Re	15	=	19	7	10	13	17	20	23	26	×	
			4	7	∞	1	4	∞	12	117	71	25		
	X	Ac Re	13	10	91	٧	0	12	15	17	20	22	10	-
		Ac	12	9	15	0	3	7	2	4	17 18	21		
<u> </u>	5	Re	11	6	13	80	oc	01	13	15	17	19	X	(nc
tior	6.5	Ac Re	01	5	12	0	က	9	∞	=	4	18		ctic
Sec			6	7	12	4	7	6	11	12	14	15	2	sbe
su	$ \times $	Ac Re	•	9	=	0	8	4	9	6	12	4	6.5	in
lali							9		-01	=	12			nec
II.	4.0	Ac Re	7 80	3 7	90 O	7 0	_	3	5 1	7	10	13 14	×	hte
Ĕ														(tig
Acceptable Quality Levels (normal inspection)	2.5	Ac Re	5 6	2 5	6 7	#	1 5	2 6	3 7	8	7 9	9 10	4.0	Acceptable Quality Levels (tightened inspection)
<u>[</u>					 -									Š
ž	1.5	c Re	£	4	~	# 3	0 3	4	2 5	3 6	4 6	6 7	2.5	ty I
nal		Ac Re Ac Re			4	**								ıali
0	0.1	c Re	£.	3	4	7	80	. 3	4	4	2	.5	1.5	Õ
able			- 5	0	۳.	#	0	0		-7	3	4	-	ple
ept	0.65	Ac Re	7	2	7	2	7	7	3	6	m	ω.	1.0	pta
Acc			-	0		#	#		_			7		22
`	0.40	Ac Re	ئے	Code	Letter K								0.65	•
	•		-	ن د									<u> </u>	
	×	Ac Re	3	S C C	Letter L								0.40	
	(<u> </u>									۰	
:	0.25	Ac Re	:	So Se	Letter								×	
		Ac Re	0 1	*		*							0.25	
	0.15	Ϋ́	0				.=.						<u> </u>	
	han 5	್ಲಿ	_										Less than 0.25	,
	Less than 0.15	Ac Re	Δ	\triangleright									ess th 0.25	
		`											17-	l
Cumu-	lative sample	22	80	50	Q .	70	6	9	80	9	0	0		
L L	lative sample	size	•	ي.	8	~	4	Φ	œ	8	120	140		
				 									1	
•	Type of sampling	_	<u>ə</u>	,	oje			ple	,					
	2 E 1	pian	Single		Double			Multiple						
'	Sa] '	_			Σ						

Δ = Use next preceding sample size code letter for which acceptance and rejection numbers are available.
 ∇ = Use next subsequent sample size code letter for which acceptance and rejection numbers are available.

Use next subsequent sample size code letter for which acceptance and rejection numbers are available.

Acceptance number.


Rejection number. Ac = Re =

Use single sampling plan above (or alternatively use code letter M).

Acceptance not permitted at this sample size.

Table X-K—Tables for sample size code letter: K INDIVIDUAL PLANS

CHART K—OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS (Curves for double and multiple sampling are matched as closely as practicable)

Quality of Submitted Product (p, in percent nonconforming for AQLs ≤10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

TABLE X-K-1-TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

					- 1	-	_	r		 -			Г
	10		10.1	11.9	13.0	14.9	17.3	20.0	22.54	24.2	27.5	×	
:	×		8.28	9.95	10.9	12.7	14.9	17.4	19.8	21.4	24.5	10	
	6.5	nits)	5.98	7.40	8.24	9.79	11.7	13.9	16.1	17.5	20.4	×	
(u	X	nundred u	4.88	6.15	6.92	8.34	10.1	12.2	14.2	15.6	18.3	6.5	(uoi
l inspectio	4.0	ities per l	3.82	4.94	5.62	6.90	8.53	10.4	12.3	13.6	16.1	×	ed inspect
els (norma	×	nconform	2.81	3.76	4.35	5.47	6.94	8.64	10.4	11.5	13.9	4.0	c (tiohten
ality Leve	2.5	ing or no	2.32	3.18	3.72	4.76	6.14	7.75	9.42	10.5	12.8	×	lity Level
Acceptable Quality Levels (normal inspection)	1.5	nconform	1,43	2.09	2.52	3.38	4.54	5,94	7.42	8,41	10.5	2.5	Acceptable Quality Levels (tightened inspection)
Acc	1.0	p (in percent nonconforming or nonconformities per hundred units)	0.659	1,09	1,40	2.03	2.94	4,09	5.34	6.20	8.04	1.5	Acce
	0.65	p (in	0.349	0.654	0.882	1.38	2.14	3.14	4.26	5.04	6.72	1.0	
İ	0.40	!	0.119	0.284	0.425	0.769	1.34	2.15	3.11	3.80	5.31	0.65	
	0.10		0.00804	0.0410	0.0843	0.230	0.555	1.11	1.84	2.40	3.68	0.15	
	Pa		0.66	95.0	0.06	75.0	50.0	25.0	10.0	5.0	1.0		•
						-						•	

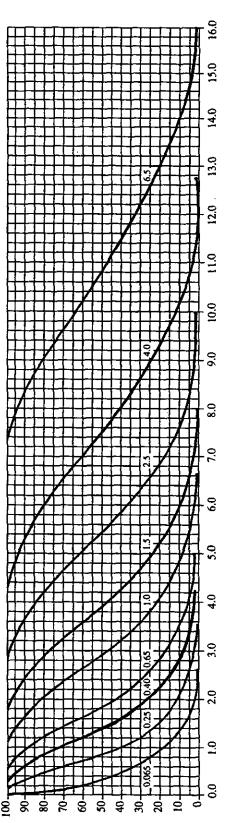
Note: Values given in the Table above are based on the Poisson distribution as an approximation to the binomial distribution (See 11.1 for details),

Table X-K-2—Sampling Plans for Sample Size Code Letter: K

	Cumu- lative	size	125	8	091	32	<u>\$</u>	%	128	091	192	224]	
	Higher than 10 se se	Ac Re	Δ 1	◁		◁	<u>_</u>	<u></u>					Higher than 10	
	9	Ac Re	21 22	11 16	26 27	2 9	7 14	13 19	19 25	25 29	31 33	37 38	×	
	×	Ac Re	61	9 14 1	24	∞	12	17	16 22 1	22 25 2	29	33	10	
	6.5	Ac Re	15 18	=	19 23	7	01	13 11	17	20	1 23 27	5 26 32	×	
	×	Ac Re A	13 14	10 7	16 18	9	9	12 8	15 12	17 17	20 21	22 25	6.5	
(2)	7.0	Ac Re Ac	11 12	9 6	13 15	5	∞ ••	10 7	13 10	15 14	17 18	19 21	×	(uc
ection			9 10	2	12 12	0	7 3	9 6		12 11	14 14	15 18	 	spection
al ins	×	te Ac Re	∞	60	=	0	6 2	4	10 6	6 11	12 12	14 14	4.0	ned in
(norm	2.5	e Ac Re	7 8	3 7	6 8	0			8		10	13	×	(tighte
evels	1.5	Ac Re	5 6	2 5	6 7	# 4	1 5	7 6	3.7	5 8	7 9	01 6	2.5	eveis (
ality 1	1.0	Ac Re	3 4	4	4 5	#	0 3	1 4	2 5	3 6	4 6	6 7	1.5	ality L
ble Qu	0.65	Ac Re	2 3	0 3	ω 4	# 5	0 3	0 3	1 4	2 4	3	4 8	1.0	ele Qua
Acceptable Quality Levels (normal inspection)	0,40	Ac Re	1 2	0 2	1 2	# 2	# 2	0 2	0 3	1 3	- 3	2 3	0.65	Acceptable Quality Levels (tightened inspection)
▼	0.25	Ac Re	:	Code	Letter								0.40	Ψ
	×	Ac Re	;	Code	Letter M								0.25	
	0.15	Ac Re	;	Code	Letter						. =		X	
	0.10	Ac Re	0 1	*	-	*	*					-	0.15	
	Less than 0.10	Ac Re	۵	D	_ -	۵							Less than 0.15	
Cumu-	lative sample	size	125	08	160	32	2	96	128	160	192	224		
	Type of sampling	Pian	Single		Double			Multiple	,					

 Δ = Use next preceding sample size code letter for which acceptance and rejection numbers are available. ∇ = Use next subsequent sample size code letter for which acceptance and rejection numbers are available.

Ac = Acceptance number. Re = Rejection number.


Use single sampling plan above (or afternatively use code letter N).

Acceptance not permitted at this sample size.

Table X-L—Tables for sample size code letter: L INDIVIDUAL PLANS

PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P_A)

CHART L—OPERATING CHARACTERISTICS CURVES FOR SINGLE SAMPLING PLANS (Curves for double and multiple sampling are matched as closely as practicable)

Quality of Submitted Product (p, in percent nonconforming for AQLs <10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

TABLE X-L-1—TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

				Acc	Acceptable Quality Levels (normal inspection)	uality Lev	els (norm	al inspecti	on)			
<u>م</u> "	0.065	0.25	0.40	0.65	1.0	1.5	×	2.5	X	4.0	X	6.5
		!	ni) d	p (in percent nonconforming or nonconformities per hundred units)	onconform	ning or no	nconform	nities per	hundred (units)		
0.66	0.00503	0.0743	0.218	0.412	0.893	1.45	1.75	2.39	3.05	3.74	5.17	6.29
95.0	0.0256	0.178	0.409	0.683	1.31	1,99	2.35	3.08	3.84	4.62	6.22	7.45
90.0	0.0527	0.266	0.551	0.872	1.58	2.33	2.72	3.51	4.32	5.15	6.84	8,12
75.0	0.144	0.481	0.864	1.27	2.11	2.98	3.42	4.31	5.21	6.12	7.95	9.34
20.0	0.347	0.839	1.34	1.84	2.84	3.83	4.33	5.33	6.33	7.33	9.33	10.8
25.0	0.693	1.35	1.96	2.55	3.71	4.84	5.40	6.51	7.61	8.70	10.9	12.5
10.0	1.15	1.94	2.66	3.34	4.64	5,89	6.50	7.70	8.89	10.1	12.4	14.1
5.0	1.50	2.37	3.15	3.88	5.26	6.57	7.22	8.48	9.72	10.9	13.3	15.1
1.0	2.30	3.32	4.20	5.02	6.55	8.00	8.70	10.1	11.4	12.7	15.3	17.2
	1.0	0.40	0.65	1.0	1.5	×	2.5	X	4.0	×	6.5	×
				Acce	Acceptable Quality Levels (tightened inspection	ality Leve	ls (tighter	ed inspec	tion)			

Note: Values given in the Table above are based on the Poisson distribution as an approximation to the binomial distribution (See 11.1 for details).

Table X-L-2—Sampling Plans for Sample Size Code Letter: L

	Cumu- lative sample	size	700	125	250	50	<u>8</u>	150	700	250	300	350		
	Higher than 6.5	Ac Re	⊲	◁		٧				. <u>. </u>			Higher than 6.5	
	6.5		21 22	11 16	26 27	2 9	7 .14	13 19	19 25	25 29	31 33	37 38	×	
	×	Ac Re Ac Re	18 19	9 14	23 24	8	6 12	11 17	16 22	23	27 29	32 33	6.5	
	4.0	Ac Re	14 15	7 11	61 81	1 7	4 10	8 13	12 17	17 20 22	23	25 26	×	
	×	Ac Re	12 13	01 9	15 16	9 0	3 9	7 12	10 15	14 17 17	18 20 21	21 22	4.0	
tion)	2.5	Ac Re	10 11	6 5	12 13	0 5	3	6 10	8 13	11 15	14 17	18 19	×	ction)
inspec	×	Ac Re	6	3 7	11 12	4 0	2 7	4 9	6 11	9 12	12 14	14 15	2.5	d inspe
ormal	1.5	Ac Re	7 8	3.7	6 8	4 0	1 6	30	5 10	7 11	10 12	13 14	×	ghtene
vels (r	1.0	Ac Re	5 6	2 5	6 7	#	1 5	2 6	3.7	5 8	7 9	9 10	1.5	vels (ti
ality Le	0.65	Ac Re	3 4	4	- 5 4	# *	0 3	4	2 5	3 6	4 6	6 7	1.0	lity Le
ble Qui	0.40	Ac Re Ac Re	2 3	0 3	3 4	# 2	0 3	0 3	1 4	2 4	3.5	4 5	0.65	le Qua
Acceptable Quality Levels (normal inspection)	0.25	Ac Re	1 2	0 2	1 2	# 2	# 2	0 2	0 3	1 3	1 3	2 3	0.40	Acceptable Quality Levels (tightened inspection)
V	0.15	Ac Re	:	Code	Letter M								0.25	¥
	×	Ac Re		Code	Letter								0.15	
	0.10	Ac Re		Code	Letter								×	
	0.065	Ac Re	0 1	*		*							0.10	
	Less than 0.065	Ac Re	Δ	۵		D							Less than 0.10	
Cumu-		size	200	125	250	95	100	150	700	250	300	350		
,	Type of sampling	pian	Single		Double			Multiple						

Δ = Use next preceding sample size code letter for which acceptance and rejection numbers are available.
 ∇ = Use next subsequent sample size code letter for which acceptance and rejection numbers are available.

Ac = Acceptance number.

Re = Rejection number.

* = Use single sampling plan above (or alternatively use code letter P).

= Acceptance not permitted at this sample size.

