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DIRECT TESTIMONY 1 

OF 2 

SEOUNG JOUN WON, PhD 3 

SPIRE MISSOURI, INC., d/b/a SPIRE EAST 4 
CASE NO. GO-2019-0058 5 

AND 6 

SPIRE MISSOURI, INC., d/b/a SPIRE WEST 7 
CASE NO. GO-2019-0059 8 

Q. Please state your name and business address. 9 

A. My name is Seoung Joun Won and my business address is Missouri Public 10 

Service Commission, P. O. Box 360, Jefferson City, Missouri 65102. 11 

Q. Who is your employer and what is your present position? 12 

A. I am employed by the Missouri Public Service Commission (“Commission”) 13 

and my title is Regulatory Economist III in the Tariff/Rate Design Department, 14 

Commission Staff Division. 15 

Q. What is your educational background and employment experience? 16 

A. I received my Bachelor of Arts, Master of Arts, and Doctor of Philosophy in 17 

Mathematics from Yonsei University in Seoul, South Korea, and earned my Doctor of 18 

Philosophy in Economics from the University of Missouri - Columbia.   19 

Prior to joining the Commission, I taught both undergraduate and graduate level 20 

mathematics in the Korean Air Force Academy and Yonsei University for 13 years.  I served 21 

as the Director of the Education and Technology Research Center at NeoEdu, an IT education 22 

company in South Korea, for five years.  I have been employed at the Commission since 23 

May 2010 as a regulatory economist.  For more details about my credentials, backgrounds, 24 

and case participations, please see attached Schedule SJW-1. 25 

LMM-R-3 Page 3 of 25



Direct Testimony of 
Seoung Joun Won, PhD 
 

Page 2 

EXECUTIVE SUMMARY 1 

Q. What is the purpose of your direct testimony? 2 

A. The purpose of my direct testimony is to explain Staff’s weather data used for 3 

Spire Missouri Inc. d/b/a Spire’s (“Spire”) weather normalization adjustment rider (WNAR). 4 

Q. Which aspects of the weather data are you going to explain? 5 

A. I am explaining: (1) weather variables used in actual and normal weather data 6 

sets, and (2) a ranked average method calculating normal weather data. 7 

WEATHER VARIABLES 8 

Q. What are the weather variables that Staff used for WNAR? 9 

A. The weather variables used for WNAR are actual daily maximum temperature 10 

(“Tmax”) and daily minimum temperature (“Tmin”) observations.  Staff used these daily 11 

temperatures to develop a set of mean daily temperature (MDT)1 values.  Natural gas sales are 12 

predominantly influenced by “ambient air temperature,”2 so MDT and the derivative measure, 13 

heating degree days (HDD),3 are the measures of weather used in adjusting test year natural 14 

gas sales.  HDDs were originally developed as a weather measure that could be used to 15 

determine the relationship between temperature and gas usage.  HDDs are based on the 16 

difference of MDT from a comfort level of 65°F.  HDDs are calculated as the difference 17 

between 65°F and MDT when MDT is below 65°F, and are equal to zero when MDT is above 18 

65°F.  Actual and normal HDDs are calculated for each day in the test period that applies to 19 

Spire’s service territory. 20 

                                                   
1  By National Climatic Data Center convention, MDT is the average of daily maximum temperature (Tmax) and 
daily minimum temperature (Tmin) e.g.  MDT = (Tmax + Tmin) /2 
2  Ambient air temperature is the outside temperature of the surrounding air without taking into account the 
humidity or wind in the air. 
3  Where MDT < 65°F, HDD = 65 – MDT; otherwise, HDD = 0. 
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Q. What is the data source of Staff’s weather variables?1 

A. Staff obtained weather data from the Midwest Regional Climate Center2 

(MRCC).4  Weather data of St Louis Lambert International Airport (“STL”) and Kansas City 3 

International Airport (“MCI”) were used for the service territories of Spire Missouri East and 4 

Spire Missouri West, respectively.   5 

Q. What is normal weather?6 

A. According to the National Oceanic and Atmospheric Administration7 

(“NOAA”), a climate “normal” is defined as the arithmetic mean of a climatological element 8 

computed over three consecutive decades.5  For the purposes of normalizing the test year gas 9 

usage and revenues with the same time period determined in the rate cases GR-2017-0215 and 10 

GR-2017-0216, Staff used the adjusted Tmax and Tmin daily temperature series for the 30-year 11 

period of 1987 through 2016 at STL and MCI. 12 

Q. What is the adjusted daily temperature series?13 

A. In developing climate normal temperatures, NOAA focuses on the monthly14 

maximum and minimum temperature time series to produce the serially-complete monthly 15 

temperature (SCMT) data series.6  Staff utilized the most recent SCMT for the period of 1987 16 

through 2010 from the data set that was published in July 2011 by the National Climatic Data 17 

Center (NCDC) of NOAA.  For the period of 2011 through 2016, Staff utilized the Tmax and 18 

Tmin daily temperature series that NOAA make available at the MRCC website. 7 19 

4  https://mrcc.illinois.edu/CLIMATE/ 
5  Retrieved on October 17, 2013, https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-
datasets/climate-normals 
6  Retrieved on October 17, 2013, http://www1.ncdc.noaa.gov/pub/data/normals/1981-2010/source-datasets/. The 
SCMT, computed by NOAA, includes adjustments to make the time series of daily temperatures homogeneous. 
7  https://mrcc.illinois.edu/CLIMATE/ 
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Q. Why did Staff use NOAA’s SCMT? 1 

A. There may be circumstances under which inconsistencies and biases in the 2 

30-year time series of daily temperature observations occur, (e.g. such as the relocation, 3 

replacement, or recalibration of the weather instruments).  Changes in observation procedures 4 

or in an instrument’s environment may also occur during the 30-year period.  NOAA 5 

accounted for documented and undocumented anomalies in calculating its SCMT.8  The 6 

meteorological and statistical procedures used in NOAA’s homogenization for removing 7 

documented and undocumented anomalies from the Tmax and Tmin monthly temperature series 8 

is explained in a peer-reviewed publication.9 9 

RANKED AVERAGE METHOD 10 

Q. What is Staff’s method to calculate normal weather variables? 11 

A. Staff used a ranked average method to calculate daily normal temperature 12 

values, ranging from the temperature that is “normally” the hottest to the temperature that is 13 

“normally” the coldest, thus estimating “normal extremes.”  Staff ranked MDTs for each 14 

month of the 30-year history from hottest to coldest and then calculated the normal daily 15 

temperature values by averaging ranked MDTs for each rank, irrespective of the calendar 16 

date.  In other words, the daily normal temperature for a given date in the accumulation period 17 

of WNAR is the average of MDTs that have the same rank in the month for each year in the 18 

30-year normal period (1987 - 2016). 19 

Therefore, as a result of the ranking process, the normal most extreme temperature of 20 

the month is the average of the most extreme temperatures in each of the months of the 21 

                                                   
8  Arguez, A., I. Durre, S. Applequist, R. S. Vose, M. F. Squires, X. Yin, R. R. Heim, Jr., and T. W. Owen, 2012: 
NOAA's 1981-2010 U.S. Climate Normals: An Overview.  Bulletin of the American Meteorological Society, 93, 
1687-1697, 
9  Menne, M. J., and C. N. Williams, Jr., (2009) Homogenization of temperature series via pairwise comparisons.  
J. Climate, 22, 1700-1717. 

