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1 INTRODUCTION

Analyzing risk and uncertainty is certainly not a contemporary concept. The modern
concept of risk is rooted in the Hindu-Arabic numbering system that reached the West
nearly 800 years ago, however it was during the Renaissance period that serious study of
risk emerged. Pascal, with the help of another brilliant mathematician named Pierre de
Fermat, made the first breakthrough in probability theory in 1654, and by 1725
mathematicians were competing with each other to develop life expectancy tables used to
determine the premiums of life annuities sold by the English government to finance itself.
The marine insurance industry was flourishing by the mid 1700s, requiring the
sophisticated use of risk analysis methods.

With the advent of new discoveries and mathematical methods, the world of risk analysis
and assessment developed and matured. By 18735, regression analysis to the mean was
discovered and brought with it the expectation of normal matters (distributions) regarding
world states. Building upon these theories, in 1952 Nobel Laureate Harry Markowitz
demonstrated mathematically why putting all your “eggs™ in one basket is risky and
unacceptable from a risk management perspective and why diversification is the key to
risk mitigation. Markowitz’s Modern Portfolio Theory (MPT) revolutionized Wall
Street, corporate finance, and decision making under uncertainty, and remains a
fundamental element of risk assessment and mitigation today.

Markowitz demonstrated that if we treat single-period returns for various securities as
random variables, we can assign them expected values, standard deviations and
correlations. Based on these, we can calculate the expected return and volatility of any
portfolio constructed with those securities. Volatility and expected return reflect proxies
for risk and reward. Out of the entire universe of possible portfolios, certain ones will
optimally balance risk and reward. These comprise what Markowitz called an efficient
frontier of portfolios, and investors or decision makers should select a portfolio that lies
on the efficient frontier. This frontier can be plotted as a risk/reward matrix that
demonstrates the risk (plotted on the y axis) and reward (plotted on the x axis). Portfolios
can then be plotted against each other to visually observe the risk/reward trade-off that
Markowitz demonstrated mathematically.

Since Markowitz introduced MPT, others have expanded the application to include
leverage and risk-neutral methods but the principals of MPT provide a broad context for
understanding the interactions of systematic risk and reward. It has profoundly shaped
how institutional portfolios are managed, and the mathematics of portfolio theory is used
extensively in financial risk management and was a theoretical precursor for today's
value-at-risk measures.

For the purposes of assessing optimal resource portfolios, the concept of the risk-reward
trade-off 1s altered slightly to a concept of trading off the risk of a portfolio with the
expected cost of the portfolio. The application of risk measurement techniques is greatly
complicated by the issues confronted in electric markets, and sophisticated mathematical
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analyses are required to sufficiently quantify the ambit of risk arising from the myriad of
situations impacting the risk vs. cost decisions encountered in the development of an
optimal resource portfolio.

Page 2 of 62



2 DEFINING RISK, UNCERTAINTY, AND EXPOSURE

For purposes of developing the risk framework applied to AmerenUE’s Integrated
Resource Analysis, some definitions are appropriate. In his treatise entitled Risk,
Uncertainty, and Profit, Frank K. Knight made perhaps the first distinction between risk
and uncertainty, and this distinction is critical to the appropriate application of analysis
tools and methods. Risk refers to situations where the decision-maker can assign
mathematical probabilities to the randomness of outcomes faced. Uncertainty refers to
situations when randomness cannot be expressed in terms of specific mathematical
probabilities. Exposure is the extent to which a set of risks or uncertainties can bring
hazard or harm. For the purposes of this analysis, AmerenUE is assessing the extent to
which its resource options are exposed to risks and uncertainties.
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R) ANALYSIS TECHNIQUES

AmerenUE emploved three techniques in analyzing exposure to the risk and uncertainty
of several resource expansion plans; these included simulation, scenario, and sensitivity
analysis. Each method utilizes a different framework and processes to assess exposure to
risk and uncertainty. In assessing risk we are interested in future values given our
assumptions about the future, which are treated as random. To model these, we specify a
stochastic process based upon a time series of the variable(s) we are interested in
modeling. The word stochastic means random, and a stochastic process is a set of
random variables that are ordered with respect to time. If time or variables take on
integer values, the process i1s a discrete process. If it takes on real values, it is a
continuous process.

For some world states, a continuous process is optimal since the variables can take on an
infinite number of ranges (e.g. natural gas prices), whereas in others the range is discrete
(e.g. a carbon tax will/will not be assessed). Both circumstances require a stochastic
method to describe risk and uncertainty, as illustrated in Figure 3.1:

Figure 3.1
Stochastic Analysis for Risk and Uncertainty

Stochastic Analysis — An analysis including
random elements as opposed to a deterministic

analysis that has no random efement

Risk Exposure Uncertainty Exposure
Simulation Analysis: Statistical process Scenario Analysis: A postulated sequence
utilizing probability distributions and descriptive of correlated future events resulting in a
statistics to mathematically represent the world state or condition from which
behavior of real-world phenomenon conclusions can be drawn

T T T

There are multiple frameworks through which stochastic analysis can be applied. One
method involves “decision tree” analysis, which seeks to demonstrate potential outcomes
given the random movement of key variables. Although founded upon probability
theory, tree analysis has a crude probability representation and affords minimal
descriptive statistical parameters. Additionally, it does not utilize correlated variables
and as such is not representative of “real-world” or continuous systems. Other numerical
methods such as the Black-Scholes model can provide important insights into valuation,
but fall short in providing detailed descriptions of risk and uncertainty and require
complex volatility term structures to evaluate long duration (¢.g. 20 year) analyses.

Simulation has replaced numerical solutions (or closed-form solutions) as a superior

analysis technique and is a preferred method for assessing risk. Simulation allows a large
number of individual iterations to be randomly generated through perturbation of key
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variables formulaically, the results of which are calculated and tabulated for each
iteration. Results, rather than being presented on an individual or deterministic basis, are
presented in terms of frequency distributions and statistical descriptors, providing
summary statistics describing the aggregation of multiple outcomes based upon specified
parameters.

Until the recent proliferation of high-speed computer technology, it was too time-
intensive and analytically difficult to perform simulation analysis to a level that would
sufficiently support a comprehensive risk analysis. Advances in computer technology
have changed this, allowing large numbers of iterations to be simulated relatively quickly
with the random movement of multiple correlated variables.

Since some randomness cannot be expressed through mathematical probabilities for
uncertainties, sensitivity or scenario analysis is required. Scenario analysis represents the
assessment of exposure based upon the discrete outcome of a particular world state, such
as carbon legislation. Scenario analysis differs from sensitivity analysis in that more than
one variable is perturbed, and through the subjective process of scenario development the
random variables move in a correlated fashion (e.g. if a carbon tax is assessed, some coal
plants will be replaced by gas plants, gas prices will rise, ete.).

Sensitivities represent discrete changes to individual variables to determine the impact on
value or risk. Such changes may include varying the cost of new plant construction to
determine the impact of on the portfolio value or electricity prices. Sensitivities are
conducted through a deterministic or single-outcome methodology and can provide the
means to bound risk within a specified parameter (¢.g. high or low prices).

Both scenario and sensitivity analysis utilize a discrete process. For a discrete process, a
deterministic or single-point estimate is applicable. A deterministic process implicitly
reflects perfect information in the modeling process, with all variables and world states
fixed and known, providing results that correspond precisely with the expected outcome
of steady-state variables and conditions. As such, a deterministic or single-point
modeling result reflects the anticipated outcome in light of perfectly executed and
implemented assumptions.

