Evergy Missouri West

Volume 7

Resource Acquisition Strategy

Selection

Integrated Resource Plan

20 CSR 4240-22.070

April 2024

Table of Contents

Section 1: Preferred Resource Plan	2
Section 2: Ranges of Critical Uncertain Factors	5
Section 3: Outcomes of Critical Uncertain Factors	. 16
Section 4: Contingency Resource Plans	. 18
Section 5: Load–Building Programs	. 19
Section 6: Implementation Plan	. 20
Section 7: Resource Acquisition Strategy	. 37
Section 8: Evaluation of Demand-side Programs and Demand-Side Rates	. 38

Table of Figures

Figure 1: Corporate Approval and Statement of Commitment for Resource	ce Acquisition
Strategy	

Table of Tables

Table 1: Evergy Missouri West Preferred Plan3
Table 2: Expected Value Alternative Resource Plan Rankings
Table 3: Alternative Resource Plan Ranking Based upon CO ₂ Assumptions 7
Table 4: Lowest NPVRR Alternative Resource Plan By Endpoint
Table 5: Uncertain Factors Sensitivities – High Construction Cost Vs. Natural Gas and
CO ₂ 9
Table 6: Uncertain Factors Sensitivities – Low Construction Cost Vs. Natural Gas and
CO ₂ 10
Table 7: Uncertain Factors Sensitivities – High Natural Gas Vs. Construction Cost and
CO ₂ 11
Table 8: Uncertain Factors Sensitivities – Low Natural Gas Vs. Construction Cost and
CO ₂ 12
Table 9: Uncertain Factors Sensitivities – High CO ₂ Vs. Construction Cost and Natural
Gas13
Table 10: Uncertain Factors Sensitivities – Low CO_2 Vs. Construction Cost and Natural
Gas14
Table 11: CAAA vs. CGAG (Mid Natural Gas, Mid Construction Costs) 15
Table 12: CAAA vs. CAAF (Mid Natural Gas, Mid Construction Costs) 15
Table 13: CAAA vs. CAAC (Mid Natural Gas, Mid CO ₂ Restriction)
Table 14: Better Information – Low CO2 Costs 17
Table 15: Better Information – High CO2 Costs 18
Table 16: DSM Program Schedule – Existing Programs
Table 17: DSM Program Schedule – Planned Programs
Table 18: Dogwood Milestone Schedule 24
Table 19: Solar Project Milestone Schedule 24
Table 20: CCGT Plant Implementation Milestones
Table 21: Environmental Retrofit Project Schedule 26
Table 22: Evaluation Schedule

Table of Appendices

Appendix 7A Evergy August 2022 RFP **Confidential**Appendix 7B Evergy February 2023 RFP **Confidential**

Volume 7: Resource Acquisition Strategy Selection

Highlights

- By 2030, Evergy Missouri West's Preferred Plan adds 150MW of solar and more than 850MW of thermal resource additions.
- Evergy has obtained a Certificate of Convenience and Necessity (CCN) to add Dogwood and is expecting to close the transaction by mid-2024, which would fulfill 143MW of thermal resource additions.
- In the second half of 2024, Evergy expects to apply for a CCN for large-scale solar project(s) identified in its 2023 RFP. To meet the 2027 in-service timeline detailed in the Preferred Plan, Evergy needs to receive regulatory approval by mid-2025 and the project developer needs to complete construction, testing, and commissioning by November 2026.
- For the remaining thermal additions, Evergy is pursuing development of a combined cycle gas turbine plant targeting in-service by early 2029. In order to start construction by 2026, Evergy expects to submit its SPP interconnection application in late 2024, receive environmental and land permitting in early 2025, complete design and engineering work by late 2025.

Section 1: Preferred Resource Plan¹

The Alternative Resource Plans (ARP) developed and analyzed under the requirements of 20 CSR 4240-22.060 were designed to meet the objectives of 20 CSR 4240-22.010(2). A balanced mix of demand- and supply-side resources have been key components of the company's resource planning efforts for over a decade and are a key part of its preferred plan going forward.

1.1 Investment in Advanced Transmission and Distribution Technologies²

These planning elements are discussed in Volume 4.5 and in special contemporary issues in Volume 8.

1.2 Utilizing Demand Side Resources³

As indicated in section 1(A) above, demand-side resources are a key component of alternative resource plan development. Per 4 CSR 240-22.010(2)(A), demand-side resources, renewable energy, and supply-side resources are to be analyzed on an equivalent basis, subject to compliance with all legal mandates. Regarding demand-side resources, MEEIA provides the legal mandate structure that helps to translate the potential studies and other DSM tools into portfolios that are included in the alternative resource plans to be evaluated.

These planning elements are discussed in Volume 5.

1.3 Preferred Plan⁴

The Preferred Plan CAAA has been selected for Evergy Missouri West and is shown in Table 1 below:

¹ 20 CSR 4240-22.070 (1); 20 CSR 4240-22.070 (1)(A); 20 CSR 4240-22.070 (7)(A)

² 20 CSR 4240-22.070 (1)(B)

³ 20 CSR 4240-22.070 (1)(C)

⁴ 20 CSR 4240-22.070 (1)(D)

Year	Wind (MW)	Solar (MW)	Battery (MW)	Thermal (MW)	Capacity Only (Summer MW)	DSM (Summer MW)	Retirements (MW)
2024	0	0	0	143	0	91	0
2025	0	0	0	0	0	140	0
2026	0	0	0	0	28	180	0
2027	0	150	0	0	0	211	0
2028	0	0	0	0	0	225	0
2029	0	0	0	325	0	240	0
2030	0	0	0	415	0	254	0
2031	150	0	0	0	0	268	212
2032	150	0	0	0	0	283	0
2033	150	0	0	0	0	295	0
2034	150	0	0	0	0	312	0
2035	0	0	0	0	0	325	0
2036	0	0	0	0	0	338	0
2037	0	0	0	0	0	352	0
2038	0	0	0	0	0	362	0
2039	0	0	0	0	0	377	0
2040	0	0	0	0	0	388	187
2041	150	0	0	0	0	399	0
2042	0	150	0	0	0	408	0
2043	0	0 0 0		0	0	417	0

Table 1:	Evergy	Missouri	West	Preferred	Plan
----------	--------	----------	------	-----------	------

The Preferred Plan for 2024 resembles the 2023 Preferred Plan, with some changes. The additions in the first six years include Dogwood, 150 MW solar, and 325 MW combined cycle. The ½ combined cycle is deferred one year from 2028 to 2029 in the 2024 plan. The second new thermal capacity build, now a combustion turbine, is accelerated to 2030 from the prior plan to build another ½ combined cycle in 2040. The increase in forecasted capacity needs, due to expected increases in summer reserve margin requirements and the introduction of binding winter capacity requirements, is the primary driver of the earlier capacity resource build. Consistent with the 2023 Preferred Plan, the 2024 Preferred Plan includes the Realistically Achievable Potential Plus (RAP+) level of DSM which consists of a suite of nine residential and seven commercial programs three of which are demand response programs, four are demand side rates, and nine are energy efficiency programs.

The Preferred Plan, denoted as Alternative Resource Plan CAAA in Volume 6, also includes retiring a 96 MW natural gas unit at Lake Road in 2030, Evergy Missouri West's 58 MW shares of Jeffrey-2 and Jeffrey-3 in 2030, Evergy Missouri West's 58 MW share of Jeffrey-1 in 2039, and Evergy Missouri West's 126 MW share of latan-1 in 2039.

The Preferred Plan meets the fundamental planning objectives as required by Rule 22.010(2) to provide the public with energy services that are safe, reliable, and efficient, at just and reasonable rates, in compliance with all legal mandates, and in a manner that serves the public interest and is consistent with state energy and environmental policies. The selected Preferred Plan is among the lowest-cost plans other than two alternate retirement scenarios (CBAA with an accelerated latan 1 retirement and CCAA with a delayed Jeffrey 2 retirement) which were not selected due to the small difference in NPVRR, Missouri West's low ownership share in these units, and inconsistent results between Missouri West and its co-owners' (Evergy Metro and Kansas Central) IRP analysis results. The plan which included a RAP level of DSM (less DSM than RAP+) was \$3 MM lower cost across the 20 year period, but was not selected due to the small difference in NPVRR, the addition of an early-period wind build in the RAP plan (which introduces additional execution risk to the supply-side build plan), and to be consistent with the Evergy Metro results where RAP+ was the lower cost DSM option.

The Preferred Plan was reviewed and approved by David Campbell, President and Chief Executive Officer and Jason Humphrey, Vice President – Development.

The Forecast of Capacity Balance worksheet associated with the Evergy Missouri West Preferred Plan is included in Appendix 6A. The Capacity Balance shows that reserve obligations are met each year.⁵

The Preferred Plan was tested under extreme weather conditions as defined by Rule 240-22.030(8)(B). The results of this analysis are included in response to a Special

⁵ Appendix 6A Missouri West Plans Capacity Balance CONFIDENTIAL

Contemporary Issue in Volume 8. In addition, the Preferred Plan and each of the Evergy Missouri West plans modeled indicated no unserved energy in production cost modeling analysis and comply with all current and proposed SPP Resource Adequacy Requirements which are designed to maintain loss-of-load expectation (i.e., the expectation of unserved energy) of less than one day in ten years, with a probabilistic consideration of extreme weather included in this SPP analysis.

Section 2: Ranges of Critical Uncertain Factors⁶

The ranges of critical uncertain factors are calculated by finding the degree to which the critical uncertain factor needs to change in order for the Preferred Resource Plan to no longer be the preferred. The values of the NPVRR for the Preferred Resource Plan and the lowest cost plan under extreme conditions are compared and by using linear interpolation until a crossover point value is found and expressed as a percent of the range of the critical uncertain factor. These percentages are superimposed on the high, mid, and low forecasts for each critical uncertain factor to develop the resulting ranges.

The Company has selected its Preferred Plan, CAAA based on the results of the NPVRR (in \$MM) rankings of Evergy Missouri West Alternative Resource Plans (ARPs).

All ARPs are ranked based upon the expected value of results from the twenty-seven scenario/endpoint decision tree represented in Figure 1 of Volume 6, "Integrated Resource Plan and Risk Analysis". Those results are presented in the Table below.