LMM-R-3 Page 6 of 25



Direct Testimony of 
Seoung Joun Won, PhD 
 

Page 5 

30-year normals period.  The second most extreme temperature is based on the average of the 1 

second most extreme day of each of the month, and so forth.  In addition, the daily normal 2 

temperature is decided by the rank of the actual MDTs in the month although the set of daily 3 

normal temperature values for each month is not changed. 4 

Q. Why does Staff use the ranked average method? 5 

A. NOAA’s daily normal temperatures are not directly usable for Staff’s 6 

purposes.  NOAA’s dated average method calculates a simple arithmetic mean of MDTs of 7 

the same calendar date for each year in the 30-year normal period.  Staff’s calculated daily 8 

normal temperatures are based on the rankings of the actual temperatures of the accumulation 9 

period and the daily actual temperatures do not follow smooth patterns from day to day.   10 

In other words, the NOAA daily normal temperatures and HDD values are derived by 11 

statistically “fitting” smooth curves through these monthly values.  As a result, the NOAA 12 

daily normal HDD values reflect smooth transitions between seasons and do not directly 13 

relate to the 30-year time series of MDT as used by Staff.  However, in order for Staff to 14 

develop adjustments to normal HDD for gas usage, Staff must calculate a set of normal daily 15 

HDD values that reflect the actual daily and seasonal variability.  More details of a ranked 16 

average method for normal weather are explained in a peer-reviewed publication which I 17 

co-authored and attached Schedule SJW-2.10   18 

 19 

 20 

 21 

Continued on next page. 22 

                                                   
10  Won, S. J., Wang, X. H., & Warren, H. E. (2016).  Climate normals and weather normalization for utility 
regulation.  Energy Economics, 54, 405-416. 

LMM-R-3 Page 7 of 25



Direct Testimony of 
Seoung Joun Won, PhD 

Page 6 

Figure 1 Daily Average Temperature Normal – STL 1 

2 

Figure 2 Daily Average Temperature Normal – MCI 3 

4 

Q. What is the evidence that a ranked average method is more appropriate than a5 

dated average method? 6 

A. The evidence is demonstrated by a comparison of the results of the two7 

different methods.  If the ranked average method is used, the range of daily temperatures is 8 

7oF through 92oF and 3oF through 90oF in STL and MCI, respectively.  In contrast, if the 9 

dated average method is used, the range of daily temperatures is 30oF through 82oF and 26oF 10 

through 81oF in STL and MCI, respectively.  Therefore, the ranked average method produces 11 
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a more realistic daily temperature variation.  Figure 1 and Figure 2 show the distribution of 1 

daily normal temperature series of STL and MCI. 2 

Q. Why should the rank of daily normal temperature match to the rank of actual3 

MDTs of the accumulation period? 4 

A. According to the formula in Spire’s WNAR tariff, the relationship between5 

daily temperatures and daily gas usages should be preserved as it was calculated in the most 6 

recent rate cases.  If daily normal weather values are not properly assigned to the associated 7 

rank of each month actual MDTs, the relationship between temperature and gas usage is 8 

distorted so that the calculation of WNAR would be biased.  This is further discussed by Staff 9 

Witness Michael Stahlman.  10 

In addition, if daily normal temperature values would not be assigned to the 11 

accumulation period, it would calculate invalid billing cycle HDDs.  For instance, the leap 12 

day weather variables should be considered only in the case the time periods include leap days 13 

in the case of a billing cycle that includes the last day of February and the first day of March. 14 

CONCLUSION 15 

Q. What is your conclusion of this direct testimony?16 

A. Staff recommends that the Commission order the use of Staff’s ranked average17 

method actual and normal weather data for Spire’s WNAR adjustment. 18 

Q. Does this conclude your direct testimony?19 

A. Yes, it does.20 
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Credentials and Background of 
Seoung Joun Won 

I am currently employed as a Regulatory Economist III in the Tariff and Rate Design 

Department of the Commission Staff Division of the Missouri Public Service Commission 

(“Commission”).  I have been employed at the Commission since May 2010. 

I received my Bachelor of Arts, Master of Arts, and Doctor of Philosophy in Mathematics 

from Yonsei University in Seoul, South Korea, and earned my Doctor of Philosophy in 

Economics from the University of Missouri - Columbia.  Also, I passed several certificate 

examinations for Finance Specialist in South Korea such as Enterprise Resource Planning 

Consultant, Financial Risk Management, Derivatives Consultant, and Financial Planner.  

Prior to joining the Commission, I taught both undergraduate and graduate level 

mathematics at the Korean Air Force Academy and Yonsei University for 13 years.  I served as 

the Director of the Education and Technology Research Center at NeoEdu, an IT education 

company in South Korea, for 5 years.  I have been employed at the Commission since May 2010 

as a regulatory economist. 

My duties at the Commission include managing weather data, calculating normal 

weather, conducting weather normalization, analyzing revenues and cost of services, developing 

rate designs, and supporting economic and statistical analysis. 
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List of Previous Testimony Filed 
Seoung Joun Won 

Case/File Number Company Issue 

ER-2010-0355 Kansas City Power & Light Co. Weather Variables 
Revenue 

ER-2010-0356 KCP&L Greater Missouri Operations Co. Weather Variables 

GR-2010-0363 Union Electric Co., d/b/a Ameren Missouri Weather Variables 

ER-2011-0028 Union Electric Co., d/b/a Ameren Missouri Weather Variables 
Revenue 

ER-2011-0004 Empire District Electric Co. Weather Variables 
Revenue 

HR-2011-0028 Veolia Energy Kansas City, Inc. Weather Variables 

ER-2012-0166 Union Electric Co., d/b/a Ameren Missouri Weather Variables 
Revenue 

ER-2012-0174 Kansas City Power & Light Co. Weather Variables 
Revenue 

ER-2012-0175 KCP&L Greater Missouri Operations Co. Weather Variables 

ER-2012-0345 Empire District Electric Co. Weather Variables 
Revenue 

GR-2013-0171 Laclede Gas Co. Weather Variables 

HR-2014-0066 Veolia Energy Kansas City, Inc. Weather Variables 
Weather Normalization 

GR-2014-0086 Summit Natural Gas of Missouri, Inc. Weather Variables 

GR-2014-0152 Liberty Utilities (Midstates Natural Gas) Corp. Weather Variables 

EC-2014-0223 Noranda Aluminum, Inc., et al, Complaint v. 
Union Electric Co., d/b/a Ameren Missouri 

Weather Variables 

ER-2014-0258 Union Electric Co., d/b/a Ameren Missouri Weather & Normalization 
Net System Input 

ER-2014-0351 Empire District Electric Co. Weather & Normalization 
Net System Input 

ER-2014-0370 Kansas City Power & Light Co Weather & Normalization 
Net System Input 

ER-2016-0023 Empire District Electric Co. Weather & Normalization 
Net System Input 
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Case/File Number Company Issue 

ER-2016-0156 KCP&L Greater Missouri Operations Co. Weather & Normalization 
Net System Input 