Through the use of simulation analysis, scenario analysis, and sensitivity analysis,
AmerenUE has performed a comprehensive stochastic analysis to quantify the exposure
of various resource expansion plans to risk and uncertainty. The development of the
parameters used in the stochastic process, and the analysis performed, are described
herein. These parameters define the fundamental drivers that comprise the Integrated
Resource Analysis.
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4 APPLICATION OF STOCHASTIC AND DETERMINISTIC
METHODS IN INTEGRATED RESOURCE ANALYSIS

As previously outlined, stochastic analysis is comprised of three primary components — a
risk analysis, a scenario analysis and a sensitivity analysis.

o Risk analysis is used to assess the exposure of AmerenUE’s candidate portfolios
to mathematically describable randomness or volatility. Specifically, the risk
analysis assesses the exposure of
in _commodity prices such as

AmerenUE’s candidate portfolios to randomness
- as well as randomness in

e Scenario analyses are appropriate when exposures to randomness cannot be
described mathematically through probabilistic or statistical methods. A scenario
analysis is different from a sensitivity analysis in that the scenario attempts to
consider multiple variables in a correlated fashion without the benefit of statistical
analysis. AmerenUE considered one scenario in its resource analysis — the
potential for carbon regulation.

e Sensitivity analysis is used to “stress test” candidate portfolios. Sensitivity
analyses represents a disconnect from potential real world outcomes as variables
rarely move in isolation from each other. It can, however, be useful to the
decision maker in providing insight into limits and provide a means of bounding
potential outcomes. AmerenUE analyzed environmental compliance strategies,
market depth, end effects and resource technology parameters in its sensitivity
analysis.

Both stochastic and deterministic methods are utilized in each of these methods, as
applicable to the specific objective. The following provides a high-level overview of the
application of each method with respect to the Integrated Resource Analysis.

¢ Deterministic Analysis — This methodology is used to present the expected base-
case costs of each resource portfolio. It summarizes the observations and
performance of simulated portfolio operations and customer impacts.

o Simulated Risk Analysis — This methodology is used to demonstrate portfolio
variability due to quantifiable risks.  These parameters are numerically
represented and reflect a statistical process and descriptors that are used to
represent variability.

e Scenario Analysis — Scenario risks are also parameter driven. However the
parameter variability cannot be reasonably represented by a known statistical
process. Scenario analysis is used to assess abrupt changes in risk factors, such as
introduction of high carbon allowance costs.
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Sensitivities — This methodology employs stressing different parameters such as
AmerenUE’s Environmental Compliance Strategy, Off-System Market Depth,
technology parameters and evaluation of End Effects to evaluate the impacts of

these variables on each resource portfolio.
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5 SIMULATION ANALY SIS AND VARIABLE DEVELOPMENT

This section outlines assumptions, methodologies, and processes supporting the
development of the risk parameters associated with the electric price forecasts.
Wholesale prices are forecast on an hourly basis for the term of the investment horizon,
and the risk parameters described herein characterize the price forecasts. The following
subsections describe a build-up of processes and methods used to describe the risk
profiles associated with cach resource portfolio and resulting electric price forecast given
the assumptions used, as well as the reasoning and development of the underlying
assumptions that drive risk.

5.1 WHOLESALE ELECTRIC MARKET PRICE SIMULATION

The determination of an optimal generation resource portfolio is significantly influenced
by the fundamental development of electricity forecast(s) of wholesale market prices.
The commodity nature of a wholesale electric market anticipates that reasonable, well-
informed parties will possess different market expectations and will participate in the
market based upon these expectations. The challenge in determining the optimal
generation supply mix is to determine a pricing path that best achieves the identified
objectives, irrespective of achieving an exact match of market prices in the future. The
model that AmerenUE utilizes to develop its fundamental wholesale electricity price
forecast is MIDAS Transact, and the following provides an overview of the MIDAS
clectric price forecasting model. For a comprehensive overview of MIDAS, see the
Electric Markets section of the Integrated Resource Analysis report.

5.2 MIDAS MODEL OVERVIEW

AmerenUE utilizes the MIDAS Transact clectric market price forecasting model, an
hourly, chronological wholesale market clearing price dispatch model that fundamentally
develops prices that reflect specific inputs and data. The following represents the major
characteristics of the modeling platform and the simulation variables required:

1. The central portion of the Eastern Interconnect (NERC regions including
MAIN, MAPP, SPP, SERC, and ECAR) is modeled on an hourly basis for the
term of the analysis, including all the loads, thermal unit data, and the
interconnected transmission system transfer limits. T.oads and resources are
grouped according to the bulk system to represent known constraints and
limits on electricity transfers.

2. Generation supply cost curves are developed for each load center based on

fuel price forecasts, variable dispatch costs (e.g. variable O&M, emissions,
etc.), and fuel conversion/efficiency rates. This curve represents a variable
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cost supply stack of generation resources, stacked from lowest to highest
dispatch cost.

3. The model determines an efficient dispatch and import/export of generation,
respecting regional transmission limits and any wheeling rates, to minimize
the cost to meet hourly demand on the system. The hourly market clearing
price reflects the dispatch cost of the unit on the margin for each load center,
given transmission and operational constraints.

4. Additionally, the model simulates the addition of wvarious pre-specified
economic new generation resources by technology in response to market
prices. A new resource will be automatically added to the supply of resources
when market prices are sufficient to recover the costs of that new resource,
including capital recovery. If not capable of achieving economic new entry,
the model will add resources to meet pre-determined reserve margin
specifications.

5. Input variables driving the chronological, marginal cost dispatch within the
model include all fuel price forecasts, variable O&M, emission costs, and
escalation factors.

5.3 GLOBAL AND REGIONAL MARKET MODELING PROCESSES

AmerenUE utilizes the MIDAS Transact model for two separate tracks of modeling
wholesale market clearing prices. A multi-area simulation of the broader market (the
central Eastern Interconnect region) is performed, with common commodity and
volatility assumptions. All units within the central Eastern Interconnect region are
dispatched to meet hourly load on a marginal cost basis, constrained by the transmission
system limitations and constraints. The purpose of developing a multi-area wholesale
price forecast is to establish an hourly market “interface™ price between the AmerenUE
system and the interconnected system beyond the AmerenUE boarder.

The results of the multi-area modeling process, as reflected by an hourly wholesale
interface market clearing price, are used as inputs to the single-areca simulation of the
AmerenUE system.  The single-area simulation models the AmerenUE system
characteristics and utilizes the interface price developed from the multi-area simulation to
emulate economic purchases and sales with the broader market.

While AmerenUE utilizes global, generic unit assumptions in developing the multi-area
price curves (to prevent bias and skewed results), the single-area simulation incorporates
internal knowledge of the AmerenUE units and operational characteristics. Figure 5.1
below demonstrates the dual-track modeling process:
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Figure 5.1
MIDAS Multi and Single-Area Modeling Tracks

Simulation Variables:

] Commoditi irices
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MIDAS Risk Multipliers MIDAS Power
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Hypercube simulation roduction simulation
Processor variables P results
cost model
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Si;lgle-Area Track :
MIDAS Resource
Transact Portfolio
Candidate » Single-Area Simulation End Analysis
Portfolios production Analysis
cost model Results
:] Data Input E Data Output |:| Calculation Process

5.4 DEVELOPMENT OF RISK PARAMETERS FOR SIMULATION VARIABLES

The MIDAS Transact Multi-area production cost model performs a chronological merit
order dispatch of the generation supply stack to meet hourly load requirements for each
modeled region, producing an hourly price forecast for each year of the valuation period.
This price forecast represents a single, deterministic outcome based upon static input
parameters, reflecting one of an infinite number of potential outcomes. While a
deterministic price forecast provides meaningful information and valuable insight, it is
limited in describing the risk characteristics associated with varying the key variables that
drive price and determine risk.

