Appendix M

Erosion Calculations

Ameren Missouri Labadie Energy Center Proposed Utility Waste Landfill Franklin County, Missouri December 2012

Amendments to Erosion Calculations Appendix M

EROSION PROTECTION CALCULATIONS

The stormwater drainage structures were checked for erosion control by utilizing the Erosion Control Materials Design Software 4.3 (ECMDS) by North American Green (NAG). This software analyzes erodibility of various channel/slope configurations. The channel/slope is analyzed for erodibility based upon soil type, cover, flow-rate, velocity, Manning's number and channel grade. Channel sections representative of the side slope benches and letdown ditches have been analyzed for erosion using riprap.

SUMMARY OF DESIGN ANALYSIS

1. Typical Landfill Slope Erosion Protection

The typical top of landfill was modeled for erosion using ECDMS, which uses a version of the Revised Universal Soil Loss Equation (RUSLE). The top of the landfill is designed with a minimum 2 percent slope. The maximum distance along the 2 percent slope is 550 ft. The annual soil loss of 0.013 inches per year is less than the permissible 0.03 inches per year, and is considered acceptable (a standard value in ECDMS; see Table 1 and Figure 1a).

The typical side slope was also modeled for erosion using ECDMS. The 3:1 side slope of 225 ft is broken into two sections of approximately 117 ft and 108 ft by a bench at 520 feet elevation. Both segments have annual soil losses less than 0.03 in. The segment with the larger annual soil loss eroded at a rate of 0.017 in/yr (see Table 1 and Figures 1a and 1b).

2. Typical Diversion Structure on Top of Landfill

Flow from the top of the landfill will be directed to the letdowns using diversion structures. The typical diversion structure would have a slope of up to 1 percent, a depth of 1 ft, and side slope of 50:1 and 3:1. ECMDS was used to calculate shear stress resulting from the maximum flow of 4.5 cfs (half the maximum flow in a letdown). Shear stresses were within permissible levels (see Table 1 and Figure 2).

December 2012

3. Typical Landfill Letdown Structure

The standard letdown design to be utilized at the Ameren Missouri Labadie Power Plant Utility Waste Landfill (8 ft wide bottom and 3:1 side slopes) was checked for permissible shear stress using two types of cover (reinforced vegetation and 22-in riprap). ECMDS was used to calculate shear stress resulting from the maximum flow of 8.9 cfs on the 3:1 bottom slope of the letdowns. The letdown structure flow was calculated in Appendix N using the Rational method, a 25-year, 1-hour storm, the largest area drained by a letdown structure. Shear stresses were within permissible levels (see Table 1 and Figure 3a and 3b).

4. Typical Bench

Benches on the side slope are proposed. They will be at 520 ft elevation and have 1 percent bottom slopes. The bench side slopes will be 3:1 on one side and 10:1 on the other, with a depth of 1.5 ft. As with the letdown structures, these were modeled using ECMDS. The permissible shear stress for a fair stand of vegetation is greater than the estimated shear stress created by a flow of 4.5 cfs (half the maximum flow in a letdown; see Table 1 and Figure 4).

5. Perimeter Ditch

The standard perimeter ditch to be utilized at the Ameren Missouri Labadie Power Plant Utility Waste Landfill (9 ft wide bottom and 3:1 side slopes) was checked for permissible shear stress using a fair stand of unreinforced vegetation. ECMDS was used to calculate shear stress resulting from the maximum flow of 36 cfs. Shear stresses were within permissible levels (see Table 1 and Figure 5).

TABLES

Ameren Missouri Labadie Energy Center Proposed Utility Waste Landfill Franklin County, Missouri

Summary Table of Erosion Control Table 1

			Safety	Limitations			
	Structure	Description of Cover and Conditions	Factor	Limiting Factor	Permissible	Calculated	
1a	Typical Top of Landfill	Unreinforced vegetation with a fair stand of bunch growth	2.232	Soil Loss	0.03 in/yr	0.013 in/yr	
1b	Typical Side Slope Below Bench	117 feet of cover with an excellent stand of sod growth	2.284	Soil Loss	0.03 in/yr	0.013 in/yr	
	Typical Side Slope Above Bench	108 feet of cover with a good stand of mixed bunch and sod growth	1.816	Soil Loss	0.03 in/yr	0.017 in/yr	
2	Typical Diversion Structure on Top of Landfill	Unreinforced vegetation with a fair stand of bunch growth	9.04	Shear Stress	4.20 psf	0.46 psf	
3a	Typical Letdown	Reinforced vegetation	1.55	Shear Stress	7.00 psf	4.52 psf	
3b	Typical Letdown	RipRap	1.23	Shear Stress	7.33 psf	5.98 psf	
4	Typical Bench	Unreinforced vegetation with a fair stand of bunch growth	6.49	Shear Stress	4.20 psf	0.65 psf	
5	Typical Perimeter Ditch	Good stand of mixed bunch and sod growth	70.17	Shear stress	0.035 psf	0.000499 psf	

