

Volume 2: Commercial and Industrial Measures

Ameren Missouri TRM - Volume 2: C&I Measures Revision Log

Revision	Date	Description
1.0	05/30/2018	Initial version filed for Commission approval.
1.1	06/19/2020	Updated version to include new measures and updates to existing measures
2.0	10/15/2020	Updated version to include updates to existing measures.
3.0	9/15/2021	Update "Deemed Tables" with PY2020 Evaluation results plus updates to existing measures (lighting, chiller, pool pump). Added EUL lookup table for lighting measures from PY19.
4.0	9/26/2022	Updated "Deemed Tables" with PY2021 Evaluation results and added two new measures: 2.2.2 Compressed Air Leak Repair (shifting Compressed Air Nozzle and VSD Air Compressor to 2.2.3 and 2.2.4, respectively) and 2.5.10 Chiller Tune-Up.
5.0	10/05/2023	Updated baselines to 2015 IECC (effective 1/1/2024) for 2.5.5, 2.5.6, and 2.5.8. Updated baseline table to include only 2015 IECC for 2.5.7 PTAC/PTHP. Added "exterior" to 24/7 lighting coincidence factor because 24/7 interior lighting (e.g., exit signs) are included in the indoor lighting coincidence factor. Retired measures 2.6.4 and 2.6.7 in response to the EISA backstop provision becoming effective 8/1/2023. Expanded measure 2.2.4 VSD Air Compressor description to include units up to 200-hp.
6.0	12/01/2024	

Volume 2: Commercial and Industrial Measures	
2.1 Appliances	<u>11411</u>
2.1.1 Clothes Washer	11411
2.1.2 Clothes Dryer	17 1117
2.2 Compressed Air	23 162 3
2.2.1 Compressed Air No Loss Condensate Drain	23 1623
2.2.2 Compressed Air Leak Repair	<u>261826</u>
2.2.3 Compressed Air Nozzle	31 213 1
2.2.4 VSD Air Compressor	36 243 6
2.3 Food Service	40 274 0
2.3.1 Combination Oven	40 2740
2.3.2 Commercial Steam Cooker	49 334 9
2.3.3 Fryer	<u>553855</u>
2.3.4 Convection Oven	<u>604260</u>
2.3.5 Griddle	65 476 5
2.3.6 Kitchen Demand Ventilation Controls	52
2.3.7 Hot Food Holding Cabinet	55
2.3.8 Pre-Rinse Spray Valve	58
2.4 Hot Water	63 6263
2.4.1 Low Flow Faucet Aerator.	<u>636263</u>
2.4.2 Circulator Pump	71 677 1
2.4.3 Heat Pump Water Heater	73 6973
2.4.4 Low Flow Showerheads	<u>797479</u>
2.5 HVAC	86 788 6
2.5.1 Small Commercial Learning Thermostats	87 798 7
2.5.2 Small Commercial Programmable Thermostats	91 839 1
2.5.3 Demand Controlled Ventilation	94 869 4
2.5.4 Advanced Roof Top Unit (RTU) Controls	99 <mark>909</mark> 9
2.5.5 Electric Chiller	102 9310 2
2.5.6 Heat Pump Systems.	110 9811 0
2.5.7 Packaged Terminal Air Conditioner (PTAC) - Packaged Terminal Heat Pump (PTI	HP)122 10512
2.5.8 Single-Package and Split System Unitary Air Conditioner	128 <u>11012</u> 8
2.5.9 High Volume Low Speed Fans	137 11613 7
2.5.10 Chiller Tune Up	139 <u>11813</u> 9
2.5.11 Efficient Cooling Towers	148 12414 8

