FILED April 30, 2024 Data Center Missouri Public Service Commission

Exhibit No. 6

Ameren – Exhibit 6 Birk Direct File No. EF-2024-0021

Exhibit No.:Issue(s):Witness Overview; Decision-
making Re: Rush IslandWitness:Mark C. BirkType of Exhibit:Direct TestimonySponsoring Party:Union Electric Company
File No.:File No.:EF-2024-0021Date Testimony Prepared:November 21, 2023

MISSOURI PUBLIC SERVICE COMMISSION

FILE NO. EF-2024-0021

DIRECT TESTIMONY

OF

MARK C. BIRK

ON

BEHALF OF

UNION ELECTRIC COMPANY

D/B/A AMEREN MISSOURI

St. Louis, Missouri November 21, 2023

TABLE OF CONTENTS

I.	INTRODUCTION	1
II.	EXECUTIVE SUMMARY	2
III.	COMPANY WITNESSES	6
IV.	AMEREN MISSOURI'S ENVIRONMENTAL COMPLIANCE	
	DECISIONS	9
V.	THE NSR LITIGATION	20

DIRECT TESTIMONY

OF

MARK C. BIRK

FILE NO. EF-2024-0021

1		I. INTRODUCTION
2	Q.	Please state your name and business address.
3	А.	Mark C. Birk, 1901 Chouteau Avenue, St. Louis, Missouri 63103.
4	Q.	By whom are you employed and what is your position?
5	А.	I am the President of Union Electric Company d/b/a Ameren Missouri
6	("Ameren Mi	ssouri" or the "Company").
7	Q.	Please describe your educational background and employment
8	experience.	
9	А.	I received my Bachelor of Science degree in Electrical Engineering from
10	the Universi	ty of Missouri-Rolla in 1986 and my Master of Science in Electrical
11	Engineering	from the same institution in 1991. In 2009, I also received a Master of
12	Business Ad	ministration from Washington University in St. Louis. I am a licensed
13	professional	engineer in the State of Missouri. I began my employment with Union Electric
14	Company in	1986 as an assistant engineer in the nuclear function. In 1989, I transferred to
15	Union Electr	ic's Meramec Energy Center as an electrical engineer. In 1996, I transferred
16	to the Energy	Supply Operations Group and became a Power Supply Supervisor. I became
17	Manager of I	Energy Supply Operations in the spring of 2000. I became General Manager
18	of Energy D	elivery Technical Services in the fall of 2001 and Vice President of that
19	department	in 2002. I became Vice President of Ameren Energy, Inc., Ameren

Corporation's short-term trading affiliate, in the fall of 2003 and assumed the position with
 Ameren Missouri as Vice President of Power Operations in September of 2004. In 2012, I
 was promoted to Senior Vice President of Corporate Planning and Business Risk
 Management, and in 2015, I became Senior Vice President of Corporate Safety, Planning,
 and Operations Oversight. In 2017 I became Sr. Vice President, Customer and Power
 Operations, and I assumed my current position in December of 2021.

Q. We will be focusing on decisions made by Ameren Missouri in the 2005
to 2010 timeframe, when you were Vice President of Power Operations. Can you
describe your duties and responsibilities in that position at that time?

10 A. Yes. As Vice President of Power Operations, I was responsible for the safe, 11 efficient, and reliable operation of the Company's non-nuclear electricity generating 12 plants—including its four coal-fired plants, the Rush Island, Meramec, Sioux, and Labadie 13 Stations. These responsibilities included environmental compliance for these facilities and 14 the implementation of projects for the generating units at these facilities. My direct reports 15 included the plant managers at the Rush Island, Meramec, Sioux, and Labadie Stations.

16

EXECUTIVE SUMMARY

17

0.

Please summarize your testimony.

II.

A. The retirement of Rush Island is the culmination of a series of prudent and reasonable decisions made by the Company over many years. Every decision we have made on Rush Island incorporated the information reasonably available at the time and was guided by three principles: 1) to ensure system reliability; 2) to comply with the law; and 3) to serve the best interests of our customers.

In order to ensure system reliability, Ameren Missouri performs routine
 maintenance on all its generating assets, including its coal-fired electric generating units at

1 Meramec, Sioux, Labadie, and Rush Island. This includes replacing components as they 2 wear, to prevent forced outages or derates that would limit future availability. This has 3 happened multiple times on all of our coal fired units over multiple years across the Ameren 4 Missouri system. Such component replacements typically occur during regularly-5 scheduled turbine outages. Just like work previously performed at Labadie, Sioux and 6 Meramec, Ameren Missouri replaced some boiler components on Rush Island Unit 1 in 7 2007 and on Rush Island Unit 2 in 2010 (the aforementioned "Rush Island Projects"). The 8 Rush Island Projects were no different from those completed numerous times by every 9 other utility in the industry.

10 And also like every other utility in the industry, Ameren Missouri understood that 11 performing such work (replacing existing boiler components with similar components) on 12 existing units would not transform them into "new sources" that require a "New Source 13 Review" ("NSR" for short) preconstruction permit. NSR is a program established under 14 the federal Clean Air Act ("CAA") and administered by the states that requires permitting 15 for the creation of new emissions capacity, either through the construction of new sources 16 or the modification of existing sources. We are not aware of any utility in the country that 17 sought NSR permits for projects like those Ameren Missouri did at Rush Island and 18 elsewhere. Ameren Missouri's understanding that these projects did not require NSR 19 permitting was also shared with the Missouri Department of Natural Resources 20 ("MDNR"). New Source Review in Missouri is a state program enforceable by state 21 regulations approved by the United States Environmental Protection Agency ("EPA") for 22 implementation in Missouri as consistent with the CAA. Ameren Missouri worked closely 23 with MDNR in its administration of these and other permitting requirements, and therefore

had a common understanding of what would and what would not trigger NSR permitting
 requirements. Ameren Missouri's environmental experts examined the Rush Island
 Projects, applied that common understanding held by all utilities in Missouri and MDNR,
 and concluded that NSR permits were not required.

5 After the fact, EPA brought claims against Ameren Missouri alleging that the Rush 6 Island Projects in fact triggered the NSR requirements in the Missouri regulations. With 7 this case, the Obama Administration reactivated EPA's "NSR enforcement initiative" 8 against coal-fired electric utilities, following a pause in the Bush Administration. That 9 initiative, first started in 1999, attempted to achieve nationwide emission reductions by 10 using a new interpretation of NSR that results in universal liability by assuming that *all* 11 repairs on existing units produce an emissions increase. EPA's new enforcement 12 interpretation of NSR never went through notice and comment rulemaking, and not even 13 EPA itself uses this enforcement interpretation in making permitting decisions. In fact, 14 EPA itself abandoned these enforcement interpretations in the years leading up to the Rush 15 Island Projects and disclaimed any intent to bring such claims. The utility industry 16 recognized EPA's enforcement initiative as unlawful, illegitimate, and unfair. It therefore 17 fought EPA's NSR enforcement initiative in court, resulting in more wins than losses for 18 the utility industry.

After the Bush Administration ended, EPA did another about-face and started pursuing NSR claims using the enforcement theories that EPA had previously abandoned. Ameren Missouri contested EPA's allegations of non-compliance in court, just like many across the utility industry. Unfortunately, the results for Ameren Missouri differed from the majority of the similarly-situated utilities that had done the same sort of projects and

made the same decision to contest EPA's new enforcement interpretations. At the end of the day, the District Court disagreed with us on the law—finding the Company liable and ordering Rush Island to get a scrubber to reduce sulfur dioxide ("SO₂") emissions. But the District Court never suggested that we failed to act in good faith or that we had no legitimate basis for our understanding of the legal requirements.

By the time the District Court's order to scrub Rush Island became final, circumstances had made the continued operation of coal-fired plants extremely challenging. EPA's proposals to regulate carbon emissions from existing coal-fired power plants creates serious risks to the continued viability of these assets—risks that would make investing hundreds of millions of dollars in a scrubber in such assets imprudent. Faced with these realities, the only prudent option was to shut down Rush Island instead of adding scrubbers. The District Court approved this decision on September 30, 2023.

13 At each step along the way, we made reasonable decisions that we believed were 14 in compliance with the law and in the best interests of our customers—up to and including 15 the Rush Island retirement decision. The District Court said we were wrong on the law-16 that NSR permits were in fact required when the projects were untaken many years before. 17 We accept that decision, but it does not mean that Ameren Missouri was unreasonable in 18 reading the law as we did (and as MDNR and EPA itself did) or that we were unreasonable 19 in proceeding without permits (just like every other utility in Missouri and across the 20 country) or in challenging EPA's claims in court (as many other utilities have done 21 successfully). Given the facts and circumstances as they existed at the time, no rational 22 utility would have done anything differently with respect to Rush Island. Having made 23 prudent decisions, the securitization of the cost of retirement for Rush Island is appropriate.