ER-2016-0179 Union Electric Co., d/b/a Ameren Missouri Weather & Normalization 
Net System Input 

ER-2016-0285 Kansas City Power & Light Co Weather & Normalization 
Net System Input 

GR-2017-0215 Laclede Gas Co. 
Spire Missouri, Inc 

Weather Variables 
 

GR-2017-0216 Missouri Gas Energy (Laclede) 
Spire Missouri, Inc 

Weather Variables 
 

   
GR-2018-0013 Liberty Utilities (Midstates Natural Gas) Corp. Weather Variables 

 
ER-2018-0145 Kansas City Power & Light Co Weather & Normalization 

Net System Input 

ER-2018-0146 KCP&L Greater Missouri Operations Co. Weather & Normalization 
Net System Input 
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Climate normals and weather normalization for utility regulation☆
Seoung Joun Won a,⁎, X. Henry Wang b, Henry E. Warren a

a Missouri Public Service Commission, P.O. Box 360, Jefferson City, MO 65102-0360, United States
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most likely expectation for future years in which the new ra
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In the regulation of natural gas and electric utilities, the determination of rate revenues commonly involves a sales
adjustment to reflect the difference between actual weather and normal weather. This adjustment process, com-
monly known as weather normalization, is required to properly determine a set of rates which yields the revenue
requirement under the assumption of normalweather. Normalweather values that characterize long-termweather
patterns are critical component of weather normalization. Conventionally, normal weather values are calculated
using the Standard Climate Normal (SCN). The SCN for any given calendar day is the 30-year average of the associ-
ated weather observations for that calendar day. In the regulatory process the SCN can inadvertently introduce
biases in the weather normalization adjustment. This study investigates the sources and mitigation of these biases.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

In the United States, rates for regulated natural gas and electric
utilities (energy utilities) are periodically reset through administrative
proceedings commonly known as rate cases. In a rate case, rates are
established which recover the revenue requirement. However, an ener-
gy utility's sales vary year to year. This variation can occur for many
reasons: weather, economic conditions, and other events that influence
customer behavior (Dergiades and Tsoulfidis, 2008). In the regulatory
process, the actual energy sales need to be adjusted for any unusualness
during the test year (Monts et al., 1989).1

The temperature pattern is one of the primary determinants of energy
usage and revenues for most energy utilities (Bower and Bower, 1985).
Unusual levels of energy sales, due to an unusual temperature pattern,
must be adjusted to levels consistent with the normal temperature
hose of the authors and do not
e Commission.

on), WangX@missouri.edu

cutive 12-month period used to
ich serve as a basis for calculating
ear using projected data or a his-
ents for knownandmeasurable

t year, because the historical time
ther, and it is assumed to be the
tes will be effective.
pattern (Elkhafif, 1996). For the rate design to be just and reasonable
this weather normalization adjustment is determined using a model
that quantifies the relationship between sales and temperature.

In the weather normalization of test year energy sales, developing a
data set of normal weather values that characterizes long-termweather
patterns in the utility service territory is critical. Weather-normalized
energy sales are calculated using weather during the test year that is
adjusted to normal. In this calculation, daily normal weather values
replace actual daily weather values during the test year in a model of
energy sales. Depending on the model of energy sales, the data set of
normal weather may need to reflect a more complete set of statistical
properties, including monthly and yearly temperature variation. If the
statistical properties of normal weather are inconsistentwith the statis-
tical properties of the test yearweather, then the subsequent calculation
of weather normalized sales will be biased. The total U.S. energy utility
operating revenue was over $300 billion in 2009 (US Census Bureau,
2012).2 A weather normalization adjustment to utility revenue may be
more than 2% of annual operating revenues (Croucher, 2011). So, any
miscalculation in the weather normalization adjustment to sales could
have a significant impact on rate.

Conventionally, the Standard Climate Normal (SCN) is used for
determining the daily normal weather values. Climate normals are
based upon the average of associated weather variables in a certain
time period. According to the National Oceanic and Atmospheric
2 See http://www.census.gov/compendia/statab/cats/energy_utilities.html.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eneco.2015.12.016&domain=pdf
mailto:henry.warren@psc.mo.gov
http://dx.doi.org/10.1016/j.eneco.2015.12.016
www.elsevier.com/locate/eneeco
reinhs
Typewritten Text
Schedule SJW-d2

reinhs
Typewritten Text
Page 1 of 12



0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

C
u

m
u

la
ti

ve
 D

is
tr

ib
u

ti
o

n
 F

u
n

ct
io

n

Mean Daily Temperature (oF)

1981 1982 1983 1984 1985

1986 1987 1988 1989 1990

1991 1992 1993 1994 1995

1996 1997 1998 1999 2000

2001 2002 2003 2004 2005

2006 2007 2008 2009 2010

SCN

Fig. 1. Cumulative distribution functions of each year MDT and the daily SCN temperatures (1981–2010).
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Administration (NOAA), the SCN is defined as the arithmetic mean of a
climatological element computed over 30-year period, usually
three consecutive decades.3 The SCN has also been the international
standard for calculating normal weather for more than 70 years
(Livezey and Hanser, 2013).

For several years, there has been ongoing debate concerning the
SCN in energy utility rate design (Angel et al., 1993; Livezey et al.,
2007; Livezey and Hanser, 2013). Recently, NOAA held a workshop
on alternative climate normal calculations and the subsequent im-
pact to the energy industry rates and revenues (Arguez et al.,
2013). These issues are related to climate changes. However, there
are more fundamental problems to define normal weather for the
utility regulation.

Normal weather variables are statistical expectations of weather
variables calculated using a long-term historical data. According to the
National Climate Data Center (NCDC) the current daily SCN is based
upon a 30-year (1981–2010) average of the yearly associated weather
observations for the calendar day. If the goal is to define the most
plausible temperature of a given calendar date using historical data,
thedaily SCNprovides a statisticallywell-defined expectation. However,
if we want to calculate the most plausible set of temperature values for
the 365 days in a year, the suitability of the 365 daily SCN temperature
values is questionable. Although each daily SCN is a good expectation
for each calendar day, the set of 365 daily SCN valuesmay not be the ex-
pectation for the days in an SCN year. Fig. 1 contains the 30 cumulative
distribution functions of the mean daily temperatures (MDT) for the
years 1981–2010 and the daily SCN for the normal period 1981–2010.

Fig. 1 illustrates that the annual proportion of MDT below 28 °F
or above 82 °F, ranges from 5% to 25% of the calendar days in the years
1981–2010, but none of the 365 daily SCN temperatures for 1981–
3 See http://www.ncdc.noaa.gov/oa/climate/normals/usnormals.html.
2010 are in those ranges. Since these temperatures are significant in de-
termining daily energy sales and load forecasts, use of the daily temper-
ature SCN in calculating weather normalized sales in utility rate cases
will result in lower winter and summer sales. The source of this bias
can be defined in terms of distribution similarity.