To describe the risk associated with multiple variations of input parameters, and their

respective correlated behavior, a set of multipliers are developed and incorporated into
the MIDAS production cost modeling process to create multiple deterministic results.
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The population of deterministic results represents the average or expected outcome and
provides a distribution that quantifies and characterizes the risk associated with the
average or expected results.

These multipliers are developed within the framework of the MIDAS Risk Analyst
Module and represent the characteristics of each key input variable driving price and risk.
A set of multipliers are stochastically developed, framed around defined parameters
described herein, and used in the MIDAS Transact multi-arca and single arca runs to
develop a set of deterministic modeling results, or endpoints, that are distributed around a
mean. Fach deterministic modeling run is simulated against an individual set of
multipliers that are applied to the key input variables, providing a deterministic outcome
that reflects the perturbing of key input variables.

There are five key input variables that are stochastically modeled within 10 stratified
sampling points that define a distribution profile, producing 50 endpoints or discrete sets
of multipliers that are used as inputs to the MIDAS Transact production cost modeling
process. MIDAS performs 50 deterministic modeling runs, one run utilizing each
discrete set of multipliers, to produce 50 deterministic modeling results that comprise the
mean and distribution for a particular set of input assumptions. A comprehensive
discussion of Risk Analyst and the development of the risk parameters and multipliers are
described below.

5.4.1 MIDAS RISK ANALYST LATIN HYPERCUBE PROCESSOR OVERVIEW

Risk Analyst is a product developed by Global Energy that is designed to be utilized with
the MIDAS chronological dispatch model to forecast power prices and determine
dispatch profiles when pre-specified risk parameters are incorporated into the simulation
process. Risk Analyst utilizes a refinement of the Monte Carlo simulation methodology,
Latin Hypercube, to develop a set of hourly multipliers that are utilized as inputs to the
MIDAS chronological modeling process. These multipliers represent the application of
stochastic parameters developed internally. A description of Monte Carlo methodology,
and Latin Hypercube, are presented below along with a description of the descriptive
variables that establish modeling parameters.

Monte Carlo Simulation

Simulation, as reflected within the context of the Integrated Resource Analysis, refers
to an analytical method meant to imitate a continuous real-life system. Such methods
are particularly effective when other analyses are too mathematically complex or too
difficult to reproduce. Without the aid of simulation, a deterministic modeling
methodology will produce a single outcome, generally the most likely or average
scenario. Robust risk analysis seeks to analyze the effect of varying inputs of the
modeled system, which requires the use of numerical simulation methods.

Numerical simulation methods known as Monte Carlo methods can be best described
as statistical simulation methods, where statistical simulation is defined in quite
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general terms to be any method that utilizes sequences of random numbers to perform
the simulation. Monte Carlo methods have been used for centuries, but only in the
past several decades has the technique gained the status of a full-fledged numerical
method capable of addressing the most complex applications.

The name Monte Carlo was coined because of the similarity of statistical simulation
to games of chance. While the analogy of Monte Carlo methods to games of chance
is a good one, the “game” within the context of applying this methodology 1s a
physical electrical system of integrated and interrelated components, and the outcome
is used to develop a solution to a risk-minimization problem.

Monte Carlo is now used routinely in many financial applications and is quite
adaptable to analyses which involve the modeling of uncertainty through descriptive
variables.  Statistical simulation methods may be contrasted to conventional
numerical discretization methods, which typically are applied to ordinary or partial
differential equations that describe some underlying physical or mathematical system.

In many applications of Monte Carlo, the physical process is simulated directly, and
there is no need to even write down the differential equations that describe the
behavior of the system. The only requirement is that the physical (or mathematical)
system be described by probability density functions and variables which will be
discussed later in this section. A basic assumption underlying the use of Monte Carlo
simulations is that the behavior of a system can be described by functions and
variables, and once these are described, the Monte Carlo simulation can proceed by
random sampling from the set of descriptive variables.

Multiple simulations are performed and the results are taken as an average over the
number of observations. In many practical applications, one can predict the statistical
error in this average result, and hence an estimate of the number of Monte Carlo trials
that are needed to achieve a given error.

Assuming that the evolution of the physical system can be described by probability
density functions and variables, the Monte Carlo simulation can proceed by sampling
from this set of variables, which necessitates a fast and effective way to genecrate
random numbers that are uniformly distributed. The outcomes of these random, or
stochastic, samplings are compiled to produce and describe the result, but the
essential characteristic of Monte Carlo is the use of random sampling techniques to
arrive at a solution of a physical problem. In contrast, a conventional numerical
solution approach would begin with the mathematical model of the physical system,
discretizing the differential equations and then solving a set of algebraic equations for
the unknown state of the system.

In light of this high-level definition of Monte Carlo, the process is defined by the
major components of a Monte Carlo method. These components comprise the
foundation of most Monte Carlo applications, and the primary components of a
Monte Carlo simulation method include the following:
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Probability distribution functions and descriptive variables - the physical (or
mathematical) system must be described

Sampling rules - a prescription for sampling must be established, assuming the
availability of random numbers on the unit interval. Risk Analyst utilizes a Latin
Hypercube sampling process (discussed below)

Scoring (compilation of results) - the outcomes must be accumulated into overall
tallies or scores for the individual quantities being simulated

Variance reduction techniques - methods for reducing the variance in the
estimated solution to reduce the computational time for Monte Carlo simulation

Latin Hypercube Sampling

Latin hypercube sampling (LHS) is a form of stratified sampling that can be applied
to multiple variables. The method is commonly used to reduce the number or runs
necessary for a Monte Carlo simulation and to achieve a “smoothing” of the
distribution results. Pure Monte Carlo sampling does not guarantee a smooth
distribution, and more draws are required to ensure a more definitive distribution
profile. To ensure that samples are drawn across the entire distribution range and
prevent “clustering” of results around limited ranges of the distribution, LHS can be
incorporated into an existing Monte Carlo model fairly easily, and will work with
variables following any analytical probability distribution.

The concept underlying LHS is to evenly divide the distribution into segments or
strata, and perform random draws of variables within each of these pre-defined strata.
Variables are sampled using an even sampling method, and then randomly combined
sets of those variables are used for individual calculations of the target function. The
sampling algorithm ensures that the distribution function is sampled evenly while
maintaining the same probability trend. Figure 5.2 demonstrates the difference
between a pure random sampling and a stratified sampling of a normal distribution.

Figure 5.2
Random vs. Stratified Sampling of Distributions
fllustrative Monte Carlo Sampling fllustrative Latin Hypercube Sampling
/ i\\ 20N
gl ! Ay
TJ, L HI \ ji _____ 5—
: ¢ 1IN AT
ﬁg i | UM ||
I 1 N/ O ||
Uneven distribution Smooth distribution achieved
resulting from through Latin Hypercube
random Monte Carlo sampiing stratified sampling

Page 14 of 62



To perform the stratified sampling, the cumulative probability (100 percent) is
divided into segments or strata, one for each iteration of the Monte Carlo simulation.
A probability is randomly picked within each strata using a uniform distribution, and
then mapped to the correct representative value within the variable's actual
distribution. AmerenUE utilized 10 strata for each of five simulated variables,
representing a total of 50 sets of multipliers that are incorporated into the MIDAS
chronological dispatch modeling process.