1	III. COMPANY WITNESSES
2	Q. Who are the Company's other direct case witnesses?
3	A. In addition to me, the Company is supporting its financing order petition with
4	Direct Testimony from nine witnesses, as follows:
5	• Steven C. Whitworth. Mr. Whitworth was the head of the Air Quality Group in Ameren
6	Services Company's Environmental Services Department ("ESD"), and later the
7	Director of ESD, leading up to and during the planned outages when the Company
8	completed the Rush Island Projects. He retired from the Company after almost 42 years
9	of service in 2022. Mr. Whitworth's Direct Testimony addresses the decision-making
10	process respecting when permits are, or are not, required prior to proceeding with a
11	project or set of projects. His direct testimony also addresses the Company's knowledge
12	and understanding of the provisions of the federal Clean Air Act, the EPA's NSR
13	regulations issued thereunder, and the applicable Missouri State Implementation Plan
14	("SIP") at the time the decisions related to Rush Island were made.
15	• Jeffrey R. Holmstead. Mr. Holmstead is a former EPA Assistant Administrator in the
16	air program office and currently an environmental attorney, whose direct testimony
17	concerns the regulatory framework for NSR permitting in Missouri at the time of the
18	projects and the broader context in which electric utilities were making environmental
19	compliance decisions in the relevant time period. His direct testimony outlines why,
20	under that framework, Ameren Missouri acted reasonably when it concluded that no
21	permits were required for its projects at Rush Island completed during planned outages
22	at Rush Island in 2007 and 2010 (the "Rush Island Projects").

1	•	Karl R. Moor. Mr. Moor is a retiree from EPA, where he served as Deputy Assistant
2		Administrator in the air program office. Before that, he worked for years at Southern
3		Company as a Senior Vice President and attorney. Specifically, Mr. Moor was the Vice
4		President and Assistant General Counsel for Public Policy for Southern Company at the
5		time that Ameren Missouri was making its relevant environmental compliance
6		decisions. While Company witness Holmstead provides perspective from the standpoint
7		of an environmental regulator, Mr. Moor provides Direct Testimony demonstrating that
8		based on what the industry (including Ameren Missouri) knew or should have known
9		at the time concerning the NSR program, it was clearly reasonable for Ameren Missouri
10		not to have sought permits.
11	•	Matt Michels. Mr. Michels is the Company's Director of Corporate Analysis. His
12		direct testimony demonstrates that the Company's decision to retire Rush Island was
13		prudent and in the best interest of our customers.
14	•	John J. Reed. Mr. Reed is the President and Chief Executive Officer of Concentric
15		Energy Advisors and a regulatory policy and economic expert. His direct testimony
16		will discuss the appropriate regulatory standards to apply to the Company's decisions,
17		both relating to its decision not to seek NSR permits for the Rush Island Projects, and
18		its decision to retire that plant instead of installing expensive pollution control
19		equipment.
20	•	Mitchell Lansford. Mr. Lansford is the Company's Director of Regulatory Accounting,
21		whose direct testimony will develop the securitized utility tariff costs. Mr. Lansford's
22		Direct Testimony will also demonstrate the advantage of financing these costs via
23		securitization versus under the traditional method of financing and recovering such

1		costs. Mr. Lansford's Direct Testimony also addresses the proper handling of
2		accumulated deferred income taxes relating to Rush Island.
3	•	Steve Wills. Mr. Wills is the Company's Director of Regulatory Affairs. His direct
4		testimony uses the securitized utility tariff costs developed by Mr. Lansford to develop
5		an appropriate allocation of those costs to each customer class via the implementation
6		of a securitized utility tariff charge, as contemplated by the securitization statute. Mr.
7		Wills also addresses the proposed tariff that underlies that charge.
8	•	Jim Williams. Mr. Williams is the Company's Senior Director, Operations Excellence
9		Support and will discuss basic facts about the Rush Island Energy Center, its current
10		operational status and plans for retirement, and the activities and costs to be incurred in
11		completing its safe closure and decommissioning.
12	•	Katrina Niehaus. Ms. Niehaus is a Managing Director for Goldman Sachs and provides
13		an overview of the proposed securitization transaction, discusses key structural elements
14		of the proposed bonds, and addresses the primary rating agency criteria for such bonds
15		to obtain the highest possible rating, allowing them to carry the lowest possible interest
16		rate.

1	IV. AMEREN MISSOURI'S ENVIRONMENTAL COMPLIANCE DECISIONS
2	Q. I want to begin our discussion of Rush Island in the mid-2000's, when you
3	were Vice President of Power Operations. You stated earlier that as Vice President of
4	Power Operations for Ameren Missouri, from 2004 to 2011, your duties included
5	environmental compliance at the Ameren Missouri plants. What exactly did that entail?
6	A. To put it simply, as the senior officer in charge of Power Operations, it was my
7	responsibility to ensure that the Company had processes, procedures, and adequate resources in
8	place to ensure that the plants complied with state and federal environmental requirements
9	covering all media: air, water, and solid waste. With respect to air, and as required by our
10	operating permits, plant managers (after consulting with subject matter experts) certified
11	compliance on required permitting submittals regarding day-to-day operations and emissions.
12	My role was making sure Ameren Missouri was properly planning at an engineering and
13	operating level for a range of compliance matters including ever-changing federal rulemaking
14	requirements. All of these compliance efforts drew upon subject matter experts within Ameren
15	Services Company, including ESD and the Legal Department. These departments and others
16	within Ameren Services Company supported both Ameren Missouri and its affiliates in Illinois.
17	A. The Role of ESD in Environmental Compliance
18	Q. What role did ESD have in environmental compliance for the Ameren
19	Missouri plants?
20	A. ESD's job was to maintain familiarity with the applicable regulatory and
21	permitting requirements, and to utilize its collective expertise with those requirements to ensure
22	environmental compliance in the plants and to guide project planners through a host of
23	regulatory requirements. Because ESD supported both Ameren Missouri and its unregulated
24	affiliates operating in Illinois, ESD had expertise in the regulatory requirements in the separate

ony. 70rth also 9.gulators,
orth also gulators,
gulators,
ng NSR)
onmental
uired for
, as Mr.
Ameren
e design,
Ameren
describe
describe
describe
describe by to the 0-0036).
describe ly to the 0-0036). lponents.
describe 1y to the 0-0036). 1ponents. 2 powder
describe ny to the 0-0036). nponents. e powder thereby
', /

1 produces temperatures that reach 3,000°F and corrosive flue gases blowing abrasive entrained 2 fly ash that wear on the metal tubes that comprise most of the surface area of the boiler. Those 3 metal tubes carry water and/or steam at pressures that reach nearly 3,000 psi, equivalent to an 4 ocean depth of more than a mile. The harsh conditions inside an operating boiler constantly 5 wear on the boiler tubes, and these components will inevitably fail and must be replaced. The 6 harsh conditions inside an operating boiler also mean that repairing or replacing boiler tubes— 7 indeed, most maintenance, repair or component replacement activities on an electric generating 8 unit—can occur only when the unit is offline. Historical analysis has shown that boiler 9 component failures and planned turbine outages are leading causes of lost generation for coal 10 fired units. It is preferable to perform maintenance activities during a planned outage that can 11 be scheduled, compared to a forced outage arising from some failure or malfunction. The 12 Company therefore takes a proactive approach, using the available data to identify and address 13 issues before they become significant problems.

14 Over the years, Ameren Missouri made substantial investments in its generating 15 facilities to improve their reliability and protect their availability for the benefit of our customers. 16 As I explained to the Commission in my direct testimony provided in File No. ER-2007-0002, 17 Ameren Missouri spent over \$1.7 billion between January 1, 2002 and March 31, 2006 on 18 generating infrastructure, including investments in its existing coal-fired and hydroelectric 19 plants. On October 18, 2006, I provided the Commission's Staff with more information on 20 these expenditures, consisting of an itemized list of projects performed on Ameren Missouri's 21 coal-fired facilities between July 1, 2000 and June 30, 2006 above a threshold of \$500,000. See 22 Schedule MCB-D1. As I will discuss below, this list included numerous examples of projects just like the Rush Island Projects. NSR permits were not obtained for any of those non-Rush
 Island projects, many of which took place before the 2007 and 2010 Rush Island Projects.

Q. Were there any changes over time in how Ameren Missouri maintained its units?

5 The only significant change was one of timing. Ameren Missouri schedules a A. 6 planned turbine outage for each coal-fired unit on a regular basis, during which the unit comes 7 offline for several weeks, and Ameren Missouri performs a thorough inspection and any needed 8 maintenance activities. Over the years, the interval between the planned turbine outages for the 9 units at Labadie and Rush Island has increased: from approximately every two years to every four years, to every six years—the current outage interval.¹ The approximately six-year interval 10 11 between planned turbine outages for Labadie and Rush Island was established in the mid-2000s, 12 and to my knowledge is one of longest in the utility industry which directly benefits customers 13 due to reduced overall planned outage time, higher average availability over the 6 year period 14 supporting reliability and additional off-system sales revenue which flows back to customers.