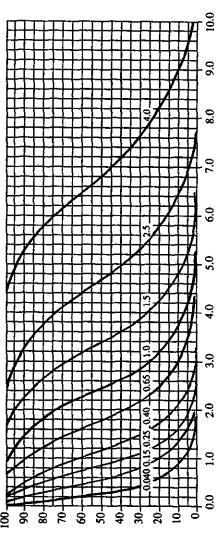

Table X-M—Tables for sample size code letter: M INDIVIDUAL PLANS

CHART M-OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS (Curves for double and multiple sampling are matched as closely as practicable)

PERCENT OF LOTS

EXPECTED TO BE 100

ACCEPTED (P_a) 90 IIII

Quality of Submitted Product (p, in percent nonconforming for AQLs \$10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

TABLE X-M-1—TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

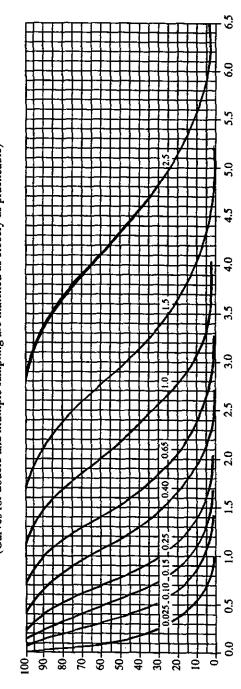
				Acc	Acceptable Quality Levels (normal inspection)	nality Lev	els (norm	al inspection	(uc			
۳	0.040	0.15	0.25	0.40	59'0	1.0	×	5.1	X	2.5	×	4.0
			p (in	p (in percent nonconforming or nonconformities per hundred units)	nconform	ning or no	nconform	nities per	hundred 1	units)		
0.66	0.0039	0.0472	0.138	0.261	0.567	0.923	1.11	1.51	1.94	2.37	3.28	3.99
95.0	0.0163	0.113	0.260	0.434	0.830	1.26	1.49	1.96	2.44	2.94	3.95	4.73
90.0	0.0335	0.169	0.350	0.554	1.00	1.48	1.72	2.23	2.74	3.27	4.34	5.16
75.0	0.0913	0.305	0.548	0.805	1.34	1.89	2.17	2.74	3.31	3.89	5.05	5.93
50.0	0.220	0.533	0.849	1.17	1.80	2.43	2.75	3.39	4.02	4.66	5.93	88.9
25.0	0.440	0.855	1.24	1.62	2.36	3.07	3.43	4.13	4.83	5.52	06'9	7.92
10.0	0.731	1.23	1.69	2.12	2.94	3.74	4.13	4.89	5.64	6.39	7.86	8.95
5.0	0.951	1.51	2.00	2.46	3.34	4.17	4.58	5.38	6.17	6.95	8.47	09'6
1.0	1.46	2.11	2.67	3.19	4.16	5.08	5.52	6.40	7.24	8.08	12.6	6.01
	0.065	0.25	0.40	0.65	1.0	×	1.5	X	2.5	×	4.0	×
				Acce	Acceptable Quality Levels (tightened inspection)	ality Leve	ls (tighten	ed inspect	ion)			

Note: Values given in the Table above are based on the Poisson distribution as an approximation to the binomial distribution (See 11.1 for details).

Table X-M-2—Sampling Plans for Sample Size Code Letter: M

_	v			T	_	т							1	
	J – 16	size	315	200	400	08	160	240	320	904	480	999		
	Higher than 4.0	Ac Re	δ	٥		Δ							Higher than 4.0	
	4.0	Ac Re	22	91	5 27	6	14	3 19	3 25	5 29	1 33	7 38	×	
		e A	19 21	=	56	8	7	13	2 19	5 25	31	3 37	1	
	×	Ac Re	18 19	9 14	23 24		6 12	11 17	16 22	22 25	27 29	32 33	4.0	
			15	=	19	-	20	13	12	8	33	56		
	2.5	Ac Re	14		18	_	4	80	12	17	21 ;	22	×	
	\	Ac Re	13	9	16	9	6	12	15	17	20	22		
	×		12	ء ا	15	0	3	7	2	4	18	21	2.5	
2	5.	Ac Re		6	13	S	00	10	13	15	17	61	X	on)
tio	1		10 11	8	12	0	m	9	∞	=	4	<u>∞</u>		scti,
F F	×	Ac Re	6	7	22	4	7	6	Ξ	12	4	15	.5	JSDe
ins	_^		œ	9	Ξ	0	7	4	9	6_	12	77		d ir
mal	1.0	Ac Re	8	7	6	4	9	00	10	1	12	4	×	ene
nor	1		7	60	∞	Ó		3	3	7	2	13		igh
sls (0.65	Ac Re	9	S	7	4	S	9	7	œ	6	10	1.0	s (t
S.	o o		5	7	9	#		7	6	5	7	<u> </u>		evel
ity I	0.40	Ac Re	4	4	ن	3	33	4	5	9	9	7	0.65	уL
nal	-	- ¥			4	**			-2	<u>~</u>	4	9	1	ıalit
Acceptable Quality Levels (normal inspection)	0.25	Ac Re	2 3	0 3	3 4	# 2	0 3	0 3	1 4	2 4	3.5	4 S	0.40	Acceptable Quality Levels (tightened inspection)
ptab			2	7	- 2	7	- 7	- 5	···	3		С		tabl
Sce	0.15	Ac Re	-	0	-	##	#	0	0	_	-	7	0.25	des
4	0.10	Ac Re		Code	Letter N								0.15	Ac
	- 0				<u>ਮ</u>									
	×	Ac Re		Code	Letter P								0.10	
	0.065	Ac Re		Code	Letter								×	
	0.040	Ac Re	0 1	*		*							0.065	
	Less than 0.040	Ac Re	Δ	D		۵						-	Less than 0.065	
<u>.</u>													17,7	
Cumu-	latíve sample	size	315	200	315	98	160	240	320	400	480	260		
,	Type of sampling	pian	Single		Double			Multiple	1					

Δ = Use next preceding sample size code letter for which acceptance and rejection numbers are available.
 ∇ = Use next subsequent sample size code letter for which acceptance and rejection numbers are available.
 Ac = Acceptance number.
 Re = Rejection number.


Use single sampling plan above (or alternatively use code letter Q).
 Acceptance not permitted at this sample size.

= Acceptance not permitted at this sample size.

Table X-N—Tables for sample size code letter: N INDIVIDUAL PLANS

PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P_a)

CHART N—OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS (Curves for double and multiple sampling are matched as closely as practicable)

Quality of Submitted Product (p, in percent nonconforming for AQLs ≤10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

TABLE X-N-1—TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

										\neg		_	[
	2.5	 	2.51	2.98	3.25	3.74	4.33	4.99	5.64	6.05	6.87	×	
	×		2.07	2.49	2.73	3,18	3.73	4.35	4.95	5.34	6.12	2.5	
	1.5	ınits)	1.50	1.85	2.06	2.45	2.93	3.48	4.03	4.38	5.09	X	
(uc	X	hundred t	1.22	1.54	1.73	2.08	2.53	3.04	3.56	3.89	4.56	1.5	ion)
l inspection	1.0	ities per	0.954	1.23	1.40	1.72	2.13	2.60	3.08	3.39	4.03	X	ed inspect
els (norma	×	nconform	0.701	0.939	1.09	1.37	1.73	2.16	2.60	2.89	3.48	1.0	ls (tighten
nality Leve	0.65	ing or no	0.581	0.796	0.931	1.19	1.53	1.94	2.35	2.63	3.20	×	ality Level
Acceptable Quality Levels (normal inspection)	0.40	nconform	0.357	0.523	0.630	0.844	1.13	1.48	1.85	2.10	2.62	0.65	Acceptable Quality Levels (tightened inspection)
Acc	0.25	p (in percent nonconforming or nonconformities per hundred units)	0.165	0,273	0,349	0.507	0.734	1.02	1.34	1.55	2.01	0,40	Acce
	0.15	p (in	0.087	0.164	0.220	0.345	0.535	0.784	1.06	1.26	1.68	0.25	
	0.10		0.0297	0.0711	0.106	0.192	0.336	0.539	0.778	0.949	1.33	0.15	
	0.025		0.00201	0.0103	0.0211	0.0575	0.139	0.277	0.461	0.599	0.921	0.040	
	Pa		99.0	95.0	90.0	75.0	50.0	25.0	10.0	5.0	1.0		

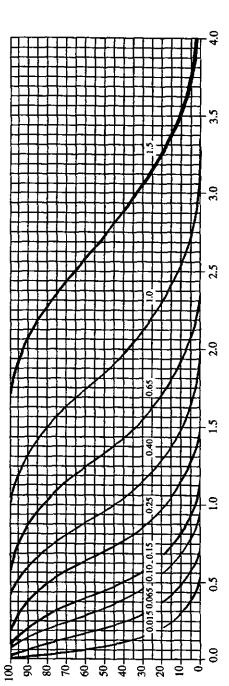
Note: Values given in the Table above are based on the Poisson distribution as an approximation to the binomial distribution (See 11.1 for details).

Table X-N-2—Sampling Plans for Sample Size Code Letter: N

·	Cumu-					₹	ccepta	ble Qu	ality L	Acceptable Quality Levels (normal inspection)	norma	l inspe	ction)							
Type of sampling	lative sample	Less than 0.025	0.025	0.040	×	0.065	0.10	0.15	0.25	0.40	0.65	×	0:1	×	1.5		×	2.5	Higher than 2.5	Cumu- lative
Pian	size	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	e Ac Re	e Ac Re		Ac Re A	Ac Re	Ac Re	size
Single	200	Δ	0 1	;	;	;	1 2	2 3	3.4	5 6	7 8	6 8	10 11	12 13	3 14 15	18	19 21	1 22	٧	200
41.00	315	۵	*	Code	Code	Code	0 2	0 3	1 4	2.5	3 7	3 7	5 9	6 10	7	6 11	11 11	1 16	◁	315
Pound	630			Z Z	Letter R	Letter Q	1 2	3.4	4 5	6 7	8 9	11 12	12 13	15 16	82	19 23	24 26	6 27		630
	125	Δ	*				# 2	# 2	# 3	# 4	0 4	0 4	; 0	5 0		7 1	- 00	2 9	Δ	125
	250						#	0 3	0 3	1.5	1 6	2 7	د	80	4	9 01	12	7.14		250
Multiple	375						0 2	0 3	1 4	2 6	3	4 9	01 9	7	12 8	13 11	17	13 19		375
	200						0 3	4	2.5	3.7	5 10	6 11		13 10 1	15 12	17 16	22	19 25		200
	615						1 3	4	3 6	5 8	7 11	9 12	=	15 14 1	17 17	20 22	25	25 29		625
	750						1 3	3.5	4 6	7.9	10 12	12 12 14	4	17 18 2	20 21 3	23 27	29	31 33		750
	875						2 3	4 5	6 7	9 10	13 14	14 15	61 81	9 21 22	25	26 32	33	37 38		875
		Less than 0.040	0.040	×	0.065	0.10	0.15	0.25	0.40	0.65	×	1.0	×	1.5	×	3.5	,,	×	Higher than 2.5	
						¥	ceptab	le Qua	lity Le	Acceptable Quality Levels (tightened inspection)	ghtene	dsui þa	ection							

Δ = Use next preceding sample size code letter for which acceptance and rejection numbers are available.
 ∇ = Use next subsequent sample size code letter for which acceptance and rejection numbers are available.

Ac = Acceptance number. Re = Rejection number.


= Use single sampling plan above (or alternatively use code letter R).

= Acceptance not permitted at this sample size.

Table X-P—Tables for sample size code letter: P INDIVIDUAL PLANS

PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P₃)

CHART P-OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS (Curves for double and multiple sampling are matched as closely as practicable)

Quality of Submitted Product (p, in percent nonconforming for AQLs <10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

TABLE X-P-1-TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

	r :												
İ	1.5		1.57	1.86	2.03	2.34	2.71	3.12	3.52	3.78	4.29	×	
	X		1.29	1.56	1.71	1.99	2.33	2.72	3.09	3.34	3.82	1.5	
	1.0	nits)	0.935	1.16	1.29	1.53	1.83	2.17	2.52	2.74	3.18	×	
(u	×	undred u	0.762	0.961	1.08	1.30	1.58	1.90	2.22	2.43	2.85	1.0	ou)
l inspectio	0.65	ities per l	0.596	0.771	0.878	1.08	1.33	1.63	1.93	2.12	2.52	×	d inspecti
ıls (norma	×	nconform	0.438	0.587	0.679	0.855	1.08	1.35	1.62	1.80	2.18	0.65	s (tightene
ality Leve	0.40	ing or no	0.363	0.498	0.582	0.745	0.959	1.21	1.47	<u>2</u> .	2.00	×	lity Level
Acceptable Quality Levels (normal inspection)	0.25	nconform	0.223	0.327	0.394	0.527	0.709	0.928	1.16	1.31	1.64	0.40	Acceptable Quality Levels (tightened inspection)
Acc	0.15	p (in percent nonconforming or nonconformities per hundred units)	0.103	0.171	0.218	0.317	0.459	0.639	0.835	0.969	1.26	0.25	Acce
	0.10	ni) q	0.0545	0.102	0.138	0.216	0.334	0.490	0.665	0.787	1.05	0.15	
	0.065		0.0186	0.0444	0.0665	0.120	0.210	0.337	0.486	0.593	0.830	0.10	
	0.015		0.00126	0.00641	0.0132	0.0360	0.0866	0.173	0.288	0.374	0.576	0.025	
	Ф.		0.66	95.0	90.0	75.0	50.0	25.0	10.0	5.0	0.1		

Note: Values given in the Table above are based on the Poisson distribution as an approximation to the binomial distribution (See 11.1 for details).