The use of Latin Hypercube sampling decreases the computational time required to
perform Monte Carlo variable draws while capturing enough events across the
distribution to ensure a comprehensive representation of potential outcomes. It
ensures that results remain consistent with the descriptive distribution variables while
achieving a smooth distribution that would otherwise require additional Monte Carlo
simulations. Figure 5.2 above illustrates the sampling distributions inherent in the
Monte Carlo vs. Latin Hypercube processes.

5.4.2 GENERAL PARAMETERS DESCRIBING SIMULATION VARIABLES IN
MIDAS RISK ANALYST

The parameters used to describe individual variables within the Risk Analyst simulation
process include time horizon, distribution type, variance methodology, and correlations.
Each of these parameters will be discussed in greater detail. The parameters are used to
describe the input variables that will be randomly drawn and reflected in the simulated
results. As previously discussed, there are 5 simulation variables that were identified and

determined to represent the key risk drivers: _
— For each of these variables, the simulation parameters

reflect the characteristics and expectations of price behavior relative to the global
attributes and expectations of cach variable.

Time Horizon

Risk Analyst segments the timeframe of parameters into short-term (hourly), mid-
term (monthly), and long-term (annual) time intervals for descriptive and modeling
purposes. To reflect a meaningful amount of granularity, capturing scasonality and
other observable attributes, a monthly time horizon was assumed for each variable in
the simulation process.

Distribution Type

While there are multiple types of distributions that describe data and events, historical
analyses of commodity price behavior reflect lognormal distributions of data.
Lognormal distributions are observed in situations where values are positively
skewed from the mean and cannot become negative. Commodity prices tend toward
lognormal distributions since infrequent but extreme price spikes create tails that are
positively skewed and commodity prices do not fall below a value of zero (for any
significant period of time). AmerenUE utilized a lognormal distribution to describe
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the_ Figure 5.3 is an example of the profile of

a lognormal distribution.
Figure 5.3
Lognormal distribution Profile

Normal distributions are observed in natural phenomena where values are most likely
to be clustered around the mean with marginal extreme values occurring equally to
the right and left of the mean. The use of normal distributions to describe variables
such as_and_reﬂects the reality that these estimates can
move equally in either direction of their respective mean values. Figure 5.4 is an
example of the profile of a normal distribution.

Figure 5.4
Normal Distribution Profile

Variance Parameter Methods

There are three variance methods that can describe commodity prices; constant
variance, random walk, and random walk with mean reversion. FEach of these
variance methods is discussed in detail.

Constant Variance

Constant variance reflects the standard deviation of the mean. For each random
iteration, the draw starts at the mean value of the distribution and as a result there
is no inter-period relationship between iterations. Values tend to fluctuate around
the mean in a constant pattern over time, reflecting an equal probability of
movement up or down (across the mean) over time but with no directional
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tendency. The resulting draws associated with constant variance tend to be
generally choppy and are inconsistent with commodity price behavior over
extended periods of time. Constant variance is most applicable for naturally
occurring phenomena where the expected value is more likely to be closer to the
mean than extreme values. ﬁ and dvariances in the
AmerenUE analysis have been reflected through the application of constant

variance. Figure 5.5 demonstrates illustrative results of a single iteration utilizing
a constant variance parameter:

Figure 5.5

Constant Variance Profile (Illustrative)
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Source: MIDAS Risk Analyst, AmerenUE Analysis

Random Walk Variance

Random walk variance reflects the characteristics of Geometric Brownian Motion
(GBM), where each iteration in the random draw process begins with the previous
period value rather than the mean value. A GBM, or exponential Brownian
motion, is a continuous-time stochastic process in which the logarithm of the
randomly varying quantity follows a Brownian motion, or, perhaps more
precisely, a Wiener process. It is appropriate in mathematical modeling of some
phenomena in financial markets and is used particularly in the field of option
pricing because a quantity that follows a GBM may take any value strictly greater
than zero, and only the fractional changes of the random variate are significant.
The chart below depicts the characteristics of GBM over time. As illustrated in
figure 5.6, the variance continues to expand with time, reflecting the nature of a
constant volatility assumption that compounds pricing results over time.
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Figure 5.6
Tllustration of Geometric Brownian Motion Price Profile
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While this is precisely the nature of stock prices, it does not reflect the nature or
historical behavior of commodity pricing. As such, the variation of commodity
prices through time does not reflect the wide diffusion of variance over time that
GBM demonstrates, but rather tends to follow a reversion to mean characteristic.

Random walk variance is demonstrated as calculated volatility, rather than as a
standard deviation from the mean (constant variance). Volatility is a measure of
uncertainty about the movement of a commodity over time, and is commonly
stated as an annual number. The volatility of a commodity can be defined as the
standard deviation of the return observed in one year when the return is expressed
using continuous compounding. Volatility is the standard deviation of the natural
logarithm of the price of a commodity at the end of one year, and is expressed

as CT\/KI‘.

where  1s the standard deviation and ¢ is the time interval

The MIDAS Risk Analyst module requires that volatility be input as an
annualized standard deviation (of the relative change in values between time
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periods) as a fraction of the mean of the probability distribution when utilizing
random walking parameters.

Due to its limitations and tendency to over-estimate the impacts of assuming
constant volatility over time, AmerenUE did not utilize random walk variance
parameters in its risk analysis. Figure 5.7 demonstrates an illustrative single
iteration result under a random walk variance parameter. As illustrated, the next-
period iteration begins at the previous iteration endpoint; creating a wide diffusion
of results when multiple simulations are aggregated.

Figure 5.7
Random Walk Variance Profile (Illustrative)
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Source: MIDAS Risk Analyst, AmerenUE Analysis

Random Wallk with Mean Reversion Variance

Random walk with mean reversion reflects a variance parameter that seeks to
incorporate the fundamentals of randomly occurring outcomes while staying

within the framework of observable pricing behavior that is consistent with
commodity market pricing.

In 1999, Robert Pindyck, Professor of Economics and Finance at the MIT Sloan
School of Management, published a white paper in The Energy Journal entitled
The Long-run Evolution of Energy Prices, in which he described his analyses of
historical commodity price movements and recommended the use of mean
reversion variance parameters in forecasting energy prices.

As the impetus for his work, Pindyck attempted to explain energy prices in
structural terms, i.¢., in terms of movements in supply and demand, and the
variables that determine supply and demand. He found that structural models
were not always useful for long-run forecasting, and as a result, forecasts of
energy prices over longer time horizons are often no more than extrapolations in
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which prices are assumed to grow in real terms at a fixed rate. The rate of growth
might reflect some notion of resource depletion and/or technological change, and
could follow a random walk process with some drift.

Alternatively, prices could be assumed to revert to a trend line that grows or
declines over time, which would be consistent with the notion that commodities
are produced and sold in competitive markets, so that prices should revert toward
long-run marginal cost which are likely to change slowly and predictably over
time. This theory would imply that price shocks are only temporary and over
sufficiently long time horizons prices are random walking and mean-reverting
rather than just random walking.

According to Pindyck, whether such approaches to long-run forecasting are
reasonable depends on the stochastic process that the price follows. He examined
the long-run behavior of oil, coal and natural gas prices in the United States
without any attempt at structural modeling, but rather focusing on alternative
stochastic processes that might be consistent with this long-run behavior.