According to the Finkelstein–Schafer statistic (Finkelstein and
Schafer, 1971), if any number, n, observations of a weather index
X1 ,X2 ,… ,Xn are available, a monotonic increasing function, F(x), de-
fined by

F xð Þ ¼ number of Xi such that Xi ≤ xð Þ=n:

F(x) is a cumulative distribution function (CDF) based on the time
series of the weather index with size n. The comparison statistics, FS,
between CDF for the long-term (FLT) which is used for calculating the
climate normal and CDF for the climate normal (FCN) are calculated by
the following equation:

FS FLT ; FCNð Þ ¼
Z

jFLT xð Þ−FCN xð Þjdx:

We define the temperature distribution bias of a climate normal as
the FS statistics. In Fig. 2, it can be seen that the SCN series has significant
bias in the lower temperatures (25 °F–35 °F) and the higher tempera-
tures (75 °F–85 °F).

This study investigates the effect of the SCN bias in the weather
normalization process in the economics of electric utility rate design.
An unbiased alternative procedure is developed for calculating daily
normal temperatures. Weather normalization adjustments to energy
sales and revenues are computed using the SCN and the alternative pro-
cedure. The results show that the alternative procedure of daily normal
test year temperatures are preferred to the SCN because their distribu-
tion is closer to actual daily temperature distribution and there is a

http://www.ncdc.noaa.gov/oa/climate/normals/usnormals.html
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Fig. 3.Metropolitan St. Louis (Metro StL) 2011 daily residential electric energy sales and the corresponding STL MDT.

4 If a rate case adopts a forward test year, normal weather is used to forecast utility's fu-
ture energy sales.

5 Usually,weather normalization is conducted on daily level base. One reason is that the
shortest time span available for climate normals is daily data. In some cases, the amount of
energy usage is given for each billing month which is different from any given calendar
month. Yet there are 21 different billing cycles so that eventually we need daily tempera-
ture normals. Therefore, average daily usage and average daily temperature for a given
billing month are used for calculating weather normalization of energy consumption. In
some cases, hourly load should be weather normalized. Because there is no official hourly
climate normal data, daily peak load and daily average load are first normalized and then
normalized hourly load shape is extrapolated from the daily normal loads. In summary,
daily temperature normals are the fundamental units for most weather normalization
calculations.
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significant difference in theweather normalization adjustments to sales
and revenues adjustments.

Section 2 introduces a weather normalization process for electric
utility revenues. Section 3 discusses the computation and application
of daily normal temperatures. Section 4 identifies the SCN biases and
proposes alternative unbiased daily normal temperatures. In Section 5
SCN and alternative normal test year electric energy sales and revenues
are simulated. Section 6 discusses implications of alternative daily
normal temperatures for electric rate design.

2. Weather normalization

Energy sales for space heating and cooling are highly responsive to
ambient temperature. The object of weather normalization is to find
the level of energy sales consistent with the normal temperature
pattern, assuming ceteris paribus. During the cooling season, as the
temperature reaches higher levels, electricity sales increase as the
demand for cooling such as air conditioning, ventilation, and refrigera-
tion increases. During the heating season, as temperature falls the
demand for additional space heating also results in increased energy
sales.

A regulated energy utility is authorized to recover its fixed costs
and variable costs as the result of a rate case or another regulatory
process. The amount of revenue authorized is based on a specified
rate-of-return and allowed expenses. The weather normalization of
sales and revenues is a fundamental calculation in this regulatory pro-
cess. An initial step in rate design is to determine the normal level of
rate revenue and the quantification of associated variable costs.

Weather normalization uses load research data to determine the
relationship between class specific sales and temperature variation.
These relationships may include different base usage parameters for
different days of the week andmonths of the year. For instance, for res-
idential and commercial energy sales models, the variation in daily
average temperature is the independent variable that determines the
day-to-day variation in energy sales.

The relationship between daily residential electricity usage in the St.
Louis metropolitan area (Metro StL) and the corresponding mean daily
temperature (MDT) at Lambert— St. Louis International Airport (STL) in
the test year 2011 is illustrated in Fig. 3.MDT is the simple average of the
day'smaximumdaily temperature (Tmax) andminimumdaily temper-
ature (Tmin). The equation form of the daily mean temperature of dth
day is as follows:

MDTd ¼ 1
2
Tmaxd þ

1
2
Tmind: ð1Þ

It is generally recognized that the response of electric energy sales to
temperature is not uniformly linear as seen in Fig. 3 (Train et al., 1983).
A rise in temperature 65 °F to 70 °F will not usually elicit the same
response in electric energy sales as a rise from 80 °F to 85 °F, and a
drop from 65 °F to 60 °F will not have the same effect as a drop from
50 °F to 45 °F.

In this study, we assume a test year is historical and a model of test
year sales is developed from the relationship between energy sales
and weather in the test year.4 The model quantifies a change in energy
sales during a specified time period, resulting from a change in the
weather variable. The weather normalized sales adjustment is based
on the difference between normal weather and actual weather during
these periods in the test year.

A general model (Eq. (2)) characterizes the relationship between
energy sales in a defined time period in the test year to weather and
non-weather variables. The model parameters can be statistically
estimated then the empirical model can be used to weather normalize
energy sales:

Et ¼ F wt ; xt ; εtð Þ ð2Þ

where E is the amount of energy sales,w is a vector of weather variables
that determine energy sales, x is a vector of non-weather variables that
determine energy sales, ε is unexplained variation in energy sales, t is
the time-period such as an hour, a day, a month, or billing cycle, and F
is a function that relates the energy sales to the observed explanatory
variables. Thismodel is general and needs further specification for prac-
tical use in weather normalization.

If it is assumed that the energy response is invariant in the specified
time period, and no interactivity among variables w ,x, and ε, then
the independent variables can be expressed as additively separable
(Eq. (3)),

Et ¼ f wtð Þ þ g xtð Þ þ εt ð3Þ

where E(t) is the amount of energy usage at time t,5 wt is aweather vec-
tor at time t, f(.) is the amount of weather sensitive energy sales, xt is a
non-weather vector at time t, g(.) is the amount of non-weather
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Fig. 4. STL 30-year and 5-year normal January MDT.
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sensitive energy sales, and εt. is the amount of the unexplained energy
consumption at time t.

If we define the weather normal function, N(wt), as the normal
weather value at time t of the observed weather value wt then the
normalized energy usage NEt can be expressed as follows:

NEt ¼ f N wtð Þð Þ þ g xtð Þ þ εt : ð4Þ

Therefore, the weather normalization adjustmentWNA(wt) of ener-
gy usage at time t can be expressed as follows:

WNA wtð Þ ¼ f N wtð Þð Þ− f wtð Þ: ð5Þ

For instance, if at time t, we observe the actual energy usage, Ea, with
the actual weather, wa, then weather normalized energy usage, En, sat-
isfies the following:

En ¼ Ea þWNA wað Þ: ð6Þ

Hence, the accuracy of theweather normal function,N(wt), is impor-
tant, because bias in the normal weather function will result in a bias in
the normalized energy usage estimate.
Fig. 5. STL annual CDD65
3. Climate normals

To define a precise weather normal function and estimate normal-
ized energy usage, we need to have well defined climate normal
calculations. The World Meteorological Organization (WMO) has de-
fined climate normals as “period average computed for a uniform and
relatively long period comprising at least three consecutive ten-year
periods” and the SCN as “averages of climatological data computed for
consecutive periods of 30 years (WMO, 2009).” The equation form of
the SCN is as follows:

N30 m; d; y1ð Þ ¼ 1
30

Xy1þ29

y¼y1

O y;m;dð Þ: ð7Þ

Here, N30(m,d;y1) is the 30-year climate normal for a climate
element of month, m, day, d, with normal period starting year, y1, and
O(y,m,d) is the observed daily value for the climate element of year, y,
month, m and day, d. This definition assumes that if the climate is
not stationary any trend will be captured in the decadal update of the
30-year normal.