The 2007 outage at Rush Island Unit 1 and the 2010 outage at Rush Island Unit 2 marked the first time each unit entered into a six-year cycle between planned turbine outages. The philosophy behind going to the six-year cycle was to maximize economic generation over time by reducing the time periods when the plants would be out of service (producing margins that ultimately benefitted customers in the form of lower rates), while addressing plant components in need of maintenance or replacement as needed.

Because the planned turbine outage is the ideal window in which to perform component replacement, and the intervals between such outages are now so long for the Labadie and Rush

¹ Due to differences in design, the Sioux units have remained on a three-year outage schedule.

Island units, many unrelated maintenance or replacement activities will occur during the same
 unit outage. The maintenance or replacement activities are no different than those performed
 in years past, when they occurred during separate planned outages that had been scheduled
 approximately every two years.

It is also important to understand that we are very deliberate in choosing the optimal time to schedule this work. For example, we avoid such work in the summer or the winter, when having a major coal unit down could increase costs and system reliability risks for our customers. For the same reason, we seek to avoid having more than one major coal unit off for maintenance at the same time. Similarly, we do not schedule a major coal unit outage when Callaway is being refueled. These practices are in keeping with doing everything we can to run and maintain our units in a way that is most beneficial to our customers.

Q. What types of maintenance, repair or replacement activities typically occur during a planned turbine outage for a coal-fired electric generating unit?

A. Because coal-fired electric generating units consist of thousands of components, and any one of them can cause a unit to go offline, outage work could involve almost anything connected to the unit that has or will impact reliability or availability.

For the boiler on a coal-fired unit, typical maintenance activities occurring at a planned turbine outage will include replacement of various boiler tube assemblies. Such assemblies may have different names based upon their position in the boiler and their function in the steam cycle (e.g., economizer, waterwalls, superheater, reheater), but essentially, they are all metal tubes whose purpose is to transfer heat from combustion to the water or steam flowing within each tube, producing the steam necessary to drive the turbines. Replacement of different boiler tube assemblies, as the tubes wear and begin to leak, occurs several times over the life of a unit.

1 Other common maintenance activities that occur on boilers while a unit is in outage will 2 involve the replacement of equipment that convey the elements of combustion (air and coal) 3 into the combustion zone, or convey the water into the boiler tubes that comprise the majority 4 of the boiler. Auxiliary equipment such as coal mills, air preheaters, fans, feedwater heaters, and 5 boiler feed pumps are all examples of the sorts of equipment on a boiler that one expects to 6 replace after a certain number of duty cycles or hours under load.

- Q. You noted earlier that you had provided Staff DR responses in File No.
 8 ER-2007-0002 (Schedule MCB-D1) with information on other projects from roughly 2000
 9 to 2006 replacing the same components which EPA claimed triggered a permit
 10 requirement at Rush Island. Does that response identify all such projects?
- 11 A. No. Attached to my direct testimony as Schedule MCB-D2 is a table going 12 back to roughly 20 years prior to when the Rush Island Projects were completed, showing that 13 Ameren Missouri and its Illinois affiliates routinely performed the same projects as the Rush 14 Island Projects and did so without the need for NSR permits.

Q. Can you describe the nature, scope and purpose of the Rush Island Projects?

A. Yes. As we approached the 2005 timeframe, Rush Island had been in operation for nearly 30 years. While at that time the plant continued to have good availability, some of its key components—which are constantly exposed to the harsh conditions of a steam plant's boiler—were approaching the end of their lives. This meant that the risk of more frequent outages, that would prevent the plant from serving customers, was continuing to increase simply due to the age and condition of the components. Our experience in both Illinois and Missouri indicated that tube leaks and unit derates could become more frequent due to pluggage issues

1 arising from burning Powder River Basin coal, which Rush Island had burned exclusively since 2 1995 as a means to significantly reduce fuel costs for customers and cut emissions from the 3 plant. Boiler pluggage restricts airflow through the boiler. This affects both the efficiency 4 of the heat transfer in the boiler and results in less oxygen available for combustion, thus 5 restricting maximum generating capability on (i.e., derating) the unit. In short, the plant was 6 beginning to experience performance issues, which would have worsened to customers' 7 detriment if not addressed. Ameren Missouri therefore proceeded to replace the components at 8 issue, to ensure that the units would remain in good working order.

At Rush Island Unit 1, Ameren Missouri replaced different boiler tube assemblies (economizer, reheater, and lower slope waterwall panels) and the air preheater components, and performed additional work on the unit, during an outage that lasted from February to May 2007. At Rush Island Unit 2, Ameren Missouri replaced similar boiler tube assemblies (economizer and reheater) and the air preheater components, and performed additional work on the unit, during an outage that lasted from January to April, 2010. These projects were fundamentally the same as those Ameren Missouri and its affiliates had routinely performed for decades.

Q. What exactly do you mean when you say the Rush Island Projects were part of the process of keeping the units in good working order?

A. Ameren Missouri has an obligation to maintain its generating units in good working order, so we can meet the reliability demands of our customers and sell excess energy into the MISO market to help offset costs for customers. As such, Ameren Missouri keeps track of the availability of its generating assets, and reports on the same to the Public Service Commission. Before the Rush Island Projects took place, each unit achieved top quartile annual availability. In my experience and based upon benchmarking, that is considered good for coal-

fired electric generating units. This is a testament to the good working order of both the Rush
 Island units.

3

Q. If the units were in good working order, then why was the work done?

4 For the same reasons that applied to the many similar projects done at other A. 5 units before the Company completed the Rush Island Projects. As I described above, Ameren 6 Missouri has a proactive maintenance philosophy to keep unit availability as high as practically 7 possible for the benefit of customers. Data suggested that outages and derates could be expected 8 to increase on each unit if these components were not replaced. At this point in time, each Rush 9 Island unit was on a nominal six-year outage cycle (i.e., conducting an extended planned outage 10 only once every six years). Because most maintenance, repair and replacement activities on 11 coal-fired units require the unit to be offline, and each unit has an opportunity to conduct work 12 like this only once every six years, Ameren Missouri decided to replace the identified 13 components in the scheduled planned outages to avoid the expected forced outages and derates 14 that otherwise would have occurred until the next six-year outage would be taken. In addition 15 to the specific components at issue, Ameren Missouri also conducted work during these outages 16 that increased the efficiency of the units (e.g., replacement of the low-pressure turbine 17 components, as I describe below).

18

19

Q. Did Staff or anyone else to your knowledge question the need for the projects?

A. No. As discussed earlier, I answered data requests in the Company's 2006 rate review in which I provided details on the planned outages at Rush Island that I described above. In those responses (including specific outage schedules outlined in the response to Data Request No. 264), I had indicated that Rush Island Unit 1 would undergo a planned outage in 2007, and

1 specifically listed the projects that would be performed. Similarly, I indicated that Unit 2 would 2 undergo a planned outage in 2009, also listing the projects that were in fact performed in 2010 after the outage was rescheduled from 2009 to 2010. Once the projects were completed and 3 4 went into service, they were then included in plant in service in subsequent rate reviews. No 5 party questioned the need for them or their prudence. The completion of those projects has 6 enabled Rush Island to continue its reliable, efficient operations for the benefit of our customers 7 ever since.

8

Q. You testified earlier that projects like those at Rush Island were routinely 9 done. What is your basis for that testimony?

10 A. As discussed earlier, before undertaking the work at Rush Island, we had 11 performed similar component replacements multiple times across the other Ameren Missouri 12 plants (detailed in Schedule MCB-D2). We replaced economizers, reheaters, and waterwalls 13 multiple times at Labadie, Meramec, and Sioux. We had replaced air preheater components 14 multiple times at the same plants, and at Rush Island as well. Similar equipment replacement 15 occurred frequently within the Ameren Missouri system.

16 In addition, we were very familiar with coal units owned and operated by Ameren 17 Missouri's Illinois generation affiliates, Ameren Energy Generating Company and Ameren 18 Energy Resources. And due to our familiarity with that history, we knew that the same 19 component replacement projects as those to be completed at Rush Island had also been 20 completed at several of these Illinois units, also without the need for obtaining NSR permits.

21 We were also aware that other utilities regularly performed similar component 22 replacement projects, as witnesses Whitworth, Holmstead, and Moor explain in greater detail. 23 This understanding was developed through our interactions with other utilities, some of which

1 are described by Messrs. Whitworth, Holmstead, and Moor. This understanding was also 2 reinforced by our interactions with the boiler vendors and installation contractors we engaged 3 for the Rush Island Projects. These contractors touted their extensive experience with similar 4 maintenance activities across the industry. The very existence of this boiler maintenance 5 industry-with multiple contractors whose business is focused on boiler component 6 replacement—supported our understanding that the activities at Rush Island were routine within 7 the utility industry. In addition, our engineers regularly interfaced with other utilities in Missouri 8 and came to learn of their maintenance practices.