⁶ 20 CSR 4240-22.070 (2)

Rank	Plan	NPVRR	Difference			
1	CBAA	11,067	0			
2	CCAA	11,076	9			
3	AAAA	11,081	14			
4	CAAA	11,086	19			
5	CAAC	11,089	21			
6	DAAA	11,090	23			
7	CGAG	11,138	71			
8	CDAA	11,163	96			
9	CFAA	11,208	140			
10	CAAF	11,241	174			
11	CEAA	11,271	203			
12	BAAA	11,272	204			
13	EAAA	11,388	321			
14	FAAA	11,411	344			
15	CAAG	11,636	569			
16	EAAJ	12,288	1,220			
17	CAAL	12,883	1,815			
18	BEAL	13,752	2,684			

Table 2: Expected Value Alternative Resource Plan Rankings

The ARPs are also ranked by their sub-sets of results, representing a known state of CO_2 restrictions. Nine endpoints assume High CO_2 restrictions, nine assume Mid CO_2 restrictions, and nine assume no future CO_2 restrictions (Low).

		High CO2	·		Mid CO2		Low CO2					
Rank	Plan	NPVRR	Difference	Plan	NPVRR	Difference	Plan	NPVRR	Difference			
1	CAAF	11,267	0	CCAA	10,973	0	CGAG	10,715	0			
2	DAAA	11,368	101	CBAA	10,988	15	CAAG	10,911	196			
3	CAAC	11,470	204	CDAA	11,000	27	CCAA	10,916	201			
4	CFAA	11,529	262	CAAA	11,005	33	CBAA	10,946	231			
5	AAAA	11,538	272	AAAA	11,012	40	CDAA	10,954	239			
6	CEAA	11,569	302	CAAC	11,030	57	CAAA	10,956	241			
7	CBAA	11,589	322	CGAG	11,048	75	AAAA	10,972	257			
8	BAAA	11,599	333	DAAA	11,053	80	CAAC	11,002	287			
9	CAAA	11,629	362	CFAA	11,163	190	DAAA	11,014	299			
10	EAAA	11,680	413	BAAA	11,217	244	CFAA	11,122	407			
11	FAAA	11,742	475	CEAA	11,222	250	BAAA	11,207	492			
12	CCAA	11,755	488	CAAF	11,237	264	CEAA	11,208	493			
13	CAAG	11,955	689	EAAA	11,351	378	CAAF	11,237	522			
14	CDAA	12,165	898	FAAA	11,377	405	FAAA	11,294	579			
15	CGAG	12,204	938	CAAG	11,859	886	EAAA	11,304	589			
16	EAAJ	12,352	1,085	EAAJ	12,669	1,696	EAAJ	11,335	620			
17	CAAL	12,996	1,729	CAAL	12,863	1,890	CAAL	12,863	2,148			
18	BEAL 13,875 2,608		BEAL	13,730	2,757	BEAL 13,730 3,015						

Fable 3: Alternative Resource Plar	Ranking Based upon	CO₂ Assumptions
------------------------------------	--------------------	-----------------------------------

The lowest cost plan based on NPVRR by scenario/endpoint is shown in Table 4 below.

Endpoint	Weighting	NG	CO2	ConCost	ARP			
1	0.56%	High	High	High	DAAA			
2	2.25%	High	Mid	High	CCAA			
3	0.94%	High	Low	High	CGAG			
4	1.88%	Mid	High	High	DAAA			
5	7.50%	Mid	Mid	High	CCAA			
6	3.13%	Mid	Low	High	CAAG			
7	1.31%	Low	High	High	DAAA			
8	5.25%	Low	Mid	High	CBAA			
9	2.19%	Low	Low	High	CAAG			
10	1.13%	High	High	Mid	CAAF			
11	4.50%	High	Mid	Mid	CAAC			
12	1.88%	High	Low	Mid	CGAG			
13	3.75%	Mid	High	Mid	CAAF			
14	15.00%	Mid	Mid	Mid	CCAA			
15	6.25%	Mid	Low	Mid	CGAG			
16	2.63%	Low	High	Mid	CAAF			
17	10.50%	Low	Mid	Mid	CBAA			
18	4.38%	Low	Low	Mid	CGAG			
19	0.56%	High	High	Low	CAAF			
20	2.25%	High	Mid	Low	CAAF			
21	0.94%	High	Low	Low	CGAG			
22	1.88%	Mid	High	Low	CAAF			
23	7.50%	Mid	Mid	Low	CAAC			
24	3.13%	Mid	Low	Low	CGAG			
25	1.31%	Low	High	Low	CAAF			
26	5.25% Low		Mid	Low	CAAC			
27	2.19%	Low	Low	Low	CGAG			

Table 4: Lowest NPVRR Alternative Resource Plan By Endpoint

The tables following here represent the sensitivities for the uncertain factors by scenario/endpoint.

Table 5: Uncertain Factors Sensitivities – High Construction Cost Vs. Natural Gasand CO2

	CO2	High		Mid		Low		CO2	High		Μ	lid	L	ow	CO2	High		Mid		Low	
Rank	Nat Gas	Plan	NPVR R	Plan	NPVR R	Plan	NPVR R	Nat Gas	Plan	NPVR R	Plan	NPVR R	Plan	NPVR R	Nat Gas	Plan	NPVR R	Plan	NPVR R	Plan	NPVR R
1		DAAA	12,245	CCAA	12,043	CGAG	11,700		DAAA	11,537	CCAA	11,317	CAAG	11,061		DAAA	11,322	CBAA	11,109	CAAG	10,756
2		CAAF	12,412	CGAG	12,068	CCAA	11,979		CEAA	11,655	CBAA	11,333	CGAG	11,071		CEAA	11,388	CCAA	11,122	CGAG	10,887
3		CAAC	12,486	CAAA	12,105	CAAG	11,999		CFAA	11,736	CDAA	11,347	CCAA	11,269		CAAG	11,490	CDAA	11,133	CBAA	11,056
4		CFAA	12,498	CDAA	12,122	CAAA	12,053		CAAG	11,834	CAAA	11,354	CBAA	11,298		CFAA	11,509	CAAA	11,146	CCAA	11,057
5		AAAA	12,550	AAAA	12,131	CDAA	12,079		CBAA	11,837	CGAG	11,392	CDAA	11,308		FAAA	11,581	CGAG	11,222	CDAA	11,077
6		CEAA	12,553	CAAC	12,137	AAAA	12,093		FAAA	11,842	AAAA	11,426	CAAA	11,311		CBAA	11,618	AAAA	11,232	CAAA	11,088
7		CBAA	12,616	CBAA	12,144	CBAA	12,108		CAAC	11,845	DAAA	11,480	AAAA	11,393		AAAA	11,657	DAAA	11,282	AAAA	11,182
8		EAAA	12,621	DAAA	12,181	CAAC	12,110		AAAA	11,855	CAAC	11,491	DAAA	11,448		EAAA	11,657	CAAC	11,307	EAAJ	11,206
9		CAAA	12,637	CFAA	12,309	DAAA	12,138		EAAA	11,877	CFAA	11,567	CAAC	11,468		CAAC	11,661	CEAA	11,348	DAAA	11,236
10	High	BAAA	12,639	BAAA	12,311	CFAA	12,260	Mid	CAAA	11,879	CEAA	11,603	CFAA	11,532	Low	CAAA	11,664	CFAA	11,356	CAAC	11,273
11		FAAA	12,709	CAAF	12,393	BAAA	12,301		CAAF	11,892	BAAA	11,697	EAAJ	11,536		CAAF	11,764	BAAA	11,513	CFAA	11,311
12		CCAA	12,805	CEAA	12,524	CAAF	12,393		BAAA	12,016	FAAA	11,749	CEAA	11,598		EAAJ	11,789	FAAA	11,561	CEAA	11,313
13		CAAG	12,912	EAAA	12,538	FAAA	12,479		CCAA	12,039	EAAA	11,819	BAAA	11,687		CCAA	11,825	EAAA	11,627	FAAA	11,447
14		CGAG	13,218	FAAA	12,566	EAAA	12,491		EAAJ	12,167	CAAF	11,864	FAAA	11,688		BAAA	11,838	CAAF	11,726	BAAA	11,504
15		CDAA	13,223	CAAG	12,806	CEAA	12,522		CDAA	12,512	CAAG	11,966	EAAA	11,782		CDAA	12,325	CAAG	11,824	EAAA	11,569
16		EAAJ	13,339	EAAJ	13,695	EAAJ	12,549		CGAG	12,554	EAAJ	12,819	CAAF	11,864		CGAG	12,374	EAAJ	12,692	CAAF	11,726
17		CAAL	14,484	CAAL	14,330	CAAL	14,329		CAAL	14,121	CAAL	13,986	CAAL	13,987		CAAL	14,056	CAAL	13,936	CAAL	13,936
18		BEAL	15,576	BEAL	15,427	BEAL	15,428		BEAL	15,125	BEAL	14,982	BEAL	14,982		BEAL	15,054	BEAL	14,908	BEAL	14,909

Table 6: Uncertain Factors Sensitivities – Low Construction Cost Vs. Natural Gasand CO2