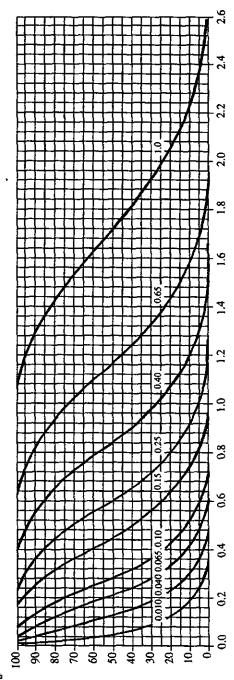
Table X-P-2—Sampling Plans for Sample Size Code Letter: P

•	Cumu-					¥	ccepta	ble Qu	ality L	Acceptable Quality Levels (normal inspection)	norma	inspe	ction								
Type of sampling	lative sample	0.010	0.015	0.025	×	0.040	0.065	0.10	0.15	0.25	0.40	×	0.65		×	1.0	×	1.5		Higher 1.5	lative sample
piani	size	Ac Re	Ac Re	Ac Re	AcRe	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re		Ac Re	Ac Re	Ac Re	e Ac Re		Ac Re	size
Single	800	D	0 1		1	, ,	1 2	2 3	6 4	5 6	7 8	ο ο	10 11	12	13	14 15	18 19	21	722	✓	
:	200	Δ	*	Code	Code	Code	0 2	0 3	1 4	2.5	3.7	3 7	S	9	10 7	11 /	9 14	=	7 91		8
Double	9001			Letter	Letter	Letter Q	1 2	3.4	4 ئ	6.7	6 8	11 12	12 1	13 15	16 1	18 19	23 24	78	27		000
	200	Δ	*				# 2	# 2	# 3	# 4	0 4	0 4	0	5 0	9	1 7		2	6		700
	400						# 2	0 3	0 3	1 5	1 6	2 7	60	- 8	6	4 10	6 12	~	14		 8
Multiple	009						0 2	0 3	1 4	2 6	3 8	4	9	10 7	12	8 13	11 17	/ 113			
•	008						0 3	4	2 5	3.7	5 10	6 11	<u>~</u>	13 10	15	12 17	16 22	19	25		
	1000	- -					- 3	2 4	3 6	5 8	7 11	9 12	=	15 14	17	17 20	20 22 25	25	- 67		1000
	1200						1 3	3.5	4 6	7 9	10 12	12 14	14	17 18	20	21 23	27 29	31	33		1200
	1400						2 3	4 5	2 9	9 10	13 14	14 15	18	19 21	22	25 26	32 33	37			1400
		Less than 0,025	0.025	×	0.040	0.065	0.10	0.15	0.25	0.40	×	0.65	×	 	0:	×	1.5	×	Eg −	Higher than 1.5]
						¥	ceptab	le Qua	lity Le	Acceptable Quality Levels (tightened inspection)	ghtene	dsui p	ectio	<u></u>			' !				
													١		۱	١		١	I	1	

Δ = Use next preceding sample size code letter for which acceptance and rejection numbers are available.
 ∇ = Use next subsequent sample size code letter for which acceptance and rejection numbers are available.

Ac = Acceptance number.

Re = Rejection number.


* = Use single sampling plan above.

= Acceptance not permitted at this sample size.

Table X-Q—Tables for sample size code letter: Q INDIVIDUAL PLANS

PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P_a)

CHART Q-OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS (Curves for double and multiple sampling are matched as closely as practicable)

Quality of Submitted Product (p, in percent nonconforming for AQLs \$10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

TABLE X-Q-1—TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

				۵		٦			~	٦	•		
	1.0		1.01	1.19	1.30	1.49	1.73	2.00	2.25	2.42	2.75	×	l
	×		0.828	0.995	1.09	1.27	1.49	1.74	1.98	2.14	2.45	1.0	
	0.65	nits)	0.598	0.740	0.824	0.979	1.17	1,39	1.61	1.75	2.04	X	
(u	×	าundred ข	0.488	0.615	0.692	0.834	101	1.22	1.42	1.56	1.83	0.65	ion)
Acceptable Quality Levels (normal inspection)	0,40	nities per	0.382	0.494	0.562	0.690	0.853	1.04	1.23	1.36	1.61	×	Acceptable Quality Levels (tighter,ed inspection)
els (norm	X	nconform	0.281	0.376	0.435	0.547	0.694	0.864	1.04	1.15	1.39	0.40	ls (tighter
sality Lev	0.25	ning or no	0.232	0.318	0.372	0.476	0.614	0.775	0.942	1.05	1.28	X	ality Leve
eptable Q	0.15	onconform	0.143	0.209	0.252	0.338	0.454	0.594	0.742	0.841	1.05	0.25	ptable Qu
Acc	0.10	p (in percent nonconforming or nonconformities per hundred units)	0.0659	0.109	0.140	0,203	0.294	0.409	0.534	0.620	0.804	0.15	Acce
	0.065	p (in	0.0349	0.0654	0.0882	0,138	0.214	0,314	0,426	0.504	0,672	0.10	
İ	0.040		0.0119	0.0284	0.0425	0.0769	0.134	0.215	0.311	0.380	0.531	0.065	
	0.010		0.000804	0.00410	0.00843	0.0230	0.0555	0.111	0.184	0.240	0.368	0.015	
_	Р		99.0	95.0	90.0	75.0	50.0	25.0	10.0	5.0	1.0		

Note: Values given in the Table above are based on the Poisson distribution as an approximation to the binomial distribution (See 11.1 for details).

Table X-Q-2—Sampling Plans for Sample Size Code Letter: Q

Higher lative than sample lative from sample lativ	1890	J	
A A Re		<u> </u>	
		Higher than 1.0	
1.0 Ac Re 21 22 11 16 26 27 2 9 7 14 13 19 19 25 25 29	31 33 37 38	×	
		 	
Ac Re 18 19 9 14 23 24 23 24 6 12 11 17 11 17	27 29 32 33	의	
20 13 13 15 18 15 15 15 15 15 15 15 15 15 15 15 15 15	23	×	
<u> </u>	25		
Ac Re 12 13 15 16 15 16 17 17 12 19 19 15 14 17 14 17	18 20 21 22	0.65	
	19 1	11	<u>~</u>
11 15		$ \times $	ction
12 1 9 1 12 1 2 1 12 1 12 1 12 1 12 1 1	14 14 15 18	0.40	Spe
inspec Ac Re 8 9 8 9 8 9 0 4 0 4 9 6 11 9 12 9 12	21 41	ò	ii b
100mal 0.25 0.25 Ac Re 7 8 8 9 8 9 0 4 1 6 1 6 5 10 7 11		×	ene
0.25 Ac Re 7 8 9 8 9 8 9 1 6 1 6 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1	13		ight
Acceptable Quality Levels (normal inspection) 0.040 0.065 0.10 0.15 0.25 X 0.40 1 2 2 3 3 4 5 6 7 8 8 9 10 11 1 2 2 3 3 4 5 6 7 8 9 11 12 12 13 1 2 3 4 4 5 6 7 8 9 11 12 12 12 13 # 2 0 3 0 3 1 5 1 6 2 7 3 1 0 2 0 3 1 4 2 6 3 8 4 9 6 11 0 3 1 4 2 5 3 7 5 10 6 11 8 11 1 3 2 4 3 6 5 8 7 11 9 12 11 11	9 10	0.25	Acceptable Quality Levels (tightened inspection)
			Š
ality I Ac Re Ac R	4 6 7	0.15	lity I
ble Qui 0.065 0.065 Ac Re 2 3 3 4 2 3 6 3 6 3 6 3 7 4 2 4	s s	0.10	∑ua,
able Qu 0.065 Ac Re 2 3 4 2 4 2 6 3 6 3 7 4 2 4 2 4 2 4	<u>е</u> 4	6	ole (
CCepta 0.040 0.040 0.040 1 2 1 2 1 2 8 2 8 2 8 2 1 3 1 3	<i>c c c</i>	0.065	pta
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 2		ဦ
A ACRE Use Code Letter R		0.040	⋖
Code S S S S S S S S S S S S S S S S S S S		0.025	
}		ě	
O.015 Ac Re Code Letter P		×	
* * Ac Re		0.015	
		+	
Ac Re Letter R		0.010	
3 9 9 0 0 0 1 0 0 10 0 10			
Cumulative sample size size 1250 1250 1600 1600 1500 1500 1500 1500 1575	1890		
10 th 10 th		{	
Type of sampling plan Single Double			

Δ = Use next preceding sample size code letter for which acceptance and rejection numbers are available.
 Ac = Acceptance number.
 Re = Rejection number.

Use single sampling plan above.

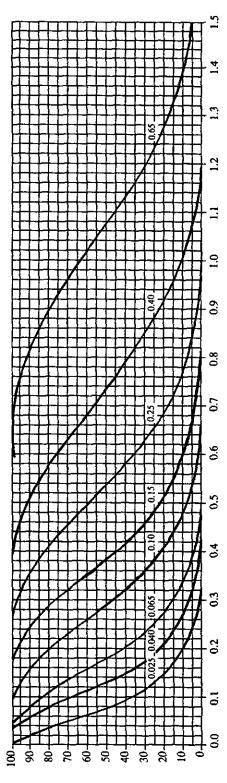

= Acceptance not permitted at this sample size.

Table X-R—Tables for sample size code letter: R INDIVIDUAL PLANS

PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P_B)

CHART R—OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS (Curves for double and multiple sampling are matched as closely as practicable)

Quality of Submitted Product (p, in percent nonconforming for AQLs <10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

TABLE X-R-1—TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

				Acceptar	ce Quality	Acceptance Quality Levels (normal inspection)	normal ins	pection)			
Ба	0.025	0.040	0.065	01.0	0.15	×	0.25	X	0.40	×	99'0
			p (in perc	p (in percent nonconforming or nonconformities per hundred units)	nforming	or noncor	ıformities	per hund	fred units)		:
99.0	0.00743	0.0218	0.0412	0.0893	0.145	0.175	0.239	0.305	0.374	0.517	0.629
95.0	0.0178	0.0409	0.0683	0.131	0.199	0.235	0.308	0.384	0.462	0.622	0.745
90.0	0.0266	0.0551	0.0872	0.158	0.233	0.272	0.351	0.432	0.515	0.684	0.812
75.0	0.0481	0.0864	0.127	0.211	0.298	0.342	0.431	0.521	0.612	0.795	0.934
50.0	0.0839	0.134	0.184	0.284	0.383	0.433	0.533	0.633	0.733	0.933	1.08
25.0	0.135	0.196	0.255	0.371	0.484	0.540	0.651	0.761	0.870	1.09	1.25
10.0	0.194	0.266	0.334	0.464	0.589	0.650	0.770	0.889	1.01	1.24	1.41
5.0	0.237	0.315	0.388	0.526	0.657	0.722	0.848	0.972	1.09	1.33	1.51
1.0	0.332	0.420	0.502	0.655	0.800	0.870	1.01	1.14	1.27	1.53	1.72
	0.040	0.065	0.10	0.15	X	0.25	×	0.40	×	0.65	×
				Accentab	le Onality	Acceptable Quality Levels (tightened inspection)	shtened in	Spection]

Note: Values given in the Table above are based on the Poisson distribution as an approximation to the binomial distribution (See 11.1 for details).

Table X-R-2—Sampling Plans for Sample Size Code Letter: R

	Cumu-		}			Acce	ptable	Qualit	Acceptable Quality Levels (normal inspection)	ls (non	mal in	spectio) E					
Type of sampling	lative sample	×	0.010	0.015	×	0.025	0.040	0.065	0.10	0.15	×	0.25	×	0.40	×	0.65	Higher than 0.65	Cumu- lative sample
T T T T T T T T T T T T T T T T T T T	size	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	size
Single	2000	0 1	•		:	1 2	2 3	3.4	5 6	7 8	6 8	10 11	12 13	14 15	18 19	21 22	٧	2000
Double	1250	*	Use Code Letter Q	Use Code Letter P	Use Code Letter	0 2	3 4	1 4 4 5	2 5 6 7	3.7	3 7	5 9 12 13	6 10	7 11 7 18 89	23 9	14 11 16 24 26 27	٥	1250
	200	*				# 2	# 2	# 33	#	0 4	0 4	0 %	9 0			2 9	⊲	200
	1000					# 2	0 3	0 3	1 5	1 6	2 7	<u>е</u>	3 9	4 10	6 12	7 14		1000
Multiple	1500					0 2	0 3	1 4	7 6	ω 	4 9	6 10	7 12	8 13	11 17	13 19		1500
	2000					0 3	1 4	2 5	3 7	5 10	11 9	. 8 13	10 15	12 17	16 22	19 25		2000
	2500					1 3	2 4	3 6	ري 00	7.11	9 12	11 15	14 17	17 20	22 25	25 29		2500
	3000					1 3	3 5	4 6	7 9	10 12	12 14	14 17	18 20	21 23	27 29	31 33		3000
	3500					2 3	4 5	6 7	9 10	13 14	14 15	18 19	21 22	25 26	32 33	37 38		3200
:		0.010	0.015	×	0.025	0.040	0.065	0.10	0.15	×	0.25	×	0.40	×	0.65	×	Higher than 0.65	
			!			Accep	table (- Quality	Acceptable Quality Levels (tightened inspection)	s (tight	ened i	nspecti	Ou)					

Δ = Use next preceding sample size code letter for which acceptance and rejection numbers are available.
 Ac = Acceptance number.
 Re = Rejection number.

Use single sampling plan above.

Acceptance not permitted at this sample size.

Table X-S—Tables for Sample Size Code Letter: S

		Acceptable (normal i	Acceptable Quality Level (normal inspection)
Type of sampling	Cumu- lative		×
	size	Ac	Re
Single	2000	1	7
2	2000	0	2
Donoie	4000		7
	008	#	2
	1600	#	2
 	2400	0	2
Multiple	3200	0	3
	4000	 -	8
	4800		ю
	2600	2	e
		0.0	0.025
		Acceptable (tightened	Acceptable Quality Level (tightened inspection)

Ac = Acceptance number.

Re = Rejection number.

= Acceptance not permitted at this sample size.