9 We were well aware that the work proposed for Rush Island was routinely done 10 throughout the utility industry and without the need for NSR permits. If NSR permits were not 11 required for these other projects, there was no reason to believe they were required for the Rush 12 Island Projects.

Q. If Ameren Missouri concluded that the Rush Island Projects did not
trigger NSR permitting, then why did it evaluate the possible retrofit of scrubbers on Rush
Island in 2007-2010?

A. Ameren Missouri evaluated the potential retrofit of scrubbers on all of its plants during this time period, as a direct result of *other* CAA programs for which EPA was promulgating rules. The question of whether these other proposed EPA rules would require we scrub Rush Island or other Ameren Missouri units had nothing to do with whether the routine projects completed at Rush Island and our other plants, without obtaining NSR permits, somehow triggered NSR.

Q.

1Q.Did Ameren Missouri ever re-visit its pre-project determinations that the2Rush Island Projects did not trigger NSR?

A. Yes. Ameren Missouri revisited the potential application of NSR in 2007 (after the Rush Island Unit 1 projects), in the context of its ongoing environmental compliance planning process. Ameren Missouri then revisited the potential application of NSR in 2008, following the receipt of an inquiry from EPA under Section 114 of the CAA, concerning a large number of maintenance, repair and replacement projects. And Ameren Missouri revisited the potential application of NSR again in 2010, after receipt of the Notice of Violation ("NOV") issued by EPA that January.

10

What was the result of those subsequent evaluations?

A. Ameren Missouri remained firm in its conclusion that the Rush Island Projects did not trigger NSR. As a result, Ameren Missouri's Environmental Compliance Plan continued to focus on the new rules EPA was promulgating: CAIR, the Cross-State Air Pollution Rule ("CSAPR"), the Clean Air Mercury Rule ("CAMR") and the Mercury and Air Toxics Standards ("MATS") Rule.

Q. Why didn't Ameren Missouri's conclusions regarding NSR applicability change in 2010, after it received EPA's NOV?

A. As Mr. Whitworth explains, we understood that under the Missouri SIP, a project would have to increase a unit's potential emissions in order to trigger NSR permitting requirements. None of Ameren Missouri's projects ever did that, and EPA did not contend otherwise.

Although EPA made allegations in its NOV that several projects were NSR violations,
it did not explain how or why it believed that any of the projects increased emissions. EPA

1	refused to share its position on emissions increase with Ameren Missouri, and Ameren Missouri
2	was not able to learn how EPA purported to calculate emissions until years later during expert
3	discovery in the litigation. EPA did share enough for Ameren Missouri to understand that its
4	allegations of emissions increase were not based on potential emissions, but on changes in actual
5	annual emissions. But when ESD performed a calculation of actual annual emissions after
6	receipt of the NOV, it concluded that the projects would not cause an increase in actual annual
7	emissions and thus would not trigger NSR even if such requirements had applied under the
8	Missouri SIP.
9	Finally, as Mr. Whitworth and Mr. Moor explain, EPA's NSR enforcement initiative
10	resulted in more losses for EPA than wins. We therefore remained firm in our conclusion that
11	NSR did not apply to the Rush Island Projects, even after receipt of EPA's NOV.
10	V THE NOD LITICATION
12	V. THE NSK LITIGATION
12 13	Q. How did the litigation proceed after receipt of the initial NOV?
12 13 14	 V. THE NSR LITIGATION Q. How did the litigation proceed after receipt of the initial NOV? A. EPA kept flip-flopping on what was or was not an NSR violation. In its first
12 13 14 15	 V. THE NSR LITIGATION Q. How did the litigation proceed after receipt of the initial NOV? A. EPA kept flip-flopping on what was or was not an NSR violation. In its first NOV, issued on January 26, 2010, EPA identified approximately 40 projects alleged to violate
12 13 14 15 16	 V. THE NSR LITIGATION Q. How did the litigation proceed after receipt of the initial NOV? A. EPA kept flip-flopping on what was or was not an NSR violation. In its first NOV, issued on January 26, 2010, EPA identified approximately 40 projects alleged to violate the Clean Air Act at the Labadie, Sioux, Meramec, and Rush Island Energy Centers. That NOV
12 13 14 15 16 17	 V. THE NSR LITIGATION Q. How did the litigation proceed after receipt of the initial NOV? A. EPA kept flip-flopping on what was or was not an NSR violation. In its first NOV, issued on January 26, 2010, EPA identified approximately 40 projects alleged to violate the Clean Air Act at the Labadie, Sioux, Meramec, and Rush Island Energy Centers. That NOV included the 2007 Rush Island Projects, but not the Rush Island Unit 2 Projects. On October 14,
12 13 14 15 16 17 18	 V. THE NSK LITIGATION Q. How did the litigation proceed after receipt of the initial NOV? A. EPA kept flip-flopping on what was or was not an NSR violation. In its first NOV, issued on January 26, 2010, EPA identified approximately 40 projects alleged to violate the Clean Air Act at the Labadie, Sioux, Meramec, and Rush Island Energy Centers. That NOV included the 2007 Rush Island Projects, but not the Rush Island Unit 2 Projects. On October 14, 2010, EPA issued an amended NOV that added the economizer replacement and the reheater
12 13 14 15 16 17 18 19	 Q. How did the litigation proceed after receipt of the initial NOV? A. EPA kept flip-flopping on what was or was not an NSR violation. In its first NOV, issued on January 26, 2010, EPA identified approximately 40 projects alleged to violate the Clean Air Act at the Labadie, Sioux, Meramec, and Rush Island Energy Centers. That NOV included the 2007 Rush Island Projects, but not the Rush Island Unit 2 Projects. On October 14, 2010, EPA issued an amended NOV that added the economizer replacement and the reheater replacement at Rush Island Unit 2, completed earlier that year.
12 13 14 15 16 17 18 19 20	 V. THE NSK LITIGATION Q. How did the litigation proceed after receipt of the initial NOV? A. EPA kept flip-flopping on what was or was not an NSR violation. In its first NOV, issued on January 26, 2010, EPA identified approximately 40 projects alleged to violate the Clean Air Act at the Labadie, Sioux, Meramec, and Rush Island Energy Centers. That NOV included the 2007 Rush Island Projects, but not the Rush Island Unit 2 Projects. On October 14, 2010, EPA issued an amended NOV that added the economizer replacement and the reheater replacement at Rush Island Unit 2, completed earlier that year. When EPA filed suit in January 2011, it dropped most of its claims alleged in the prior
12 13 14 15 16 17 18 19 20 21	 V. THE NSK LITICATION Q. How did the litigation proceed after receipt of the initial NOV? A. EPA kept flip-flopping on what was or was not an NSR violation. In its first NOV, issued on January 26, 2010, EPA identified approximately 40 projects alleged to violate the Clean Air Act at the Labadie, Sioux, Meramec, and Rush Island Energy Centers. That NOV included the 2007 Rush Island Projects, but not the Rush Island Unit 2 Projects. On October 14, 2010, EPA issued an amended NOV that added the economizer replacement and the reheater replacement at Rush Island Unit 2, completed earlier that year. When EPA filed suit in January 2011, it dropped most of its claims alleged in the prior NOVs. Instead, EPA filed suit on only two projects: superheater tube replacements at Rush
12 13 14 15 16 17 18 19 20 21 22	 Q. How did the litigation proceed after receipt of the initial NOV? A. EPA kept flip-flopping on what was or was not an NSR violation. In its first NOV, issued on January 26, 2010, EPA identified approximately 40 projects alleged to violate the Clean Air Act at the Labadie, Sioux, Meramec, and Rush Island Energy Centers. That NOV included the 2007 Rush Island Projects, but not the Rush Island Unit 2 Projects. On October 14, 2010, EPA issued an amended NOV that added the economizer replacement and the reheater replacement at Rush Island Unit 2, completed earlier that year. When EPA filed suit in January 2011, it dropped most of its claims alleged in the prior NOVs. Instead, EPA filed suit on only two projects: superheater tube replacements at Rush Island Unit 1 and Rush Island Unit 2 in 2001 and 2003, respectively. In other words, it did not

Just four months later, EPA issued a Second Amended NOV, which included the 2010
 air preheater project on Rush Island Unit 2 *and* the low-pressure turbine project on Rush Island
 Unit 2 in 2010.

4 On June 28, 2011, EPA filed an amended complaint to add the 2007 component 5 replacements on Unit 1 and the 2010 component replacements on Unit 2.