	CO2	High		Mid		Low		CO2	High		Μ	lid	L	w	CO2	High		Mid		Low	
Rank	Nat Gas	Plan	NPVR R	Plan	NPVR R	Plan	NPVR R	Nat Gas	Plan	NPVR R	Plan	NPVR R	Plan	NPVR R	Nat Gas	Plan	NPVR R	Plan	NPVR R	Plan	NPVR R
1		CAAF	11,119	CAAF	11,100	CGAG	10,932		CAAF	10,599	CAAC	10,547	CGAG	10,303		CAAF	10,471	CAAC	10,363	CGAG	10,120
2		DAAA	11,429	CAAC	11,192	CAAF	11,100		DAAA	10,721	CAAF	10,571	CAAC	10,523		DAAA	10,506	AAAA	10,378	CCAA	10,323
3		CAAC	11,541	AAAA	11,277	CAAC	11,165		CAAC	10,900	AAAA	10,572	CCAA	10,535		CEAA	10,671	CBAA	10,381	CBAA	10,327
4		BAAA	11,652	CGAG	11,300	AAAA	11,239		CEAA	10,937	CCAA	10,583	AAAA	10,539		CAAC	10,717	CCAA	10,388	AAAA	10,328
5		AAAA	11,696	CCAA	11,309	CCAA	11,245		CFAA	10,952	CBAA	10,604	CBAA	10,570		CFAA	10,725	CDAA	10,404	CAAC	10,328
6		CFAA	11,714	BAAA	11,324	BAAA	11,314		AAAA	11,001	CDAA	10,619	CAAF	10,571		EAAA	10,787	CAAA	10,418	CDAA	10,349
7		EAAA	11,751	DAAA	11,365	DAAA	11,322		EAAA	11,007	CGAG	10,624	CDAA	10,580		AAAA	10,803	CAAF	10,433	CAAA	10,360
8		CEAA	11,836	CAAA	11,376	CAAA	11,325		BAAA	11,029	CAAA	10,626	CAAA	10,583		BAAA	10,851	CGAG	10,454	DAAA	10,420
9		CBAA	11,888	CDAA	11,394	CDAA	11,350		CBAA	11,109	DAAA	10,664	DAAA	10,632		FAAA	10,879	DAAA	10,466	CAAF	10,433
10	High	CAAA	11,908	CBAA	11,416	CBAA	11,379	Mid	FAAA	11,140	BAAA	10,710	BAAA	10,700	Low	CBAA	10,889	BAAA	10,526	CAAG	10,493
11		FAAA	12,007	CFAA	11,524	CFAA	11,476		CAAA	11,150	CFAA	10,783	CFAA	10,748		CAAA	10,936	CFAA	10,572	BAAA	10,518
12		CCAA	12,071	EAAA	11,668	EAAA	11,621		CCAA	11,305	CEAA	10,885	CAAG	10,797		CCAA	11,092	CEAA	10,631	CFAA	10,527
13		CAAL	12,443	CEAA	11,806	CAAG	11,735		CAAG	11,570	EAAA	10,949	CEAA	10,881		CAAG	11,227	EAAA	10,757	CEAA	10,595
14		CGAG	12,451	FAAA	11,864	FAAA	11,777		CDAA	11,784	FAAA	11,047	EAAA	10,912		EAAJ	11,487	FAAA	10,859	EAAA	10,699
15		CDAA	12,495	CAAL	12,289	CEAA	11,805		CGAG	11,786	CAAG	11,703	FAAA	10,986		CDAA	11,597	CAAG	11,561	FAAA	10,745
16		CAAG	12,648	CAAG	12,542	EAAJ	12,247		EAAJ	11,866	CAAL	11,945	EAAJ	11,234		CGAG	11,606	CAAL	11,895	EAAJ	10,904
17		EAAJ	13,037	BEAL	13,176	CAAL	12,288		CAAL	12,080	EAAJ	12,518	CAAL	11,946		CAAL	12,016	EAAJ	12,391	CAAL	11,895
18		BEAL	13,324	EAAJ	13,393	BEAL	13,177		BEAL	12,873	BEAL	12,731	BEAL	12,731		BEAL	12,803	BEAL	12,657	BEAL	12,657

Table 7: Uncertain Factors Sensitivities – High Natural Gas Vs. Construction Costand CO2

	CO2	2 High		Mid		Low		CO2	High		М	lid	Lo	w	CO2	High		Mid		Low	
Rank	Con Costs	Plan	NPVR R	Plan	NPVR R	Plan	NPVR R	Con Costs	Plan	NPVR R	Plan	NPVR R	Plan	NPVR R	Con Costs	Plan	NPVR R	Plan	NPVR R	Plan	NPVR R
1		DAAA	12,245	CCAA	12,043	CGAG	11,700		CAAF	11,742	CAAC	11,621	CGAG	11,312		CAAF	11,119	CAAF	11,100	CGAG	10,932
2		CAAF	12,412	CGAG	12,068	CCAA	11,979		CAAC	12,145	CCAA	11,640	CCAA	11,575		DAAA	11,429	CAAC	11,192	CAAF	11,100
3		CAAC	12,486	CAAA	12,105	CAAG	11,999		BAAA	12,237	AAAA	11,654	CAAC	11,594		CAAC	11,541	AAAA	11,277	CAAC	11,165
4		CFAA	12,498	CDAA	12,122	CAAA	12,053		DAAA	12,252	DAAA	11,663	AAAA	11,616		BAAA	11,652	CGAG	11,300	AAAA	11,239
5		AAAA	12,550	AAAA	12,131	CDAA	12,079		AAAA	12,274	CGAG	11,679	DAAA	11,621		AAAA	11,696	CCAA	11,309	CCAA	11,245
6		CEAA	12,553	CAAC	12,137	AAAA	12,093		CBAA	12,403	CAAA	11,691	CAAA	11,640		CFAA	11,714	BAAA	11,324	BAAA	11,314
7		CBAA	12,616	CBAA	12,144	CBAA	12,108		CFAA	12,407	CDAA	11,709	CDAA	11,665		EAAA	11,751	DAAA	11,365	DAAA	11,322
8		EAAA	12,621	DAAA	12,181	CAAC	12,110		CAAA	12,424	CAAF	11,722	CBAA	11,695		CEAA	11,836	CAAA	11,376	CAAA	11,325
9		CAAA	12,637	CFAA	12,309	DAAA	12,138		CCAA	12,523	CBAA	11,731	CAAF	11,722		CBAA	11,888	CDAA	11,394	CDAA	11,350
10	High	BAAA	12,639	BAAA	12,311	CFAA	12,260	Mid	EAAA	12,592	BAAA	11,788	CAAG	11,763	Low	CAAA	11,908	CBAA	11,416	CBAA	11,379
11		FAAA	12,709	CAAF	12,393	BAAA	12,301		CEAA	12,658	CFAA	11,818	CFAA	11,769		FAAA	12,007	CFAA	11,524	CFAA	11,476
12		CCAA	12,805	CEAA	12,524	CAAF	12,393		FAAA	12,782	EAAA	11,955	BAAA	11,778		CCAA	12,071	EAAA	11,668	EAAA	11,621
13		CAAG	12,912	EAAA	12,538	FAAA	12,479		CDAA	12,810	CEAA	12,024	EAAA	11,907		CAAL	12,443	CEAA	11,806	CAAG	11,735
14		CGAG	13,218	FAAA	12,566	EAAA	12,491		CGAG	12,830	FAAA	12,060	FAAA	11,974		CGAG	12,451	FAAA	11,864	FAAA	11,777
15		CDAA	13,223	CAAG	12,806	CEAA	12,522		CAAL	13,190	CAAG	12,570	CEAA	12,022		CDAA	12,495	CAAL	12,289	CEAA	11,805
16		EAAJ	13,339	EAAJ	13,695	EAAJ	12,549		CAAG	13,204	CAAL	13,035	EAAJ	12,225		CAAG	12,648	CAAG	12,542	EAAJ	12,247
17		CAAL	14,484	CAAL	14,330	CAAL	14,329		EAAJ	13,772	EAAJ	13,371	CAAL	13,035		EAAJ	13,037	BEAL	13,176	CAAL	12,288
18		BEAL	15,576	BEAL	15,427	BEAL	15,428		BEAL	14,115	BEAL	13,967	BEAL	13,968		BEAL	13,324	EAAJ	13,393	BEAL	13,177

Table 8: Uncertain Factors Sensitivities – Low Natural Gas Vs. Construction Costand CO2

	CO2	Hi	gh	М	id	Lo	w	CO2	Hi	gh	М	lid	Lo	w	CO2	Hi	gh	М	id	Lo	w
Rank	Con Costs	Plan	NPVR R	Plan	NPVR R	Plan	NPVR R	Con Costs	Plan	NPVR R	Plan	NPVR R	Plan	NPVR R	Con Costs	Plan	NPVR R	Plan	NPVR R	Plan	NPVR R
1		DAAA	11,322	CBAA	11,109	CAAG	10,756		CAAF	11,093	CBAA	10,696	CGAG	10,499		CAAF	10,471	CAAC	10,363	CGAG	10,120
2		CEAA	11,388	CCAA	11,122	CGAG	10,887		CAAC	11,320	CCAA	10,719	CAAG	10,520		DAAA	10,506	AAAA	10,378	CCAA	10,323
3		CAAG	11,490	CDAA	11,133	CBAA	11,056		DAAA	11,329	CDAA	10,719	CBAA	10,643		CEAA	10,671	CBAA	10,381	CBAA	10,327
4		CFAA	11,509	CAAA	11,146	CCAA	11,057		AAAA	11,381	CAAA	10,733	CCAA	10,654		CAAC	10,717	CCAA	10,388	AAAA	10,328
5		FAAA	11,581	CGAG	11,222	CDAA	11,077		CBAA	11,405	AAAA	10,756	CDAA	10,664		CFAA	10,725	CDAA	10,404	CAAC	10,328
6	_	CBAA	11,618	AAAA	11,232	CAAA	11,088		CFAA	11,418	DAAA	10,764	CAAA	10,675		EAAA	10,787	CAAA	10,418	CDAA	10,349
7		AAAA	11,657	DAAA	11,282	AAAA	11,182		BAAA	11,436	CAAC	10,792	AAAA	10,705		AAAA	10,803	CAAF	10,433	CAAA	10,360
8		EAAA	11,657	CAAC	11,307	EAAJ	11,206		CAAA	11,452	CGAG	10,834	DAAA	10,719		BAAA	10,851	CGAG	10,454	DAAA	10,420
9		CAAC	11,661	CEAA	11,348	DAAA	11,236		CEAA	11,493	CEAA	10,848	CAAC	10,757		FAAA	10,879	DAAA	10,466	CAAF	10,433
10	High	CAAA	11,664	CFAA	11,356	CAAC	11,273	Mid	CCAA	11,544	CFAA	10,865	CEAA	10,813	Low	CBAA	10,889	BAAA	10,526	CAAG	10,493
11		CAAF	11,764	BAAA	11,513	CFAA	11,311		EAAA	11,628	BAAA	10,990	CFAA	10,820		CAAA	10,936	CFAA	10,572	BAAA	10,518
12		EAAJ	11,789	FAAA	11,561	CEAA	11,313		FAAA	11,654	EAAA	11,044	EAAJ	10,882		CCAA	11,092	CEAA	10,631	CFAA	10,527
13		CCAA	11,825	EAAA	11,627	FAAA	11,447		CAAG	11,783	FAAA	11,055	FAAA	10,942		CAAG	11,227	EAAA	10,757	CEAA	10,595
14		BAAA	11,838	CAAF	11,726	BAAA	11,504		CDAA	11,912	CAAF	11,056	BAAA	10,981		EAAJ	11,487	FAAA	10,859	EAAA	10,699
15		CDAA	12,325	CAAG	11,824	EAAA	11,569		CGAG	11,985	CAAG	11,589	EAAA	10,985		CDAA	11,597	CAAG	11,561	FAAA	10,745
16		CGAG	12,374	EAAJ	12,692	CAAF	11,726		EAAJ	12,221	EAAJ	12,368	CAAF	11,056		CGAG	11,606	CAAL	11,895	EAAJ	10,904
17		CAAL	14,056	CAAL	13,936	CAAL	13,936		CAAL	12,762	CAAL	12,642	CAAL	12,642		CAAL	12,016	EAAJ	12,391	CAAL	11,895
18		BEAL	15,054	BEAL	14,908	BEAL	14,909		BEAL	13,593	BEAL	13,448	BEAL	13,448		BEAL	12,803	BEAL	12,657	BEAL	12,657