(In nonconformities per hundred units, also applicable to percent nonconforming for AQL less than 15 with specific values Table XI—Average Outgoing Quality Limit Factors for ANSI-Z1.4 Scheme Performance for percent nonconforming shown in parentheses)

	900	1100	1100	T	İ		<u> </u>	<u> </u>		T							
	059	710	710	099		 			 		-		<u> </u>		<u> </u>		
	400	450	480	430	014	-		-	-	-		-	-	-	-		-
	250 4	310	300	380	270	260			-	-				-			
	150 2	200	210	180	08.1	170				-	-		_	-	-		
	85	130	85	85	120	011				-				 —		-	
	65	78	28	87	92	69	12	-		-	<u> </u>	-		_		-	
	9	84	22	15	64	47	45	2		 		-				<u> </u>	
	25	90	32	31	32 ,	30	31	788	29					<u></u> _			
	15		61	8	92	20	8	<u>e</u>	<u>∞</u>			<u> </u>				_	
	1 01	-	<u> </u>	(12)	(13)		<u> </u>	(13)	<u> </u>	├—	12			-	-	-	_
Leve	6.5	(11) 13	<u> </u>		(7.0)	(7.5) ((7.9) 7.8	(8.7)	(8.0) ((7.7) (7.2	7.1		<u> </u>		<u></u>	
ality	4.0 6	_	(6.8) 7.5		0	(4.5) (7	(4.9) (7	-	(5.1) (8	(5.0) (7	4.9	4.5	4.5				
Acceptable Quality Level	2.5 4		9.	(4.4) 4.7		9)	(2.9) (4	3.0) (4	┝	3.2 4	3.2	3.1	2.9	2.9			
ptabl	1.5 2			4) 4	(2.8) 2.9		200	(1.8)			2.1 3	2.0 3	2.0 2	1.8	8.		
Acce	1.0 1				20	(1.9) 1.9		(1)	(1.2) (2 1.2 2	⊢—	1.3	1.3 2	1.3 2	1.3	1.2	1.2	
	0.65					0 1	(1.2)		1)	(72)	1 77.	.78	.80	1 87.	.76	.72	_
					· · · · · - - · ·		D T	5		()	.46		_	_	7 64	. 7	17. 8
	5 0.40							(,74) ,75	()		4.	9 48	1 .50	15.			24.
	5 0.25								(47)	(C) (C)		.29	8 31	0 31	0 32	1 .32	0 .31
	0 0.15									30.	_		.18	2 20	2 20	3 21	3 .20
	65 0.10										61.			.12	2 1.12	2 13	8 .13
	0.040 0.065				_							.12			.072	7.0. 9	8 .078
	25 0.0												270.	7		.046	9 .048
	0.015 0.025													740.	0	 	.029
			<u> </u>											 	.030	6	
	0.010														<u> </u>	610.	
Code	Letter	¥	В	၁	Ω	Ξ	F	Ö	Н	'n	X	Ţ	M	Z	P	ð	R

Normal Plan Sample Size
Lot or Batch Size Note: For a better approximation to the AOQL, the above values must be multiplied by

AOQL SCHEME PERFORMANCE

(In nonconformities per hundred units, also applicable to percent nonconforming for AQL less than 15 with specific values for percent nonconforming shown in parentheses) Table XII-Limiting Quality for ANSI-Z14 Scheme Performance for Which $P_a = 10$ Percent

	1000	1750	1680														
	650	1240	1170	1010		,											
	400	886	825	669	631								i				
	250	059	593	495	437	388											
	150	\$	433	356	309	569								1			
	100	334	309	560	222	190								-			
	65	266	223	185	162	137	124							1		!	
	40	194	177	134	116	100	688	77.4									
	25	130	130	106	83.5	71.3	65.0	55.6	49.5								
	15		77.8	77.8	66.5	51.4	46.4	40.6	35.6	30.9							
el	10			(40.6) 48.6	(40.6) 48.6	(36.0)	(30.4)	(27.1)	(24.7)	(21.4)	8'61						
Acceptable Quality Level	6,5	(53.6) 76.7			(26.8)	(26.8)	(24.5)		(17.8)	(15.7) 16.2	14,2	12.4					
ualit	4.0		(36.9) 46.0			(18.1)	(18.1)	(15.8) (19.7) 16.6 20.9	(12.9) 13.4	(11.3)	10.4	8.89	7.86				
ble Q	2.5		_	(25.0) 28.8			(11.6)	(11.6)	(10.3)	(8.16)	7.42	6.50	5,64	4.95			
epta	1.5				(16.2)			(7.56)	(7.56)	(6.52)	5.34	4,64	4.13	3.56	3.09		
Acc	1.0					(10.9)			(4.77)	(4.77)	4.26	3.34	2.94	2.60	2.22	1.98	
	69.0						(6.94)			(3.08)	3.11	2.66	2.12	1.85	1.62	1.42	1.24
	0.40							(4.50)			1.94	1.94	1.69	1.34	1.16	1.04	688.
	0.25								(2.84)			1.23	1.23	1.06	.835	.742	0\$9:
	0.15									(1.83)			877.	877.	399.	534	.464
	0.10										1.15			.486	.486	.426	.334
												.731			311	311	.266
	0.040 0.065												460	į		194	194
i	0.025													.288			.123
,	0.015 0.025														184		
	0.010															311.	
Code		A	В	Ū	Ω	田	ഥ	Ü	H	'n	К	7	M	z	ď	ð	24

(In nonconformities per hundred units, also applicable to percent nonconforming for AQL less than 15 with specific values Table XIII—Limiting Quality for ANSI-Z1.4 Scheme Performance for Which $P_a = 5$ Percent for percent nonconforming shown in parentheses)

	8	0981	1770			П	Π	Ι		Γ_	Γ						
	<u> </u>			8	\vdash	-	-		<u> </u>	-	 	ļ			 		
	959	1340	1240	1000					<u> </u>		ļ				<u> </u>		
	90	972	8	745	599				<u> </u>						L		
	250	722	848	534	465	409									<u> </u>		
	130	\$26	481	389	334	286											
	100	388	350	289	243	205											
	\$9	315	258	210	180	150	133										
	8	237	210	155	131	Ξ	97.2	83.4									
	25	158	158	126	6.96	80.9	72.2	8.09	53.4	_							
	15		94.9	94.9	78.7	59.6	52.6	45.1	38.9	33.4	-						
<u>ا</u>	01			(47.1)	(47.1)	(41.0)	(34.4)	(30.1)	(27.0)	(23.2)	21.4		-		-		
Acceptable Quality Level	6.5	(63.2)			(31.6)	(31.6)	(28.3)	(22.5) 24.2	(19.9)	(17.3)	15.6	13.3					
uality	4.0		(45.1)			(21.6)	21.6)			12.7)	11.5	9.72	8.47				
le Q	2.5		_	(31.2))	(14.0) (21.6) 14.8 23.7	(14.0) (18.4) 14.8 19.7	(12.1) (14.8) 12.6 15.5	(9.41) (12.7) 9.69 13.1	8.41	7.22	6.17	5.34			
eptab	1.5			0	(20.6)	-		(9.14) (9.49)	(9.14) 9.49	(7.66)	6.20	5.26	4.58	3.89	3.34		
Acc	1.0				3	(13.9) 15.0)	(5.79) 5.93	(5.79) 5.93	5.04	3.88	3.34	2.89	2.43	2.14	
	9.65					5-	(8.94)		5	3.74) (5	3.79	3.15	2.46	2.10	1.80	1.56	1.33
	0.40 0						8)	(5.81) 5.99	_	(3	2.37	2.37	2.00	1.55	1.31	1.15	276.
	0.25 0.							(5,	(3.68)		- 5	1.51 2	1.51 2	1.26	1 696:	.841	227.
	15 0.								3.3	03		1.	.949 1.	.949 1.	6. 787.	.620	. 526
	0 0.									(2.37)			9,		. 593	504 .6	388
	5 0.10										1.50	1	!	.593			
	0.00								_			1981		_	.379	.379	.315
	5 0.04												.599			.237	.237
	0.015 0.025 0.040 0.065													.374			151.
															.240		
	0.010															.150	
Code	Letter	Α	В	၁	D	Е	F	Ð	Н	J	Ж	Т	M	Z	Ь	δ	R

LQ 5% SCHEME PERFORMANCE

Table XIV—Average Sample Size Tables for ANSI-Z1.4 Scheme Performance (Single Sampling)

					Acc	eptable	Quality	Levels (normal	inspectio	on)				
Pa	6.5	6.5	25	40	65	100	150	250	400		1000				
	*					p (in	noncon	formitie	s per hu	ndred ur	uits)				
9.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0				
5.0	2.1	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0			1	
0.0	2.1	2.1	2.2	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0			1	
5.0	2.5	2.5	2.5	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0				
0.0	2.9	2.9	2.9	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0				
5.0	3.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0				
0.0	3.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0				
5.0	3.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0				
1.0	3.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0				
ole X	IV—B	Tabula	ted Val	ues for	Ачегар	e Samı	ple Size	for AN	ISI-Z1.	4 Schei	ne Perí	ormano	e		Code I
_						ceptable	Quality	Levels	(normal	inspecti	on)				
Pa	4.0	4.0	15	_25	40	65	100	150	250	400	650	1000	i		
	*	<u> </u>	ر ر				n noncor					···			
<u>9.0</u>	2.1	2.1	2.7	2.6	2.5	2.7	2.4	2.7	2.5	2.7	2.4	2.7			
5.0	2.6	2.6	3.1	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0			
0.0	3.1	3.1	3.3	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0			<u> </u>
5.0	4.0	4.0	4.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0			
0.0	4.8	4.8	4.8	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0			
5.0	5.0	5.0	5.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0			
0.0	5.0	5.0	5.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0			 _
<u>5.0</u>	5.0	5.0	5.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0			
1.0	5.0	5.0	5.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0			
ble X	IV—C	Tabula	ted Val	ues for	Averag	ge Sam	ple Size	for Al	NSI-Z1	.4 Sche	me Peri	formano	æ		Code
					Ac	ceptable	Quality	Levels	(normal	inspecti	ion)				
Pa	2.5	10	2.5	10	_15	25	40	65	100	150	250	400	650		
	p (in pe	rcent forming)				p (i	л попсог	nformiti	es per hi	ındred v	nits)				
9.0	2.4	3.7	2.4	3.6	3.5	4.0	4.2	4.1	4.1	4.2	4.3	4.0	3.4		
5.0	3.6	4.8	3.6	4.8	4.8	4.9	5.0	5.0	5.0	5.0	5.0	5.0	5.0		
0.0	4.7	5.4	4.7	5.4	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		
5.0	6.5	6.5	6.5	6.6	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		
0.0	7.8	7.7	7.8	7.7	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		
	8.0	8.0	8.0	8.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		
5.0	8.0	8.0	8.0	8.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		
5.0 0.0			8.0	8.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		
	8.0	8.0	0.0					5.0	5.0	5.0	5.0	5.0	5.0		
0.0		8.0 8.0	8.0	8.0	5.0	5.0	5.0	J.U		1					
0.0 5.0 1.0	8.0 8.0	8.0	8.0	8.0		·	5.0 ple Size			L	me Per	forman	ce		Code
0.0 5.0 1.0	8.0 8.0	8.0	8.0	8.0	Avera	ge Sam		e for A	NSI-ZI	.4 Sche		forman	ce		Code
0.0 5.0 1.0 ble 2	8.0 8.0	8.0 Tabula	8.0 ated Va	8.0	Avera	ge Sam	iple Size	e for A	NSI-ZI	.4 Sche				400	Code
0.0 5.0 1.0	8.0 8.0 IV—D	8.0 Tabula	8.0 ated Va	8.0	Avera	ge Sam	ple Size	e for A y Levels 25	NSI-ZI (norma	.4 Schell inspect	tion)	forman 150	ce 250	400	Code
0.0 5.0 1.0 ble 2	8.0 8.0 IV—D	8.0 Tabula	8.0 ated Va	8.0	Avera	ge Sam	aple Size	e for A y Levels 25	NSI-ZI (norma	.4 Schell inspect	ion) 100 units)				Code
0.0 5.0 1.0 ble 2 P _a	8.0 8.0 GIV—D	8.0 Tabula 6.5 p (in peromeonic of the second of the secon	8.0 ated Va	8.0 iues for 1.5	Avera A 6.5	ge Sam ceptabl 10 p(5.1	in nonco	e for A y Levels 25 onformit 6.6	NSI-Z1 (norma 40 ies per h	.4 Schell inspect	100 units) 5.8	7.0	250	5.4 7.9	Code
0.0 5.0 1.0 ble 2 P _a 09.0	8.0 8.0 (IV—D 1.5 3.7 5.7	6.5 p (in peroncontorn 5.8 7.7	8.0 ated Va. 10 ent sing) 5.3 7.4	8.0 lues for 1.5 3.7 5.7	Avera A. 6.5 5.7 7.6	ge Sam cceptabl 10 p (5.1 7.2	in nonco	e for A y Levels 25 onformit 6.6 7.9	NSI-Z1 (norma 40 ies per h 6.6 8.0	.4 Schell inspect 65 undred 1 5.9 7.9	100 units) 5.8 7.9	7.0 8.0	250 6.1 8.0	5.4 7.9	Code
0.0 5.0 1.0 ble 2 P _a 09.0 05.0	8.0 8.0 3.7 1.5 3.7 5.7 7.4	8.0 Tabula 6.5 p (in perococonform 5.8 7.7 8.6	8.0 ated Value 10 sing) 5.3 7.4 7.9	8.0 tues for 1.5 3.7 5.7 7.4	Avera A 6.5 5.7 7.6 8.6	ge Sam coeptabl 10 p(5.1 7.2 7.8	15 in nonco 6.2 7.8 8.0	e for A y Levels 25 mformit 6.6 7.9 8.0	NSI-Z1 (norma 40 ies per h 6.6 8.0 8.0	.4 Sche l inspect 65 undred 5.9 7.9 8.0	100 units) 5.8 7.9 8.0	7.0 8.0 8.0	250 6.1 8.0 8.0	5.4 7.9 8.0	Code
0.0 5.0 1.0 ble 2 P _a 09.0	8.0 8.0 (IV—D 1.5 3.7 5.7	6.5 p (in peroncontorn 5.8 7.7	8.0 ated Va. 10 ent sing) 5.3 7.4	8.0 lues for 1.5 3.7 5.7	Avera A. 6.5 5.7 7.6	ge Sam cceptabl 10 p (5.1 7.2	in nonco	e for A y Levels 25 onformit 6.6 7.9	NSI-Z1 (norma 40 ies per h 6.6 8.0	.4 Schell inspect 65 undred 1 5.9 7.9	100 units) 5.8 7.9	7.0 8.0	250 6.1 8.0	5.4 7.9	Code

13

8.0 13

8.0

8.0 13

13

13

8.0

8.0

8.0

8.0

10.0

5.0

1.0 13

13

13

13

13

8.0

8.0

8.0

8.0

0.8

8.0

8.0

8.0

8.0

8.0

8.0

8.0

8.0

8.0

^{*} p (in percent nonconforming)

Table XIV—Average Somple Size Tables for ANSI-Z1.4 heme Performance (Single Sampling)

Table XIV-E Tabulated Values for Average Sample Size for ANSI-Z1.4 Scheme Performance