2.2 Compressed Air.	51 127151
2.6.4 LED Screw Based Omnidirectional Bulb (Available for Income Eligible and BSS programs) 18 2.6.7 LED Specialty Lamp (Available for Income Eligible and BSS programs) 19 2.6.8 Lighting Power Density (Available for Income Eligible and BSS programs) 19 2.6.10 Lighting Controls 21 2.7 Miscellaneous 22 2.7.3 Heat Pump Pool Heater 22 2.7.4 Computer Server 23 2.8 Motors and Pumps 23 2.8.1 Motors 23 2.8.2 Pool Pump 23 2.8.3 Pool Pump Timer 24 2.8.5 Variable Frequency Drives for Pumps and Fans on Hydronic HVAC Systems 24 2.8.5 Variable Frequency Drives for HVAC Supply and Return Fans 24 2.8.7 Efficient Pumps 25 2.9 Refrigeration 26 2.9.1 Commercial Solid and Glass Door Refrigerators & Freezers 26 2.9.2 Refrigerated Beverage Vending Machine 26 2.9.3 Door Heater Controls for Cooler or Freezer 26 2.9.4 Electronically Commutated Motors (ECM) for Walk-in and Reach-in Coolers/Freezers 2.9.5 Strip Curtain for Walk-in Coolers and Freezers 27 2.10.1 Windows 27 2.1.2 Clothes Driver 21.2	<u>55<mark>131155</mark></u>
2.6.6 LED Exit Sign 18 2.6.7 LED Specialty Lamp (Available for Income Eligible and BSS programs) 19 2.6.8 Lighting Power Density (Available for Income Eligible and BSS programs) 19 2.6.10 Lighting Controls 21 2.7 Miscellaneous 22 2.7.3 Heat Pump Pool Heater 22 2.7.4 Computer Server 23 2.8 Motors and Pumps 23 2.8.1 Motors 23 2.8.2 Pool Pump 23 2.8.3 Pool Pump Timer 24 2.8.4 Pump Optimization 24 2.8.5 Variable Frequency Drives for Pumps and Fans on Hydronic HVAC Systems 24 2.8.6 Variable Frequency Drives for HVAC Supply and Return Fans 24 2.8.7 Efficient Pumps 25 2.9 Refrigeration 26 2.9.1 Commercial Solid and Glass Door Refrigerators & Freezers 26 2.9.2 Refrigerated Beverage Vending Machine 26 2.9.3 Door Heater Controls for Cooler or Freezer 26 2.9.4 Electronically Commutated Motors (ECM) for Walk-in and Reach-in Coolers/Freezers 2.9.5 Strip Curtain for Walk-in Coolers and Freezers 27 2.10 Shell 27 2.10.2 Ceiling and Wall Insulation	59 134169
2.6.7 LED Specialty Lamp (Available for Income Eligible and BSS programs) 19 2.6.8 Lighting Power Density (Available for Income Eligible and BSS programs) 19 2.6.10 Lighting Controls 21 2.7 Miscellaneous 22 2.7.3 Heat Pump Pool Heater 22 2.7.4 Computer Server 23 2.8 Motors and Pumps 23 2.8.1 Motors 23 2.8.2 Pool Pump 23 2.8.3 Pool Pump Timer 24 2.8.4 Pump Optimization 24 2.8.5 Variable Frequency Drives for Pumps and Fans on Hydronic HVAC Systems 24 2.8.6 Variable Frequency Drives for HVAC Supply and Return Fans 24 2.8.7 Efficient Pumps 25 2.9 Refrigeration 26 2.9.1 Commercial Solid and Glass Door Refrigerators & Freezers 26 2.9.2 Refrigerated Beverage Vending Machine 26 2.9.3 Door Heater Controls for Cooler or Freezer 26 2.9.4 Electronically Commutated Motors (ECM) for Walk-in and Reach-in Coolers/Freezers/ 2.9.5 Strip Curtain for Walk-in Coolers and Freezers 27 2.10 Shell 27 2.10 Ceiling and Wall Insulation 28 Volume 2: Commercial and In	grams) 🎮
2.6.8 Lighting Power Density (Available for Income Eligible and BSS programs) 19 2.6.10 Lighting Controls 21 2.7 Miscellaneous 22 2.7.3 Heat Pump Pool Heater 22 2.7.4 Computer Server 23 2.8 Motors and Pumps 23 2.8.1 Motors 23 2.8.2 Pool Pump 23 2.8.3 Pool Pump Timer 24 2.8.4 Pump Optimization 24 2.8.5 Variable Frequency Drives for Pumps and Fans on Hydronic HVAC Systems 24 2.8.6 Variable Frequency Drives for HVAC Supply and Return Fans 24 2.8.7 Efficient Pumps 25 2.9 Refrigeration 26 2.9.1 Commercial Solid and Glass Door Refrigerators & Freezers 26 2.9.2 Refrigerated Beverage Vending Machine 26 2.9.3 Door Heater Controls for Cooler or Freezer 26 2.9.4 Electronically Commutated Motors (ECM) for Walk-in and Reach-in Coolers/Freezers/2. 2.9.5 Strip Curtain for Walk-in Coolers and Freezers 2.9.5 Strip Curtain for Walk-in Coolers and Freezers 27 2.10 Shell 27 2.10.1 Windows 27 2.10.2 Ceiling and Wall Insulation 28 2.1 Appliances	39 150189