Table 9: Uncertain Factors Sensitivities – High CO2 Vs. Construction Cost andNatural Gas

	NG Price	Hi	gh	М	id	L	w	NG Price	Hi	gh	Μ	id	L	w	NG Price	Hi	gh	М	id	Lo	w
Rank	Con Costs	Plan	NPVR R	Plan	NPVR R	Plan	NPVR R	Con Costs	Plan	NPVR R	Plan	NPVR R	Plan	NPVR R	Con Costs	Plan	NPVR R	Plan	NPVR R	Plan	NPVR R
1		DAAA	12,245	DAAA	11,537	DAAA	11,322		CAAF	11,742	CAAF	11,221	CAAF	11,093		CAAF	11,119	CAAF	10,599	CAAF	10,471
2		CAAF	12,412	CEAA	11,655	CEAA	11,388		CAAC	12,145	CAAC	11,504	CAAC	11,320		DAAA	11,429	DAAA	10,721	DAAA	10,506
3		CAAC	12,486	CFAA	11,736	CAAG	11,490		BAAA	12,237	DAAA	11,544	DAAA	11,329		CAAC	11,541	CAAC	10,900	CEAA	10,671
4		CFAA	12,498	CAAG	11,834	CFAA	11,509		DAAA	12,252	AAAA	11,579	AAAA	11,381		BAAA	11,652	CEAA	10,937	CAAC	10,717
5		AAAA	12,550	CBAA	11,837	FAAA	11,581		AAAA	12,274	BAAA	11,614	CBAA	11,405		AAAA	11,696	CFAA	10,952	CFAA	10,725
6		CEAA	12,553	FAAA	11,842	CBAA	11,618		CBAA	12,403	CBAA	11,624	CFAA	11,418		CFAA	11,714	AAAA	11,001	EAAA	10,787
7		CBAA	12,616	CAAC	11,845	AAAA	11,657		CFAA	12,407	CFAA	11,644	BAAA	11,436		EAAA	11,751	EAAA	11,007	AAAA	10,803
8		EAAA	12,621	AAAA	11,855	EAAA	11,657		CAAA	12,424	CAAA	11,666	CAAA	11,452		CEAA	11,836	BAAA	11,029	BAAA	10,851
9		CAAA	12,637	EAAA	11,877	CAAC	11,661		CCAA	12,523	CCAA	11,757	CEAA	11,493		CBAA	11,888	CBAA	11,109	FAAA	10,879
10	High	BAAA	12,639	CAAA	11,879	CAAA	11,664	Mid	EAAA	12,592	CEAA	11,759	CCAA	11,544	Low	CAAA	11,908	FAAA	11,140	CBAA	10,889
11		FAAA	12,709	CAAF	11,892	CAAF	11,764		CEAA	12,658	EAAA	11,848	EAAA	11,628		FAAA	12,007	CAAA	11,150	CAAA	10,936
12		CCAA	12,805	BAAA	12,016	EAAJ	11,789		FAAA	12,782	FAAA	11,915	FAAA	11,654		CCAA	12,071	CCAA	11,305	CCAA	11,092
13		CAAG	12,912	CCAA	12,039	CCAA	11,825		CDAA	12,810	CDAA	12,099	CAAG	11,783		CAAL	12,443	CAAG	11,570	CAAG	11,227
14		CGAG	13,218	EAAJ	12,167	BAAA	11,838		CGAG	12,830	CAAG	12,126	CDAA	11,912		CGAG	12,451	CDAA	11,784	EAAJ	11,487
15		CDAA	13,223	CDAA	12,512	CDAA	12,325		CAAL	13,190	CGAG	12,165	CGAG	11,985		CDAA	12,495	CGAG	11,786	CDAA	11,597
16		EAAJ	13,339	CGAG	12,554	CGAG	12,374		CAAG	13,204	EAAJ	12,600	EAAJ	12,221		CAAG	12,648	EAAJ	11,866	CGAG	11,606
17		CAAL	14,484	CAAL	14,121	CAAL	14,056		EAAJ	13,772	CAAL	12,827	CAAL	12,762		EAAJ	13,037	CAAL	12,080	CAAL	12,016
18		BEAL	15,576	BEAL	15,125	BEAL	15,054		BEAL	14,115	BEAL	13,664	BEAL	13,593		BEAL	13,324	BEAL	12,873	BEAL	12,803

Table 10: Uncertain Factors Sensitivities – Low CO2 Vs. Construction Cost andNatural Gas

	NG Price	Hi	gh	м	id	Lo	w	NG Price	Hi	gh	Μ	id	L	w	NG Price	Hi	gh	м	id	Lo	w
Rank	Con Costs	Plan	NPVR R	Plan	NPVR R	Plan	NPVR R	Con Costs	Plan	NPVR R	Plan	NPVR R	Plan	NPVR R	Con Costs	Plan	NPVR R	Plan	NPVR R	Plan	NPVR R
1		CGAG	11,700	CAAG	11,061	CAAG	10,756		CGAG	11,312	CGAG	10,683	CGAG	10,499		CGAG	10,932	CGAG	10,303	CGAG	10,120
2		CCAA	11,979	CGAG	11,071	CGAG	10,887		CCAA	11,575	CAAG	10,825	CAAG	10,520		CAAF	11,100	CAAC	10,523	CCAA	10,323
3		CAAG	11,999	CCAA	11,269	CBAA	11,056		CAAC	11,594	CCAA	10,866	CBAA	10,643		CAAC	11,165	CCAA	10,535	CBAA	10,327
4		CAAA	12,053	CBAA	11,298	CCAA	11,057		AAAA	11,616	CBAA	10,885	CCAA	10,654		AAAA	11,239	AAAA	10,539	AAAA	10,328
5		CDAA	12,079	CDAA	11,308	CDAA	11,077		DAAA	11,621	CDAA	10,895	CDAA	10,664		CCAA	11,245	CBAA	10,570	CAAC	10,328
6		AAAA	12,093	CAAA	11,311	CAAA	11,088		CAAA	11,640	CAAA	10,898	CAAA	10,675		BAAA	11,314	CAAF	10,571	CDAA	10,349
7		CBAA	12,108	AAAA	11,393	AAAA	11,182		CDAA	11,665	AAAA	10,916	AAAA	10,705		DAAA	11,322	CDAA	10,580	CAAA	10,360
8		CAAC	12,110	DAAA	11,448	EAAJ	11,206		CBAA	11,695	DAAA	10,930	DAAA	10,719		CAAA	11,325	CAAA	10,583	DAAA	10,420
9		DAAA	12,138	CAAC	11,468	DAAA	11,236		CAAF	11,722	CAAC	10,952	CAAC	10,757		CDAA	11,350	DAAA	10,632	CAAF	10,433
10	High	CFAA	12,260	CFAA	11,532	CAAC	11,273	Mid	CAAG	11,763	CFAA	11,041	CEAA	10,813	Low	CBAA	11,379	BAAA	10,700	CAAG	10,493
11		BAAA	12,301	EAAJ	11,536	CFAA	11,311		CFAA	11,769	CEAA	11,098	CFAA	10,820		CFAA	11,476	CFAA	10,748	BAAA	10,518
12	-	CAAF	12,393	CEAA	11,598	CEAA	11,313		BAAA	11,778	BAAA	11,164	EAAJ	10,882		EAAA	11,621	CAAG	10,797	CFAA	10,527
13		FAAA	12,479	BAAA	11,687	FAAA	11,447		EAAA	11,907	FAAA	11,182	FAAA	10,942		CAAG	11,735	CEAA	10,881	CEAA	10,595
14		EAAA	12,491	FAAA	11,688	BAAA	11,504		FAAA	11,974	CAAF	11,193	BAAA	10,981		FAAA	11,777	EAAA	10,912	EAAA	10,699
15		CEAA	12,522	EAAA	11,782	EAAA	11,569		CEAA	12,022	EAAA	11,198	EAAA	10,985		CEAA	11,805	FAAA	10,986	FAAA	10,745
16		EAAJ	12,549	CAAF	11,864	CAAF	11,726		EAAJ	12,225	EAAJ	11,212	CAAF	11,056		EAAJ	12,247	EAAJ	11,234	EAAJ	10,904
17		CAAL	14,329	CAAL	13,987	CAAL	13,936		CAAL	13,035	CAAL	12,692	CAAL	12,642		CAAL	12,288	CAAL	11,946	CAAL	11,895
18		BEAL	15,428	BEAL	14,982	BEAL	14,909		BEAL	13,968	BEAL	13,521	BEAL	13,448		BEAL	13,177	BEAL	12,731	BEAL	12,657

2.1 CO₂ Restriction Uncertainty Ranges

Under the Mid Gas, Mid Construction Cost scenarios, the plan CGAG (which includes no coal retirements and is optimized for the low CO₂, low gas scenario) becomes a lower cost plan than the Preferred Plan as CO₂ restrictions move towards the Low scenario.

Using the NPVRR results shown in the Table below, linear interpolation was used to determine the change in CO₂ restrictions necessary for CGAG to become a lower cost plan than the Preferred Plan CAAA. As CO₂ restrictions decline towards the Low scenario, CGAG becomes the lower cost plan. Notably, CGAG includes the same 2027 solar build as the Preferred Plan and also includes new thermal build in 2029. However, the new thermal build is a combustion turbine in CGAG and it is supplemented with an additional 2028 solar (not included in Preferred Plan).

From these results, as CO₂ restrictions move 22% of the distance from the Mid CO₂ scenario towards the Low CO₂ scenario, CGAG becomes the lower cost plan.