Code E

	Γ'	
	$\overline{}$	
-		
_		
-		ı
_		
		,

					A	cceptabl	e Quality	Levels	(norma	inspect	ion)				
Pa	1.0	4.0	6.5	10	1.0	4.0	6.5	10	15	25	40	65	100	150	250
L	p (in	ercent n	onconfor	mities)				p (in n	onconfo	rmitics _l	per hund	red units)		
99.0	6.0	9.4	8.6	11	6.0	9.3	8.4	10	11	10	9.8	8.9	10	11	8.6
95.0	9.2	12	12	13	9.2	12	12	13	13	13	13	13	13	13	13
90.0	12	14	13	13	12	14	13	13	13	13	13	13	13	13	13
75.0	17	17	13	13	17	17	13	13	13	13	13	13	13	13	13
50.0	19	19	13	13	19	19	13	13	13	13	13	13	13	13	13
25.0	20	20	13	13	20	20	13	13	13	13	13	13	13	13	13
10.0	20	20	13	13	20	20	13	13	13	13	13	13	13	13	13
5.0	20	20	13	13	20	20	13	13	13	13	13	13	13	13	13
1.0	20	20	13	13	20	20	13	13	13	13	13	13	13	13	13

Table XIV—F Tabulated Values for Average Sample Size for ANSI-Z1.4 Scheme Performance

Code F

F

					Ac	ceptable	Quality	Levels	(normal	inspecti	on)					
Pa	.65	2.5	4.0	6.5	10	.65	2.5	4.0	6.5	10	15	25	40	65		
-	_ P	(in pere	nt nonco	nformin	g)			p (i	n nonco	nformiti	es per hi	ındred u	mits)			
99.0	9.5	14.6 13.4 15.7 17.9 9.5 14.5 13.2 15.3 16.8 17.8 16.2 15.1 15.7 19.1 18.5 19.5 19.0 14.4 19.0 18.3 19.3 19.8 20.0 19.9 19.8 19.9														
95.0	14.4	19.1	18.5	19.5	19.0	14.4	19.0	18.3	19.3	19.8	20.0	19.9	19.8	19.9		
90.0	18.6	21.5	19.7	19.9	20.0	18.6	21.5	19.6	19.9	20.0	20.0	20.0	20.0	20.0		
75.0	26.1	26.2	20.0	20.0	20.0	26.0	26.2	20.0	20.0	20.0	20.0	20.0	20.0	20.0		
50.0	31.0	30.9	20.0	20.0	20.0	31.0	30.9	20.0	20.0	20.0	20.0	20.0	20.0	20.0		
25.0	32.0	32.0	20.0	20.0	20.0	32.0	32.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0		
10.0	32.0	32.0	20.0	20.0	20.0	32.0	32.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0		
5.0	32.0	32.0	20.0	20.0	20.0	32.0	32.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0		
1.0	32.0	32.0	20.0	20.0	20.0	32.0	32.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0		

Table XIV-G Tabulated Values for Average Sample Size for ANSI-Z1.4 Scheme Performance

Code G

G

					Ac	ceptable	Quality	Levels	(normal	inspecti	on)			-	
Pa	.4	1.5	2.5	4.0	6.5	10	.4	1.5	2.5	4.0	6.5	10	15	25	40
		p (in j	percent i	nonconf	orming)				p (in no	nconfor	mities p	er hundr	ed units)	
99.0	15.5	25.1	21.4	25.0	28.1	28.6	15.5	24.9	21.3	24.6	27.1	27.0	26.8	24.4	26.3
95.0	23.1	31.7	29.5	31.2	31.9	32.0	23.1	31.7	29.4	31.0	31.7	31.8	31.9	31.8	31.9
90.0	29.7	34.6	31.4	31.9	32.0	32.0	29.7	34.6	31.4	31.8	32.0	32.0	32.0	32.0	32.0
75.0	41.1	41.4	32.0	32.0	32.0	32.0	41.1	41.4	32.0	32.0	32.0	32.0	32.0	32.0	32.0
50.0	48.6	48.3	32.0	32.0	32.0	32.0	48.6	48.3	32.0	32.0	32.0	32.0	32.0	32.0	32.0
25.0	50.0	50.0	32.0	32.0	32.0	32.0	50.0	50.0	32.0	32.0	32.0	32.0	32.0	32.0	32.0
10.0	50.0	50.0	32.0	32.0	32.0	32.0	50.0	50.0	32.0	32.0	32.0	32.0	32.0	32.0	32.0
5.0	50.0	50.0	32.0	32.0	32.0	32.0	50.0	50.0	32.0	32.0	32.0	32.0	32.0	32.0	32.0
1.0	50.0	50.0	32.0	32.0	32.0	32.0	50.0	50.0	32.0	32.0	32.0	32.0	32.0	32.0	32.0

Table XIV—H Tabulated Values for Average Sample Size for ANSI-Z1.4 Scheme Performance

Code H

						Ассер	table Qu	ality Le	vels (no	rmal insp	pection)					
Pa	.25	1.0	1.5	2.5	4.0	6.5	10	.25	1.0	1.5	2.5	4.0	6.5	10	15	25
_		p (in p	ercent n	onconfo	erning)				p (in no	nconfor	mities pe	r hundr	ed units))		
99.0	23.8	36.3	35.6	40.3	43.1	42.4	43.4	23.8	36.2	35.3	39.8	42.1	40.8	40.5	41.9	42.7
95.0	36.0	47.7	47.8	49.2	49.7	49.8	50.0	36.0	47.6	47.7	49.0	49.6	49.6	49.8	49.9	50.0
90.0	46.5	53.7	49.6	49.9	50.0	50.0	50.0	46.5	53.7	49.6	49.9	49.9	50.0	50.0	50.0	50.0
75.0	65.1	65.6	50.0	50.0	50.0	50.0	50.0	65.1	65.6	50.0	50.0	50.0	50.0	50.0	50.0	50.0
50.0	77.6	77.1	50.0	50.0	50.0	50.0	50.0	77.6	77.2	50.0	50.0	50.0	50.0	50.0	50.0	50.0
25.0	79.9	79.9	50.0	50.0	50.0	50.0	50.0	79.9	79.9	50.0	50.0	50.0	50.0	50.0	50.0	50.0
10.0	80.0	80.0	50.0	50.0	50.0	50.0	50.0	80.0	80.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
5.0	80.0	80.0	50.0	50.0	50.0	50.0	50.0	80.0	80.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
1.0	80.0	80.0	50.0	50.0	50.0	50.0	50.0	80.0	80.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0

AVERAGE SAMPLE SIZE SCHEME PERFORMANCE

Table XIV—Average Size Tables for ANSI-Z1. Sheme Performance (Single Sampling)

)					A	cceptabl	e Qualit	y Levels	(norma	l inspect	ion)					
P_a	.15	.65	1.0	1.5	2.5	4.0	6.5	10	.15	.65	1.0	1.5	2.5	4.0	6.5	10	15
			p (in p	ercent n	onconfo	ming)					p (in n	onconfo	rmities _l	er hund	red units)	
99.0	38.3	58.0	52.9	64.2	68.3	68.7	64.2	64.7	38.3	57.9	52.8	63.7	67.3	67.1	61.7	60.5	73.5
95.0	57.5	76.2	73.4	78.6	79.5	79.7	79.6	79.8	57.5	76.1	73.2	78.5	79.3	79.6	79.3	79.3	80.0
90.0	74.0	85.5	78.5	79.8	79.9	80.0	80.0	80.0	74.0	85.4	78.4	79.8	79.9	80.0	80.0	80.0	80.0
75.0	103	103	80.0	80.0	80.0	80.0	80.0	80.0	103	103	80.0	0.08	80.0	80.0	80.0	80.0	80.0
50.0	121	121	80.0	80.0	80.0	0.08	80.0	80.0	121	121	0.08	0.08	80.0	80.0	80.0	80.0	80.0
25.0	125	125	80.0	80.0	80.0	80.0	80.0	80.0	125	125	80.0	80.0	80.0	80.0	80.0	80.0	80.0
10.0	125	125	80.0	80.0	80.0	80.0	80.0	80.0	125	125	80.0	80.0	80.0	80.0	80.0	80.0	80.0
5.0	125	125	80.0	80.0	80.0	0.08	80.0	80.0	125	125	80.0	80.0	80.0	80.0	80.0	80.0	80.0
1.0	125	125	80.0	80.0	80.0	80.0	80.0	80.0	125	125	80.0	80.0	80.0	80.0	80.0	80.0	80.0

	i				Ac	ceptable	Qualit	y Levels	(normal	inspectio	n)			
P_a	.10	.40	.65	1.0	1.5	2.5	4.0	6.5	10			Γ	1	T
•			p (in no	nconfor	nities pe	r hundr	ed units)						
99.0	59.6	90.5	82.4	99.6	109	105	101	92.6	107					
95.0	90.1	119	114	123	124	124	124	124	125				1	T
90.0	116	134	123	125	125	125	125	125	125					T^-
75.0	163	164	125	125	125	125	125	125	125					
50.0	194	193	125	125	125	125	125	125	125				T	\mathbf{I}^{-}
25.0	200	200	125	125_	125	125	125	125	125					
10.0	200	200	125	125	125	125	125	125	125					
5.0	200	200	125	125_	125	125	125	125	125			1		
1.0	200	200	125	125	125	125	125	125	125					

able X	IV—L	Tabula	ted Val	ues for	Averag	ge Sam	ple Size	for Al	NSI-Z1.	4 Sche	me Per	forma	nce		Code
					Ac	ceptable	Quality	Levels	(normal	inspecti	on)				
P_a	.065	.25	.40	.65	1.0	1.5	2.5	4.0	6.5				Ţ		1
_			p (ii	noncor	formitie	s per hu	indred u	nits)				4			
99.0	95.6	145	132	153	168	178	162	151	157		<u> </u>		T^-	T	
95.0	144	190	183	193	198	200	199	198	199				1	T	
90.0	185	214	196	199	200	200	200	200	200		i	<u> </u>	T -		
75.0	258	260	200	200	200	200	200	200	200					1	1
50.0	306	304	200	200	200	200	200	200	200						
25.0	315	315	200	200	200	200	200	200	200				T		1
10.0	315	315	200	200	200	200	200	200	200					1	
5.0	315	315	200	200	200	200	200	200	200				-		
1.0	315	315	200	200	200	200	200	200	200		Γ				1

able X	IV—M	Tabula	ted Va	lues for	Avera	ge Sam	ple Size	for Al	NSI-Z1.	4 Scheme	Perform	nance	Code l
					Ac	ceptable	Quality	Levels	(normal	inspection)			
Pa	.04	.15	.25	.40	.65	1.0	1.5	2.5	4.0				
			p (in no	nconfor	nities pe	r hundre	d units)						
99.0	149	244	207	240	264	263	268	242	263				
95.0	226	312	288	304	312	313	314	313	315				
90.0	292	342	309	313	315	315	315	315	315				
75.0	408	411	315	315	315	315	315	315	315				
50.0	485	483	315	315	315	315	315	315	315				
25.0	500	499	315	315	315	315	315	315	315				
10.0	500	500	315	315	315	315	315	315	315		$\Box T$		
5.0	500	500	315	315	315	315	315	315	315		T_		
1.0	500	500	315	315	315	315	315	315	315		_ T.		

→ SAMPLE SIZE SCHEME PERFORMANCE

AVERAGE

Table XIV—Average pple Size Tables for ANSI-Z1.4 cheme Performance (Single Sampling)

	•					(DE	ngic	Dun		18)						
	Table >	αv—n	Tabul	ated Va	lues for	Avera	ge Sam	ple Siz	e for Al	NSI-Z1	.4 Scho	me Pe	rformar	nce		Code
N I						Ac	ceptable	Quality	Levels	(normal	inspecti	on)				
IN	Pa	.025	.10	.15	.25	.40 Iformitie	.65	1.0	1.5	2.5			<u> </u>			
	1000	238	362	353	398	421	407	405	419	427	-	Ι	, 	T	Т	
	99.0 95.0	360	476	477	490	496	496	498	499	499		 	 	┼──	┼	
	90.0	465	537	496	499	499	500	500	500	500		┝──	 	 	\vdash	
	75.0	651	656	500	500	500	500	500	500	500			\vdash	 	 	
	50.0	776	772	500	500	500	500	500	500	500		-	-		\vdash	t
	25.0	799	799	500	500	500	500	500	500	500			 	†—	 	
	10.0	800	800	500	500	500	500	500	500	500		<u> </u>	 	\vdash	1	
	5.0	800	800	500	500	500	500	500	500	500						
	1.0	800	800	500	500	500	500	500	500	500						
	Table X	IV—P	Tabula	ted Val	ues for	Averag	e Samı	ole Size	for AN	ISI-Z1.	4 Sche	me Per	forman	ce		Code
										(norma						
$\boldsymbol{\mu}$	Ъ	.015	.065	.10	.15	.25	.40	.65	1.0	1.5	uspeci	1011)	η	Т	Τ	T
	Pa	.013	1.005			nformiti				1 1.5		ــــــــــــــــــــــــــــــــــــــ	<u> </u>	ᆚ	ــــــــــــــــــــــــــــــــــــــ	<u> </u>
	99.0	378	576	523	634	670	667	610	598	730		T	T	Τ	T	1
	95.0	572	759	730	784	793	795	792	793	800	├	1		+	+	-
	90.0	738	854	784	798	799	800	800	800	800	 		+	+	 	+-
	75.0	1027	1035	800	800	800	800	800	800	800			╁┈──	┼──	+	
	50.0	1214	1208	800	800	800	800	800	800	800	<u> </u>	 	╁	 	+-	${f -}$
	25.0	1249	1249	800	800	800	800	800	800	800	†	 	\vdash	 	+-	+-
	10.0	1250	1250	800	800	800	800	800	800	800			1		†	†
	5.0	1250	1250	800	800	800	800	800	800	800	<u> </u>	 	 	*	 	1
	1.0	1250	1250	800	800	800	800	800	800	800	 	1	1	 	†	
	<u> </u>					<u> </u>		<u> </u>	<u> </u>	L	4 Caba	J	<u> </u>			Code
	Table X	1 <u>v—6</u>	I abula	ted val	ues for								Tomnai	ice		Code
										(normal	inspect	ion) T		 -	τ	
W	Pa	.01	.04	.065	.10	.15	.25	.40	.65	1.0		<u> </u>		<u> </u>	<u> </u>	<u> </u>
•	 	506	005			formitie				1,070		Т	1		Τ	I
	99.0	596	905	824	996	1090	1050	1010	926	1070			 -	 -		├
	95.0	901	1190	1140	1230	1240	1240	1250	1240	1250		 	 	┼─-	╁	├
	90.0	1160	1340	1230	1250	1250	1250 1250	1250	1250	1250	·	 	-	┼	┼	╁
	75.0	1630 1940	1640	1250	1250	1250		1250	1250	1250		├	 	 -	+	
	50.0	2000	1930 2000	1250 1250	1250 1250		1250	1250 1250	1250 1250	1250 1250		-	 	 	+	
	25.0 10.0	2000	2000	1250	1250			_	1250	1250	L	1	-	+	+	\vdash
	5.0	2000	2000	1250	1250	1250			1250	1250			╁╌┈	┼──	┼──	\vdash
	1.0	2000	2000	1250	1250		1250		1250	1250		 	1	+	+	
	<u> </u>							_	L			<u> </u>	<u>. </u>		ــــــــــــــــــــــــــــــــــــــ	
	Table X	IV—R	Tabula	ted Val	ues for	Averag	ge Sam	ple Size	for Al	NSI-Z1	4 Sche	me Pe	formar	ice		Code
	_				·	Ac	ceptable	Qualit	y Levels	(поппа	inspect	ion)	_			
1 1	P _a	.025	.040	.065	.10	.15	.25	.40	.65		<u> </u>	<u> </u>	<u> </u>	<u></u>		<u></u>
		<u> </u>	1			nformiti	-								-	
	99.0	1450	1320	1530	1680	-		}	1570	 		 	<u> </u>	 -		╄
	95.0	1900	1830	1930	1980	2000	-	1980	1990	1	 	-		 	+-	
	90.0	2140	1960	1990	2000	2000	2000	2000	2000]	—	-	┼		-
	75.0	2600	2000	2000	2000	2000	2000	2000	2000	₩	<u> </u>	-	┼—	┼		\vdash
	50.0	3040	2000	2000	2000	2000	2000	2000	2000	 	 -	┼		 		+
	25.0	3150	2000	2000	2000	2000	2000	2000	2000	 	 	₩	4	┼─-		+-
	10.0	3150	2000	2000	2000	2000	2000	2000	2000	 	 	+	 	+	 -	+
GE	5.0	3150	2000	2000	2000	2000	2000	2000	2000	 	-	+	+	+	+-	+-

