Exhibit No.: Issues: Calcul Weath Witness: Curt W Sponsoring Party: MO PS Type of Exhibit: Direct Case No.: GR-20 Date Testimony Prepared: May 4

Calculation of Weather Normals Curt Wells MO PSC Staff Direct Testimony GR-2007-0208 May 4, 2007

MISSOURI PUBLIC SERVICE COMMISSION

UTILITY OPERATIONS DIVISION

DIRECT TESTIMONY

OF

CURT WELLS

LACLEDE GAS COMPANY

CASE NO. GR-2007-0208

Jefferson City, Missouri May 2007

BEFORE THE PUBLIC SERVICE COMMISSION

OF THE STATE OF MISSOURI

In the Matter of Laclede Gas Company's) Tariff to Revise Natural Gas Rate) Schedules)

Case No. GR-2007-0208

AFFIDAVIT OF CURT WELLS

STATE OF MISSOURI)
) ss
COUNTY OF COLE)

Curt Wells, of lawful age, on his oath states: that he has participated in the preparation of the following Direct Testimony in question and answer form, consisting of $\underline{7}$ pages of Direct Testimony to be presented in the above case, that the answers in the following Direct Testimony were given by him; that he has knowledge of the matters set forth in such answers; and that such matters are true to the best of his knowledge and belief.

Curt Wells

Subscribed and sworn to before me this $\frac{2}{2}$ day of May, 2007.

DAWN L. HAKE Notary Put My Commission Expires March 16, 2009 Cole County

Gemmission #05407843

My commission expires

1	TABLE OF CONTENTS
23	DIRECT TESTIMONY
4 5	OF
6 7	CURT WELLS
8 9	LACLEDE GAS COMPANY
10 11	CASE NO. GR-2007-0208
12 13	EXECUTIVE SUMMARY
14	DEFINITION OF HEATING DEGREE DAYS
15	SELECTION OF WEATHER STATION
16	WEATHER VARIABLES FOR HDD
17	DEFINITION OF WATER HEATING DEGREE DAYS
18	SOURCE OF WATER TEMPERATURE DATA

1	1 DIRECT TEST	IMONY
2	2 3	
4		
5 6	5 CURI WEI	LLS
7 8	7 LACLEDE GAS C	COMPANY
9 10	9 CASE NO. GR-2	007-0208
11	Q. Please state your name and business	address.
12	12 A. My name is Curt Wells and my bu	usiness address is Missouri Public Service
13	13 Commission, P. O. Box 360, Jefferson City, Misson	uri, 65102.
14	14 Q. What is your present position with	the Missouri Public Service Commission
15	15 (Commission)?	
16	16 A. I am a Regulatory Economist in	the Energy Department of the Utility
17	17 Operations Division.	
18	18 Q. Please review your educational back	ground and work experience.
19	A. I have a Bachelor's degree in Eco	nomics from Duke University, a Master's
20	20 degree in Economics from The Pennsylvania St	ate University, and a Master's degree in
21	21 Applied Economics from Southern Methodist U	niversity. I have been employed by the
22	22 Commission since February, 2006. Prior to joinin	g the Commission, I completed a career in
23	23 the U.S. Air Force, which included assignments	as a navigator in weather reconnaissance
24	24 aircraft, and later in the Purchasing/Contrac	ting area as Contract Negotiator and
25	25 Administrator, Contracting Policy Manager, Insta	llation Purchasing Department Chief, and
26	26 Contracting Program Manager.	
27	Q. Have you filed testimony in prior ca	ses?
28	A. Yes. My previous testimony is liste	d in Schedule CW-1.

	Curt Wells
1	EXECUTIVE SUMMARY
2	Q. What is the purpose of your testimony?
3	A I will explain my calculations of actual and normal Heating-Degree-Day
4	(HDD) and Water Heating-Degree-Day (WHDD) variables, which I furnished to Staff
5	witnesses James A. Gray, and Dr. Henry E. Warren.
6	Q. How is your testimony organized?
7	A. I will first discuss Heating-Degree-Days (HDD): Definition, Selection of
8	Weather Station, and Weather Variables. I will then discuss Water-Heating-Degree-Days
9	(WHDD): Definition, Source of Data, and Adjustments. Attached Schedule CW-2 provides
10	specific calculations of HDD variables for the St. Louis-Lambert International Airport
11	weather station. Schedule CW-3 provides corresponding WHDD values for the St Louis area.
12	Additional detail is included in my workpapers, which will be provided to the company.
13	DEFINITION OF HEATING DEGREE DAYS
14	Q. What are Heating Degree Days?
15	A. Degree days are weather measures that were originally devised to evaluate
16	energy demand and consumption. Degree days are the difference between the daily average
17	air temperature and the base level of 65 degrees Fahrenheit (°F). Cooling Degree Days are
18	the excess of the average air temperature over the base level and are used to examine the
19	relationship between temperature and electric usage for residential air conditioning. Heating
20	Degree Days are the excess of the base level over the average air temperature and are used to
21	examine the relationship between temperature levels and the amount of natural gas customers
22	use for residential heating.
23	Q. How are HDD calculated?