Pindyck demonstrated that the behavior of real energy prices suggests reversion to
trend lines with slopes and levels that are both shifting continuously and
unpredictably over time, so that each price follows a multivariate stochastic
process. The shifts themselves may be mean-reverting, but ignoring them is
misleading, and can lead to suboptimal forecasts. To accomplish this task, he
examined the real prices of crude oil and bituminous coal over a 127-year period
from 1870 to 1996. Natural gas data beginning in 1919 was also examined. For
each resource, he fit the log real price series to a quadratic time trend, first using
all of the data in the sample, and then using data only through 1960, through
1970, and through 1980.

In cach case he ran a regression of the log price on a constant, time, and time
squared interval. Each fitted trend equation was used to forecast prices through
the year 2000. These fitted trend lines (and the resulting forecasts) move
considerably as the sample period to which they are fit is lengthened.
Furthermore, he found that although the magnitudes of the shifts vary, there is no
single point in time for any resource at which shifts can be exclusively localized.

These findings suggest two basic characteristics of long-run price evolution.
First, the log real price of each resource seems to be mean-reverting to a quadratic
trend line, although the rate of mean reversion is slow, taking up to a decade to
occur. Second, the trend line itself fluctuates as the sample is extended.

Rather than focusing on tests to determine whether or not prices follow random
walks, Pindyck thought it may be more informative to address the extent to which
price shocks are temporary or permanent. He found that variance ratio tests are
informative in this regard, and such tests are based on the fact that if price follows
a random walk, then the variance of k-period differences should grow linearly
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with k. On the other hand, if price follows a mean-reverting process, the variance
of k-period differences will approach an upper limit as k grows, so that this ratio
will fall to zero as k increases. More generally, the ratio provides a measure of
the extent to which price shocks are persistent, or equivalently, the relative
importance of any random walk component of price.

Although OPEC succeeded in pushing oil prices above competitive levels for
periods of time, over the long run oil production has been largely competitive.
The same is true for coal and natural gas. Pindyck indicated that he would expect
the real prices of these resources to revert to long-run total marginal cost, 1.e., a
marginal cost that includes user costs associated with reserve accumulation and
resource depletion. For a depletable resource such as oil or natural gas, he
expects both the level of the log price trajectory and its slope to fluctuate over
time in response to fluctuations in demand, extraction costs, and reserves.

Pindyck concluded from historic pricing data that for oil and coal any random
walk component of a price shock is small, so that shocks are mostly transitory and
indicates that this is consistent with a process in which price is slowly mean-
reverting.

For natural gas, Pindyck found the results of using his model were somewhat
inconsistent with both mean reversion and geometric Brownian motion processes.
Pindyck suggests, however, that this pattern may simply reflect the shorter time
series for these prices, along with the high degree of curvature of the quadratic
trend line. He indicates that this is the case not so much because the earlier
forecast data do not closely replicate more contemporary data, but more because
the model does not describe movements in the trend lines for these commodities
that are consistent with theory.

Pindyck also believed that the inconsistency for natural gas pricing is likely due to
the sensitivity of a filtering process which he applied in the initialization, and
found that by using a different sample period, he was able to produce estimates
that vielded better forecasts and were consistent with a mean reversion process.
He suggests that the difficulties experienced with natural gas pricing may be due
to problems of initialization and the sensitivity of the estimates to the first few
data points. His estimates are significantly improved for both coal and natural gas
when slight modifications to beginning sample dates are used. As such, he
emphasizes that the promise of mean reversion models derives largely from the
fact that they capture in a nonstructural framework what basic theory tells us
should be driving price movements and is supportive of their application in
forecasting.

Pindyck also noted that the trend line to which price reverts, and which represents
long-run total marginal cost, is itself unobservable. The parameters of the trend
line at any point in time using data up to that point can be estimated, but those
parameters will change over time. Therefore, if prices are forecast under the
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belief that they will revert to long-run marginal costs, he suggests that the
marginal cost and its trend through time should also be estimated.

From his analyses, Pindyck suggests that a model forecasting long-run
commodity price movement should incorporate two key characteristics: 1)
reversion to mean production value which follows a trend; and 2) continuous
random fluctuations in both the level and slope of that trend.

Approaching the issue from an option valuation perspective, Pindyck indicated
that much of the literature on real options makes a rather convenient assumption
that output price, input cost, or some other relevant stochastic state variable
follows a Geometric Brownian Motion (GBM), a process in which the diffusion
of prices continuously compounds over time (as previously discussed under the
Random walking sub-gection). He questions, however, that if the true process for
commodities is a multivariate Ornstein-Uhlenbeck process (a stochastic process in
which changes in time do not modify the probability or distribution, and is
normally distributed), how far off might the process trend if only GBM is
assumed? Figure 5.8 illustrates a stochastic process incorporating GBM with
mean reversion, clearly demonstrating that variation within the framework of
mean reversion eliminates the compounding effects of continuous volatility
diffusion over time.

Figure 5.8
Illustration of GBM with Mean Reversion Price Profile
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Pindyck cites analyses performed by other scholars who calculated call option
values for stocks with prices that follow a trending Ornstein-Uhlenbeck process,
and compared these to the values obtained from the Black-Scholes model (which
is based on a GBM assumption). They demonstrate that Black-Scholes can over
estimate the correct option value, however generally the size of the error is small
relative to an acceptable error for financial option valuations.

He also points out that their analyses did not attempt to determine the optimal
exercise point, but rather the value of the option. Financial options typically have
lifetimes of a few months to a year, while real options (such as generation
resource portfolios) are much longer lived, therefore determining the optimal
exercise point (the investment rule) is more important than valuing the option
itself.

Pindyck solved for optimal investment rules when a fixed capital project follows a
stochastic process. He considered mean-reverting processes as well as a GBM
and showed that if the rate of mean reversion is fast, the optimal investment rule
will depend strongly on the mean reversion value. The dependence is much
weaker, however, if the rate of mean reversion is very slow. In the case of energy
prices, the analysis indicated that the rate of mean reversion is slow, suggesting
that for many applications, the GBM assumption may be acceptable when
incorporated with a mean reversion process.

Pindyck concludes that, for irreversible investment decisions for which energy
prices are the kev stochastic state variables, 1) the GBM assumption is unlikely to
lead to large errors in the optimal investment rule when combined with mean
reversion assumptions and 2) the actual behavior of real commodity prices over
the past century imply that forecasting models should incorporate mean reversion
to a stochastically fluctuating trend line. The combination of GBM with mean
reversion provides a solid framework in which to forecast commeodity prices.
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Figure 5.9
Random Walk with Mean Reversion Variance Profile (Illustrative)
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Source: MIDAS Risk Analyst, AmerenUE Analysis
Variance Parameters Utilized in the MIDAS Risk Analyst Module

The MIDAS Risk Analyst module requires two parameters for modeling random
walk with mean reversion: Volatility and a mean reversion rate.

Volatility

Volatility must be input as an expression of standard error as a percent of
the mean when utilizing Random Walk with Mean Reversion variance

parameters. The computation for volatility as input into the MIDAS Risk
Analyst module, is:

STEXY / Mean of the Sample

where:

STEXY is an Excel regression function describing the standard
error of X and Y where,

Y = absolute value of difference between the current price and the
previous price
X = the previous price

For those inputs requiring a standard deviation input rather than volatility
when utilizing Constant Variance variance parameters in the MIDAS Risk
Analyst module, the computation reflects the calculation of standard
deviation of the mean of historical prices and data, with the time interval

being consistent with the data utilized for correlations. The calculation for
standard deviation is:
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where o is standard deviation of a data set

Mean Reversion Rate

The computation for the mean reversion rate reflects the negative of the
slope of the regression of absolute price changes over previous price
levels. The pricing values used to develop the mean reversion rates
represent monthly Thistorical settlement prices for the respective
commodities which are applied in the Risk Analyst module on a monthly
basis prospectively.