AVERAGE SAMPLE SIZE SCHEME PERFORMANCE

2000 2000 2000 2000 2000

Chart XV-A Operating Characteristic Curves for ANSI Z1.4 Scheme Performance Scheme Performance with Switching Rules

(Curves for double and multiple sampling are matched as closely as practicable)

PERCENT OF LOTS EXPECTED TO BE ACCEPTED (Pg)

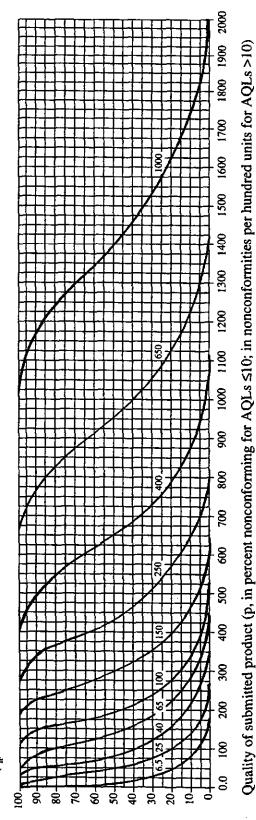


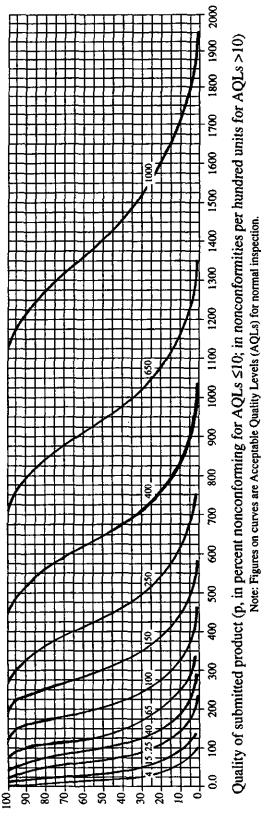
TABLE XV-A-1—TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR ANSI Z1.4 SCHEME PERFORMANCE

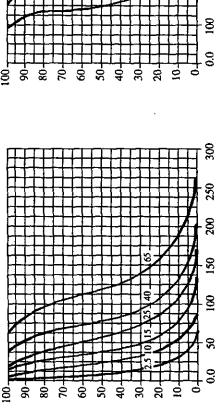
Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

Acceptable Quality Levels (normal inspection)	6.5 6.5 2.5 40 6.5 100 1.50 2.50 400 6.50 1000	perent pe	0.501 0.502 7.43 21.8 41.2 89.1 145 239 374 628 977	2.50 2.53 17.5 38.7 66.1 123 192 302 456 734 1110	4.84 4.96 24.6 47.9 79.9 138 214 333 497 783 1180	0.8 11.4 38.0 63.7 103 162 248 380 560 855 1270	1.2 23.8 57.8 88.5 138 195 294 443 642 948 1400	7.0 46.3 89.9 135 196 256 372 540 761 1090 1570	3.6 76.7 130 194 266 334 464 650 889 1240 1750	3.2 99.8 158 237 315 388 526 722 972 1340 1860	8.4 154 221 332 420 502 655 871 1140 1530 2090
		ent ring)				-					
	6.5	p (in percent nonconforming)	0.501	2.50	4.84	10.8	21.2	37.0	53.6	63.2	78.4
	ط ه		0.66	95.0	0.06	75.0	50.0	25.0	10.0	5.0	0'1

Chart XV-B Operating Characteristic Curves for ANSI Z14 Scheme Performance Scheme Performance with Switching Rules

(Curves for double and multiple sampling are matched as closely as practicable)




TABLE XV-B-1—TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR ANSI Z1.4 SCHEME PERFORMANCE

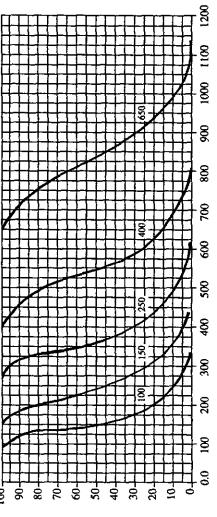
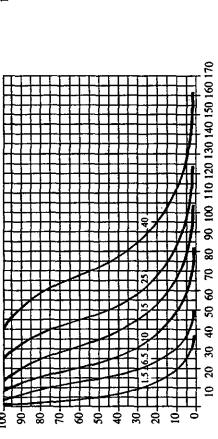
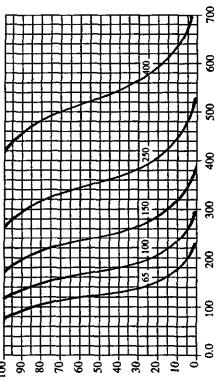

						Acceptab	le Quality	Levels (n	Acceptable Quality Levels (normal inspection)	ection)					-
Ч	4.0	4.0	15	25	40	65	961	150	250	400	059	0001			
	p (in percent nanconforming)					g.	(in nonco	nformities	p (in nonconformities per hundred units)	red units)					
99.0	0.467	0.468	5.46	16.2	31.4	60.2	92.5	154	244	401	637	1010			
95.0	1.96	1,98	11.6	25.8	44.4	81.9	128	201	304	489	742	1150			
90.0	3.40	3.46	15.9	31.9	53.3	92.2	143	222	332	522	785	1200	_		
75.0	6.94	7.19	23.8	42.4	8.89	108	165	253	373	570	850	1290			
50.0	13.4	14.4	35.1	59.0	92.0	130	196	295	428	632	931	1400			
25.0	24.2	27.8	53.9	89.9	131	171	248	360	507	725	1050	1540		-	
10.0	36.9	46.0	77.8	130	177	223	309	433	593	825	1170	1680			
5.0	45.1	59.9	94.9	158	210	258	350	481	648	890	1240	1770			
1.0	60.2	92.2	133	221	280	335	437	581	19/	1020	1390	1950			

Chart XV-C Operating Characteristic Curves for ANSI Z14 Scheme Performance Scheme Performance with Switching Rules

(Curves for double and multiple sampling are matched as closely as practicable)

PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P_B)

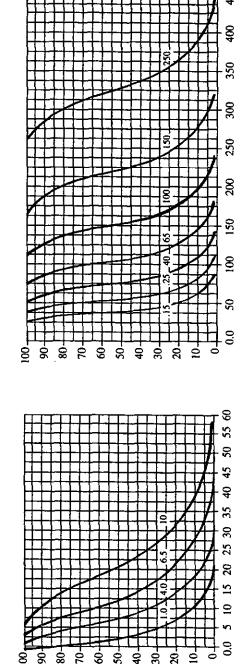

Quality of submitted product (p, in percent nonconforming for AQLs \$10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.


TABLE XV-C-1— TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR ANSI Z1.4 SCHEME PERFORMANCE

						Acceptat	ole Quality	Acceptable Quality Levels (normal inspection)	ormal ins	pection)				
Pa	2.5	01	2.5	01	15	25	40	\$9	100	051	250	400	059	
	p (in percent nonconformin	p (in percent nonconforming)					p (in r	p (in nonconformities per hundred units)	nities per	hundred u	nits)			
0.66	0.416	4.16	0.416	3.83	10.8	18.4	37.7	61.3	001	154	256	399	640	
95.0	1.42	7.73	1.43	7.29	15.7	26.6	49.2	76.9	121	183	294	445	689	
90.0	2.26	10.2	2.29	9.79	19.2	32.0	55.3	85.7	133	199	313	471	722	_
75.0	4.36	14.7	4.46	14.6	25.5	41,3	64.7	0.66	152	224	342	510	774	
50.0	8.58	20.9	86.8	21.8	35.4	55.2	77.8	117	171	257	379	559	838	
25.0	15.9	30.3	17.3	33.07	53.9	78.5	102	149	216	304	435	627	924	
10.0	25.0	40.6	28.8	48.6	77.8	106	134	185	260	356	495	669	1010	
5.0	31.2	47.1	37.4	59.3	94.9	126	155	210	289	380	534	745	1060	
1.0	43.7	58.9	57.6	83.0	133	168	201	262	348	457	612	835	1170	

Chart XV-D Operating Characteristic Curves for ANSI ZI.4 Scheme Performance Scheme Performance with Switching Rules

(Curves for double and multiple sampling are matched as closely as practicable)



Quality of submitted product (p, in percent nonconforming for AQLs \$10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection. TABLE XV-D-1—TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR ANSI Z1.4 SCHEME PERFORMANCE

ection)	65 100 150 250 400	p (in nonconformities per hundred units)	64.1 99.7 160 252 403	75.7 114 184 278 431	83.2 124 196 294 451	95.0 140 214 319 484	111 161 237 349 524	135 190 272 392 577	162 222 309 437 631	180 243 334 465 665	218 285 382 522 732
inspection)		nities per hundred	64.1	75.7	83.2	95.0	111	135	162		
Acceptable Quality Levels (normal inspection)	25 40	p (in nonconform	23.7 38.3	30.8 48.0	34.6 53.5	40.4 61.9	48.6 73.4	64.0 92.9	83.5	96.9 131	126 164
Acceptable Quali	10 15		7.20 11.6	10.1	12.1 20.0	15.9 25.8	22.1 34.5	33.7 49.0	48.6 66.5	59.3 78.7	83.0 105
	6.5		2.43	4.57	6.10	9.07	13.5	20.7	29.9	36.5	51.1
	1.5		6 0.273	0.915	1.44	2.77	5.53	10.7	17.7	23.0	35.5
	6.5 10	p (in percent nonconforming)	2.55 7.86	4.73 10.7	6.26 12.7	9.10 16.2	13.1 21.3	19.4 30.3	26.8 40.6	31.6 47.1	41.3 58.9
	1.5) d	0.272	0.911	1.43	2.73	5.38	10.1	16.2	20.6	29.8
			99.0	95.0	90.0	75.0	20.0	25.0	10.0	5.0	1.0

Chart XV-E Operating Characteristic Curves for ANSI Z14 Scheme Performance Scheme Performance with Switching Rules

(Curves for double and multiple sampling are matched as closely as practicable) PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P_a)

Quality of submitted product (p, in percent nonconforming for AQLs \$10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

TABLE XV-E-1—TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR ANSI Z1.4 SCHEME PERFORMANCE

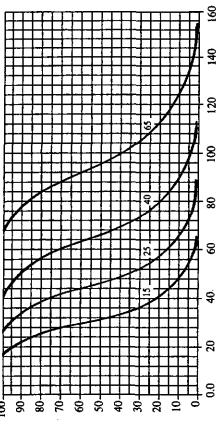
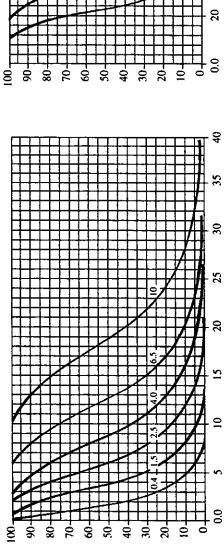
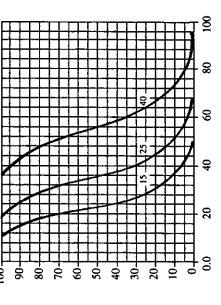

								—,		
250		248	265	278	298	322	355	388	409	450
150		153	171	181	961	215	241	269	286	321
100		100	113	120	132	146	167	190	205	235
65		62.2	70.6	76.5	86.2	98.8	117	137	150	176
40	ed units)	39.3	46.6	51.2	58.4	68.1	83.1	100	Ξ	134
25	per hund	23.7	29.6	32.9	38.1	45.2	57.2	71.3	80.9	101
15	nformities	14.4	18.9	21.3	24.9	29.9	39.4	51.4	59.6	77.3
01	(in nonco	7.13	10.2	12.3	15.9	21.2	30.2	40.9	48.4	64.7
6.5	d	4.41	6.19	7.42	9.80	13.6	20.7	29.9	36.5	51.1
4,0		1.48	2.82	3.80	5.76	8.70	13.5	19.4	23.7	33.2
1.0		0.165	0.560	0.893	1.75	3.58	6.94	11.5	15.0	23.1
10		7.62	10.9	12.9	16.2	20.7	28.0	36.0	41.0	50.6
6.5		4.64	6.42	7.64	9.88	13.3	19.4	26.8	31.6	41.3
4.0	(in percent conforming)	1.53	2.88	3.86	5.77	8.55	12.9	18.1	21.6	28.9
1.0	수	0.165	0.558	0.889	1.74	3.51	6.70	10.9	13.9	20.6
г В	L	0.66	95.0	0.06	75.0	50.0	25.0	10:0	5.0	1.0
	1.0 4.0 6.5 10 1.0 4.0 6.5 10 15 25 40 65 100 150	1.0 4.0 6.5 10 1.0 4.0 6.5 10 15 25 40 65 100 150 p (in percent nonconforming)	1.0 4.0 6.5 10 1.0 4.0 6.5 10 15 25 40 65 100 150 150	1.0 4.0 6.5 10 1.0 4.0 6.5 10 15 4.0 6.5 10 15 25 40 65 100 150 150 150 150 150 150 150 150 15	1.0 4.0 6.5 10 1.0 4.0 6.5 10 15 25 40 65 100 150	1.0 4.0 6.5 10 1.0 4.0 6.5 10 15 25 40 65 100 150 150 150 150 150 150 150 150 15	1.0 4.0 6.5 10 15 25 40 65 10 150	1.0 4.0 6.5 10 15 25 40 65 10 15 25 40 65 10 150 <	1.0 4.0 6.5 10 15 25 40 65 10 15 150	1.0 4.0 6.5 10 1.0 4.0 6.5 10 1.5 25 40 6.5 100 15

Chart XV-F Operating Characteristic Curves for ANSI Z1.4 Scheme Performance Scheme Performance with Switching Rules

(Curves for double and multiple sampling are matched as closely as practicable)

PERCENT OF LOTS EXPECTED TO BE ACCEPTED (Pg)


Quality of submitted product (p, in percent nonconforming for AQLs <10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.