6 On October 30, 2013, EPA filed yet another amended complaint, dropping the claims 7 with which it had initiated the case: the 2001 and the 2003 superheater tube replacements. This 8 left only the economizer, reheater, and lower slope tube replacements and the air preheater 9 project on Unit 1, and the economizer and reheater tube replacements and the air preheater 10 project on Unit 2 (i.e., the "Rush Island Projects") which later went to trial. Notably, EPA did 11 not pursue claims over any of the turbine projects at Rush Island that it had previously alleged 12 in its series of NOVs to have triggered NSR.

From our perspective, there is no apparent difference among the various projects EPA raised and dropped. EPA's difficulty in settling on the projects and claims it wanted to pursue undermines any contention that Ameren Missouri should have acted differently when it evaluated the Rush Island Projects for NSR applicability.

17

Q. What was the result of the NSR litigation?

A. The litigation has lasted years and is still ongoing. Over the course of that litigation, EPA dropped most of its allegations as well as all of its claims for civil penalties. After years of discovery and a 13-day trial, in January 2017 the District Court concluded that the Company should have obtained NSR permits and in September 2019 ordered the Company to install scrubbers at Rush Island to reduce its SO₂ emissions. The District Court also ordered the installation of dry-sorbent injection equipment at the Labadie Energy Center, not because of

1 any claim that there were CAA violations involving Labadie, but as a "remedy" for the claimed

2 violations at Rush Island.

The District Court then stayed most aspects of its 2019 decision, pending appeal to the Eighth Circuit. In September 2021, the Eighth Circuit affirmed the District Court's decision as to Rush Island but reversed it as to the ordered actions at Labadie. The Company sought rehearing of the Eighth Circuit's decision (as did the EPA as to that part of the decision reversing the District Court respecting the order regarding Labadie). The Eighth Circuit denied rehearing, exhausting Ameren Missouri's right to appeal.

9 Given the outcome of the litigation, Ameren Missouri assessed whether it should 10 comply with the District Court's ruling (i.e., install scrubbers at Rush Island) or take some other 11 action, such as retire the plant. As with all of its decisions, Ameren Missouri's focus was on 12 what course of action would be more beneficial for its customers. As discussed in the Direct 13 Testimony of witness Michels, the Company's analysis of the question concluded that installing 14 scrubbers was not in customers' best interest, leading to Ameren Missouri's December 2021 15 decision to retire Rush Island following completion of the necessary transmission upgrades to ensure transmission system reliability.² 16

² After making the determination that retirement of the plant rather than installing expensive pollution control equipment was in our customers' best interest, the Company requested a modification of the District Court's order to allow retirement of the plant in lieu of installing such equipment. The District Court granted this request on September 30, 2023, ordering that the plant retire by October 15, 2024.

1 **Q**. Mr. Birk, your testimony suggests that to this day, you feel strongly that 2 Ameren Missouri made reasonable, prudent decisions back in that 2005 – 2010 timeframe 3 and that, consequently, it should not have suffered an adverse judgment in EPA's NSR 4 lawsuit. Is that your point of view? 5 Absolutely, but at the end of the day the District Court ended up interpreting the A. 6 law differently than how we understood it to be, how the industry understood it to be, and how 7 the permitting authority in Missouri (MDNR) understood it to be. All this is explained by 8 Company witnesses Whitworth, Holmstead, and Moor in their Direct Testimonies. And, as 9 witnesses Whitworth and Moor recount in detail-the District Court's conclusion was also 10 different than other courts had interpreted the law *at that time*. From my perspective—and I think the Commission's prudence standard backs this perspective up—that's the only question: 11 did we act reasonably based on what we knew or reasonably should have known at that time.³ 12 13 I have no doubt that we did. Did that reasonable belief ultimately lead to an NSR violation? 14 The answer is yes, insofar as the federal courts are the ultimate arbiters of that determination. 15 While I don't like that outcome, I accept it as a fact. But being told you were mistaken a decade

16 or more after the decision was made does not mean that the decision you made was unreasonable

17 based on what you knew or should have known when you made it.

³ The focus of the relevant inquiry is discussed in detail by Company witness John Reed.

Q. In the Company's last rate review, File No. ER-2022-0337, Staff at least strongly suggested that the District Court disagreed with your perspective, with Staff quoting a statement in one of the District Court's orders where the District Court stated, "that Ameren's failure to obtain PSD permits was not reasonable." That does seem to be at odds with your viewpoint. Why isn't it?

- A. I am an engineer and not a lawyer, so I am not able to parse 10 words out of hundreds of pages of orders the District Court issued and then give an opinion on what those 10 words do or do not mean. I will note that Company witness Holmstead directly addresses this issue in his direct testimony and from my non-legal expert perspective, what he said makes sense to me. I believe it will also make sense to the Commission, which in this case is the body charged with deciding whether the retirement of the plant is prudent.
- 12

Q. So, you are not re-litigating the NSR case?

13 No, I am not re-litigating that case—nor is the Company re-litigating that case. A. 14 Having worked in the utility space for over 30 years, including involvement in many cases at 15 the Commission during that time, one thing I do understand is that the Commission does not 16 judge our decisions using hindsight. And I further understand that the Commission does not 17 judge them such that we were required to have perfect foresight about the future when we are 18 called upon to make decisions necessary to run a utility and provide service to our customers. 19 As I said before, we lost the case; I don't like that outcome, but I accept it. Once we lost the 20 case, we would have harmed our customers if we added scrubbers to a nearly 50-year-old coal 21 plant at a cost of hundreds of millions of dollars in an environment where new and more 22 stringent environmental regulations of coal plants continue to be proposed and which could 23 further impact the plant's life, so we prudently decided not to do so because that decision is in

1 our customers' best interest. As I have discussed and as Mr. Whitworth elaborates, the Company 2 did not predict that the District Court would take a completely different view of the permit 3 requirements than we had taken, that MDNR had taken, and many other utilities and other courts 4 had taken. And as our expert witnesses Holmstead and Moor explain, the Company's position 5 was reasonable. The subsequent decision by the District Court, rejecting the position of MDNR, 6 the position of the utility industry as a whole, and the majority view of other courts does not 7 mean that the Company was imprudent 15 or so years ago. Does the District Court decision mean we turned out to be mistaken? Unfortunately, it does. But that is not the question because 8 9 the prudence standard, as I understand it, prevents the Commission from punishing Ameren 10 Missouri on the basis of hindsight. The question, as I understand it, is whether Ameren Missouri 11 acted reasonably given the facts that were known and reasonably knowable at the time. I firmly 12 believe that we acted reasonably here.

13 **Q.** Why?

14 A. At every step of the way, the Company considered the information known to us 15 and was diligent in keeping abreast of information that we reasonably should have known. And 16 armed with that information, the Company made decisions designed to (1) ensure system 17 reliability; (2) comply with the law; and (3) serve the best interests of our customers along the 18 way. With respect to Rush Island specifically, those decisions incorporated the experience of 19 Ameren Missouri's experts in its Environmental Services Department, the experience of the 20 utility industry and industry experts in NSR compliance issues, the applicable Missouri law, and 21 input from both MDNR and EPA on the legal requirements. On the basis of this expertise and 22 information, it was reasonable for Ameren Missouri to perform the Rush Island Projects without 23 applying for NSR permits, because that was consistent with our understanding of what would

- 1 maintain reliability, comply with the law, and serve the best interest of our customers. Likewise,
- 2 it was also reasonable for Ameren Missouri to decide to retire Rush Island as a result of the
- 3 District Court's decision, because that was the only way to ensure system reliability, comply
- 4 with the law (as declared by the District Court), and serve customers' best interests.
 - Q. Does this conclude your direct testimony?
- 6 A. Yes, it does.

BEFORE THE PUBLIC SERVICE COMMISSION OF THE STATE OF MISSOURI

In the Matter of the Petition of Union Electric Company d/b/a Ameren Missouri for a Financing Order Authorizing the Issue of Securitized Utility Tariff Bonds for Energy Transition Costs related to Rush Island Energy Center.

EF-2024-0021

AFFIDAVIT OF MARK C. BIRK

STATE OF MISSOURI)) ss CITY OF ST. LOUIS)

d.

Mark Birk, being first duly sworn on his oath, states:

My name is Mark C. Birk, and hereby declare on oath that I am of sound mind and lawful

age; that I have prepared the foregoing Direct Testimony; and further, under the penalty of perjury,

that the same is true and correct to the best of my knowledge and belief.

Mark C. Birk

Sworn to me this 20th day of November, 2023.

AmerenUE's Response to MPSC Staff Data Request AmerenUE's Tariff Filing to Increase Rates for Electric Service Provided to Customers in the Company's Missouri Service Area

Requested From: John Cassidy

Data Request No. MPSC 0264

Please provide the planned outages for all AmerenUE generating units for each year covering 2007 through 2011. Please identify each unit and the timeframe for each unit.