While volatility calculations are fairly straight forward, the mean reversion
rates resulting from simple linear regression techniques can oftentimes
reflect nonsensical results such as negative mean reversion rates, which
can result from data inconsistencies, gaps, events, etc. As a result, a more
sophisticated analytical approach is required to estimate the mean
reversion rate. AmerenUE utilized a GARCH meodel for this purpose.

GARCH (Generalized Autoregressive Conditional Heteroskdasticity) is a
sophisticated regression model that utilizes an iterative search procedure
to maximize an objective function that solves for a mean reversion rate.
While a simple linear regression model regresses only the price change
against the previous price, the GARCH model is multivariate,
incorporating the aforementioned regression of prices with a regression of
the change in the variance against the previous variance. The GARCH
model, estimation parameters, and application are presented below.
Figure 5.10 reflects the GARCH algorithm, and Figure 5.11 illustrates the
application of the algorithm in an Excel spreadsheet format:
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Figure 5.10
GARCH Algorithm

2 2 2
o= +oay i+ oo

Where 1{; is the proportional change price
between the 7 — 1, as represented by

u;, = (P, — P_)/ P,

— Where &2, =1y isthe long run variance rate

The objective function must be maximized:

Z—ln(vi)—uzi /v,

Source: John C. Hull, Options, Futures, and Other Derivatives

Figure 5.11
GARCH illustrative application in Excel

Year Month Natural Proportional Estimate of Likelihood
Gas Change  Variance Rate Measure
P u, v =’ —In(v,)—u’ /v,
1999 1 $1.85
1999 2 $1.78 -0.038462
1999 3 $1.77 -0.001408  0.00382797 55649
1999 4 $2.11 0.191537 0.00720629 (0.1581)
1999 5 $2.26 0.070076 0.00866470 4.1818
1999 6 $2.31 0.019912 0.01120322 4.4562
2004 12 $6.15 -0.065316  0.02245066 3.6064
2005 1 $6.14 -0.002207  0.02318232 3.7642
2005 2 $6.96 0.133102 0.02398756 2.9917
2005 3 $7.18 0.031667 0.02397566 3.6889
2009 4 $6.60 -0.080629  0.02463542 3.4397

210.2210801
Trial estimates of GARCH parameters
w a i

0.006227 0.02500 0.665232
Source: AmerenUE Analysis
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Once the maximizing values of the GARCH parameters o, B, and o are
obtained, the mean reversion rate is equal to 1- a- B.

Correlations

The MIDAS Risk Analyst module allows risk variables to be correlated.
AmerenUE engaged a comprehensive analysis of each input variable. There are
five risk variables that are correlated in the stochastic simulation process:

Comprehensive analyses of historical pricing data, along with an internal vetting
process involving AmerenUE subject matter experts, provided the basis for defining
the correlations and distributions supporting the development of the stochastic
parameters utilized in the simulation process. A complete discussion of the
development of correlations is presented in the Historical Data Analysis for
Simulation Parameter Development section below.

G G
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Figure 5.12

Figure 5.13
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Figure 5.14
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Figure 5.15

Figure 5.16
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Figure 5.18

Page 32 of 62



Figure 5.19

Correlations

were analyzed at various time intervals to determine
correlations and trends in light of events and regulatory changes. Data were truncated
at various intervals from the most current period backward to eliminate one-time events
and pricing anomalies.
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Figure 5.20
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Figure 5.21

Figure 5.22
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Figure 5.23
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Figure 5.24
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Figure 5.27
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6 STOCHASTIC RISK PARAMETERS AND RESULTING
MIDAS RISK ANALYST MULTIPLIERS

6.1 STOCHASTIC RISK PARAMETERS

Figure 6.1 depicts a summary of the simulation parameters that were developed utilizing
the aforementioned methodologies and processes.

correlations are stated as annual values.

Figure 6.1

Summary of Stochastic Risk Parameters

The variance parameters and

Parameter

Time
Frame

Distribution
Shape

Variance

Methodology Variance Parameter(s)

Correlations

Source: AmerenUE Analysis
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6.2 MIDAS RISK ANALYST MULTIPLIERS — RESULTS AND APPLICATION
IN MIDAS TRANSACT

Figures 6.2 through 6.6 depict the profiles and percentiles (95%, 50%, and 5%) for the

multipliers that were developed in the MIDAS Risk Analyst Latin Hvpercube Processor
incoiora‘[ini the aforementioned stochastic ﬁarameters *
The

multipliers reflect fifty individual endpoints or sets of discrete multipliers for each
simulated variable for each month of the study period. The resulting multipliers from the
stochastic process are utilized as inputs to the deterministic modeling process described
earlier in this report, thus providing an expected result and a distribution of ranges around

the expected or mean results.

Fiiure 6.2
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Th_multipliers in Figure 6.2 represent the 95t 50 and 5™ percentiles from
the fifty endpoints that were developed in the MIDAS Risk Analyst Latin Hypercube
process. The approximate ranges are between 2 and .5. An example of the application of
these multipliers in the MIDAS Transact multi and single-area runs are as follows for a
The first run or iteration of the MIDAS run would
by the first set of multipliers, e.g. 1.7, for

for the first deterministic run. The MIDAS run would use this

or the applicable year of the simulation.

The second iteration would be multiplied by, say, .6, for al
applied to the second iteration and so forth through fifty iterations. As demonstrated by

Page 42 of 62



the fifty MIDAS runs
(multiplier
The fifty

the multiplier ranges,
would reflect varvin between approximately
of 2.0) and multiplier of 0.5) at the 95" and 3 percentiles.
iterations of MIDAS deterministic runs would represent the average o
perturbed through the stochastically derived multipliers.
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As illustrated with the-xample above, the.multipliers in Figure 6.3 range
from approximately 1.2 down to 0.8, thereby implying that, for example, for ai
ofﬁ the range of’ reflected in the fifty stochastic MIDAS runs

would range between an: (at the 95" and 5™ percentiles).
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the multipliers in Figure 6.4 range from between approximately 1.2 and 0.8.
For example, if thi in a given year i the ranges of
epresented in the fifty MIDAS deterministic runs would be between $1,080/ton and

r
h The fifty MIDAS runs reflect ranging from 120 percent of the
average forecasted input price to 80 percent of the forecasted price, again for the

applicable vear and period being modeled.
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Fiiure 6.5
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The ranges in Figure 6.5 for fluctuation across the fifty MIDAS runs are
approximately 1.15 to 0.85 times the for the applicable period (again,
representing the 95™ and 5™ percentiles of multiplier ranges).

Fiiure 6.6

1.2000
FAAAAANANAANAAAAA AN AN AAAAANANAAAAAAAAAN N NN A e A

L e e eV ey Y Y VY Y
0.8000

0.6000

0.4000

0.2000

0. OOOO I T T T T T T T T T T T T T T
o L < o~ =T o o] = o =T o oL < o =T
ST I T TTTTadq q aq % % 9
E §E £ § §E E E § §E E E §E E E E
e T R R L e T T B T T

—P9S —PS0 —PO5

Page 45 of 62



Figure 6.6 demonstrates tha-is slightly less than ranging from
approximately 1.1 to 0.9 times the applicable for the applicable period

being modeled in MIDAS Transact. The result reflects fifty deterministic runs with
_anging from 110 percent to 90 percent of the input

6.3 INTERPRETATION OF SIMULATION ANALYSIS RESULTS

Toward interpreting the results of the simulation analysis, associated risk, and expected
values, the results from the simulations can be plotted on a matrix demonstrating risk
versus cost. Returning to the previous discussion of Modern Portfolio Theory, the matrix
in Figure 6.7 below demonstrates the application of Markowitz’s risk/reward trade-off,
which has been modified to reflect a risk/cost trade-off perspective. In this illustrative
matrix, results can be categorized into one of four quadrants described as 1) “Dice Rolls™,
which reflect low cost but high risk investments, 2) “Dogs,” which represent high cost,
high risk investments, 3) “Stars,” which reflect low risk, low cost investments, and 4)
“Sure Bets,” or those investments that are high cost but low risk.

