

MEMORANDUM

To:Laureen Welikson and Greg Lovett; Ameren MissouriFrom:David Ladd, Brian Evans, Sara Wist, and Jane Colby; CadmusSubject:PY16 Efficient Products Program: TRM Gross SavingsDate:November 30, 2016

This memo outlines the methodology and results of Cadmus' review of the potential per-unit savings for energy efficiency measures rebated through Ameren Missouri's Efficient Products Program in program year 2016 (PY16). The PY16 measures were:

- Heat pump water heaters
- ENERGY STAR[®] room air conditioners
- ENERGY STAR room air cleaners
- ENERGY STAR dual speed pool pumps
- ENERGY STAR variable speed pool pumps
- Smart thermostats

Measure-Specific Gross Savings Methodology

Cadmus estimated gross savings for most program measures using the engineering algorithms established in the Efficient Products Evaluation Plan.¹ We then compared the deemed per-unit savings as provided in Ameren Missouri's Technical Reference Manual (TRM)² to our own gross savings estimates. For the Smart Thermostat measure, Cadmus assessed the reasonableness of the deemed per-unit savings by comparing with Illinois' TRM values³.

The calculations in this memo are per-unit savings estimates that do not include adjustments for installation rates or for saturations of applicable electric heating and cooling equipment. Cadmus will obtain values for each of these adjustments from PY16 surveys, and will then update total gross savings as appropriate.

Corporate Headquarters: 100 5th Avenue, Suite 100 Waltham, MA 02451 Voice: 617.673.7000 Fax: 617.673.7001

¹ Cadmus. "Evaluation Plan: Residential Efficient Products Program (PY16-PY18)." September 2016.

State of Missouri. "In the Matter of Union Electric Company d/b/a Ameren Missouri's 2nd Filing to Implement Regulatory Changes in Furtherance of Energy Efficiency as Allowed by MEEIA." File No. EO-2015-0055. February 5, 2016. Refer to Appendix F.

³ Available online: <u>http://www.ilsag.info/il_trm_version_5.html</u>

Estimated Savings Results

Cadmus reviewed best practices for calculating energy savings for program measures, and compared per-unit savings estimated in the 2016 Ameren Missouri Technical Reference Manual (TRM) with savings developed through up-to-date ENERGY STAR calculators. Table 1 lists TRM-based per-unit savings (*ex ante*) by measure.

Measure	TRM Per-Unit Savings (kWh/yr)	Cadmus Estimated Per-Unit Savings (kWh/yr)*
Heat Pump Water Heaters	3,315	2,865
ENERGY STAR Room Air Conditioners	49.6	49.6
ENERGY STAR Room Air Cleaners	482	515
ENERGY STAR Dual Speed Pool Pumps	1,799.7	1,799.7
ENERGY STAR Variable Speed Pool Pumps	1,543	2,053
Smart Thermostats	462	462
* Cadmus estimates are presented with and wit per-unit values.	hout decimals mainta	in consistency with TRM

Table 1. PY16 Efficient Products TRM and Estimated Per-Unit Savings Summary

Cadmus engineers reviewed the 2016 TRM deemed per-unit savings for all program measures. We then compared these assumptions to the latest ENERGY STAR calculators to develop estimated per unit savings numbers. The remainder of this memo outlines the estimated per-unit savings for each measure along with the algorithm and inputs used.

Heat Pump Water Heaters

Cadmus estimated per-unit savings for heat pump water heaters using the following algorithm:

$$\begin{array}{l} \textit{Energy Savings (kWh/Year)} \\ = \left(\frac{1}{EFbase} - \frac{1}{EFeff}\right) \times (HWT - CWT) \times \textit{Den} \times \textit{GPD} \times 365 \times \textit{C}_p \times \frac{1}{3,413} \\ - kWhheat + kWhcool \end{array}$$

Where:

EFbase	=	Energy factor of baseline water heater
EFeff	=	Energy factor of program-qualified water heater
HWT	=	Hot water temperature (°F)
CWT	=	Cold water temperature (°F)
Den	=	The water density (lb/gal)
GPD	=	Gallons of hot water used per day
365	=	Days/year
C _p	=	Specific heat of water
3,413	=	Conversion factor from Btu to kWh

kWhheat = Heating interaction due to heat removed from room to heat water

kWhcool = Cooling interaction due to heat removed from room to heat water

Table 2 shows the assumed value of each of these parameters.