Response:

See the attached information.

Prepared By: Mark Birk Title: Vice President Power Operations Date: September 26, 2006

AmerenUE's Response to MPSC Staff Data Request AmerenUE's Tariff Filing to Increase Rates for Electric Service Provided to Customers in the Company's Missouri Service Area

Requested From: John Cassidy

Data Request No. MPSC 0264

Please provide the planned outages for all AmerenUE generating units for each year covering 2007 through 2011. Please identify each unit and the timeframe for each unit.

Response:

Callaway Plant: Planned Outages 2007 through 2011

Refuel #	Duration (in days)	Dates of Outage
Refuel 15	37	April 2 – May 9, 2007
Refuel 16	33	October 11 – November 13, 2008
Refuel 17	37	March 27 – May 3, 2010
Refuel 18	33	October 8 – November 10, 2011

Prepared By David T. Fitzgerald Title: Manager; PS&O Date: September 29, 2006

AmerenUE's Response to MPSC Staff Data Request MPSC Case No. ER-2007-0002 AmerenUE's Tariff Filing to Increase Rates for Electric Service Provided to Customers in the Company's Missouri Service Area

Requested From: John Cassidy

Data Request No. 0142:

Please refer to Staff Data Request No. 141 in the current rate case.

1. By generating unit, for Meramec, Rush Island, Labadie, Sioux and Callaway, please list and describe all major maintenance items completed during July 1, 2000 through June 30, 2006 that reduced AmerenUE generating unit's outages (length or frequency for all types of outages: planned, unplanned, derates, etc...) in any way on an ongoing basis. Also indicate when the maintenance was completed.

2. By generating unit, for Meramec, Rush Island, Labadie, Sioux and Callaway, please list and describe all capital improvements completed during July 1, 2000 through June 30, 2006 that reduced AmerenUE generating unit's outages (length or frequency for all types of outages: planned, unplanned, derates, etc..) in any way on an ongoing basis. Also indicate when the capital improvements were completed.

3. For each generating unit at Meramec, Rush Island, Labadie, Sioux and Callaway are there any situations that currently exist that are increasing a generating unit's outages (length and frequency for all types of outages) in any way on an ongoing basis? If yes, please list and describe the impact. Also explain when and how AmerenUE plans to address any such situations.

Response:

Attached to this response is a listing of all major maintenance items (which I have defined as those costing \$500,000 or more) and capital improvements during the requested time period, with indications of when the projects were completed. It is not possible to provide lists of each such item that "reduced AmerenUE generating unit outages" because we continuously monitor ongoing operations and maintenance and try to maintain or replace components that we feel would lead to degraded equivalent availability. The subject units are decades old (average unit age of AmerenUE's fossil units is 37 years) and they require a certain level of ongoing capital and maintenance investment just to keep them operating reliably. We would hope and expect that some capital and maintenance expenditure projects do reduce forced (unplanned)

outages or lengthen cycles between planned outages, but whether that occurs depends upon a variety of factors, including what other aging plant components may fail, the operating characteristics and dispatch requirements of the unit and the types of fuels are burned in the unit. A project (such as HP/IP turbine replacement) may have a tendency to contribute to lengthened planned outage cycles in one area but typically once this area is addressed other areas (such as ash pits) become the limiting factor. We will only know, over time, whether various projects reduce outage frequency or duration as we continue to identify and address issues that arise from lengthening the cycle. Also attached to this response is a listing of currently existing conditions that could lead to increased de-rates or unit unavailability in the near future.

Prepared By: Mark C. Birk Title: Vice President, Power Operations Date: October 18, 2006

Major Project Spend by Plant and by Year

Cost Category	Bus. Div.		Project	Unit	Year of last spend
CWP - Const Wor	50 - MERAMEC PLA	10262	10262 - MERAMEC 4 TURBINE CONTROLS	4	2001
		10645	10645 - MERAMEC-DRY ASH HANDLING U1-U4	Common	2002
		10775	10775 - MER RAILCAR UNLOADING, BARGE LOADING	Common	2002
		10802	10802 - MER U1&2 BOILER FURNACE SETTING REP	Common	2001
		10825	10825 - MER U1&2 PRIMARY SUPERHEATERS REPL	Common	2001
		10896	10896 - MER U1&2 PRECIPITATORS & DUCTS REPL	Common	2001
		10989	10989 - MER U2 AIR HEATER REPL	2	2001
		11152	11152 - MER U1 BOILER ECONOMIZER REPL	1	2004
		11421	11421 - MERAMEC UNIT 4 COAL MILL UPGRADES	4	2002
		11427	11427 - MERAMEC UNIT 3 CONTROLS UPGRADES	3	2006
		11464	11464 - MERAMEC UNIT 3 COAL MILL UPGRADES	3	2003
		11505	11505 - MER U1&2 SECONDARY SUPERHEATER REPL	Common	2004
		11508	11508 - MER U4 DEMOLISH ORIGINAL ESP&DUCTS	4	2002
		11588		Common	2002
		11619		<u> </u>	2004
		11620		Common	2004
		11645			2002
		11955		2	2004
		11055	11068 - MERAMEC INIT #4 CONDENSER RETURE	3	2003
		11980	11989 - MERIIA #182 FEEDWATER HEATERS REPI	4	2002
		12397	12397 - MERAMEC 4 ECONOMIZER REPLACEMENT	4	2002
		12524	12524 - MER U3 GSU XEMR REPI	3	2003
		12705	12705 - MER U1&2 4160V BREAKER REPI	Common	2004
		12814	12814 - MER 4A&B ESP DEMO & NEW DUCT INSTAL	4	2005
		12893	12893 - MERAMEC - 1&2 DCS IMPROVEMENTS	Common	2004
		13174	13174 - MERAMEC U4 REPL PRECIP PLATES&WIRES	4	2005
		13206	13206 - MER PLANT PERIMETER SECURITY IMPROV	Common	2002
		13410	13410 - MER U2 ECONOMIZER SIDEWALLS REPL	2	2004
		13421	13421 - MER U4 HP & LP TURBINE RETROFIT	4	2005
		13421	13421 - MER U4 HP & LP TURBINE RETROFIT	4	2004
		13609	13609 - MERAMEC COAL RECLAIM EXPANSION	Common	2004
		13764	13764 - MER U1&2 ECONOMIZER SOOTBLOWER ADDI	Common	2004
		13772	13772 - MER U4 AIR PREHEATER REBASKETING	4	2005
		13843	13843 - MER TURB GENERATOR FIRE PROTECTION	Common	2004
		14024	14024 - MER U1&2 SAFETY VALVE CAPACITY INCR	Common	2004
		14722	14722 - MER U4 BACKPASS & BOTTOM ASH SYS UP	4	2005
		14762	14/62 - MERAMEC 3 LOW NOX BURNERS W OFA	3	2006
		14818	14818 - MER U1&2 ADD LISH SOUTBLOWERS	Common	2004
		15129	15129 - MER U4 HUT PA FANS REPL	4 Common	2004
	55 - SIOUX PLANT	10054			2004
		10034	10348 - SY LIT ECONOMIZER ASH HANDLING SYST	1	2003
		10320	10320 - SX U2 ECONOMIZER ASH HANDLING SYST	2	2001
		10467	10467 - SX DIESEL GENERATORS & EMERG BUS	Common	2004
		10841	10841 - SX U1 CYCLONE LIGHTER PKG REPL	1	2001
		10972	10972 - SX U2 TURB CONTROL UPGR	2	2002
		10973	10973 - SX U1 TURB CONTROL UPGR	1	2001
		11035	11035 - SIOUX - BARGE UNLOADING SYSTEM	Common	2002
		11143	11143 - SX U1 5B & 6A FEEDWATER HEATER REPL	1	2001
		11418	11418 - SX U1&2 UPPER LEVEL WATER LANCE ADD	Common	2001
		11419	11419 - SX U1 BACKPASS SOOTBLOWER CONV&ADD	1	2001
		11493	11493 - SX U2 3RD SECTION SSH & OUTLET HDRS	2	2004
		11524	11524 - SX U2 CYCLONE LIGHTER PACKAGE REPL	2	2002
		11528	11528 - SX U1 SSH OUTLET HEADERS REPL	1	2003
		11531	11531 - SIOUX UNIT 1 OVERFIRE AIR SYSTEM	1	2001
		11610	11610 - SIOUX U2 FD FAN ROTOR REPLACEMENTS	2	2002
		11940	11940 - SX U1 HP/IP TURB REPL	1	2005
		11941	11941 - SX U2 HP/IP TURB REPL	2	2004
		12024		Common	2002
		12090		<u> </u>	2004
		12090		Common	2003
		13208	13208 - SX PLANT PERIMETER SECHEITV IMPROV	Common	2002
		13259	13259 - SX 1182 TURB GENERATOR FIRE PROTECT	Common	2003
		13430	13430 - SIOUX U2 ECO PILOT	2	2002
		13497	13497 - SX U1&2 CHAR HOPPER ASH REMOVAL SYS	Common	2002
		13636	13636 - SIOUX GSU TRANSFORMER REPLACEMENT	Common	2004
		13646	13646 - SIOUX UNIT 2 HP GENERATOR REWIND	2	2003
		14039	14039 - SIOUX 2 LOWER LOOP IMPROVEMENT	2	2004
		•	C a b a	JL. MCD	D1