FIGURES

Ameren Missouri Labadie Power Plant Proposed Utility Waste Landfill Franklin County, Missouri Appendix M Typical Top of Landfill Figure 1a

I positive for the second solution of the sec

In Instant or a second second

Ameren Missouri Labadie Power Plant Proposed Utility Waste Landfill Franklin County, Missouri Appendix M Typical Side Slope Figure 1b

Vegetation Density-Percentage of soil coverage provided by vegetation ASLbare-Average Soil Loss potential of unprotected soil (uniform inches) MSLbare-Maximum Soil Loss potential on unprotected soil (uniform inches) SLT=Soil Loss Tolerance for slope segment (uniform inches) Composite=Average soil loss from total slope length (uniform inches) C=Cover material performance factor (Fraction of soil loss of unprotected) ASLmat=Average Soil Loss potential w/material (uniform inches) MSLmat=Maximum Soil Loss potential w/material (uniform inches) SF=Safety Factor

Ameren Missouri Labadie Power Plant Proposed Utility Waste Landfill Franklin County, Missouri Appendix M Typical Diversion Structure on Top of Landfill Figure 2

LINER RESULTS

Not to Scale

Reach	Matting Type	Stabēty Analysis	Vegetation Characteristics				Permissible	Calculated	Safety Factor	Remarks
	Staple Pattern		Phase	Class	Type	Density	Shear Stress (psf)	Shear Stress (psf)		
Straight	Unreinforced	Vegetation		3	Mix	50-75%	4.20	Û.46	9.04	STABLE
		Soil	Silt Loam				0.035	0.001	48.47	STABLE

Ameren Missouri Labadie Power Plant Proposed Utility Waste Landfill Franklin County, Missouri Appendix M Typical Reinforced Vegetation Letdown Structure Figure 3a

LINER RESULTS

Not to Scale

Reach	Matting Type	Stability Analysis	Vege	tation C	haracter	istics	Permissible Shear Stress (psf)	Calculated Shear Stress (psf)	Safety Factor	Remarks
	Staple Pattern		Phase	Class	Туре	Density				
Straight	SC250	Vegetation	2	D	Мія	75-95%	7.00	4 52	1.55	STABLE
	Staple E	Seil	Silt Loam				2.500	0.470	5.32	STABLE

Ameren Missouri Labadie Power Plant Proposed Utility Waste Landfill Franklin County, Missouri Appendix M Typical Riprap Letdown Structure Figure 3b

LINER RESULTS

Not to Scale

Reach	Matting Type	Stability Analysis	Vegetation Characteristics				Permissible	Calculated	Safety Factor	Remarks
	Staple Pattern		Phase	Class	Тура	Density	Shear Stress [psf]	Shear Stress (psf)	-	
Straight	Rock Riprap	Unvegetated					7.33	5.98	1.23	STABLE
	22in									

Ameren Missouri Labadie Power Plant Proposed Utility Waste Landfill Franklin County, Missouri Appendix M Typical Bench Figure 4

LINER RESULTS

Not to Scale

Reach	Matting Type	Stability Analysis	Veg	etation C	haracter	ístics	Permissible Shear Stress (psf)	Calculated Shear Stress (psf)	Safety Factor	Remarks
	Staple Pattern		Phase	Class	Туре	Density				
Straight	Unreinforced	Vegetation		Ć.	Bunch	50.75%	4.20	0.65	6.49	STABLE
		Soil	Silt Loam				0.035	0.004	8.06	STABLE

Ameren Missouri Labadie Power Plant Proposed Utility Waste Landfill Franklin County, Missouri Appendix M Typical Perimeter Berm Figure 5

LINER RESULTS

Not to Scale

Reach	Matting Type	Stability Analysis	Vegetation Characteristics				Permissible	Calculated	Safety Factor	Remarks
	Staple Pattern		Phase	Class	Туре	Density	Shear Stress (psf)	Shear Stress (psf)		
Straight	Unreinforced	Vegetation		C	8unch	50-75%	4.20	0.03	139.90	STABLE
		\$ol	Silt Loam				0.035	0.000499	70.17	STABLE