Table 2. Heat Pump Water Heaters Savings Assumptions

Term	Value	Source
EFbase	0.90	Federal minimum standard
EFeff	2.7	PY16 Efficient Products Database (average EF)*
HWT	135	Ameren Missouri TRM
CWT	61.3	Ameren Missouri TRM
Den	8.33	Density of water (lb/gallon)
GPD	64	Secondary source**
C _P	1	Specific heat of water (Btu/lb-oF)
3,413	3,413	Conversion factor (Btu/kWh)
kWhheat	Electric Resistance = 1,577	Ohio Statewide TRM***
Kvviileat	Heat Pump = 779	
kWhcool	180	Ohio Statewide TRM***
Days	365	Conversion Factor (day/yr)

* Value updated from PY14.

** DOE Federal Energy Management Program Energy Cost Calculator. Available online: <u>http://energy.gov/eere/femp/energy-cost-calculator-electric-and-gas-water-heaters-0</u>

*** Cadmus adjusted interactive effects to account for the saturation of electric resistance heat, heat pumps, and central air conditioners in Ameren Missouri's territory, as found by the PY14 Efficient Products survey (11%, 29%, and 91%, respectively). *State of Ohio Energy Efficiency Technical Reference Manual.* pp. 86-87. 2010. Available Online: <u>http://s3.amazonaws.com/zanran_storage/amppartners.org/ContentPages/2464316647.pdf</u>

Using this engineering algorithm, we estimated an energy savings value of 2,865 kWh per year for each installed and retained heat pump hot water heater. This value was approximately 86% of the program *ex ante* value of 3,315 kWh per year (Table 3). The difference between these estimates is a result of adjustments Cadmus made to the saturation percentages of electric resistance heat, heat pumps, and central air conditioners (as mentioned in the footnote to Table 2).

Table 3. TRM and Estimated Savings Comparison for Heat Pump Water Heaters

TRM Savings/Unit	Cadmus Estimated Savings/Unit	Realization Rate
3,315 kWh/yr	2,865 kWh/yr	86%

ENERGY STAR Room Air Conditioners

Cadmus estimated per-unit savings for room air conditioners using the following algorithm:

$$Energy Savings (kWh/Year) = \frac{\frac{BTU}{hr} \times \left(\frac{1}{EER_{BASE}} - \frac{1}{EER_{EFF}}\right) \times EFLH_{COOL}}{1,000}$$

Where:

Btu/hr	=	Room air conditioner cooling capacity (Btu/hour)
EER_{BASE}	=	Baseline equipment energy efficiency ratio (Btu/W-hour)
EER_{EFF}	=	Efficient equipment energy efficiency ratio (Btu/W-hour)
EFLH _{COOL}	=	Equivalent full-load cooling hours
1,000	=	Conversion from between Wh to kWh

Table 4 shows the assumed value of each of these parameters.

Table 4. Room Air Conditioner Savings Assumptions

Term	Value	Source
Btu/hr	9,558	PY13 Efficient Products Program Database (average Btu/hr)
EER _{BASE}	9.8	Federal minimum efficiency standard
EER _{EFF}	10.7	PY13 Efficient Products Program Database (average EER)
EFLH _{COOL} – primary unit*	860	PY13 CoolSavers Program data
EFLH _{COOL} – secondary unit*	556	Secondary source**
1,000	1,000	Conversion factor (Wh/kWh)

* Cadmus used a weighted average for EFLH_{COOL} for primary and secondary sources, based on PY14 survey responses; 84% of respondents reported using their room air conditioner as a secondary cooling source. ** This value is based on weather-adjusted metering data from California: Cadmus. *Residential Retrofit High Impact Measure Evaluation Report: Evaluation of PGE2000, SDGE3024, & SCE2501 Room Air Conditioners* (2006-2008). 2010. Available online:

http://www2.epa.gov/sites/production/files/documents/CA_PUC_Assessment.pdf

Using this engineering algorithm, we estimated an energy savings value of 49.6 kWh per year for each installed and retained room air conditioner. This value is equivalent to the program's *ex ante* savings estimate (see Table 5).