Technically, weather normalization is not forecasting. In load
forecasting on the reliability of the 30-year normal has been broadly
challenged recently (Livezey et al., 2007; Milly et al., 2008). A profusion
and HDD65 normals.
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Fig. 6.Monthly adjustments to STL MDT (1981–2010). Note: Monthly adjustment = Homogenized monthly MDT of NOAA 1981–2010 normals— Observed monthly MDT.
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of studies suggest that utilities and regulatory agencies in the U.S. ener-
gy industry aremoving to shorter-termaverages for forecasting (Arguez
and Vose, 2011). Optimal Climate Normals, Least Squares Linear Trend
Fits, and Hinge Fits are examples of alternative forecasting methodolo-
gies (Wilks, 2013). The appropriate methodology cannot be uniformly
prescribed but needs to be evaluated in the context of the application
and whether the application is normalization or forecasting.

The more general equation form of a climate normal is:

Nn m;d; y1ð Þ ¼
Xy1þn−1

y¼y1

W yð ÞO y;m; dð Þ: ð8Þ

Here, Nn(m,d;y1) is the n-year climate normal of month, m, day, d,
with normal period starting year, y1, W(y) is a weight for year, y, and
O(y,m,d) is the observed daily value of year, y, month, m, and day, d.
Using the STL temperature data set from January 1, 1981 to December
31, 2010, 30-year (1981–2010) and 5-year (2006–2010) normal MDTs
for January were computed (Fig. 4). The 5-year normal January MDT
has a larger day to day variation. The 5-year normal January MDT
reflects recent weather trends and in some applications may be better
for a short term forecasting (Angel et al., 1993), but it is not better in
terms of characterizing the variation in ambient temperature over a lon-
ger period time.

In energy utility regulation, heating degree days with a base of 65 °F
(HDD65) and cooling degree days with a base of 65 °F (CDD65) are
conventionally used in revenue requirement calculation. HDD65 and
CDD65 are calculated as the difference between the MDT and a chosen
base 65 °F.6 HDD65 is calculated as the difference between 65 °F and
the MDT when the MDT is below 65 °F, and is equal to zero when the
MDT is above 65 °F: HDD65 for day d is defined as

HDD65 ¼ max 0; 65−Tdð Þ½ �; ð9Þ

where Td is the MDT for day, d. Similarly, CDD65 is calculated as the
difference between 65 °F and the MDT when the MDT is above 65 °F,
and is equal to zerowhen theMDT is below65 °F. CDD65 for day d is de-
fined as.

CDD65 ¼ max 0; Td−65ð Þ½ �: ð10Þ

Because of weather cycles, the normal for HDD65 and CDD65 will
vary according to the length of time period (Fig. 5).

After determining that weather normalization is the appropriate
methodology the next question to be confronted is which climate
normal period is the better for weather normalization. The goal of the
Missouri Public Service Commission (MPSC) is to balance the interests
of ratepayers and company stockholders. There are often competing
economic interests in choosing the normal time period for weather
normalizing energy sales and revenues. These competing stakeholder
6 For the consistency, degree day values are calculated by the definition of degree day
using the associated average of MDT for the given calendar date.
interests may result in protracted administrative proceedings involving
countervailing testimony resulting in added time and costs to the regu-
latory process. Since the 1990's the position of the MPSC Staff has been
that the WMO and the NOAA 30-year normal is the most practical and
authoritative due to the effort of NOAA to provide a 30-year weather
station time series for the normal calculation that includes adjustments
for any changes in the station location and/or instrumentation.

4. Biases and mitigation procedure

4.1. Homogenization

Even if the 30-year climate normal period is accepted by all regula-
tory stakeholders there are often problems with the time series of
weather observations that lead to disagreements about how to identify
biases in and calculate adjustments to the time series. For instance, if the
weather instruments were relocated, replaced, or recalibrated, the ob-
served weather data series may be inconsistent and biased. Changes in
observation procedures or in an instrument's environment may also
occur during the normal period. Any inhomogeneity in the climate
data series needs to be identified and quantified to achieve a reliable ad-
justment to weather observation time series.

In the calculation of the 1981–2010 climate normals, NOAA devel-
oped an automated homogenization algorithm based on the pairwise
comparison of monthly temperature series from nearby weather sta-
tions. As described inMenne andWilliams (2009), theNational Climatic
Data Center (NCDC) developed a robust quality control and standardi-
zation methodology which yielded consistent monthly maximum and
minimum temperature time series for each weather station (Arguez
et al., 2012). The monthly homogenization algorithm for the tempera-
ture observations was applied to the daily maximum and minimum
temperature observations (Vincent et al., 2002).

Usually the 30-year time series has been statistically evaluated and
adjusted for consistency. These statistical techniques identify and adjust
for missing data values and discontinuities. The discontinuities may
include documented and undocumented changes in instruments, loca-
tion, elevation, observation schedule, and site characteristics. The equa-
tion form of climate normal that includes adjustments in the observed
daily data series is:

N30
A m; d; y1ð Þ ¼ 1

30

Xy1þ29

y¼y1

A y;m;dð Þ: ð11Þ

NA
30(m,d;y1) is the 30-year climate normal of month,m, day, d, with

normal period starting year y1, and A(y,m,d) is the adjusted observed
daily value of year, y, month,m, and day, d.7

The STL 1981-2010 time series has adjustments for documented and
undocumented changes in the MDT observations as a result of the
7 The homogenization of historic data is conducted usingmonthly data series. For calcu-
lating daily adjustments, please see Vincent et al. (2002).
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Table 1
STL Meta Data (NOAAMulti-Network Metadata System).

Begin date End date Latitude Longitude Elevation Equipment

1/18/2002 3/31/2012 38.752500 (38°45′09″N) −90.373610 (90°22′24″W) GROUND: 531 FEET ASOS HYGROTHERMOMETER
6/1/1996 1/18/2002 38.752500 (38°45′09″N) −90.373610 (90°22′24″W) GROUND: 568 FEET ASOS HYGROTHERMOMETER
7/1/1995 6/1/1996 38.750000 (38°45′00″N) −90.366670 (90°22′00″W) AIRPORT: 618 FEET MAX-MIN THERMOMETERS
7/11/1988 7/1/1995 38.750000 (38°45′00″N) −90.366670 (90°22′00″W) GROUND: 535 FEET MAX-MIN THERMOMETERS
1/1/1980 7/11/1988 38.750000 (38°45′00″N) −90.366670 (90°22′00″W) GROUND: 535 FEET UNKNOWN - TEMP
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Fig. 7. STL 2011 MDT, SCN, and RCN.
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NOAA's homogenization (Fig. 6). Adjustments indicate difference be-
tween the NOAA'smonthly homogenized temperature and themonthly
average of observed temperature, January 1, 1981 toDecember 31, 2010,
at the STL.