Table 11: CAAA vs. CGAG (Mid Natural Gas, Mid Construction Costs)

	CO2							
ARP	Mid	Low						
CAAA	10,941	10,898						
CGAG	11,003	10,683						
% froi	22%							

Similarly, under the Mid Gas, Mid Load scenarios, the plan CAAF becomes a lower cost plan than the Preferred Plan as CO₂ restrictions move towards the High scenario. Plan CAAF is specifically optimized for the high CO₂, high gas scenario and replaces nearterm solar additions with wind and storage. Similar to CGAG, the 2029 thermal build is a combustion turbine in this scenario. As carbon restrictions increase from the Mid scenario toward the High scenario, CAAF becomes the lower cost plan. From these results, carbon restrictions need to move 36% of the distance towards the High scenario for CAAF to become the lower cost plan.

Table 12: CAAA vs. CAAF (Mid Natural Gas, Mid Construction Costs)

	CO2								
ARP	Mid	High							
CAAA	10,941	11,666							
CAAF	11,193	11,221							
% fro	36%								

2.2 Construction Cost

Under the Mid Gas, Mid CO₂ scenarios, the plan CAAC becomes lower cost than the Preferred Plan with Low Construction Costs. Using the NPVRR results shown in the Table below, linear interpolation was used to determine the change in gas prices necessary for the NPVRR for CAAC to become lower than the Preferred Plan CAAA. From these results, as construction costs move 30% of the distance from the Mid scenario towards the Low scenario, CAAC becomes the lower cost plan.

	Construction Cost									
ARP Mid Low										
CAAA	10,941	10,626								
CAAC	CAAC 10,976									
% fro	30%									

Table 13: CAAA vs. CAAC (Mid Natural Gas, Mid CO₂ Restriction)

2.3 Natural Gas Uncertainty Range

Given that the natural gas price forecast did not materially change plan rankings, the limits within which the Preferred Plan remains appropriate was not evaluated.

Section 3: Outcomes of Critical Uncertain Factors⁷

The Company calculated the value of better information for the critical uncertain factors identified in the preliminary sensitivity test that affect the performance of the Preferred Plan. For each uncertainty, the Preferred Plan NPVRR for the specific uncertainty scenarios (or endpoints) was compared to the better plan under each extreme uncertainty condition. Bayes' Theorem was applied to the endpoint probabilities to develop conditional probabilities for the calculation scenarios. The difference between the expected value of the Preferred Plan and the expected value of the plan with better information results is the expected value of better information.

These values represent the maximum amount the company should be willing to spend to study each of these uncertainties. It must be noted that should a Preferred Plan outperform all alternatives across the range of a critical risk, the calculation for better information will yield a value of zero.

⁷ 20 CSR 4240-22.070 (3)

For Evergy Missouri West, CGAG becomes a lower cost plan than the Preferred Plan in the Low CO₂ scenarios modeled. Table 14 below represents the value of better information when evaluating these plans having that knowledge.

Endpoint	NG	CO2	ConCost	Preferred	Weighting	Cond. Weight	NPVRR (\$MM)	Expected Value (\$MM)
3	High	Low	High	CAAA	0.94%	3.75%	12,053	
6	Mid	Low	High	CAAA	3.13%	12.50%	11,311	
9	Low	Low	High	CAAA	2.19%	8.75%	11,088	
12	High	Low	Mid	CAAA	1.88%	7.50%	11,640	
15	Mid	Low	Mid	CAAA	6.25%	25.00%	10,898	10,956
18	Low	Low	Mid	CAAA	4.38%	17.50%	10,675	
21	High	Low	Low	CAAA	0.94%	3.75%	11,325	
24	Mid	Low	Low	CAAA	3.13%	12.50%	10,583	
27	Low	Low	Low	CAAA	2.19%	8.75%	10,360	
Endpoint	NG	CO2	ConCost	Better	Weighting	Cond. Weight	NPVRR (\$MM)	Expected Value (\$MM)
3	High	Low	High	CGAG	0.94%	3.75%	11,700	
6	Mid	Low	High	CGAG	3.13%	12.50%	11,071	
9	Low	Low	High	CGAG	2.19%	8.75%	10,887	
12	High	Low	Mid	CGAG	1.88%	7.50%	11,312	
15	Mid	Low	Mid	CGAG	6.25%	25.00%	10,683	10,715
18	Low	Low	Mid	CGAG	4.38%	17.50%	10,499	
21	High	Low	Low	CGAG	0.94%	3.75%	10,932	
24	Mid	Low	Low	CGAG	3.13%	12.50%	10,303]
27	Low	Low	Low	CGAG	2.19%	8.75%	10,120	
				Expecte	d Value of	Better Infori	mation (\$MM)	241

Table 14: Better Information – Low CO₂ Costs

CAAF becomes a lower cost plan than the Preferred Plan in some High CO₂ scenarios modeled. Table 15 below represents the value of better information when evaluating these plans having that knowledge.

Endpoint	NG	CO2	ConCost	Preferred	Weighting	Cond. Weight	NPVRR (\$MM)	Expected Value (\$MM)
1	High	High	High	CAAA	0.56%	3.75%	12,637	
4	Mid	High	High	CAAA	1.88%	12.50%	11,879]
7	Low	High	High	CAAA	1.31%	8.75%	11,664	
10	High	High	Mid	CAAA	1.13%	7.50%	12,424	
13	Mid	High	Mid	CAAA	3.75%	25.00%	11,666	11,629
16	Low	High	Mid	CAAA	2.63%	17.50%	11,452	
19	High	High	Low	CAAA	0.56%	3.75%	11,908	
22	Mid	High	Low	CAAA	1.88%	12.50%	11,150	
25	Low	High	Low	CAAA	1.31%	8.75%	10,936	
Endpoint	NG	CO2	ConCost	Better	Weighting	Cond. Weight	NPVRR (\$MM)	Expected Value (\$MM)
1	High	High	High	CAAF	0.56%	3.75%	12,412	
4	Mid	High	High	CAAF	1.88%	12.50%	11,892	
7	Low	High	High	CAAF	1.31%	8.75%	11,764	
10	High	High	Mid	CAAF	1.13%	7.50%	11,742]
13	Mid	High	Mid	CAAF	3.75%	25.00%	11,221	11,267
16	Low	High	Mid	CAAF	2.63%	17.50%	11,093	
19	High	High	Low	CAAF	0.56%	3.75%	11,119	
22	Mid	High	Low	CAAF	1.88%	12.50%	10,599]
25	Low	High	Low	CAAF	1.31%	8.75%	10,471	
				Expecte	ed Value of	Better Infor	mation (\$MM)	362

Section 4: Contingency Resource Plans⁸

Evergy Missouri West developed a number of ARPs to address specific planning contingencies. As shown in the critical uncertain factor analysis above, future emissions restrictions have a relatively significant effect on the economics of resource plans. The plan CAAF was developed as the optimal plan with High CO₂ restrictions and High Natural Gas prices, and it was also identified as the optimal plan for potential future GHG rule compliance. The plans CAAG and CGAG were developed for Low (No) CO2 restrictions and Low Natural Gas prices.

⁸ 20 CSR 4240-22.070 (4); 20 CSR 4240-22.070 (4)(A); 20 CSR 4240-22.070 (7)(C)

Contingency plans were also developed for execution risk of near-term solar (CAAC), risk of Crossroads retirement pending a decision on the recovery of transmission costs (CFAA), and for high load growth (CAAH) and low load growth (CAAI). These plans were also developed through capacity expansion to determine the optimal resource additions given the contingencies assessed.⁹ All ARPs are described in more detail in Volume 6.

The contingency plans meet the considerations of Rule 240.22.010(2) as they are Alternative Resource Plans developed and conformed in the response to Rule 4240-22.060(3) in Volume 6 of this filing.

As for concurrence with Rule 240.070(1), the plans conform by meeting Rule 240.010(2). The plans utilize DSM that conforms to legal mandates and each of the Evergy Missouri West plans modeled indicated no unserved energy in production cost modeling analysis. The plans comply with all current and proposed SPP Resource Adequacy Requirements which are designed to maintain loss-of-load expectation (i.e., the expectation of unserved energy) of less than one day in ten years, with a probabilistic consideration of extreme weather included in this analysis. Additional analysis of extreme weather is provided in response to a Special Contemporary Issue in Volume 8.¹⁰

Section 5: Load–Building Programs¹¹

Evergy Missouri West does not currently have or plan to propose any load-building programs.

⁹ 20 CSR 4240-22.70(4)(B)

¹⁰ 20 CSR 4240-22.070(4)(C)

¹¹ 20 CSR 4240-22.070 (5); 20 CSR 4240-22.070 (5)(A); 20 CSR 4240-22.070 (5)(A)(1); 20 CSR 4240-22.070 (5)(A)(2); 20 CSR 4240-22.070 (5)(A)(3); 20 CSR 4240-22.070 (5)(A)(4); 20 CSR 4240-22.070 (5)(A)(5); 20 CSR 4240-22.070 (5)(B); 20 CSR 4240-22.070 (5)(B)(1); 20 CSR 4240-22.070 (5)(B)(2)

Section 6: Implementation Plan¹²

6.1 Load Analysis - Schedule and Description¹³

Evergy will continue to develop and improve its framework of incorporating photovoltaic (PV) and electric vehicle (EV) impacts into the energy forecast to capture PV and EV energy impacts. Evergy also plans to look at developing a new TOU residential load shape.