Figure 6.7
Risk vs. Cost Evaluation Matrix
Risk
(95% dOWl‘lSide) ‘ “Dogs”
Typically the “2-gigma” “Dice Rolls” v ®
downside risk — the risk !
that management wants 1 B L
to try to control through ] . e
their resource decisions |
a
[ ]
[ ]
@
“Stars” . @ “Sure Beis”

Expected Cost

The median cost defined
by the distribution of
results from the Monte
Carlo analysis

Another way to evaluate simulation results is to chart the aggregate distribution of costs
from multiple simulations and compare the “width” or variance of the distributions
between each alternative. Figure 6.8 illustrates two portfolios reflecting different cost
and risk profiles. In this example, while the average or median cost of Portfolio A is
greater than Portfolio B, the risk profile of Portfolio A is much less than B. Said another
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way, Portfolio A’s average cost may be higher, but the risk associated with Portfolio B is
such that a significant probability exists for the cost of Portfolio B to exceed Portfolio A.
The distribution around Portfolio A is much “tighter” than B, indicating that the variance
of costs associated with Portfolio A is much less than B. In this illustration, if the
downside risk differential (described here as excess cost) is such that management cannot
accept this level of downside risk, the decision to go with Portfolio A will shield the
company from the risk associated with Portfolio B, even though the average price of B is
less. Portfolio A’s cost is much more predictable than B, reflecting the objective
associated with performing stochastic risk analysis; to reduce risk and uncertainty.

Figure 6.8
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7 CO, SCENARIOS

AmerenUE incorporated an environmental scenario into its Integrated Resource Analysis
to determine the impacts of carbon legislation on the prospective resource portfolios
under evaluation. Currently, U.S. electric generation resources account for less than 10
percent of world CO; emissions, as shown in Figure 7.1.

Figure 7.1
Global and U.S. CO, Sources

World Sources U.S. Sources
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Source: Energy Information Agency

In the United States, there is currently no federal CO, regulation in place although
increasing pressure from the grassroots and state government levels, as well as
implementation of CO; policies in foreign countries, could result in future federal CO,
regulation. While the federal government has yet to promulgate national CO; emission
restrictions, multiple states, legislators and other nations are moving ahead with carbon
regulation.  Massachusetts and New Hampshire have already promulgated CO,
regulations at the state level, and many states in the Mid-Atlantic and Northeast region
are developing a regional CO; emission reduction program under the Regional
Greenhouse Gas Initiative (RGGI) process. A bi-partisan proposal from Senators
McCain and Lieberman calling for economy-wide CO, emission reductions received 43
votes in the Senate, and Senator Carper also included a CO; cap in his Clean Air
Planning Act (CAPA) multi-pollutant proposal.

Internationally, the EU is proceeding with implementation of the Kyoto Protocol and

Canada and Europe are moving ahead with programs aimed at participating in the Kyoto
Protocol process.
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At the corporate level, some utility companies have issued reports to address shareholder
concerns about climate change and the risks associated with regulatory intervention and
compliance. As a result of an agreement with sharcholders, AEP had an independent
sub-committee of its Board develop an emissions assessment report in August 2004 to
evaluate the company’s plan to respond to future air regulations. Cinergy issued its “Air
Issues Report to Shareholders™ in December 2004, in which it committed to reduce
greenhouse gases by five percent below 2001 levels by 2010-2012. In contrast, TXU
issued a report on its emissions strategy in which it said that it was not taking action to
reduce greenhouse gases absent state or federal requirements. Southern Company issued
a report to sharcholders in May 2005, in which it said that even if with a high SO» tax, its
greenhouse gas emissions were not likely to fall substantially over the next 15 years and
concluded that providing reliable electric power to meet growing demand is more
important than cutting emissions.

These examples illustrate the uncertainty associated with future carbon legislation and
compliance. In the absence of certainty around prospective CO, emissions regulation,
AmerenUE developed a scenario to address the potential impacts of greenhouse gas
regulation on its resource portfolio evaluation process. The following is a comprehensive
description of the development process and results.

7.1  SCENARIO DEVELOPMENT METHODOLOGY

In order to determine the impacts of carbon legislation on prospective resource portfolios,
AmerenUE engaged ICF Consulting, Inc. to develop a fundamental CO; forecast based
upon a Cap and Trade regulatory environment post 2010. ICF developed an expected
case which is representative of the scope, stringency and timing of an air regulatory
structure that is likely to be realized under a regulated or legislated future. While it
remains uncertain as to how key emissions will be constrained over the next decade, the
reduction assumptions supporting the ICF study are within the range of those proposed
by both EPA and legislators. High and low sensitivities were provided around the
expected case, and AmerenUE’s CO; scenario reflects the deterministic outcomes of all
three scenarios.

Figure 7.2 depicts the resulting CO, price forecasts which were used as the underlying
assumptions supporting the CO; scenarios.
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Figure 7.2
CO, Forecast
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Source: ICF Consulting, Inc.
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Figure 7.4

Source: AmerenUE Analysis
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Figure 7.5

Source: EEI/ NCT Analysis

7.3 PRICING RESULTS

Figure 7.6 below demonstrates the deterministic monthly average price results from the
multi-area MIDAS model run (as reflected at the AmerenUE system interface, or South
scenario modeled.
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Figure 7.6

Source: AmerenUE Analysis
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S SENSITIVITY DISCUSSION

Along with the CO; scenario which included various CO, allowance price sensitivities,
AmerenUE performed additional sensitivities to quantify the risk and costs of resource
portfolios under the following parameters:

Off-System Market Depth

AmerenUE’s Environmental Compliance Strategy
Technology Parameters

Evaluation of End Effects

The following is an overview of the various parameters that were stressed pertaining to
each sensitivity analysis. The results for each sensitivity are included in the Integrated
Resource Analysis.

8.1 OFF-SYSTEM MARKET DEPTH

The depth of the market for off-system transactions has a significant impact on the
optimal resource portfolio in light of value and risk. Assumptions regarding the
prospective market depth that can be reasonably anticipated are crucial in accurately
defining value and risk, particularly if a specific technology is predicated upon a highly
liquid, and deep market structure in which excess generation is to be sold or if the
technology relies heavily upon the market for purchases.

After the launch of the MISO energy markets in April 2005, a new dynamic was
observed relative to off-system transactions. With all resources and load across the
MISO footprint bidding into a central energy market, the market for AmerenUE off-
system transactions e¢xpanded. Essentially, what was once a limited network of
counterparties became a highly liquid market place perpetuated by the structure and
mechanisms previously discussed.  Since physical transmission curtailments were
supplanted with economic incentives (congestion pricing) and the supply market became
completely transparent (through bidding), the market for off-system energy transactions
expanded.