Documented changes during the normal period are reported in
Multi-Network Meta Data System of the NOAA.

System of the NOAA.8

The changes in instruments and locations documented in Table 1 are
reflected in the time series (Fig. 6). There are significant adjustments in
1988, 1996, and 2002.
8 See http://www.ncdc.noaa.gov/homr/.
4.2. Preserving variation

The goal of electric power system load research is to accurately char-
acterize daily peak load and daily average load, which are very temper-
ature dependent. To properly determine the temperature normalized
daily peak load, daily temperature variation should be consistent with
the variation in the daily climate normal time series. As explained in in-
troduction, this variation is lost in the SCNwhich is calculated using the
typical averaging process which eliminates extremes in the time series
of observations. If the SCN set of MDT is used in a load research model,
the result is a set of normalized daily peak loads in which the daily var-
iation is suppressed. Thus, the monthly and annual series of SCN daily
temperature series have a bias in their variation which results in a

http://www.ncdc.noaa.gov/homr/
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bias in the variation of any monthly or annual time series estimates of
daily peak load. Subsequently in any related analysis of the potential
variation in generation, transmission, or distribution is suppressed.

The daily temperature pattern in months and years should be
reflected in the normalized test year daily temperature time series
used for the weather normalization of energy sales, there is a non-
linearity in the response of energy sales to MDT. So, the normalized
daily energy sales need to reflect the test year daily temperature varia-
tion. More importantly, because of the non-linear relationship between
temperature and energy sales (Fig. 3), removing variation in daily tem-
peratures could lead to a significant error in the weather normalization
adjustment to test year sales. Therefore, the set of daily normal temper-
atures in a month should approximate the range of observed daily tem-
peratures in a set of monthly and annual MDT.

To capture the historic MDT pattern for each test year month and
filter any anomalies, the staff of MPSC developed a computational
procedure based on the Monthly Climate Rank (MCR) of the test year
observedMDT. TheMCR is an intermediate calculation used in the com-
pilation of the final Ranked Climatological Normal (RCN) series. It is
used for assigning yearly ranked temperature values from the 30-year
time series to the corresponding test year date which has the same
monthly temperature rank.

Amore general equation form for a temperature in theMCR series is:

N30
MR m; d; y1ð Þ ¼ 1

30

Xy1þ29

y¼y1

AMR y;m;dð Þ: ð12Þ

NMR
30 (m,d;y1) is a ranked temperature for a day in the MRC series i.e.

the dth highest daily temperature inmonth,m, in theMCR series for the
30-year climate normal period starting year, y1, and AMR(y,m,d) is dth
highest daily temperature of the adjusted daily temperature in month,
m, year, y. The MCR series preserves the normalized daily temperature
pattern each month of the test year.

The normal daily temperatures need to properly reflect the varia-
tion of the test year daily temperatures. The RCN series is based upon
a 30-year average of the ranked daily temperature in each year assigned
to the corresponding the monthly ranked test year temperature using
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Fig. 9. STL 95th percentile (18th warm
theMCR. The equation form of a normal MDT in the RCN series is calcu-
lated using the monthly and yearly rank:

N30 m; d; y1; yTð Þ ¼ 1
30

Xy1þ29

y¼y1

AYR y;m;Dð Þ: ð13Þ

Here, a rank in the RCN, N30(m,d;y1,yT ), is the 30-year daily normal
of month,m, day,d, normal period starting year, y1, assuming the tem-
perature of month, m, day, d, in the test year, yT, has Dth monthly
rank. AYR(y,m,D) is a temperature value which yearly rank in tempera-
ture data series of year, y, is the same as the yearly rank of the temper-
ature value, NMR

30 (m,D;y1), in the MCR, {NMR
30 (., . ;y1)}.

The main reason the monthly rank is employed in this procedure is
that weather normalized consumer usage will be used in calculating
monthly revenues andmonthly expenses related tomonthly character-
istics of the test year. If we just use yearly rank then the daily normal
pattern of temperature variation in a month will reflect an abnormal
temperature variation in a month in the test year. Therefore, the RCN
methodology not only preserves bothmonthly and annual temperature
variation but alsominimizes the difference between test year daily tem-
peratures and normal daily temperatures (Turner and Lissik, 1991).

The daily RCN, which is calculated by the rank and average method
explained above and the daily SCN are compared in Fig. 7. The variation
in the daily RCN reflects the variation in the test year daily temperature
observations whereas the daily SCN variations in temperature values
are dampened.

Comparison of yearly ranked daily test year, RCN and SCN tempera-
ture series are graphed in Fig. 8. At the upper end and lower end of
the plot it can be seen that both hot and cold extreme temperatures
are dampened in the SCN data series, but are reflected in the RCN data
series. The RCN has a relatively similar shape compared to the test
year daily temperature series in both the higher and lower ranked tem-
perature values.

For each year of the normal period (1981–2010) the average of the
upper 95th percentile (warmest 18 days) MDT is plotted in Fig. 9.
Similarly the average of lower 5th percentile (coldest 18 days) MDT
for each year are plotted in Fig. 10. The corresponding average of the
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highest 18 days of the SCN and RCN are plotted in Fig. 9 each year, and
the average of the lowest 18 days of the SCN and the RCN are plotted
each year in Fig. 10. In both figures it can be seen that the average SCN
is offset from the lower 5th percentile average and upper 95th
percentile average of the years in the period, 1981–2010, whereas the
RCN, by design, goes through the average of the lower 5th percentile
and upper 95th percentile respectively.

The histograms of the distribution of Actual MDT for the normal
period (1981–2010), the distribution of the SCN, and the distribution
of the RCN are plotted in Fig. 11. The distribution of the RCN MDT has
a better fit to the distribution of MDT of 30-year period from 1981 to
2010 than the distribution of the SCN MDT. In Fig. 11, the distribution
of the RCN MDT is almost the same as the distribution of the Actual
MDT from 1981 to 2010. The distribution of the SCN MDT shows that
extremes lower than 20 °F and higher than 90 °F are removed. The
SCN distribution also shows abnormally high density in the intervals
from 30 °F to 40 °F and 70 °F to 80 °F. In Fig. 12, it can be seen that cu-
mulative distribution function of RCN and the 30-yearMDT series are al-
most coincidental while the SCN series deviates in the lower
temperatures (25 °F–35 °F) and the higher temperatures (75 °F–85 °F).

4.3. The cumulative effect

A persistent weather pattern (such as a “heat wave” or a “cold air
mass”) has a cumulative effect on daily energy use for space cooling
and heating. Thus, in summer, a warm day after one or more warm
days has greater total daily energy sales than the same warm day
preceded by cool or temperate days. For example, during the cooling
season, even if the MDT is the same for two Wednesdays in different
weeks, more air conditioning would be used on the Wednesday with
the warmer preceding Tuesday. Assuming a positive linear load and
sales response of a weather observation, such as temperature in the
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Fig. 11. STL density distributions of 1
summer, the cumulative effect of weather can be measured by a regres-
sion model,

Energy Sales ¼ β0 þ β1Wt þ β2Wt−1 þ γNWt þ εt ð14Þ

whereWt is a weather observation on day t,Wt−1 is theweather obser-
vation on the previous day, NWt is a non-weather variable, εt is an error.
Both β1and β2 are anticipated to be positive. In the weather normaliza-
tion process, a regressionmodel with weather lag variable is problemat-
ic because the relationships between two days in a test year and in
climate normal are different.