Table 5. TRM and Estimated Savings Comparison for Room Air Conditioners

TRM Savings/Unit	Cadmus Estimated Savings/Unit	Realization Rate
49.6 kWh/yr	49.6 kWh/yr	100%

ENERGY STAR Room Air Cleaners

Cadmus estimated per-unit ENERGY STAR room air cleaner savings using the following ENERGY STAR calculator algorithm:

Energy Savings
$$\left(\frac{kWh}{Year}\right) = \left\{\left(\frac{1}{Eff_{BL}}\right) - \left(\frac{1}{Eff_{ES}}\right) \times \left(Hr_{oper}\right) + (SB_{BL} - SB_{ES}) \times \left(24 - Hr_{oper}\right)\right\} \times \frac{365}{1,000}$$

Where:

 Eff_{BL} = Clean air recovery rate for dust per watt for baseline unit

Eff_{ES} = Clean air recovery rate for dust per watt for ENERGY STAR unit

Hr_{oper}	=	Hours per day of operation
SB_{BL}	=	Standby for baseline unit
SB_{ES}	=	Standby for ENERGY STAR unit
365	=	Days/year
1,000	=	Conversion factor (Wh/kWh)

Table 6 shows the assumed value of each of these parameters.

Table 6. ENERGY STAR Room Air Cleaner Savings Assumptions

Term	Value	Source
Eff _{BL}	1.00	ENERGY STAR Appliance Calculator*
Eff _{ES}	2.77	PY15 Efficient Products Program Database
Hr _{oper}	16	ENERGY STAR Appliance Calculator*
SB _{BL}	1.00	ENERGY STAR Appliance Calculator *
SB _{ES}	0.272	PY15 Efficient Products Program Database
Clean air recovery	127 50	PY15 Efficient Products Program Database
rate for dust	137.39	

*Available online:

https://www.energystar.gov/sites/default/files/asset/document/appliance_calculator.xlsx

Using this engineering algorithm, we estimated a per-unit savings value of 515 kWh per year for each ENERGY STAR room air Cleaner (shown in Table 7). This value was approximately 107% of the program's *ex-ante* savings estimate (482 kWh per year). The difference between estimates resulted from updates to the clean-air delivery rate for dust and the standby energy consumption based on PY16 program data.

Table 7. TRM and Estimated Savings Comparison for ENERGY STAR Room Air Cleaners

TRM Savings/Unit	Cadmus Estimated Savings/Unit	Realization Rate
482 kWh/yr	515 kWh/yr	107%

ENERGY STAR Dual Speed Pool Pumps

Cadmus estimated per-unit dual speed pool pump savings using the following algorithm:

$$Energy \, Savings \, \left(\frac{kWh}{Year}\right) = Days_{oper} \times \left\{ \left(\frac{kWh_{ss}}{Day}\right) - \left(\frac{kWh_{ds}}{Day}\right) \right\}$$

Where:

$$\left(\frac{kWh_{ss}}{Day}\right) = \frac{(RT_{ss} \times GPM_{ss} \times 60)}{(EF_{ss} \times 1,000)}$$
$$\left(\frac{kWh_{ds}}{Day}\right) = \left(\frac{kWh_{hs}}{Day}\right) + \left(\frac{kWh_{ls}}{Day}\right)$$

$$\begin{pmatrix} kWh_{hs} \\ Day \end{pmatrix} = \frac{(RT_{hs} \times GPM_{hs} \times 60)}{(EF_{hs} \times 1,000)}$$
$$\begin{pmatrix} kWh_{ls} \\ Day \end{pmatrix} = \frac{(RT_{ls} \times GPM_{ls} \times 60)}{(EF_{ls} \times 1,000)}$$

And where:

Days _{oper}	=	Days/year of operation
RT _{ss}	=	Runtime in hours/day using single-speed pump
GPM _{ss}	=	Gallons per minute using single-speed pump
EF _{ss}	=	Energy factor using single-speed pump
RT_{hs}	=	Runtime in hours/day in high speed using dual-speed pump
GPM_{hs}	=	Gallons per minute in high speed using dual-speed pump
EF_{hs}	=	Energy factor in high speed using dual-speed pump
RT _{Is}	=	Runtime in hours/day in low speed using dual-speed pump
GPM _{Is}	=	Gallons per minute in low speed using dual-speed pump
EF _{ls}	=	Energy factor in low speed using dual-speed pump
1,000	=	Conversion factor (Wh/kWh)

Table 8 shows the assumed value of each of these parameters.

Term	Value	Source
Days _{oper}	121.6	
RT _{ss}	11.4	
RT _{Is}	9.8	
RT _{hs}	2.0	
GPM _{ss}	64.4	*ENERGY STAR Pool Pump Calculator adjusted for
GPM _{Is}	31.0	dual speed in Missouri
GPM _{hs}	56.0	
EF _{ss}	2.1	
EF _{Is}	5.4	
EF _{hs}	2.4	

Table 8. ENERGY STAR Dual Speed Pool Pump Savings Assumptions

*Available online:

https://www.energystar.gov/sites/default/files/asset/document/Pool%20Pump%20Calculator.xlsx

Using this engineering algorithm, we estimated a per-unit saving value of 1,799.7 kWh per year for dualspeed pool pumps (shown in Table 9). This value is equivalent to the program's *ex ante* savings estimate.