1	A. HDD are calculated as the number of degrees by which the daily average
2	temperature is below 65 °F, but are set equal to zero when the daily average temperature is
3	above 65 °F, based on the assumption that no heating occurs when the daily average
4	temperature (TAVG) is greater than 65 °F. TAVG is the average of the day's maximum
5	(TMAX) and minimum temperatures (TMIN).
6	Q. What is the source of your data on TMAX and TMIN?
7	A. The TMAX and TMIN data were compiled from National Oceanic and
8	Atmospheric Administration (NOAA) information.
9	SELECTION OF WEATHER STATION
10	Q. Which weather station did you use in this rate case?
11	A. I used the weather station at St. Louis-Lambert International Airport (STL).
12	Q. Why did you select this weather station?
13	A. This is the weather station that the Staff selected in the past Laclede Gas
14	Company (Laclede or Company) rate cases, Case No. GR-2001-629 and Case No. GR-2002-
15	356, as being the most representative station with the most consistent daily temperature data
16	for Laclede's service territory. In her Direct testimony in this case, Laclede witness Patricia
17	Krieger, also used this station in her calculations.
18	WEATHER VARIABLES FOR HDD
19	Q. What time interval did you use in determining normal values for your weather
20	variables?
21	A. I conformed to the 30 year time period used by NOAA and the World
22	Meteorological Organization (WMO) to calculate normal daily weather variables. As stated
23	by NOAA, "A climate normal is defined, by convention, as the arithmetic mean of a

climatological element computed over three consecutive decades (WMO, 1989)." NOAA
 applies this concept to temperature by calculating thirty-year temperature normals as monthly
 average maximum temperature and monthly average minimum temperature, using the
 Fahrenheit scale.

5 Q. What period is NOAA currently using for calculating its thirty-year6 temperature normals?

A. NOAA uses the three most recent consecutive decades, which are currently the
30 years from January 1, 1971 through December 31, 2000. International convention has
established that three-decade periods are appropriately long and uniform time frames for the
calculation of normals. The choice of this 30 year period by Staff is based on previous Staff
analysis, Commission decisions, and these standards for normal weather variables established
by NOAA and the WMO.

13

Q.

What weather variables did you develop for the present rate case?

A. I developed the daily actual HDD, the daily normal HDD, and the monthly
peak-day normal HDD that were used by Mr. Gray and Dr. Warren to weather normalize the
Company's sales and revenues. Calendar month summaries of actual, normal, and peak HDD
for the test year are presented for STL in Schedule CW-2.

18

Q. How did you calculate daily HDD for the test year?

- A. I calculated daily HDD ("actual HDD") using the above formula and the daily
 TMAX and TMIN from NOAA's Midwestern Regional Climate Center.
- Q. How did you calculate adjusted daily HDD for each of the days in the 30-year
 period, January 1, 1971 through December 31, 2000?

A. I first tabulated daily TMAX and TMIN for each day in these 30 years for 1 2 STL, as well as for selected alternates where data were missing. Because NOAA only adjusts 3 the monthly average temperatures, I adjusted actual daily TMAX and TMIN for these 30 4 years so that the monthly averages of the adjusted daily TMAX and TMIN were equal to the 5 adjusted monthly average TMAX and TMIN that NOAA uses to calculate the monthly station 6 normals over the same period. Adjusted daily TAVG and HDD were then calculated using 7 the adjusted TMAX and TMIN as discussed above. The details of the tabulation and 8 adjustment processes are shown in my workpapers.

9 Q. How did you determine the daily normal HDD used by Mr. Gray and Dr.10 Warren?

A. I determined the daily normal HDD by averaging the adjusted daily HDD for
 each calendar date, without respect to the year. For example, the 30 observations of actual
 HDD for January 1st of each year were averaged to determine the normal HDD for January 1st.

Q. How did you calculate the normal peak-day HDD for the 12 monthly normalpeak days in the test year?

A. I calculated the normal HDD value for January's coldest day as the average of
the HDD of the 30 coldest days over all the January days in the 30 years of the normals
period, and assigned that value to the average coldest January day. The normal HDD values
for the coldest day in each of the other months were calculated in the same way. I also
attached a summary of the monthly peak day normal HDD in Schedule CW-2.

21

22

Q.

DEFINITION OF WATER HEATING DEGREE DAYS

What is a Water Heating Degree Day?

1	A. Water Heating Degree Days are used to examine the relationship between								
2	temperature and natural gas usage for residential water heating. Water Heating Degree Days								
3	are based on how far the daily inlet water temperature departs from the base level of 140 °F.								
4	Q. How are WHDD calculated?								
5	A. WHDD are calculated as the number of degrees the daily average inlet water								
6	temperature is below 140 °F, based on the assumption that, on average, water heaters are set								
7	at 140 °F.								
8	SOURCE OF WATER TEMPERATURE DATA								
9	Q. What is the source of your data daily water temperatures?								
10	A. Prior Staff analysis has shown that Missouri River water temperatures (RWT)								
11	serve as a reliable proxy for inlet water temperature in the St. Louis area. Staff acquired daily								
12	RWT for the period January 1, 1986 through December 31, 2006 from the Missouri River								
13	intake at Howard Bend by the City of St. Louis Department of Public Utilities.								
14	ADJUSTMENTS								
15	Q. Were these data sufficient to calculate actual and normal daily WHDD?								
16	A. No. Calculation of normals requires daily data for the 30-year period 1971-								
17	2000. Therefore, it was necessary to estimate the missing values between January 1, 1971								
18	and December 31, 1985.								
19	Q. How were the missing observations estimated?								
20	A. I applied a regression analysis to determine the relationship between the daily								
21	air temperature (TAVG) and water temperature data for the period January 1986 through								
22	December 2006. I then used this estimated relationship to calculate daily RWT for the								
23	missing observations.								