Another way to internalize the cumulative temperature effect is to
calculate a two-dayweightedmean daily temperature (TWMDT) series
for the test year. The equation form of TWMDT for day d is:

TWMDTd ¼ α1MDTd−1 þ α1MDTd ð15Þ

where

α1 ¼ β1

β1 þ β2
and α2 ¼ β2

β1 þ β2
:

Based on empirical analysis of weighting alternatives a set of
TWMDT is calculated using the previous day's mean daily temperature
with a one-third weight and the current day's mean daily temperature
with a two-thirds weight (β1=1 and β2=2). The model using the
TWMDT series shows a higher explanatory power than regression
model using the MDT series. In other words, when the other indepen-
dent variables are the same, the regression model of daily electric ener-
gy sales with the TWMDT series shows a higher R-square than the
modelwith theMDT series. For instance, as demonstrated by the regres-
sion model in the next section, adjusted R-square is 0.9643 in the re-
gression with the TWMDT series but the same regression model with
50 70 90
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theMDT series has an adjustedR-square of 0.9545. It is alsodemonstrat-
ed that for weather normalization the ranked normal TWMDT is more
appropriate than the two day weighted mean of ranked normal MDT.
The TWMDT accounts for the some of the cumulative effects of persis-
tent temperatures on energy sales, but further investigation of the cu-
mulative effect on sales needs to be conducted.

4.4. Mitigation of other anomalies

Further refinement of the daily energy salesmodelmust bemade for
weekends and holidays (non-workdays), when energy sales responses
to TWMDT are significantly different due to variations in economic
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Fig. 14. Piecewise linear inflection points for Metro StL daily residential e
activity. Therefore, if the monthly extreme temperature occurs on a
non-workday in the test year, the relationship between test yearweath-
er and energy sales will diverge. Consequently, test year days with
temperature extremes are reassigned to a workdays with a similar
TWMDT rank.

In test years that are non-leap years the observations on February 29
in the thirty year period are excluded from the normal series of MDT in
the calculation of the daily climate normal. If the test year is a leap year,
the observations on February 29 are included in the normal series, and
the non-leap years in the normal series is augmented using the average
of February 28 andMarch 1, to generate a value for February 29 to com-
plete the 30 year period to calculate the daily climate normal.
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10 See ftp://ftp.ncdc.noaa.gov/pub/data/normals/1981-2010/source-datasets/.
11 Ameren Missouri's residential service class rates are not linear. However, evidence
from recent studies suggests that electricity consumers respond to average price rather
than marginal price or expected marginal price. Customers do not understand complex
rate structures (Ito, 2012). AmerenMissouri has an Optional Time-of-Day residential rate,

Table 3
Regression Statistics for TWMDT and MDT Models.

[1] [2]
TWMDT MDT

Adjusted R Squared 0.9643 0.9039
Standard Error 2240 3672
Variable Coefficient Coefficient

HDD39 147⁎⁎ −749⁎⁎

HDD59 615⁎⁎ 811⁎⁎

CDD67 1,372⁎⁎ 1,206⁎⁎

CDD81 844⁎⁎ 765⁎⁎

CDD88 −1,230⁎⁎ −834⁎

EMPLOYMENT −23⁎⁎ −31⁎⁎

PRICE −90,431⁎⁎ −102,435⁎⁎

DJANUARY −2,323⁎⁎ 1,127
DFEBRUARY −3,473⁎⁎ −3,297⁎⁎

DMARCH −5,539⁎⁎ −8,993⁎⁎

DAPRIL −6,348⁎⁎ −9,328⁎⁎

DMAY −4,005⁎⁎ −6,405⁎⁎

DJUNE 769 −217
DJULY 1,785 1,042
DAUGUST 420 −605
DSEPTEMBER −5,299⁎⁎ −7,593⁎⁎

DOCTOBER −6,951⁎⁎ −10,062⁎⁎

DNOVEMBER −5,307⁎⁎ −8,928⁎⁎

DSUNDAY 1,100⁎⁎ 1,317⁎⁎

DMONDAY −873⁎ −565
DTUESDAY −1,438⁎⁎ −855⁎

DWEDNESDAY −1,668⁎⁎ −1,050⁎

DTHURSDAY −1,460⁎⁎ −826⁎

DFRIDAY −1,415⁎⁎ −1,088⁎

Intercept 96,192⁎⁎ 134,332⁎⁎

⁎ P b 0.1.
⁎⁎ P b 0.01.

Table 2
Descriptive statistics for using TWMDT.

Variable Count Mean StdDev Min Max Skewness Kurtosis Jarque–Bera Probability CorrYX

RESENERGY (GWh) 1095 38,115 11,783 19,978 68,900 0.454 2.195 67 0.000 1.000
HDD39 1095 2.039 5.095 0.000 31.487 2.962 12.028 5319 0.000 0.507
HDD59 1095 8.812 12.264 0.000 51.487 1.247 3.448 293 0.000 0.454
CDD67 1095 4.083 6.470 0.000 25.667 1.420 3.796 397 0.000 0.555
CDD81 1095 0.494 1.698 0.000 11.667 4.009 19.540 15415 0.000 0.527
CDD88 1095 0.047 0.366 0.000 4.667 8.925 88.300 346507 0.000 0.282
EMPLOYMENT (1000) 1095 2517 35 2449 2568 −0.548 2.500 66 0.000 −0.093
PRICE ($/KWh) 1095 0.082 0.018 0.053 0.121 0.306 2.046 59 0.000 0.114
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5. Economic impact

A simulation of electric rate case weather normalized revenue esti-
mates can demonstrate the difference in the economic impact of the
SCN and RCN adjustments to daily test year weather. For comparison,
the adjustments to normal weather are calculated using both the SCN
series and RCN series to determine the revenue difference between
the two methods. The statistical relationship between weather and en-
ergy sales can be characterized in the regression model:

Energy Sales ¼ β0 þ β �Wþγ � NWþε; ð16Þ

where W is a vector of weather variables and NW is a vector of non-
weather variables.

In the simulation, RESENERGY (GWh), the series of AmerenMissouri
daily residential sales are Energy Sales. The STL daily MDTs for the test
year are from the Midwest Regional Climate Center (MRCC).9 The
9 See http://mrcc.isws.illinois.edu/CLIMATE/.
serially complete monthly temperature data series from NOAA10 are
used to compute normal weather, Ameren Missouri daily residential
electric energy sales, the daily HDD65 and CDD65, derived from the
TWMDT for 2009–2011 are overlaid in Fig. 13.