6.2 Demand-Side Programs – Schedule and Description¹⁴

The current schedules for ongoing and planned DSM programs studied in the 2023 Evergy DSM Market Potential Study are shown in Table 16 and Table 17 below:

^{12 20} CSR 4240-22.070 (6); 20 CSR 4240-22.070 (7)(B)

^{13 20} CSR 4240-22.070 (6)(A)

¹⁴ 20 CSR 4240-22.070 (6)(B)

Program Name	Program Type	Segment	Program Implemented	Annual Report	Program Duration	EM&V Completed and draft report available
Energy Saving Products	Energy Efficiency	Residential	Jan., 2020	90-days following Plan Year	5-Years	1-Yr following Plan Year
Heating, Cooling & Home Comfort	Energy Efficiency	Residential	Jan., 2020	90-days following Plan Year	5-Years	1-Yr following Plan Year
Income-Eligible Multi-Family	Energy Efficiency	Residential	Jan., 2020	90-days following Plan Year	6-Years	1-Yr following Plan Year
Income-Eligible Single Family	Energy Efficiency	Residential	Jan., 2023	90-days following Plan Year	2-Years	1-Yr following Plan Year
Urban Heat Island	Energy Efficiency	Residential & C&I	Jan., 2024	90-days following Plan Year	1-Year	1-Yr following Plan Year
Research & Pilots	Energy Efficiency & Demand Response	Residential & C&I	Jan., 2020	90-days following Plan Year	5-Years	1-Yr following Plan Year
PAYS	Energy Efficiency	Residential	Sep., 2021	90-days following Plan Year	3-Years	1-Yr following Plan Year
Residential Demand Response	Demand Response	Residential	Jan., 2020	90-days following Plan Year	5-Years	1-Yr following Plan Year
Business Standard	Energy Efficiency	C&I	Jan., 2020	90-days following Plan Year	5-Years	1-Yr following Plan Year
Business Custom	Energy Efficiency	C&I	Jan., 2020	90-days following Plan Year	5-Years	1-Yr following Plan Year
Business Demand Response	Demand Response	C&I	Jan., 2020	90-days following Plan Year	5-Years	1-Yr following Plan Year

 Table 16: DSM Program Schedule – Existing Programs

Program Name	Program Type	Segment	Projected Tariff Filing Date	Projected Approval Date	Projected Implementation Date	Annual Report
Energy Savings Products	Energy Efficiency	Residential	Q2,2024	July, 2024	January, 2025	90-days following Plan Year
Heating, Cooling & Weatherization	Energy Efficiency	Residential	Q2,2024	July, 2024	January, 2025	90-days following Plan Year
IEMF	Energy Efficiency	Residential	Q2,2024	July, 2024	January, 2025	90-days following Plan Year
IESF	Energy Efficiency	Residential	Q2,2024	July, 2024	January, 2025	90-days following Plan Year
Research & Pilot	Energy Efficiency & Demand Response	Residential & C&I	Q2,2024	July, 2024	January, 2025	90-days following Plan Year
New Construction	Energy Efficiency	Residential	Q2,2024	July, 2024	January, 2025	90-days following Plan Year
Connected Thermostats DLC	Demand Response	Residential	Q2,2024	July, 2024	January, 2025	90-days following Plan Year
Time-of-Use (TOU) Rate	Demand Response Rate	Residential	Q2,2024	July, 2024	January, 2025	90-days following Plan Year
Electric Vehicle (EV) TOU Rate	Demand Response Rate	Residential	Q2,2024	July, 2024	January, 2025	90-days following Plan Year
Business Standard	Energy Efficiency	C&I	Q2,2024	July, 2024	January, 2025	90-days following Plan Year
Business Custom	Energy Efficiency	C&I	Q2,2024	July, 2024	January, 2025	90-days following Plan Year
Business Energy Education	Energy Efficiency	C&I	Q2,2024	July, 2024	January, 2025	90-days following Plan Year
Firm Curtailment/Tariff	Demand Response	C&I	Q2,2024	July, 2024	January, 2025	90-days following Plan Year
Connected Thermostats DLC	Demand Response	C&I	Q2,2024	July, 2024	January, 2025	90-days following Plan Year
Critical Peak Pricing (CPP) Rate	Demand Response Rate	C&I	Q2,2024	July, 2024	January, 2025	90-days following Plan Year

Table 17: DSM Program Schedule – Planned Programs

Additional detail regarding the implementation plan for the DSM Preferred Plan can be found in Volume 5. It includes the descriptions of the programs, the implementation

Q2,2024

July, 2024

January, 2025

C&I

Demand

Rate

Response

Time-Related Pricing (TRP)

Rate

90-days following

Plan Year

strategy, a discussion of risk management, the incentive levels used for planning purposes, energy and peak demand savings goals, and budget estimates.

6.3 Supply-Side – Schedules and Descriptions¹⁵

The Preferred Plan for the next three years for Evergy Missouri West includes the RAP Plus demand-side management portfolio, with the additions of 143 MW of Dogwood natural gas in 2024 and 150 MW of solar in 2027. The Preferred Plan also includes the addition of a Combined Cycle Gas Turbine plant in 2029. Due to the longer construction timeline required to build this natural gas unit, implementation activities will begin in the next three years and thus these implementation activities are outlined below.

6.3.1 Dogwood Energy Center

The Preferred Plan includes acquiring an approximately 143 MW equity stake in the Dogwood combined cycle plant, with all 143 MW being assigned to Evergy Missouri West. As the resource is already existing and operating in the SPP, the typical construction timelines were not required. This resource was offered as part of a late 2022 capacity RFP and incorporated into the Missouri West 2023 IRP Annual Update. As a result of RFP offer analysis, which indicated that Dogwood was likely an attractive resource option for Missouri West to pursue, Missouri West began negotiations with the owner of Dogwood in early 2023, with the ultimate decision to pursue the purchase dependent on whether it aligned with the Preferred Plan selected through the 2023 IRP. Negotiations were completed in June 2023, resulting in a signed asset purchase agreement, and a CCN was granted on March 21, 2024 with an effective date of April 20, 2024. Evergy anticipates closing the transaction in April or May 2024. The final close date is still to be determined but the schedule is provided in Table 18 below:

¹⁵ 20 CSR 4240-22.070 (6)(C)

Milestone Description	Expected Completion
Final Definitive Sales Agreement	June 2023
File Application for Certificate of Convenience and Necessity (CCN)	June 2023
Issued CCN Order	March 21, 2024
Determine Market Services Arrangement and Coordination Structure with Other Owners	April 2024
Submit Market Changes to SPP	April 2024
Final Transaction Close	April or May 2024

Table 18: Dogwood Milestone Schedule

6.3.2 Solar Additions

The Preferred Plan includes acquiring approximately 150 MW of company-owned solar generation, with all projects reaching commercial operation by December 31, 2026. The approximately 150 MW project(s) would be allocated to Evergy Missouri West. It is anticipated that one or more projects brought out of the 2023 All-Source RFP will be pursued for a CCN later this year. A draft schedule of major milestones expected to be undertaken for the construction of a large-scale solar project(s) is provided in Table 19 below.

 Table 19: Solar Project Milestone Schedule

Milestone Description	Expected Completion
Site Control Complete	July 2023
Major Commercial Agreements Complete	First half of 2024
Environmental and Land Permitting Complete	First half of 2025
Regulatory Approvals	First half of 2025
Detailed Design and Engineering	End of 2025
Equipment Acquisition and Delivery	January 2026
Construction Complete	October 2026
Testing and Commissioning	November 2026
Commercial Operation	End of 2026

6.3.3 Combined Cycle Gas Turbine Addition

The Preferred Plan also includes construction of a Combined Cycle Gas Turbine (CCGT) plant. Capacity for this plant will be approximately 650 MW of summertime capacity. This capacity will support multiple Evergy jurisdictions with approximately 325 MW of capacity being allocated for Missouri West. This facility is expected to become commercially

operational by April 2029. A draft schedule of major milestones expected to be undertaken for the construction of a CCGT plant is provided in the Table below.

Milestone Description	Expected Completion
Site Selection Complete	December 2023
SPP Large Generator Interconnection Application	October 2024
Environmental and Land Permitting Complete	2025
Design Spec & Engineering, Procurement, and Construction Award	First Half 2025
State Utility Regulatory Approvals (CCN and/or Predetermination)	First Half 2025
Detailed Design and Engineering	Second Half 2025
Construction Begins	2026
Major Equipment Delivery	2027
Construction Complete	2029
Testing and Commissioning Complete	2029
Commercial Operation	April 2029

Table 20: CCGT Plant Implementation Milestones

There are also environmental retrofit projects continuing, expected to be continued, or initiated during the three-year implementation period. Table 21 below provides estimated dates for major projects currently expected.

Retrofit Project Description	Expected Timeline
Iatan 1 – Landfill Phase 2B Cover	2024
latan 1 – Landfill Phase 3 Cover	2027- 2028
Iatan 1 – Ash Pond Closure	Complete
latan 1 – Intake Modifications	2024 – 2026
latan 2 – Landfill Phase 2B Cover	2024
latan 2 – Landfill Phase 3 Cover	2027 – 2028
Jeffrey 1 – Fly Ash Landfill Area 1 Permit Modification	Complete
Jeffrey 1 – Fly Ash Landfill Area 1 Cover	2023 – 2027
Jeffrey 1 - Fly Ash Landfill Area 2 Cover	2023 – 2027
Jeffrey 1 – FGD Landfill Leachate Pond	Complete
Jeffrey 1 – FGD Landfill Cover	2027 – 2028
Jeffrey 1 – Bottom Ash Settling Area Closure	2024 – 2025
Jeffrey 1 – Bottom Ash Landfill Cover	2025 – 2027
Jeffrey 1 – Bottom Ash Conversion	Complete
Jeffrey 1 – Effluent Guidelines FGD Wastewater	2024-2025
Jeffrey 2 – Fly Ash Landfill Area 1 Permit Modification	Complete
Jeffrey 2 – Fly Ash Landfill Area 1 Cover	2023 – 2027
Jeffrey 2 - Fly Ash Landfill Area 2 Cover	2023 – 2027
Jeffrey 2 – FGD Landfill Leachate Pond	Complete
Jeffrey 2 – FGD Landfill Cover	2027 – 2028
Jeffrey 2 – Bottom Ash Settling Area Closure	2024 – 2025
Jeffrey 2 – Bottom Ash Landfill Cover	2025 – 2027
Jeffrey 2 – Bottom Ash Conversion	Complete
Jeffrey 2 – Effluent Guidelines FGD Wastewater	2024-2025
Jeffrey 3 – Fly Ash Landfill Area 1 Permit Modification	Complete
Jeffrey 3 – Fly Ash Landfill Area 1 Cover	2023 – 2027

 Table 21: Environmental Retrofit Project Schedule

Jeffrey 3 - Fly Ash Landfill Area 2 Cover	2023 – 2027
Jeffrey 3 – FGD Landfill Leachate Pond	Complete
Jeffrey 3 – FGD Landfill Cover	2027 – 2028
Jeffrey 3 – Bottom Ash Settling Area Closure	2024 – 2025
Jeffrey 3 – Bottom Ash Landfill Cover	2025 – 2027
Jeffrey 3 – Bottom Ash Conversion	Complete
Jeffrey 3 – Effluent Guidelines FGD Wastewater	2024-2025

6.4 Critical Paths and Milestones¹⁶

Demand-side critical paths and milestones are provided in Section 6.2 above. Supplyside critical paths and milestones, including resource expenditures for the environmental projects listed in Table 21, are provided in Section 6.3 above.