- 1
- Q. What other adjustments were necessary?

A. Since the temperature of bodies of water responds only incrementally to changes in air temperature, the current day's water temperature is correlated with the previous day's water temperature, as well as the previous day's air temperature. Water temperature is also affected by the hours of daylight. I corrected for the correlation by applying a first order auto regression function, and added a variable to account for length of day. The calculations are detailed in my workpapers. A summary of test year and normal Water Heating Degree Day values and monthly peaks are shown in Schedule CW-3.

9

- Q. Does this conclude your Direct Testimony?
- A. Yes, it does.

TESTIMONY FILED BEFORE THE MISSOURI PUBLIC SERVICE COMMISSION

Case Number	<u>Company</u>	Issue
ER-2006-0315	Empire District Electric	Revenue
ER-2006-0314	Kansas City Power & Light Company	Calculation of Normal Weather, Revenue
GR-2006-0387	ATMOS Energy Corporation	Calculation of Normal Weather
GR-2006-0422	Missouri Gas Energy	Calculation of Normal Weather
ER-2007-0002	Union Electric d/b/a AmerenUE	Calculation of Normal Weather, Large Customer Annualization
GR-2007-0003	Union Electric d/b/a AmerenUE	Calculation of Normal Weather
ER-2007-0004	Aquila, Inc	Calculation of Normal Weather, Revenue

St. Louis International Airport, Missouri, Monthly Summary Statistics Actual Heating Degree-Days (HDD) and Normal Heating Degree-Days (NHDD) For The 12 Calendar Months Beginning October 01, 2005 And Ending September 30, 2006							
TOTAL HDD BY MONTH PEAK DAY HDD							IDD
				ADJUSTMENT,	OBSERVED	NORMAL	ADJUSTMENT,
		OBSERVED	NORMAL	ACTUAL	COLDEST	COLDEST	ACTUAL
		TOTALS	TOTALS	ТО	DAY	DAY	ТО
YEAR	MONTH	HDD	NHDD	NORMAL	HDD	NHDD	NORMAL
2005	10	248	244	(3)	20.00	25.56	5.56
2005	11	502	594	93	38.50	41.75	3.25
2005	12	1025	964	(60)	50.00	61.14	11.14
2006	1	704	1099	395	32.50	63.27	30.77
2006	2	833	837	5	54.50	58.36	3.86
2006	3	577	602	25	36.50	43.90	7.40
2006	4	140	285	145	22.00	28.78	6.78
2006	5	99	75	(23)	16.50	14.66	(1.84)
2006	6	0	5	5	0.00	4.39	4.39
2006	7	0	0	0	0.00	0.19	0.19
2006	8	0	1	1	0.00	0.54	0.54
2006	9	43	44	1	9.50	13.56	4.06
12 MONTHS		4168	4751	583	54.50	63.27	8.77

City of St. Louis, Missouri River Intake @ Howard Bend, Monthly Summary Statistics Actual Water Heating Degree-Days (WHDD) and Normal Water Heating Degree-Days (NWHDD) For The 12 Calendar Months Beginning October 1,2005 And Ending September 30, 2006							
		ΤΟΤΑ	'T MHDD B,	Y MONTH	PEAK DAY WHDD		
				ADJUSTMENT,	OBSERVED	NORMAL	ADJUSTMENT,
		OBSERVED	NORMAL	ACTUAL	COLDEST	COLDEST	ACTUAL
		TOTALS	TOTALS	то	DAY	DAY	то
YEAR	MONTH	WHDD	NWHDD	NORMAL	HDD	NHDD	NORMAL
2005	10	2235.6	2387.4	152	81.0	91.7	11
2005	11	2539.8	2667.5	128	93.6	103.1	10
2005	12	3119.4	3058.4	(61)	104.4	108.6	4
2006	1	2991.6	3181.0	189	99.0	108.5	10
2006	2	2728.8	2814.6	86	102.6	108.0	5
2006	3	2752.2	2842.2	90	93.6	105.4	12
2006	4	2242.8	2455.0	212	82.8	95.4	13
2006	5	2196.0	2244.2	48	77.4	84.2	7
2006	6	1701.0	1910.0	209	61.2	74.5	13
2006	7	1609.2	1803.4	194	55.8	68.4	13
2006	8	1600.2	1835.0	235	59.4	69.6	10
2006	9	1893.6	1972.2	79	70.2	80.7	11
12 MO	NTHS	27610.2	29171.0	1561	981	1098	117