The quantitative relationship between daily temperature and daily
residential electric energy sales varies according to the daily tempera-
ture range because electricity is used for heating and cooling. Conse-
quently, the weather variables, HDD and CDD, are calculated with
bases other than the standard base of 65 °F that are adjusted to the
daily temperature range usingMDT and TWMDT. HDDwith an adjusted
base of THB for day d are calculated as follows:

HDDdTHB ¼ max 0; THB−Tdð Þ½ � ð17Þ

where Td is one of the daily temperature calculations for day d (i.e. MDT
or TWMDT). Similarly, CDDwith the base of TCB for day d are calculated
as follows:

CDDdTCB ¼ max 0; Td−TCBð Þ½ �: ð18Þ

Bases were determined by analyzing the relationship between daily
energy sales and the daily temperatures. Because of the piecewise line-
arity of daily energy sales to daily temperature, five bases are used for
generating the degree day variables, HDD39, HDD59, CDD67, CDD81,
and CDD88. The daily energy sales series, RESENERGY corresponding
to the TWMDT series with the five degree day break points are plotted
in Fig. 14.

The non-weather factors of season, electricity price and local eco-
nomic activity are also included. Discrete variables for weeks and
months are employed, allowing each time unit a coefficient reflecting
factors that are outside the model. The variable, DSUNDAY, is one
when the day is Sunday and zero otherwise. Holidays are excluded
from the regression because each holiday has a unique characteristic
for electric energy sales.

PRICE, Pm, is the average price per kWhpaid by residential customers
in a month.11 Pm is calculated from the Ameren Missouri residential
class revenue, Rm, per kWh sales, Sm,reported by the U. S. Energy Infor-
mation Administration,

Pm ¼ Rm

Sm
− m ¼; :::; 12ð Þ: ð19Þ

PRICE, Pm, changesmonthly for several reasons. First, during the pe-
riod regulated rate changes occurred in March 1, 2009; June 21, 2010;
and July 31, 2011. Second, average rates change as usage changes due
to rate designs such as declining block rates and seasonal rates (e.g.
but less than 0.001% of residential customers have requested this rate. The monthly price
of electricity used in this study is the monthly average normalized price compiled by the
Bureau of Labor Statistics in the quarterly CPI of Metro StL.

http://mrcc.isws.illinois.edu/CLIMATE/
ftp://ftp.ncdc.noaa.gov/pub/data/normals/1981-sourceatasets/
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Fig. 15. Metro StL 2011 daily residential electric energy sales and the daily SCN and RCN weather normalized residential electric energy sales.

Table 4
Metro StL energy sales and TWMDT adjustments using SCN and RCN.

Actual SCN Adjustment RCN Adjustment Difference

2011 Usage* Revenue** Usage* Revenue** Usage* Revenue** Usage* Revenue**

Jan 1,661,987 109,132 (85,303) (5,175) (117,476) (7,127) (32,173) (1,952)

Feb 1,434,501 96,953 (86,758) (5,361) (81,885) (5,060) 4,872 301 

Mar 1,122,266 80,377 32,566 2,092 (36,735) (2,359) (69,301) (4,451)

Apr 929,098 70,102 (27,892) (1,856) 6,432 428 34,325 2,284 

May 798,299 63,141 (79,947) (5,495) 17,064 1,173 97,011 6,667 

Jun 1,071,000 122,441 (212,035) (22,603) (8,075) (861) 203,960 21,742 

Jul 1,411,405 158,725 (112,947) (12,040) (143,011) (15,245) (30,064) (3,205)

Aug 1,668,829 186,176 (319,234) (34,030) (208,639) (22,241) 110,595 11,789 

Sep 1,301,542 147,016 (119,661) (12,756) (169,949) (18,117) (50,288) (5,361)

Oct 779,537 62,063 (20,786) (1,435) (56,509) (3,901) (35,724) (2,466)

Nov 777,438 61,744 4,752 327 43,486 2,992 38,734 2,665 

Dec 1,099,427 79,421 57,440 3,717 42,802 2,770 (14,638) (947)

Total 14,055,329 1,237,291 (969,804) (94,615) (712,494) (67,548) 257,309 27,067 

Note: Values with red numbers in the parenthesis are negative.
⁎ MWh.
⁎⁎ $1000.
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higher rate in summer compared to winter). Third, two components of
price, the fuel adjustment clause and purchase power adjustment
charge were updated triennially as allowed by regulations.

EMPLOYMENT, quarterly employment in Metro StL from the Bureau
of Labor Statistics is used as a proxy for local economic conditions. Inter-
estingly, previous research has found that residential energy sales are
negatively correlated with employment (Train et al., 1983). One expla-
nation of this may be that as employment increases fewer people are at
home during the work day. The major variables are in Table 2 and the
regression results are in Table 3.

In Fig. 15 contains the daily electric energy sales for the test year
2011, alongwith theweather normalized daily SCN andRCN electric en-
ergy sales. The daily RCN electric energy sales tracks seasonal usage pat-
terns of actual sales more closely than the daily SCN electric energy
sales. Both magnitude of sales and the seasonal variation of sales are
reflected by the RCN electric energy sales. The results of the weather
normalization adjustments of monthly electric energy sales and reve-
nues using the SCN and the RCN are presented in Table 4.

The revenue adjustment to 2011 using the SCN, RAS, is not the same
as the revenue adjustment using the RCN, RAR. Also some monthly
adjustments are in different directions, the RAS is negative and RAR is
positive. Some monthly difference in normalized electric energy sales
and revenue for 2011 the SCN and the RCN is more than 17%.

6. Conclusion

This paper investigates the biases in the weather normalization ad-
justment to test year electric energy sales and revenues using the SCN.
The RCN is introduced to provide a more accurate set of normal MDT
by preserving MDT variation, and TWMDT is introduced to account for
the cumulative temperature effects on energy sales. Theseweather var-
iables avoid the bias in the weather normalization adjustment that can
be introduced when the SCN and MDT are used.

For comparison, adjustments were calculated for 2011 Ameren
Missouri daily residential electricity sales. The results reveal that the
weather normalization adjustment is significantly improved using the
RCN and TWMDT compared to the result using the SCN and MDT. The
model using TWMDT has a higher adjusted R-square than the model
using MDT (Table 3). The RCN fits the actual 30-year daily temperature
distribution better than the SCN (Fig. 12). When the RCN, based on the
NOAA-adjusted 30-year set of temperature observations, is used to
compute the TWMDT the result is a less biased weather normalization
adjustment of daily energy sales and revenue than the MDT from the
SCN (Table 4).

Our review of the literature on weather normalization processes in-
dicates that the SCN is the more frequently used climate normal. It has
been demonstrated that a naive implementation of the SCN in certain
applications such as daily load research, may cause significant biases
in the analysis of daily load variation. Even if the mean of the SCN is
not biased, the SCN variance is damped, so weather normalization ad-
justments can be biased. Themain reason for this bias is that daily elec-
tric sales do not have a uniform response to weather. This non-linear
response to weather requires characteristics in a climate normal to be
used for energy utilityweather normalization that the SCNdoesn't have.

The relationship between energy sales and temperature is the most
important factor inweather normalization. The daily residential electric
sales response to temperature is nonlinear, so if a climate normal does
not preserve extremes in daily temperature variation, the weather nor-
malization adjustment will have a bias. Therefore, a daily climate nor-
mal for utility regulation should preserve the yearly and monthly
weather pattern which corresponds to the test year weather variation.
In addition to setting appropriate rates, accurately weather normalized
energy sales are also required for evaluating the effectiveness of energy
conservation and demand-side management programs. Furthermore,
themore realistic climate normalwill improve our understanding of en-
ergy market asset price dynamics (Mu, 2007).
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