6.5 Competitive Procurement Policies¹⁷

In August 2022 Evergy issued an RFP for capacity and energy. The RFP document is attached as Appendix 7A. Evergy utilized the North American Energy Markets Association (NAEMA) for distribution of the RFP, with the collection and analysis of respondent submittals being performed by Evergy.

As referred to previously, Evergy also issued an RFP in February 2023. The RFP document is attached as Appendix 7B. Evergy retained 1898 & Co. to oversee distribution of the RFP and to collect and analyze respondent submittals.

6.6 Monitoring Critical Uncertain Factors¹⁸

Each critical uncertain factor is reviewed on an individual basis due to the varied nature of the information sources used in its review. This IRP analysis will be updated on an

¹⁶ 20 CSR 4240-22.070 (6)(D)

¹⁷ 20 CSR 4240-22.070 (6)(E)

¹⁸ 20 CSR 4240-22.070 (6)(F)

annual basis reflecting any changes to these critical uncertain factors. Results will be distributed to the Operations Leadership Team.

6.6.1 Critical Uncertain Factor: CO2

The passage of the Inflation Reduction Act and the EPA publishing several more stringent draft rules for fossil plants have demonstrated it is more likely that carbon reductions will be realized through a mix of renewable incentives (e.g., Production Tax Credits), carbon emission caps, and other stringent emission restrictions on fossil plants which drive the need for new retrofits. As a result of these changes, Evergy moved away from exclusively using a carbon tax (which was used in historical IRPs, including the 2022 Annual Update) to utilize carbon restriction scenarios instead, which are aligned with carbon restriction scenarios developed through the SPP economic model development process. As a result of this change, a higher level of carbon restrictions actually drives down average SPP energy market prices (as renewables are built out aggressively based on incentives and the need for carbon-free energy) and drives up fixed costs as fossil plants must be retrofitted or replaced with other non-emitting resources. As opposed to a carbon tax, which is a variable cost that impacts a resource's market offer cost, these fixed costs are not recoverable in the SPP energy market and thus do not drive-up energy prices. It is possible that ultimately a CO₂ tax may become the more likely scenario again, thus Evergy continues to monitor policy developments to determine whether an adjustment is necessary, but for this IRP, an "incentives plus restrictions" approach is more representative of Evergy's expectations for the future. In parallel with Evergy's ongoing monitoring of environmental policy, SPP and its members will also continue to make changes to modeling assumptions related to carbon restrictions in future Integrated Transmission Planning processes and Evergy will be actively engaged in these discussions.

6.6.2 Critical Uncertain Factor: Load

Load forecasts are updated on an annual basis as part of the company's annual budgeting and IRP process. In addition, updated forecasts for economics, end-use efficiency and saturations, electrification and distributed energy resources are incorporated into these load forecasts whenever they become available.

6.6.3 Critical Uncertain Factor: Natural Gas

Natural Gas forecasts are updated weekly with executive updates provided monthly.

6.6.4 Critical Uncertain Factor: Construction Costs

Expectations for future construction and interconnection are reviewed at least annually based on the latest publicly available cost information as well as up-to-date information from Evergy's ongoing construction efforts related to the implementation of its Preferred Resource Plans. Construction and interconnection costs related to specific projects are also monitored on an ongoing basis throughout project development.

6.7 Maintaining Flexibility – Other Sources of Uncertainty

The primary goals in selecting a Preferred Plan are to evaluate whether near-term actions are robust across various future market scenarios and to maintain as much flexibility as possible to adjust to changing market conditions in the medium- and long-term horizon. The planning environment has continued to evolve and become more dynamic – creating an increased value for maintaining flexibility. Some of the additional sources of uncertainty related to Evergy Missouri West's resource plans (beyond the critical uncertain factors already described) are described below, as well as a discussion of how this uncertainty has been and will be factored into planning processes and resource planning decision-making.

6.7.1 Commodity Prices

As expected, the dramatic increase in natural gas prices seen in late 2021 and 2022 has subsided and natural gas prices have now returned to levels seen in 2020 and prior. The experience of those elevated prices, however, demonstrated the value of considering a wide range of potential price scenarios in resource planning analysis given the large amount of uncertainty inherent in forecasting commodity prices. To that end, Evergy utilizes a range of natural gas price forecasts, created based on both publicly available and proprietary third-party forecasts. The Preferred Plan has been tested across this range of potential commodity price futures, as described in the Integrated Risk Analysis section.

6.7.2 Renewable Resource Construction Costs

Driven by tight supply chains, increasing incentives for "onshoring" of manufacturing, and increased demand driven by the Inflation Reduction Act, there has been an increase in the construction cost for new renewable generation. Evergy has incorporated this increase into the cost assumptions utilized for this IRP based on the results of its early 2023 All-Source Request for Proposal (RFP). Based on these near-term prices for renewable projects, a third-party cost curve is then used to forecast future cost reductions and to create a long-term forecast for renewable resource costs. These increased costs, combined with the delayed availability of solar projects based on the RFP, have, based on capacity expansion modeling results explained in the Integrated Risk Analysis section, resulted in less renewable additions during the first few years of the Preferred Plan. Consistent with Evergy's methodology of treating construction costs as a critical uncertain factor for all resources, renewables projects were studied with a plus and minus twenty-five percent range around the mid-level estimates. This allows Evergy to study plan costs based on a range of renewables construction cost environments.

6.7.3 SPP Interconnection Queue

The SPP Interconnection Queue continues to be backlogged, although SPP is making significant progress in addressing this issue and redesigning its processes to mitigate the risk of future backlogs. In addition, there is continued uncertainty around upgrade costs which will be assigned to specific projects once they complete the interconnection study process, which can create cost uncertainty depending on the maturity of individual projects. Evergy believes that the ratable approach to renewables included in this Preferred Plan allow it to better manage this risk and make adjustments as needed but will continue to monitor SPP's efforts to mitigate the existing backlog and determine cost allocation methods which will effectively share costs between renewable interconnection customers and the rest of the Pool, as appropriate. Evergy is closely monitoring SPP's

development of the Consolidated Planning Process, the Capacity Resource Interconnection Service product, and the Joint Targeted Interconnection Queue, which all should serve to provide improved schedule and upgrade cost certainty for future resource additions. In addition, Missouri West has explicitly factored interconnection cost uncertainty into the 2024 IRP through the construction / interconnection cost uncertain factor.

6.7.4 Distributed Energy Resources (DERs)

While Evergy has not yet seen significant penetration of distributed energy resources to the point that it impacts our long-term plan, the continued expansion of electrification, DER aggregation driven by FERC Order 2222, and other policy changes which could influence DER adoption will all continue to be monitored and factored into Evergy's long-term plans as needed. This uncertainty is implicitly considered in the range of load forecasts assessed through contingency plans in this IRP because behind-the-meter generation and electrification can either reduce or increase the Company's need for resources, respectively.

6.7.5 Electrification

Across Evergy's system, the potential for broad electrification (e.g., vehicles, space / water heating) will continue to be an uncertainty in the development of load forecasts and long-term plans. Evergy incorporates forecasts for electric vehicle adoption into its load forecasts used in IRP planning and these forecasts are updated regularly. Evergy also performed a broader electrification potential study for the 2021 Triennial IRP which was included as the "high" case in this 2024 IRP as well. Going forward, Evergy will continue to monitor actual electrification activity in its service territory and update load forecasts for IRP filings. This monitoring and forecasting activity will also be informed by the availability of programs and technology which can mitigate the impact of electrification on peak demand (and thus Evergy's capacity requirements).

6.7.6 Economic Development

Evergy continues to see robust economic development activity with large new customer loads evaluating locating in the service territory. Given the magnitude of potential new loads, they represent an uncertainty which is monitored continuously and incorporated into Evergy's load forecasts as they come to fruition. In the 2024 IRP, Evergy has incorporated announced economic development projects – specifically focused on large projects greater than 100 MW - into its load forecasts for planning purposes for each of its utilities. Specific to Missouri West, the load associated with the announced Meta data center has been incorporated into the low, mid, and high load forecasts. The current Missouri West pipeline for potential economic development which could be online by 2026 or 2027 is significantly larger than this single project, but planning to serve the full economic development pipeline could result in procuring / building capacity for a level of load which may not ultimately materialize. As a result, the full pipeline of potential new customers is not included in the load forecast. However, it is critical to ensure sufficient capacity is being built for customers who have announced their intent to locate in Evergy's service territory and who are farther along in the project development process. In parallel, the "high" load forecast incorporated as a contingency plan in this IRP provides a sensitivity on how additional load growth and/or additional changes in resource adequacy requirements could change Missouri West's resource plan if they materialized.

6.7.7 Reliability and Resource Adequacy

As discussed, and agreed with parties following the 2021 IRP, Evergy has incorporated more detailed reliability risk analysis into this IRP in response to a Special Contemporary Issue. Beyond this specific analysis, there also continues to be significant uncertainty regarding SPP's resource adequacy requirements and, ultimately, how reliability risk should be evaluated and incorporated into planning processes – not just for Evergy or for SPP, but for the entire electric utility industry. Following Winter Storm Uri in 2021, SPP, other Regional Transmission Organizations (RTOs), NERC, and FERC have all initiated efforts to promote changes in resource adequacy processes and requirements so they can be better tailored to a low-carbon resource mix given an increasing dependence of customers on electricity as the economy continues to electrify. It is still uncertain what the

ultimate impact of these efforts will be in terms of new Standards and Requirements, but some of the potential impacts are described below. Given the significant amount of uncertainty in these areas and the potential for significant impacts to Evergy's resource planning, Evergy is participating actively in both SPP and NERC activities related to these topics. Many of these items, and how they are incorporated into this IRP, are described in detail Volume 4, Section 1.5. They are also summarized at a high-level below.

Multi-Season Adequacy

Across the US, RTOs are modifying their resource adequacy constructs to change how they evaluate adequacy in, at the very least, the summer and winter seasons and, in many cases, all four seasons. Evergy has historically focused on planning for the summer season given our status as a summer-peaking utility. However, as SPP's requirements change, Evergy's planning processes also need to change. SPP has proposed two-season (winter and summer) performance-based accreditation (discussed below) and is also in the process of developing a planning reserve margin specific to the winter season (in addition to the summer reserve margin). SPP is currently expecting to implement an interim winter resource adequacy requirement for the 2025/2026 winter season (based on applying the summer reserve margin to winter load), with the implementation of a standalone winter requirement in the following winter. It is still uncertain how this requirement will be implemented, thus Evergy continues to participate actively in SPP policy development. However, as described in Volume 4 and below, Evergy has incorporated the current expected impact of winter resource adequacy requirements in modeling for this 2024 Triennial.

