

Efficient & Secure Smart Grid Dr. Christos A. Polyzois

Honeywell

Smart Grid: Residential Perspective

Simple, easy-to-use, secure and efficient solutions using existing infrastructure

Honeywell

Smart Grid Communication Needs

•	 Broadcast data (Demand Response, price signals, emergency events, etc.) Low volume, infrequent Can use currently available communication infrastructure (cellular, broadband, WiFi, Pager) with standard internet security measures 	<u>Optimal Network(s)</u> Broadband Cellular WiFi, etc.
•	 Real-time Consumption Data (high volume, frequent) Useful primarily for real-time control & usage information to consumer We favor meter → premises where displays & controllers can locally act upon this data along with pricing information Minimizes risk (privacy & network stability) and maximizes benefit from real time info. 	Direct meter to HAN
•	Raw Billing Data (reading when price changes) Utility operations 	AMI
•	 Aggregate Data Comparison over time & among neighbors, best practices, consumption pattern recognition, suggest corrective actions, etc. Utility or third party cloud-based applications operating on anonymous summary data Little risk for privacy or network stability in case of breach of security Can use standard internet communication with standard security measures 	Internet portal
•	T&D: relatively few points (substations); mission-critical, but already connected Secure & efficient smart-grid can be built using ex communication infrastructure & cyber-security me	Existing connectivity xisting easures

Optimal Architecture for Smart Grid

Honeywell

Architectural Recommendations

- The Smart Grid Architecture should
 - Include Meter → Home Area Network consumption information exchange over well-defined interface
 - Send smart grid signals (price, demand response, etc.) from utility to customer over existing communication infrastructure (broadband, cell, etc.) and establish a clear demarcation point
- Lessons from past large-scale deployments should be used

Let us not spend unnecessarily Let us not reinvent the wheel