Table 9. TRM and Estimated Savings Comparison for ENERGY STAR Dual Speed Pool Pumps

TRM Savings/Unit	Cadmus Estimated Savings/Unit	Realization Rate
1,799.7 kWh/yr	1,799.7 kWh/yr	100%

ENERGY STAR Variable Speed Pool Pumps

Cadmus estimated per-unit variable speed pool pump savings using the following algorithm:

$$Energy \, Savings \, \left(\frac{kWh}{Year}\right) = Days_{oper} \times \left\{ \left(\frac{kWh_{ss}}{Day}\right) - \left(\frac{kWh_{vs}}{Day}\right) \right\}$$

Where:

$$\left(\frac{kWh_{ss}}{Day}\right) = \frac{(RT_{ss} \times GPM_{ss} \times 60)}{(EF_{ss} \times 1,000)}$$
$$\left(\frac{kWh_{vs}}{Day}\right) = \left(\frac{kWh_{hs}}{Day}\right) + \left(\frac{kWh_{ls}}{Day}\right)$$
$$\left(\frac{kWh_{hs}}{Day}\right) = \frac{(RT_{hs} \times GPM_{hs} \times 60)}{(EF_{hs} \times 1,000)}$$
$$\left(\frac{kWh_{ls}}{Day}\right) = \frac{(RT_{ls} \times GPM_{ls} \times 60)}{(EF_{ls} \times 1,000)}$$

And where:

Days _{oper}	=	Days/year of operation
RT _{ss}	=	Runtime in hours/day using single-speed pump
GPM _{ss}	=	Gallons per minute using single-speed pump
EF _{ss}	=	Energy factor using single-speed pump
RT_{hs}	=	Runtime in hours/day in high speed using variable-speed pump
GPM_{hs}	=	Gallons per minute in high speed using variable-speed pump
EF_{hs}	=	Energy factor in high speed using variable-speed pump
RT _{Is}	=	Runtime in hours/day in low speed using variable-speed pump
GPM_{ls}	=	Gallons per minute in low speed using variable-speed pump
EF _{ls}	=	Energy factor in low speed using variable-speed pump
1,000	=	Conversion factor (Wh/kWh)

Table 10 shows the assumed value of each of these parameters.

Term	Value	Source
Days _{oper}	121.6	*ENERGY STAR Pool Pump Calculator
RT _{ss}	11.4	
GPM _{ss}	64.4	
EF _{ss}	2.1	
RT _{hs}	2.0	
GPM _{Is}	30.6	(version last updated December 2013) adjusted for variable speed in Missouri
EF _{Is}	7.3	
RT _{Is}	10.0	
GPM _{hs}	50.0	
EF _{hs}	3.8	

Table 10. ENERGY STAR Variable Speed Pool Pump Savings Assumptions

*Available online:

https://www.energystar.gov/sites/default/files/asset/document/Pool%20Pump%20Calculator.xlsx

Using this engineering algorithm, we estimated a per-unit saving value of 2,053 kWh per year for variable speed pool pumps (shown in Table 11). This value was approximately 133% of the program's *ex ante* per-unit savings of 1,543 kWh per year, based on motor efficiency, load factor, and horsepower and not using the ENERGY STAR calculator to estimate savings.

Table 11. TRM and Estimated Savings Comparison for ENERGY STAR Variable Speed Poop Pumps

TRM Savings/Unit	Cadmus Estimated Savings/Unit	Realization Rate
1,543 kWh/yr	2,053 kWh/yr	133%

Smart Thermostats

Cadmus reviewed the reasonableness of the *ex ante* unit savings estimate by comparing with the Illinois TRM. The Illinois TRM assumes savings of 7.4% of heating consumption and 8% of cooling consumption when replacing a thermostat of unknown type. Applying these savings percentages to heating and cooling consumption values from the Ameren Missouri billing analysis of ASHP participants and weighing by the heating system distribution for single-family homes taken from the ongoing PY16 Efficient Products participant surveys, produced an estimated per-unit savings of 470 kWh. This value is approximately 102% of the program's *ex ante* per-unit savings of 462 kWh per year and thus we consider the *ex ante* estimate to be reasonable and consistent with deemed values from other jurisdictions.