Resource Accreditation

In 2023, FERC rejected SPP's proposal to implement the Effective Load Carrying Capability (ELCC) methodology for renewable accreditation, which would reduce the capacity credit given to renewable resources. ELCC remains the industry standard for renewable accreditation and FERC's stated rationale for rejecting the proposal was based largely on the discrepancy between accreditation approaches for renewable and thermal generators. In response to this feedback, SPP has filed a new request with FERC to

implement ELCC and Performance-Based Accreditation for thermal generators at the same time in 2026. This parallel implementation creates significant uncertainty around capacity accreditation which will be received beginning in 2026 given these two methodologies are more "black box" and they create variability in the credit a resource will receive from season to season and year to year. To factor in this risk and uncertainty, capacity expansion modeling in the 2024 IRP allowed a lower level of market capacity purchases beginning in 2026. This reflects the expectation that excess capacity available in SPP will decline and other Load-Responsible Entities (LRE) will be less willing to sell their excess in order to manage their own resource adequacy risk. In addition, the expected impact of these accreditation methodologies was incorporated into the integrated analysis performed in the 2024 IRP as described in Volume 4.

Fuel Supply Requirements

Given challenges with natural gas supply during Winter Storm Uri and similar extreme winter events, many RTOs and NERC are evaluating how the firmness of fuel supply should be considered in determining a resource's contribution to meeting Adequacy requirements. Changes in this area could potentially materialize in the form of on-site fuel or firm transport requirements for individual generators or minimum reliability attributes at the overall RTO level in terms of on-site fuel availability. SPP continues to evaluate this requirement in the context of other Resource Adequacy Requirement changes (particularly for the winter). The current expectation is that fuel security will be assessed through resource accreditation (described above) as opposed to a standalone requirement. As a result, no specific requirement is currently included in IRP modeling.

Reserve Margin

Soon after the 2022 Annual Update was filed, SPP increased the Planning Reserve Margin (i.e., the amount of accredited capacity that an LRE must maintain in excess of its load) from 12% to 15% beginning with the summer 2023 season. SPP has also indicated that they expect future increases to the Reserve Margin as the resource mix continues to become more intermittent and we see more extreme weather. At this time, it is uncertain when the next increase will be implemented, but it's possible it could be as soon as 2025

or 2026 summer. Based on SPP's preliminary evaluations of potential winter Resource Adequacy Requirements, it is also likely that the winter Reserve Margin will be much higher than the summer Reserve Margin. SPP has also indicated that the expected reserve margins will continue increasing in the future (beyond the 2025/2026 increase). As a result, Evergy has incorporated a slowly increasing reserve margin for both winter and summer in its integrated analysis for the 2024 IRP as described in Volume 4.

Energy Adequacy (As Opposed to Capacity Adequacy)

A relatively new concept in this space is the distinction being made between "energy adequacy" and the more traditional view of "resource adequacy" or "capacity adequacy", with the more traditional view being focused on maintaining sufficient capacity to meet peak hour requirements, plus a level of reserves to mitigate risk (with risk being driven by load uncertainty and resource performance, generally). A key focus of NERC over the last couple of years has been on exploring additional / modified Reliability Standards which expand that traditional focus to a broader view of "Energy Adequacy" which takes into account all hours - not just peaks - and incorporates a greater range of uncertainties given the quickly-changing resource mix (both supply- and demand-side resources). NERC has established Standard Drafting Teams to develop new Reliability Standards which will require the performance of Energy Assessments. It is uncertain how these potential Standards will ultimately impact SPP analysis and requirements, but Evergy continues to monitor them closely. Given the loss of load expectation modeling which SPP performs to establish reserve margin requirements already assesses reliability risks in all hours (8,760 hours) and not just peaks, it is most likely that SPP will begin supplementing loss of load expectation metrics with expected unserved energy (EUE) metrics. The addition of EUE allows the duration and magnitude of loss-of-load events to be assessed in addition to just the frequency (which is assessed through LOLE). An example of the use of EUE is included in the reliability analysis in Volume 8.

The items described above are considered in ongoing updates to Evergy's IRP on either an annual or triennial basis (depending on the pace of change).

6.8 Monitoring Preferred Resource Plan¹⁹

6.8.1 DSM Initiatives

Evergy Missouri West has processes in place to monitor its Demand-Side Management programs and track and report their performance compared to the planned implementation schedule.

6.8.2 Supply-Side Resource Additions

The implementation activities related to supply-side resource additions are described in Section 6.3. These activities are monitored on an ongoing basis by the Development team with specifically assigned Project Managers for each project to monitor schedule and budget. Any deviations and corresponding mitigations are first reported to / reviewed by the Vice President of Development and then the Chief Financial Officer and other Officers as needed.

¹⁹ 20 CSR 4240-22.070 (6)(G)

Section 7: Resource Acquisition Strategy²⁰

7.1 Resource Acquisition Strategy Approval

The following statement is the formal approval by officers of Evergy Missouri West committing Evergy Missouri West to the course of action described in the resource acquisition strategy.

Figure 1: Corporate Approval and Statement of Commitment for Resource

Acquisition Strategy

Evergy Missouri West, Inc.

Integrated Resource Plan – 2024 Triennial Filing

Corporate Approval and Statement of Commitment for

Resource Acquisition Strategy

In accordance with Missouri Public Service Commission Rules found in 20 CSR 4240-22, Evergy Missouri West now officially adopts for implementation and the resource acquisition strategy contained in this Triennial filing.¹ Additionally, the preferred resource plan is consistent with Evergy Missouri West's business plan.²

With the objective of providing the public with energy services that are safe, reliable, and efficient at just and reasonable rates, Evergy Missouri West is committed to the full implementation of the Resource Acquisition Strategy contained herein.

Dreson Humphrey

Jason Humphrey Vice President Development

> —DocuSigned by: David Campbell

David Campbell President and Chief Executive Officer

¹ 20 CSR 4240-22.080 (1)(A) ² 20 CSR 4240-22.080 (1)(B)

²⁰ 20 CSR 4240-22.070 (7)

Section 8: Evaluation of Demand-side Programs and Demand-Side Rates²¹

Evergy Missouri West will engage an EM&V contractor(s) to conduct process and impact evaluations of the DSM programs and demand-side rates that are approved by the Commission. The EM&V Contractor will meet with Evergy program staff to discuss evaluation objectives, establish a schedule of deliverables and set up a communications protocol. The EM&V Contractor will develop a high-level timeline of evaluation activities and reporting.

8.1 EM&V Process Evaluation

The scope of work will require that the Vendor conduct a process evaluation pursuant to requirements of 20 CSR 4240-22.070 (8) (A) and require the Vendor to provide answers to questions 1 through 5 of this rule sections in the EM&V final report ("Report").

8.2 EM&V Impact Evaluation

The scope of work will require that the Vendor conduct the impact evaluation pursuant to requirements of 20 CSR 4240-22.070 (8) (B) and require the Vendor to provide answers to questions 1 and 2 of this rule section in the Report.

8.3 EM&V Data Collection

The scope of work will require that the Vendor collect EM&V participation rate data, utility cost data, participant cost data and total cost data pursuant to requirements of 20 CSR 4240-22.070 (8) (C).

²¹ 20 CSR 4240-22.070 (8); 20 CSR 4240-22.070 (8)(A); 20 CSR 4240-22.070 (8)(A)(1); 20 CSR 4240-22.070 (8)(A)(2); 20 CSR 4240-22.070 (8)(A)(3); 20 CSR 4240-22.070 (8)(A)(4); 20 CSR 4240-22.070 (8)(A)(5); 20 CSR 4240-22.070 (8)(B); 20 CSR 4240-22.070 (8)(B)(1); 20 CSR 4240-22.070 (8)(B)(1)(A); 20 CSR 4240-22.070 (8)(B)(1)(B); 20 CSR 4240-22.070 (8)(B)(1)(A); 20 CSR 4240-22.070 (8)(B)(1)(B); 20 CSR 4240-22.070 (8)(B)(2); 20 CSR 4240-22.070 (8)(B)(2)(A); 20 CSR 4240-22.070 (8)(B)(2)(B); 20 CSR 4240-22.070 (8)(C)

8.4 EM&V Reporting Requirements

The scope of work will also require that the Vendor perform, and report EM&V of each commission-approved demand-side program in accordance with 20 CSR 4240-3.163 (7). Evergy Missouri West will provide the Missouri Public Service Commission ("Commission") Staff and other stakeholders with an opportunity to review and comment on the EM&V scope of work.

An EM&V for all demand-side programs and demand-side rates that are included in Evergy Missouri West's Preferred Plan will begin after the completion of each program year.

The EM&V scope of work will require the vendor to evaluate and prepare an annual program performance report. Preliminary EM&V reports will be available 90 days following the program year. Commission Staff and stakeholders will be provided with an opportunity to review, and comment on the preliminary report. The final EM&V report will be available 180 days following the completion of each program year.

8.5 EM&V Schedule and Budget

The EM&V budget shall not exceed five percent (5%) of the total budget for all approved demand-side program costs. A tentative EM&V schedule is shown in Table 22 below. This schedule will be updated if/as needed for each program year under MEEIA 3.

Estimated EM&V Schedule - MEEIA 3		
1st Annual EM&V Begins	Day 1 of PY 1	
1st Annual Draft Report	90 days after the end of PY 1	
1st Annual Program Report	180 days after the end of PY 1	
2nd Annual EM&V Begins	Day 1 of PY 2	
2nd Annual Draft Report	90 days after the end of PY 2	
2nd Annual Program Report	180 days after the end of PY 2	
3rd Annual EM&V Begins	Day 1 of PY 3	
3rd Annual Draft Report	90 days after the end of PY 3	
3rd Annual Program Report	180 days after the end of PY 3	
4th Annual EM&V Begins	Day 1 of PY 4	
4th Annual Draft Report	120 days after the end of PY 4	
4th Annual Program Report	210 days after the end of PY 4	
5th Annual EM&V Begins	Day 1 of PY 5	
5th Annual Draft Report	90 days after the end of PY 5	
5th Annual Program Report	180 days after the end of PY 5	

Table 22: Evaluation Scheduleⁱ

ⁱ Dates are estimated based on a December 2019 Commission approval of MEEIA 3 programs, and the approval of updated EM&V Plans in February 2021.