Schedule MCB-D1 Page 1 of 3

Ĩ	140/1	
	14429	14429 - SIOUX 1 GSU TRANSFORMER REPLACEMENT
	14483	14483 - SIOUX U2 OFA MODIFICATIONS
	14580	14580 - SIOUX UNIT 1 LP GENERATOR REWIND
	14740	14740 - SX U1 1ST PANEL OF CONVECTION PASS
	15443	15443 - SIOUX U1 & U2 WET FLUE GAS DESULFUR
	16147	16147 - SIOUX U2 NORTH MSV#2 REPLACEMENT
	16305	16305 - SIOUX U1 RRI SNCR
	17840	17840 - SIOUX U2 RRI SNCR
58 - LABADIE PLANT	10783	10783 - LABADIE 2 HP/IP TURBINE REPLACEMENT
	10803	10803 - LABADIE 1 HP/IP TURBINE REPLACEMENT
	10865	10865 - LABADIE GRAVITY FILTER REPLACEMENTS
	10901	10901 - LBD U1-4 BACKPASS SOOTBLOWER ADDITI
	11047	11047 - LABADIE UNIT 2 - REPLACE ECONOMIZER
	11084	11084 - LBD DANCE FLOOR TRUSS SYS,U2 PLATFO
	11099	11099 - LBD U2 #3 IP FEEDWATER HEATER REPL
	11144	11144 - LABADIE UNIT 2-CONDENSER RETUBING
	11167	11167 - LBD U2 HPBFP TURB CONTROLS UPGR
	11290	11290 - LBD COAL RECEIV CONTROLS UPGR
	11415	11415 - LBD U2 WATER CANNON ADDITIONS
	11465	11465 - LBD U3 ECONOMIZER REPL
	11466	11466 - LBD U4 BOILER MTCE WORK PLATFORM
	11473	11473 - LBD U4 ECONOMIZER REPL
	11534	11534 - LBD 2A&B AIR PREHEATER ROTOR REPL
	11644	11644 - LBD U1 GSU XFMR REPL
	11820	11820 - LABADIE U4-HP/IP I URBINE RETROFTI
	11894	11894 - LBD ELEVATED OUTAGE ASSEMBLY ROOM
	11916	11916 - LBD U1 ECONOMIZER REPL
	11917	11917 - LBD U1 WATER CANNON ADDITIONS
	11918	11918 - LBD U4 WATER CANNON ADDITIONS
	11919	
	11907	11967 - LADADIE UNIT 4 CONDENSER RETUBING
	12330	
	12530	12527 - I BD 44&B AIR PREHEATER REPI
	12528	12528 - I BD 3A&B AIR PREHEATER REPI
	12529	12529 - I BD 1A&B AIR PREHEATER ROTOR REPI
	12687	12687 - I BD U3 HP/IP TURBINE RETROFIT
	12720	12720 - LABADIE UNIT 4 MCC REPLACEMENT
	12726	12726 - LBD U1 MCC REPL PHASE 1
	12977	12977 - LBD U3 MCC UPGR PHASE 1
	12978	12978 - LBD U2 MCC REPL PHASE 1
	13241	13241 - LBD U1-4 FIRE PROT. BLR.TERM.RM.
	13302	13302 - LBD U3 LP TURB RETROFIT REPL
	13303	13303 - LBD U4 LP TURB RETROFIT REPL
	13553	13553 - LBD U4 LOWER SLOPE REPL
	13622	13622 - LABADIE UNIT 2 GENERATOR REWIND
	13625	13625 - LABADIE UNIT 1 GENERATOR REWIND
	13851	13851 - LABADIE - FIRE WATER SUPPLY
	14058	14058 - LBD U4 CONDENSER CLEANING SYSTEM
	14454	14454 - LBD U2 FURNACE NOSE REPL
	14769	14/69 - LBD - U2 APH Cold End Basket Rpl
	15282	15282 - LBD U1,2&4 WATER CANNON PUMP REPL
	15527	15527 - LBD INTAKE DEBRIS CLEANING SYSTEM
	15548	
	10000	15300 - LED UZ BOILER CLEAN IMPRV LOW.HTDRO
	10140	
	19155	19133 - DEC SIMARTSIGNAL INSTALLATION AT DEC
63 - RUSH ISLAND P	10682	10682 - RUSHISLAND UNIT 1 CONTROLS UPGRADE
	10787	10787 - RUUI HPIP TURB REPI
	10804	10804 - RI U2 HPIP TURB REPI
	10854	10854 - RUSH ISLAND UNIT 2 CONTROLS UPGRADE
	10895	10895 - RUSH ISLAND BARGE UNI OADER
	11112	11112 - RI U1 SUPERHEAT REAR PENDANT REPL
	11129	11129 - RI CONDENSER RETUBING STUDY.EVAL
	11504	11504 - RUSH ISLAND - NEW ADMIN BLDG
	11506	11506 - RI U1 REHEATER REPL
	11650	11650 - RI U1 FURNACE WORK PLATFORM INSTALL
	11966	11966 - RI U2 CONDENSER TUBE REPL
	12015	12015 - RI CONDEN. STORAGE TANK & DEMIN UPG
	12344	12344 - RI U1 ID FAN REPL
	12345	12345 - RI U2 ID FAN REPL
		Sche

1	2005
2	2006
1	2005
1	2005
Common	2006
2	2006
1	2006
2	2006
2	2001
Common	2002
Common	2001
2	2001
2	2001
3	2001
2	2001
2	2001
Common	2004
2	2001
3	2003
4	2002
4	2002
1	2001
4	2003
Common	2001
1	2002
1	2002
4	2002
3	2003
4	2002
2 Common	2004
Common	2001
3	2002
1	2002
3	2003
Common	2002
1	2002
3	2003
2	2004
Common	2003
3	2003
4	2003
2	2004
1	2003
Common	2004
4	2003
2	2004
2	2004
Common	2004
Common	2006
2	2005
Common	2005
Common	2005
Common	2006
1	2002
1	2002
2	2004
2	2004
	2002
Common	2001
Common	2002
1	2006
1	2002
2	2002
Common	2002
1	2001
2	2002
AIIIA N/I('R	