While it has expanded, the market depth under the MISO is not unlimited. Physical
congestion has essentially been replaced with economic interruption, which will create an
economic limitation on the volumetric of energy delivered from any point on the system.
With transparent locational marginal pricing (LMP) at each injection and delivery point
on the system, purchasers of energy can quickly determine the economic benefits or
detriments associated with their resource purchases and alter them as economics dictate.
The MISO will continue to make changes to its market processes and rules that will
impact how the market responds. Market participants are just now learning how to
operate in the new market environment and will likely change their practices in the future
as rules change and/or more information is available. In light of these issues, it is
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difficult to draw meaningful conclusions about the market's future behavior based on the
first seven months of operation.

The addition or retirement of system resources will also impact energy flows and
resulting congestion pricing, adding to the economic complexity and uncertainty of
prospective energy transactions. Additionally, as joint digpatch agreements between
ISO’s are finalized, modified or abandoned, the implications of these outcomes will
impact the amount of economic energy transactions that will occur within the market.

Although there is limited data to base assumptions regarding off-system transactions, the
base modeled volumetric of potential off-system transactions moving from the
AmerenUE system to the market reflects

These limitations acknowledge the observed
increase in volumes transacted by AmerenUE after the MISO energy market
commencement while recognizing that as volumes continue to increase, a point of
economic indifference will result due to increased congestion costs and losses.

A market depth sensitivity was performed to evaluate the impact of increasing
AmerenUE market transaction limits to reflect unlimited access to counterparties and
supply sales. Under this sensitivity, the base off-system limitations described above were
removed in the model and the AmerenUE system was integrated into the MISO under the
assumption that there would be no congestion impacts resulting from the dispatch of any
AmerenUE resource on the system and no transmission. Essentially, this sensitivity
sought to demonstrate the impact of unlimited market depth for the AmerenUE resource
portfolios under evaluation.

In light of multiple system and economic dynamics, AmerenUE acknowledges that
unlimited market depth is not feasible and did not select this sensitivity to represent an
expectation of future market depth. This sensitivity was developed to demonstrate an
extreme boundary in the absence of modeling an infinite number of prospective system
states, conditions and definitions. While the MISO has a transmission expansion plan in
place, this plan represents an expectation of what transmission infrastructure will be
developed under a single scenario. Multiple events can impact system dynamics and alter
anticipated outcomes. Additionally, there are economic impacts of congestion pricing
and losses that are not reflected in prospective transmission infrastructure changes.

Since it is impossible to identify these prospective system events or assign probabilities
to actual occurrence, AmerenUE sought to model the most extreme case of unlimited
market depth as a means to evaluate the impacts on its resource expansion plans,
understanding that actual results will fall somewhere between what is currently observed
and the extreme case.
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8.2 AMERENUE’S ENVIRONMENTAL COMPLIANCE STRATEGY

In developing an environmental compliance strategy, a company can vary in its method
of compliance, from one extreme to the other, or somewhere in between the extremes. At
one extreme, the Company can choose to not install any new control technology and
purchase all required allowances. At the other extreme the Company can choose to
install new control technology on all uncontrolled units and sell any excess allowances.
A more balanced approach lies in between the extremes. In a balanced approach the
company may choose to do both: purchase some additional allowances and install some
control technology. The compliance strategy should balance the capital and operating
and maintenance (O&M) costs of the control technology to the cost of purchasing
allowances.

AmerenUE performed an environmental compliance strategy analysis separate from the
Integrated Resource Plan (IRP) process. The intent of that analysis was to develop a
balanced, least-cost compliance strategy for AmerenUE. That analysis is ongoing;
however interim results from it were included in the IRP analysis as an alternative to a
total purchase strategy.

Technology was considered for controlling the following pollutants: sulfur dioxide (SO»,),
nitrogen oxide (NOy) and mercury (Hg). AmerenUE’s existing coal plants — Labadie,
Rush Island, Sioux and Meramec — are the primary locations where control technology
would be considered.

Flue Gas Desulfurization (FGD) is the primary SO, control technology considered.
There are two basic types of FGD equipment, or scrubbers -- dry and wet. Dry scrubbers
are typically used for controlling SO, at facilities which use a low sulfur, PRB-type fuel.
Wet scrubbers are typically used for controlling SO, at facilities that use a higher sulfur
fuel or a range of fuels.

There are a variety of technologies to control NOy. The least costly and lowest removal
efficiency is the over fired air (OFA) system. A higher removal can be achieved from a
selective non-catalytic reduction (SNCR) system but at a higher capital and annual O&M
cost. Finally the highest removal efficiency can be achieved from a selective catalytic
reduction (SCR) system but at a much higher capital cost although at a somewhat lower
annual O&M cost.

Hg removal technology is still in the early stages of development. For this analysis the
only technology considered was an activated carbon injection (ACI) system.

The purchase scenario assumed no new installations of any SO, and NO; control
technology. It did assume Hg controls would be installed. AmerenUE would be required
to meet the lower caps specified in the CAIR regulations for SO, and NOy. Thus,
AmerenUE purchased sufficient allowances to offset any excess emissions relative to the
lower caps.
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The balanced scenario assumed installation of scrubbers for SO, control on the following

schedule:

For NO, control, the only installations assumed were an system on b
rand A -« and by

These emission control technology installations would create an emission strategy which
would place AmerenUE in a “near” self-compliant position for SO; and NOy. For this
build scenario, any excess emissions relative to the lower emission caps would be
purchased. Any surplus allowances would be sold to maintain the same SO, and NOg
position for the two alternatives.

8.3 TECHNOLOGY PARAMETERS

Under this sensitivity, five base operational and capital assumptions were varied
independently to determine the impacts on valuation and risk. These sensitivities
included deviations to base capital and transmission installed costs, fixed and variable
O&M costs, and effective forced outage rate (EFOR) assumptions. Figures 8.1, and 8.2
demonstrate the nominal (base) and variant parameters that define the sensitivities, in
absolute values and percentage change from base assumptions:
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Figure 8.1
Technology Sensitivity Parameters (absolute values)

(13 Coste fora 201310 sermce date

Source: AmerenUE

Figure 8.2
Technology Sensitivity Parameters (percentage from nominal)
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8.4 EVALUATION OF END EFFECTS

The revenue requirement calculations represented in the Integrated Resource Analysis
results do not include an adjustment for capital life end-effects. The analysis period is 20
years, and most of the assets” lives extend well beyond the end of the analysis. This
results in the higher-cost revenue requirements incurred in the early years of a capital
addition’s economic life to be included in the PVRR while the lower cost revenue
requirements of later years being excluded.

Without some type of end-effects adjustment, the capital-intensive portfolio’s PVRR will
tend to show a relatively higher revenue requirement. While utilizing revenue
requirements is reflective of future ratemaking impacts during the 20-year analysis
period, it does not, by itself, provide absolute comparative economics needed to address
the relative costs of long-lived assets.

A sensitivity for end effects was performed, which extended the analysis period from 20
year to 28 years (limitations and assumptions within the MIDAS model limited the
simulation period to 28 years). Under this sensitivity, all load growth assumptions were
removed from the model after 2025, and MIDAS was allowed only to build new
resources to replace any retirements occurring after 2025. Removing the load growth
assumption allowed AmerenUE to model system dynamics within the framework of a
production cost methodology rather than performing an escalation of 2025 results.

All other assumptions including fuel inputs were assumed to escalate at the general rate
of inflation, and the MIDAS model performed an hourly chronological dispatch of the
system resources to serve load for the extended analysis period. The results add
additional analytical rigor by capturing the dynamics of hourly load profiles, generator
performance, and transmission limitations with respect to portfolio performance, and
reflect significantly more detail beyond a simple escalation of 2025 results to determine
end effects.
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