TABLE XV-F-1—TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR ANSI Z1.4 SCHEME PERFORMANCE

		г						, 			_
	\$9		64.9	73.4	78.3	85.5	94.8	109	124	133	153
. :	40		39.5	45.7	49.7	56.0	64.2	76.1	88.9	97.2	114
	25	Ired units)	25.0	30.2	33.3	38.0	44.3	54.0	65.0	72.2	87.1
	15	s per hunc	15.0	19.2	21.4	24.8	29.4	37.2	46.4	52.6	65.5
ection)	10	onformitie	9.41	12.3	13.8	16.2	19.5	25.6	33.4	38.8	50.2
Acceptable Quality Levels (normal inspection)	6.5	p (in nonconformities per hundred units)	4.72	6.69	8.00	10.3	13.8	19.6	26.6	31.5	42.0
Levels (n	4.0		2.84	4.02	4.82	6.37	8.85	13.5	19.4	23.7	33.2
le Quality	2.5		.958	1.82	2.45	3.66	5.46	8.43	12.2	14.8	20.7
Acceptab	.65		0.104	0.358	0.572	1.11	2.24	4.34	7.19	9.36	14.4
	10		10.1	13.0	14.4	16.5	19.2	24.3	30.4	34.4	42.1
	6.5		4.93	6.94	8.24	10.4	13.6	18.7	24.5	28.3	35.8
	4.0	p (in percent nonconforming	2.94	4.11	4.91	6.40	8.71	12.9	18.1	21.6	28.9
	2.5] Du	876.	1.85	2.47	3.66	5.40	8.21	11.6	14.0	19.0
	\$9'		0.104	0.357	0.571	1.11	2.22	4.24	6.94	8.94	13.4
	Ч		0.66	95.0	0.06	75.0	50.0	25.0	10.0	5.0	1.0

Chart XV-G Operating Characteristic Curves for ANSI Z14 Scheme Performance (Curves for double and multiple sampling are matched as closely as practicable) Scheme Performance with Switching Rules

PERCENT OF LOTS (C EXPECTED TO BE ACCEPTED (P₃)

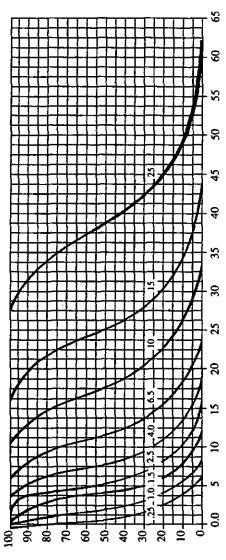

Quality of submitted product (p, in percent nonconforming for AQLs <10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection)

TABLE XV-G-1—TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR ANSI Z1,4 SCHEME PERFORMANCE

40		40.3	45.9	48.9	53.4	59.2	67.9	77.4	83.4	95.6
25	:	24.6	28.6	31.1	35.0	40.1	47.6	55.6	8.09	71.4
15	nits)	15.5	18.9	20.8	23.7	7.72	33.8	40.6	45.1	54.4
01	hundred u	676	12.0	13.4	15.5	18.3	23.2	29.0	32.9	41.0
6.5	mities per	5.88	69'L	8.64	10.1	12.2	16.0	20.9	24.2	31.4
4.0	топсопбог	2.95	4.18	5.00	6.45	8.63	12.3	16.6	19.7	26.3
2.5	p (in t	1.77	2.51	3.01	3.98	5.53	8.43	12.2	14.8	20.7
1.5		.564	1.11	1.52	2.32	3.48	5.39	7.78	9.49	13.3
4.	i	0.0643	0.223	0.358	0.706	1.43	2.78	4.60	5.99	9.22
0.1		10.0	12.6	13.9	15.7	18.2	22.3	27.1	30.1	36.0
6.5		6.12	7.96	8.87	10.2	12.1	15.5	19.7	22.5	28.1
4.0	rcent rming)	3.02	4.28	5.09	6.49	8.54	11.9	15.8	18.4	23.8
2.5	p (in pe nonconfe	1.80	2.54	3.05	3.99	5.48	8.21	11.6	14.0	19.0
1.5		0.571	1.12	1.53	2.32	3,46	5.30	7.56	9.14	12.5
4.		0.0643	0.223	0.357	0.703	1.42	2.74	4.50	5.81	8.80
Ф	-	99.0	95.0	0.06	75.0	50.0	25.0	10.0	5.0	0'1
	1.5 2.5 4.0 6.5 10 .4 1.5 2.5 4.0 6.5 10 15 25	1.5 2.5 4.0 6.5 10 .4 1.5 2.5 4.0 6.5 10 15 25 25 nonconformities per hundred units)	.4 1.5 2.5 4.0 6.5 10 .4 1.5 2.5 4.0 6.5 10 .4 1.5 2.5 4.0 6.5 10 15 25 p (in percent nonconforming) 0.0643 0.571 1.80 3.02 6.12 10.0 0.0643 .564 1.77 2.95 5.88 9.49 15.5 24.6	.4 1.5 2.5 4.0 6.5 10 .4 1.5 2.5 4.0 6.5 10 .4 1.5 2.5 4.0 6.5 10 .4 1.5 2.5 4.0 6.5 10 .6 .4 .6	A 1.5 2.5 4.0 6.5 10 .4 1.5 2.5 4.0 6.5 10 .4 1.5 2.5 4.0 6.5 10 .4 1.5 2.5 4.0 6.5 10 .4 1.5 2.5 4.0 6.5 1.7 2.95 5.88 9.49 15.5 2.46 0.223 1.12 2.54 4.28 7.96 12.6 0.223 1.11 2.51 4.18 7.69 12.0 18.9 28.6 0.357 1.53 3.05 5.09 8.87 13.9 0.358 1.52 3.01 5.00 8.64 13.4 20.8 31.1	4 1.5 2.5 4.0 6.5 10 .4 1.5 2.5 4.0 6.5 10 .4 1.5 2.5 4.0 6.5 10 .15 2.5 4.0 6.5 10 .15 2.5 4.0 1.5 .25 .1 .2<	4 1.5 2.5 4.0 6.5 10 4 1.5 2.5 4.0 6.5 10 4 1.5 2.5 4.0 6.5 10 15 2.5 4.0 1.5 1.5 2.5 1.0 1.5 2.5 4.0 1.5 2.5 4.0 1.5 2.4 2.6 1.7 2.95 5.88 9.49 15.5 24.6 2.6 2.6 1.0 0.0643 .564 1.77 2.95 5.88 9.49 15.5 24.6 24.6 24.6 24.6 24.6 24.6 24.6 1.5 24.6 24	4 1.5 2.5 4.0 6.5 10 4 1.5 2.5 4.0 6.5 10 4 1.5 2.5 4.0 6.5 10 15 2.5 4.0 6.5 10 4 1.5 2.5 4.0 15 2.5 4.0 15 2.5 2.5 1.0 1.0 0.0643 .564 1.77 2.95 5.88 9.49 15.5 24.6 24.	4 1.5 2.5 4.0 6.5 10 .4 1.5 2.5 4.0 6.5 10 15 25 25 10 15 25 25 25 25 25 25 25	4 1.5 2.5 4.0 6.5 10 4 1.5 2.5 4.0 6.5 10 4 1.5 2.5 4.0 6.5 10 15 2.5 0.0643 0.0643 0.0643 .564 1.77 2.95 5.88 9.49 15.5 24.6 0.023 1.12 2.54 4.28 7.96 12.6 0.223 1.11 2.51 4.18 7.69 18.9 18.6 18.6 18.9 18.6 18.6 18.9 18.6 18.6 18.9 18.6<

Chart XV-H Operating Characteristic Curves for ANSI Z14 Scheme Performance (Curves for double and multiple sampling are matched as closely as practicable) Scheme Performance with Switching Rules

PERCENT OF LOTS
EXPECTED TO BE
ACCEPTED (Pa)

Quality of submitted product (p, in percent nonconforming for AQLs <10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

TABLE XV-H-1—TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR ANSI Z1.4 SCHEME PERFORMANCE

	25		25.6	29.4	31.3	34.2	37.9	43.5	49.5	53.4	61.2
	15		15.4	18.3	6.61	22.4	25.7	30.4	35.6	38.9	45.7
	10		10.0	12.1	13.3	15.2	17.7	21.6	26.0	28.9	34.8
	6.5	red units)	6.14	7.69	8.57	9:90	11.7	14.9	18.5	21.0	26.2
	4.0	per hund	3.77	4.92	5.53	6.47	7.78	10.2	13.4	15.5	20.1
n)	2.5	nformities	1.84	2.66	3.20	4.13	5.52	7.85	10.6	12.6	16.8
Acceptable Quality Levels (normal inspection)	1.5	p (in nonconformities per hundred units)	1.08	1.57	1.92	2.55	3.54	5.39	7.78	9.49	13.3
ls (norma	1.0	-	0.383	0.729	0.979	1.46	2.18	3.37	4.86	5.93	8.30
ality Leve	.25		0.0416	0.143	0.229	0.446	868.0	1.73	2.88	3.74	5.76
ptable Qu	10		10.4	12.6	13.7	15.4	17.6	21.0	24.7	27.0	31.6
Acc	6.5		6.33	7.92	8.76	10.0	11.7	14.5	17.8	19.9	24.1
	4.0		3.86	5.03	5.62	6.52	7.74	10.0	12.9	14.8	18.7
	2.5	p (in percent nonconforming)	1.87	2.70	3.23	4.15	5.49	7.70	10.3	12.1	15.8
	1.5	2	1.09	1.59	1.93	2.55	3.52	5.30	7.56	9.14	12.5
	0.1		0.386	0.733	0.983	1.46	2.17	3.34	4.77	5.79	8.01
	,25		0.0416	0.143	0.229	0.445	668'0	1.72	2.84	3768	65'5
	٦ a		0.66	95.0	90.0	75.0	50.0	25.0	10.0	5.0	0.1

Chart XV-J Operating Characteristic Curves for ANSI Z1.4 Scheme Performance Scheme Performance with Switching Rules

(Curves for double and multiple sampling are matched as closely as practicable)

PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P₃)

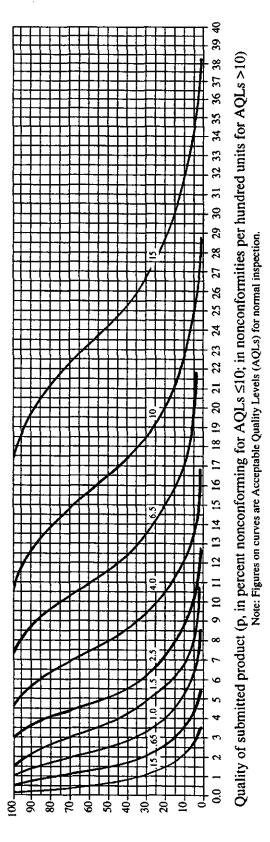
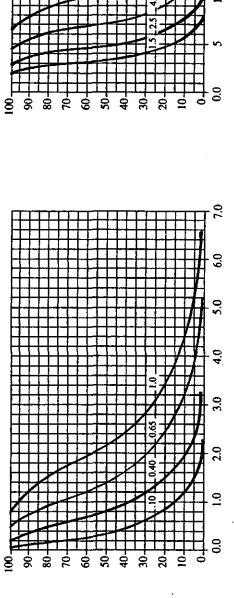



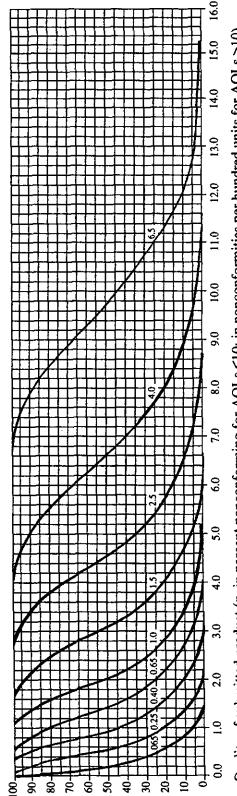
TABLE XV-J-1—TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR ANSI Z1.4 SCHEME PERFORMANCE

