SOLAR COST MODEL FOR A 70% wholesale 30% distributed generation program

VOTE SOLAR MISSOURI COST MODEL Claudia Eyzaguirre claudia@votesolar.org

SOLAR REQUIREMENT MWH	0.04%	0.04%	0.04%	0.1%	0.1%	0.1%	0.1%	0.2%	0.2%	0.2%	0.3%
(% of total retail sales)	2011	2012	<u>2013</u>	2014	<u> 2015</u>	<u>2016</u>	2017	2018	2019	2020	<u>2021</u>
Rebates	#40 005 B75	****	2000 040	410 274 554	#200 74.4		*****	#00 CO4 OFF		01.010.000	#00 077 E44
	,	\$225,849	\$230,818	\$16,673,554	\$602,714	\$615,974	\$629,525	\$30,531,059	\$1,315,058		\$33,277,544
Lumpsum SRECs	\$13,595,219	\$284,140	\$275,872	\$18,931,683	\$650,124	\$631,205	\$ 612,837	\$28,235,621	\$1,155,378	\$1,121,756	\$26,386,242
SRECs	\$4,410,477	\$4,502,656	\$4,592,152	\$10,733,851	\$10,944,760	\$11,149,532	\$11,348,345	\$20,508,370	\$20,883,190	\$21,244,866	\$29,804,927
Total	\$28,271,572	\$5,012,645	\$5,098,842	\$46,339,088	\$12,197,598	\$12,396,711	\$12,590,707	\$79,275,050	\$23,353,626	\$23,71 0,612	\$89,468,714

ASSUMPTIONS:

Model Market Segmentation Scenerio:

30% net metered distributed generation <25kW (rebate + lumpsum SREC payment)

70% large scale, wholesale solar (SREC only)

Lumpsum SREC payment

Calculation modeled after method used in Maryland for lumpsum SREC payments

NPV(80% of average SREC for wholesale for 15 years at a 8% discount rate); lumpsum declines 5% annually; assumes 0.5% degradation)

\$2,649 Yr 1 lumpsum as rebate (\$/watt)

\$2,077 Avg lumpsum payment

SREC values

Based on the LCOE for a utility scale solar project derived from the National Renewable Energy Lab Solar Advisor Model (SAM);

assumptions: in table below

value of wholesale electricity not accounted for.

Rebate

\$2/W DC for all projects >25kW

Statewide IOU Retal Electricity Sales Growth Rate:

MWh / MW (DC) per Year -- single exis tracker

MWh/MW (DC) per Year -- fixed tilt at 10 degrees

Utility MWh data from

2.2%

1,673 1,228

Source: Energy Information Administration, Form EIA-861, "Annual Electric Power Industry http://www.eia.doe.gov/cneaf/electricity/st_profiles/missouri.html

velized Cost of Energy® for a Utility Scale PV Project Assumptions in the Solar Advisor Model											
		7.	}								
	Year 2011		General:	<u>ce:</u>	Elnancial:	System:					
	panels	\$2.00	30 yr analysis	35% federal	PPA/IPP	\$21/kW-yr O&M					
1	inverter	\$0.45	2.5% inflation	8% state	15 year term	1673 kWh/kW (single axis tracking)					
‡	labor+profit +										
	вом	\$2.80	6% real discount r	0% property tax	6%/yr interest	0.5% degration in output					
	Total	\$5.25		7.35% sales tax	40% debt fraction	77% derate factor DC to AC					
	LCOE nom	\$0.307		0.5% insurance	0.6% PPA escalation						
	1st yr PPA price	\$0.291	}		15% IRR						
,			•		1.4 DSCR						

FILED

APR 1 5 2010

Missouri Public Service Commission

*The LCOE equation evaluates the lifecycle energy cost and production of a power plant, allowing alternative technologies – with different scales of operation, investment, or operating time periods – to be compared. W. Short, D. Packey, T. Holt, "A Manual for the Economic Evaluation of Energy Efficiency and Renewable Energy Technologies", National Renewable Energy Laboratory – March 1995

Date 4/16/10 Reporter MM File No. EX -2010-0169