]	12391	12391 - RI U1&2 TURB GENERATOR FIRE PROTECT
		12729	12729 - RI - INTAKE STRUCTURE ENCLOSURE
		12773	12773 - RI DRY FLYASH COLLECTION SYSTEM
		12794	12794 - RUSH ISLAND UNIT 2 GENERATOR REWIND
		12831	12831 - RUSH ISLAND RAIL LOOP IMPROVEMENTS
		12947	12947 - RI U2 SUPERHEAT REAR PENDANT REPL
		12976	12976 - RUSH ISLAND UNIT 1 GENERATOR REWIND
		13207	13207 - RI PLANT PERIMETER SECURITY IMPROV
		13213	13213 - RI SPARE TURB ROTOR PROCUREMENT
	·	13372	
		13374	13374 - RI UZ GOU AFINIR REPL 13376 - DI LI1 CEN EVCITATION DEDI
		13558	13558 - RESEAUCH ELOOR WASHDOWN DUSTSEA
		13576	13576 - RI LI2 GEN EXCITATION REPI
	·	14045	14045 - RI U1 HWAH SYSTEM RETROFIT
		14218	14218 - RUSH ISLAND U2 HWAH SYSTEM RETROFIT
		14746	14746 - RI U1 AIR PREHEATER REPL
	•	16456	16456 - RUSH BARGE UNLOADER SYSTEM IMPRV.
O&M - Oper&Maiı	50 - MERAMEC PLAN	0P057	0P057 - MER-COMMON ROUTINE EXPENSES - STEAM
		0P372	0P372 - MER OFFSITE ASH STRUCT FILL PRJTS
		0P574	0P574 - MER U1&2 CONVERT SOOTBLOWERS IK1-10
		0P609	0P609 - MER-UNIT 3 OUTAGE CONTRACT MTCE
		0P610	0P610 - MER-UNIT 4 OUTAGE CONTRACT MTCE
		0P622	0P622 - ROUTINE - STEAM ELECT. & OTHER FACI
		0P828	0P828 - MER-UNIT 1 PRECIPITATOR MTCE
		0P829	
		0P834	0P834 - MER-U4 GOVERNOR VALVE SEAT RPR
	·		OPMITE - MER-UNIT I BUILER OVERHAUL (GUMS)
			0PM11 - MER-UTTREGENOVEL 0PM2B - MER-UNIT 2 BOILER OVERHALIL (COMS)
		0PM3B	0PM3B - MER-UNIT 3 BOILER OVERHAUL (GCMS)
		0PM3T	0PM3T - MER-U3 TRB GEN OVHI
		0PM4B	0PM4B - MER-UNIT 4 BOILER OVERHAUL (GCMS)
	·	0PM4T	0PM4T - MER-U4 TRB GEN OVHL
	•	10802	10802 - MER U1&2 BOILER FURNACE SETTING REP
		12814	12814 - MER 4A&B ESP DEMO & NEW DUCT INSTAL
		13174	13174 - MERAMEC U4 REPL PRECIP PLATES&WIRES
	53 - SIOUX PLANT	0P606	0P606 - SIOUX UNIT 1 OUTAGE CONTRACT MTCE.
		0P607	0P607 - SIOUX UNIT 2 OUTAGE CONTRACT MTCE.
		0PS1B	0PS1B - SX-UNIT OVERHAUL - SIOUX BOILER #1
		0PS1T	0PS1T - SX-U1 TRB GEN OVHL
		0PS2B	0PS2B - SX-UNIT OVERHAUL - SIOUX BOILER #2
		0PS21	UPS21 - SX-U2 TRB GEN OVHL
		0P101	
	JO - LADADIL FLANT	0P415	0P415 - I BD - I ABADIE FIRE RESTORATION PNTG
		0P565	0P565 - LABADIE 4 GENERATOR FIFI D RECOVERY
		0P602	0P602 - LBD-U1 MBO Contract Mtc
		0P603	0P603 - LBD-U2 MBO Contract Mtc
		0P605	0P605 - LBD-U4 MBO Contract Mtc
		0P611	0P611 - LBD-R-BOILER CLEANING
		0P612	0P612 - LBD-R-TRAIN UNLOAD
		0PL1B	0PL1B - LBD-U1 MBO Mtc Cost
	[0PL1T	0PL1T - LBD-U1 TRB GEN OVHL
		0PL2B	0PL2B - LBD-U2 MBO Mtc Cost
		0PL2T	0PL21 - LBD-U2 TRB GEN OVHL
		UPL3B	UPL3B - LBD-U3 MBO Mtc Cost
		UPL31	UPL31 - LBD-U3 TRB GEN UVHL
	-		
	-	11047	
		13302	13302 - I BD U3 I P TURB RETROFIT REPI
	63 - RUSH ISI AND P	0P145	0P145 - RI-REPLACE RRECIP DISCHARGE RAPPERS
		0P335	0P335 - RI -U2 GEN STATOR COIL RPRS
		0P600	0P600 - RUSH ISLAND UNIT 1 OUTAGE CONTRACT
		0P601	0P601 - RUSH ISLAND UNIT 2 OUTAGE CONTRACT
		0PR1B	0PR1B - RI-UINT OVERHAUL - RUSH ISLAND BOIL
		0PR2B	0PR2B - RI-UNIT OVERHAUL - RUSH ISLAND BOIL
	[0PR2T	0PR2T - RI-U2 TRB GEN OVHL
		12976	12976 - RUSH ISLAND UNIT 1 GENERATOR REWIND

Common	2002
Common	2003
Common	2006
2	2000
2	2002
Common	2002
2	2004
1	2005
Common	2003
Common	2003
1	2000
1	2004
2	2003
1	2005
Common	2003
2	2004
1	2006
2	2004
1	2005
Common	2003
Common	2006
Common	2002
Common	2001
Common	2004
3	2003
1	2005
	2003
Common	2001
1	2001
2	2001
4	2003
1	2004
1	2004
1	2004
2	2004
3	2005
3	2003
4	2005
4	2005
Common	2001
	2001
4	2005
4	2005
1	2005
2	2006
1	2005
1	2005
2	2006
2	2006
2	2000
1	2001
4	2002
Common	2001
4	2003
1	2002
2	2001
1	2001
	2002
Common	2003
Common	2004
1	2002
1	2002
2	2004
2	2004
2	2003
	2003
3	2003
4	2002
4	2002
2	2001
3	2003
Common	2002
201111011	2002
<u> </u>	2001
1	2002
2	2004
1	2004
2	2004
2	2003
1	2000
1	2004

Increasing or Noteworthy Sources of Unavailability

Plant Labadie	Unit 1	Description of Outage Source First superheater and first reheater tube leaks
Labadie	2	Air heater fouling
Labadie	2	Furnace wall tube leaks
Labadie	3	Furnace wall tube leaks
Labadie Labadie Labadie Meramec	3 3 4 1	Condenser Tube Fouling Generator cooling system problems Nothing notable Opacity Derates
Meramec Meramec	2 3	First superheater and first reheater tube leaks Air Heater Problems
Meramec	4	Furnace wall first reheater and economizer tube leaks
Meramec Rush Island Rush Island Rush Island	4 1 1 2	Feedwater pump drive control problems First reheater tube leaks Earth movement Economizer fouling
Rush Island	2	Slag fall damage to boiler tubes
Sioux	1	Air Heater Problems
Sioux Sioux	1 2	Cyclone tube leaks Furnace wall tube leaks

/ based on GADS information

How Addressed

When

Major boiler outage including boiler assessment and boiler cleaning. Also, includes replacing reheater tubes and installing weld overlaid tube shields	In budget forecast - 2008 tentative)
Replacement of cold end air heater baskets during major outage.	In budget forecast - 2010 tentative
Major boiler outage including boiler assessment and boiler cleaning. Also, includes replacing water wall tubes around corner burner compartments and around old wall blower openings. Also, includes replacement of water cooled doors.	In budget forecast - 2010 tentative
Major boiler outage including boiler assessment and boiler cleaning. Also, includes replacing water wall tubes around corner burner compartments and around old wall blower openings. Also, includes replacement of water cooled doors.	In budget forecast - 2009 tentative
Steam side condenser maintenance Isophase bus duct cooling modifications NA	In budget forecast - 2009 tentative In budget forecast - 2007 tentative NA
Extensive precipitator maintenance scheduled for next major outage.	In budget forecast - 2009 tentative
Major boiler overhaul outage Replacement of middle bank of air heater baskets.	In budget forecast - 2009 tentative In budget forecast - 2010 tentative
Major boiler outage.	In budget forecast - 2011 tentative
Upgrade boiler feed pump controls. Air Heater Replacement Ongoing adjustments and repairs Replacement of economizer during major boiler outage.	In budget forecast - 2011 tentative In budget forecast - 2007 tentative Included in ongoing budget routines. In budget forecast - 2010 tentative
Major Boiler Outage including lower slope replacement.	In budget forecast - 2010 tentative
Retube cold section air heater	In budget forecast - project spends in 2007 and 2010 tentative
Replace cyclones. Furnace wall replacements during major boiler outage	In budget forecast - 2009=>2010 tentative In budget forecast - 2011 tentative

AMO																						
Project	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
													Labadie 2	Labadie 1								
Economizer												Sioux 2	Sioux 1	Labadie 4	Labadie 3	Meramec 1	Meramec 4		Rush Island 1			Rush Island 2
					Labadie 1																	
Lower Slope/Boiler Floor				Labadie 2	Labadie 3		Sioux 2	Sioux 1							Labadie 4				Rush Island 1			Rush Island 2
Reheater		Labadie 4	Labadie 3			Sioux 1	Sioux 2	Labadie 2			Meramec 3								Rush Island 1	Labadie 1		Rush Island 2
								Meramec 4	Labadie 3		Meramec 3		Meramec 2	Labadie 1	Labadie 3	Meramec 1 (CE Only)						
Air Preheater								Labadie 4 (HE Only)	(CE Only)		Sioux 2		Rush Island 1	Labadie 4	Rush Island 2	Labadie 2 (CE Only)	Meramec 4		Rush Island 1			Rush Island 2
																Sioux 2						
												Meramec 1				Meramec 1						
Superheater						Sioux 1		Meramec 4			Meramec 3	Meramec 2	Rush Island 1		Rush Island 2	Meramec 2	Meramec 4					
Cvclones																						
	Duch Joland 1																					
Watorwalls	Rush Island 1					Sioux 1		Moramos 4								Labadia 2						
Waterwalls	Rusii Islallu 2					SIOUX 1		Weralliec 4								Labaule 2						
ΔFR																						
Project	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Economizer																		Newton 1	Newton 2			
Lower Slope/Boiler Floor									Coffeen 1													
Reheater									Coffeen 1									Newton 1	Newton 2	Coffeen 2		
Air Preheater																						
Superheater									Coffeen 1		Coffeen 2							Newton 1	Newton 2	Coffeen 2		
Cyclones																				Coffeen 2		
Waterwalls																						

Schedule MCB-D2