							Acceptabl	le Quality	Acceptable Quality Levels (normal inspection)	ormal insp	ection)						
51.	<u> </u>	\$9:	1.0	1.5	2.5	4.0	6.5	10	.15	.65	1.0	1.5	2.5	4.0	6.5	01	15
1			p (in	p (in percent nonconfor	nconform	rming)					p (in n	p (in nonconformities per hundred units)	nities per	hundred u	nits)	<u> </u>	
ואו	0.0260 0.	0.240	0.715	1.16	2.39	3.88	6.49	10.2	0.0260	0.239	0.710	1.15	2,35	3.80	6.35	9.87	15.9
~ .	0.0896 0.	0.458	1.01	1.68	3.12	4.89	7.74	11.8	0.0897	0.457	1.00	1.66	3.08	4.80	7.56	11.4	18.4
-	0.144 0.	0.617	1.21	2.01	3.49	5.43	8.48	12.7	0.144	0.615	1.20	2.00	3.46	5.35	8.32	12.4	19.6
	0.282 0.	0.928	1.59	2.59	4.06	6.23	9.58	14.2	0.282	0.928	1.59	2.58	4,04	6.19	9.50	14.0	21.4
-	0.571 1.	1.39	2.20	3.44	4.85	7.31	11.0	16.0	0.573	1.39	2.21	3.45	4.86	7.34	11.1	16.1	23.7
	1.10 2.	2.14	3.34	4.85	6.32	9.15	13.3	18.6	1,11	2.16	3.37	4.90	6.40	9.29	13.5	19.0	27.2
	1.83 3.	3.08	4.77	6.52	8,16	11.3	15.7	21.4	1.84	3.11	4.86	6.65	8,35	11.6	16.2	22.2	30.9
	2.37 3.	3.74	5.79	7.66	9.41	12.7	17.3	23.2	2.40	3.79	5,93	7.87	69'6	13.1	18.0	24.3	33.4
	3.62 5.	5.19	8.01	10.1	12.0	15.6	20.5	26.6	3,69	5.31	8.30	10.5	12.6	16.4	21.8	28.5	38.2

Chart XV-K Operating Characteristic Curves for ANSI Z1.4 Scheme Performance Scheme Performance with Switching Rules

(Curves for double and multiple sampling are matched as closely as practicable)

Quality of submitted product (p, in percent nonconforming for AQLs <10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

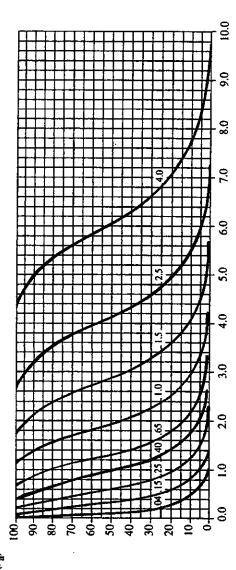

TABLE XV-K-1—TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR ANSI Z1.4 SCHEME PERFORMANCE

										<u> </u>	
į		-	H			-	-	-	_	_	
			_	_	ļ 	_	_			_	
		•									
		lits)	-		_						-
		ndred ur	-								_
spection		per hur									
ormal ins	92	formities	10.3	11.7	12.5	13.7	15.2	17.4	19.8	21.4	24.5
Levels (n	6.5	or noncon	6.34	7.32	7.96	8.96	10.3	12.2	14.2	15.6	18.3
Acceptable Quality Levels (normal inspection)	4.0	forming	4.01	4.84	5.33	6.08	7.08	8.65	10.4	11.5	13.9
Acceptab	2.5	ent noncol	2.43	3.07	3.43	3.96	4.70	5.94	7.42	8.41	10.5
	1.5	p (in percent nonconforming or nonconformities per hundred units)	1.49	1.97	2.21	2.59	3.11	4.10	5.34	6.20	8.04
	1.0		0.738	1.06	1.28	1.65	2.21	3.14	4.26	5.04	6.73
	\$9.		0.455	0.643	0.771	1.02	1.42	2.16	3.11	3.79	5.31
	.40		0.153	0.292	0.392	0.586	0.873	1.35	1.94	2.37	3.32
	.10		0.0167	0.0573	0.0916	0.178	0.359	0.694	1.15	1.50	2.31
	σď		0.66	95.0	0.06	75.0	50.0	25.0	10.0	5.0	1.0

Chart XV-L Operating Characteristic Curves for ANSI Z1.4 Scheme Performance Scheme Performance with Switching Rules

(Curves for double and multiple sampling are matched as closely as practicable)

PERCENT OF LOTS EXPECTED TO BE ACCEPTED (Pg)



Quality of submitted product (p, in percent nonconforming for AQLs <10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

TABLE XV-L-1—TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

Chart XV-M Operating Characteristic Curves for ANSI Z1.4 Scheme Performance (Curves for double and multiple sampling are matched as closely as practicable) Scheme Performance with Switching Rules

PERCENT OF LOTS
EXPECTED TO BE
ACCEPTED (P_a)

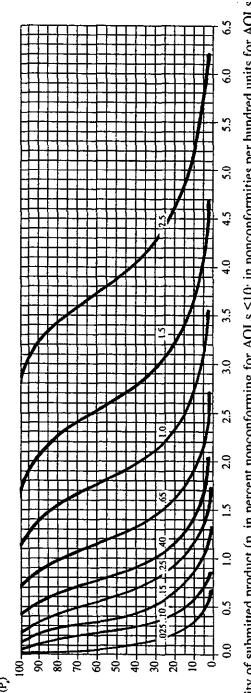

Quality of submitted product (p, in percent nonconforming for AQLs ≤10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

TABLE XV-M-1-TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR ANSI Z1.4 SCHEME PERFORMANCE

Chart XV-N Operating Characteristic Curves for ANSI Z1.4 Scheme Performance Scheme Performance with Switching Rules

(Curves for double and multiple sampling are matched as closely as practicable)

PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P.)

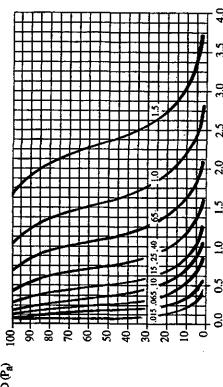

Quality of submitted product (p, in percent nonconforming for AQLs ≤10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

TABLE XV-N-1—TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR ANSI Z1.4 SCHEME PERFORMANCE

P. P. 99.00 99.00 95.00 95.00 25.00 10.00 5.00 5.00 5.00 5.00 5.00 5.00	0.00416 0.0143 0.0229 0.0446 0.0898 0.174 0.288	.10 p (in per 0.0383 0.0729 0.0979 0.146 0.218 0.337 0.486 0.593	.10 .15 p (in percent noncong 1.0383 0.108 0.0729 0.157 0.0979 0.192 0.146 0.255 0.218 0.354 0.337 0.539 0.486 0.778	Acceptable Quality Levels on forming or nonconformities per hundred units) 0.184 0.377 0.613 1.00 1.54 0.266 0.492 0.769 1.21 1.83 0.320 0.553 0.857 1.33 1.99 0.413 0.647 0.990 1.52 2.24 0.552 0.778 1.17 1.77 2.57 0.785 1.02 1.49 2.16 3.04 1.06 1.34 1.85 2.60 3.56 1.26 1.55 2.10 2.89 3.89	.40 or noncon 0.377 0.492 0.553 0.647 0.778 1.02 1.34 1.55	Acceptab .65 formities 0.613 0.769 0.857 0.990 1.17 1.49 1.85	le Quality 1.0 1.0 1.31 1.33 1.52 1.77 2.16 2.60 2.89	Levels (n 1.54 1.54 1.83 1.99 2.24 2.24 2.57 3.04 3.56 3.89	Acceptable Quality Levels (normal inspection) .65 1.0 1.5 2.5 Ormities per hundred units) 2.56 2.56 0.613 1.00 1.54 2.56 0.769 1.21 1.83 2.94 0.990 1.52 2.24 3.42 1.7 1.77 2.57 3.79 1.49 2.16 3.04 4.35 1.85 2.60 3.56 4.95 2.10 2.89 3.89 5.34	ou)		
0.1	0.576	0.830	1.33	1.68	2.01	2.62	3.48	4.57	6.12		 	

Chart XV-P Operating Characteristic Curves for ANSI Z14 Scheme Performance Curves for double and multiple sampling are matched as closely as practicable) Scheme Performance with Switching Rules

PERCENT OF LOTS
EXPECTED TO BE
ACCEPTED (P_a) 100

Quality of submitted product (p, in percent nonconforming for AQLs <10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

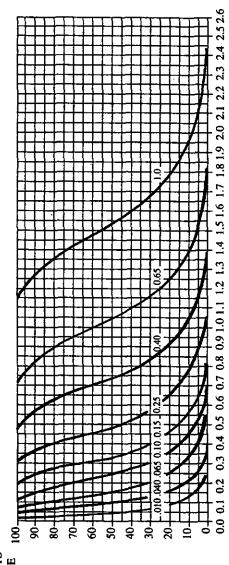
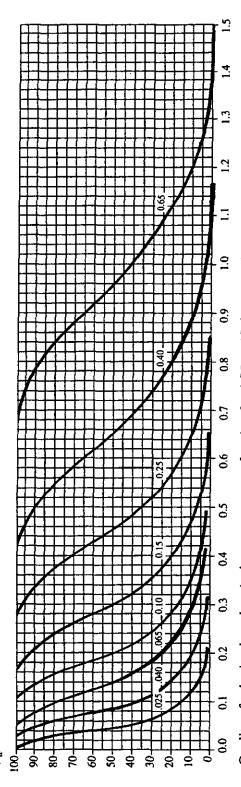

TABLE XV-P-1—TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR ANSI Z1.4 SCHEME PERFORMANCE

Chart XV-Q Operating Characteristic Curves for ANSI Z1.4 Scheme Performance (Curves for double and multiple sampling are matched as closely as practicable) Scheme Performance with Switching Rules

PERCENT OF LOTS

EXPECTED TO BE 100

ACCEPTED (P_a)



Quality of submitted product (p, in percent nonconforming for AQLs <10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection. TABLE XV-Q-1—TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR ANSI Z1.4 SCHEME PERFORMANCE

Acceptable Quality Levels (normal inspection)											
normal in	1.0		1.03	1.17	1.25	1.37	1.52	1.74	1.98	2.14	2.45
Levels (1	59'	d units)	0.634	0.732	0.796	968.0	1.03	1.22	1.42	1.56	1.83
le Quality	.40	per hundn	0.401	0.484	0.533	0.608	0.708	0.865	1.04	1.15	1.39
Acceptab	.25	formities ₁	0.243	0.307	0.343	0.396	0.470	0.594	0.742	0.841	1.05
	51.	or noncon	0.149	0.197	0.221	0.259	0.311	0.410	0.534	0.620	0.804
	01.	onforming or nonconformities per hundred units)	0.0738	0.106	0.128	0.165	0.221	0.314	0.426	0.504	0,673
	390.	p (in percent nonce	0.0455	0.0643	0.0771	0.102	0.142	0.216	0.311	0.379	0.531
	2 6	p (in per	0.0153	0.0292	0.0392	0.0586	0.0873	0.135	0.194	0.237	0.332
	10.		0.00167	0.00573	0.00915	0.0178	0.0358	0.0694	0.115	0.150	0.231
	ሚ		99.0	95.0	90.0	75.0	50.0	25.0	10.0	5.0	1.0

Chart XV-R Operating Characteristic Curves for ANSI Z1.4 Scheme Performance Scheme Performance with Switching Rules

(Curves for double and multiple sampling are matched as closely as practicable)

Quality of submitted product (p, in percent nonconforming for AQLs ≤10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

TABLE XV-R-1-TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR ANSI Z1.4 SCHEME PERFORMANCE

						Acceptab	le Quality	Acceptable Quality Levels (normal inspection)	nspection)			
<u>ح</u>	.025	.040	.065	01.	.15	.25	.40	59.				
) d	p (in percent nonconfor	nonconfo	ming or nonconformities per hundred units)	псопот	ties per h	undred un	ts)				
99.0	0.00957	0.0284	0.0473	0.0941	0.150	0.250	0.395	0.649				
95.0	0.0183	0.0402	0.0669	0.123	0.192	0.302	0.457	0.734				_
0.06	0.0246	0.0482	0.0800	0.138	0.214	0.333	0.497	0.783				
75.0	0.0369	0.0637	0.103	0.162	0.248	0.380	0.560	0.855				
20.0	0.0554	0.0885	0.138	0.195	0.294	0.443	0.642	0.948				
25.0	0.0856	0.135	0.196	0.256	0.372	0.540	0.761	1.09		 		
10.0	0.123	0.194	0.266	0.334	0.464	0.650	0.889	1.24				
5.0	0.151	0.237	0.315	0.388	0.526	0.722	0.972	1.33			,	
1.0	0.211	0.332	0.420	0.502	0.656	0.871	1,14	1.53				

BERCENT OF LOTS

ACCEPTED (Pg)

100

100

INDEX OF TERMS WITH SPECIAL MEANINGS

Term	Paragraph
Acceptable Quality Level (AQL)	4.2 and 11.1
Acceptance number	
Attributes	
Average Outgoing Quality (AOQ)	
Average Outgoing Quality Limit (AOQL)	
Average sample size	
Batch	
Code letters	
Defect	2.0
Double sampling plan	
Inspection	
Inspection by attributes	
Inspection level	
Inspection lot or inspection batch	
Isolated lot	
Limit number	
Limiting Quality(LQ)	
Lot	
Lot or batch size	
Multiple sampling plan	
Nonconformity	
Nonconformities per hundred units	3.3
Normal inspection	
Operating characteristic curve	11.1
Original inspection	11.2
Percent nonconforming	3.2
Preferred AQLs	4.6
Process average	11.2
Reduced inspection	8.2, 8.3.3, 8.3.4, 8.5, and 10.1.4
Rejection number	
Responsible authority	1.1
Resubmitted lots or batches	6.4
Sample	7.1
Sample size	7.1
Sample size code letter	4.1 and 9.3
Sampling plan	9.5
Scheme Performance	11.1
Single sampling plan	10.1.1
Small-sample inspection	9.2
Switching procedures	8.3
Tightened inspection	8.2, 8.3.1, and 8.3.2
Unit of product	1.5

.