2.6.10 Lighting Controls 21 2.7 Miscellaneous 22 2.7.3 Heat Pump Pool Heater 22 2.7.4 Computer Server 23 2.8 Motors and Pumps 23 2.8.1 Motors 23 2.8.2 Pool Pump 23 2.8.3 Pool Pump Timer 24 2.8.4 Pump Optimization 24 2.8.5 Variable Frequency Drives for Pumps and Fans on Hydronic HVAC Systems 24 2.8.6 Variable Frequency Drives for HVAC Supply and Return Fans 24 2.8.7 Efficient Pumps 25 2.9 Refrigeration 26 2.9.1 Commercial Solid and Glass Door Refrigerators & Freezers 26 2.9.2 Refrigerated Beverage Vending Machine 26 2.9.3 Door Heater Controls for Cooler or Freezer 26 2.9.4 Electronically Commutated Motors (ECM) for Walk-in and Reach-in Coolers/Freezers/ 2.6 2.9.5 Strip Curtain for Walk-in Coolers and Freezers 27 2.10 Shell 27 2.10.1 Windows 27 2.10.2 Ceiling and Wall Insulation 28 2-1 Appliances 21.1 Clothes Washer 2.1.2 Clothes Dryer 2.1.2 Compressed Air 22.1 Compressed Air N	92 <u>153192</u>
2.7 Miscellaneous	97 158197
2.7.3 Heat Pump Pool Heater 22 2.7.4 Computer Server 23 2.8 Motors and Pumps 23 2.8.1 Motors 23 2.8.2 Pool Pump 23 2.8.3 Pool Pump Timer 24 2.8.4 Pump Optimization 24 2.8.5 Variable Frequency Drives for Pumps and Fans on Hydronic HVAC Systems 24 2.8.6 Variable Frequency Drives for HVAC Supply and Return Fans 24 2.8.7 Efficient Pumps 25 2.9 Refrigeration 26 2.9.1 Commercial Solid and Glass Door Refrigerators & Freezers 26 2.9.2 Refrigerated Beverage Vending Machine 26 2.9.3 Door Heater Controls for Cooler or Freezer 26 2.9.4 Electronically Commutated Motors (ECM) for Walk-in and Reach-in Coolers/Freezers 27 2.10 Shell 27 2.10 Shell 27 2.10.1 Windows 27 2.10.2 Ceiling and Wall Insulation 28 2.1 Appliances 21.1 Clothes Washer 2.1.2 Compressed Air 2.2.1 Compressed Air No Loss Condensate Drain	14 171214
2.7.4 Computer Server. 23 2.8 Motors and Pumps. 23 2.8.1 Motors. 23 2.8.2 Pool Pump 23 2.8.3 Pool Pump Timer. 24 2.8.4 Pump Optimization 24 2.8.5 Variable Frequency Drives for Pumps and Fans on Hydronic HVAC Systems 24 2.8.6 Variable Frequency Drives for HVAC Supply and Return Fans 24 2.8.7 Efficient Pumps 25 2.9 Refrigeration 26 2.9.1 Commercial Solid and Glass Door Refrigerators & Freezers 26 2.9.2 Refrigerated Beverage Vending Machine 26 2.9.3 Door Heater Controls for Cooler or Freezer 26 2.9.4 Electronically Commutated Motors (ECM) for Walk-in and Reach-in Coolers/Freezers 2.9.5 Strip Curtain for Walk-in Coolers and Freezers 27 2.10 Shell 27 2.10.1 Windows 27 2.10.2 Ceiling and Wall Insulation 28 Volume 2: Commercial and Industrial Measures 21.1 Clothes Washer 2.1.2 Clothes Dryer 2.2 Compressed Air No Loss Condensate Drain	23 <u>175223</u>
2.8 Motors and Pumps 23 2.8.1 Motors 23 2.8.2 Pool Pump 23 2.8.3 Pool Pump Timer 24 2.8.4 Pump Optimization 24 2.8.5 Variable Frequency Drives for Pumps and Fans on Hydronic HVAC Systems 24 2.8.6 Variable Frequency Drives for HVAC Supply and Return Fans 24 2.8.7 Efficient Pumps 25 2.9 Refrigeration 26 2.9.1 Commercial Solid and Glass Door Refrigerators & Freezers 26 2.9.2 Refrigerated Beverage Vending Machine 26 2.9.3 Door Heater Controls for Cooler or Freezer 26 2.9.4 Electronically Commutated Motors (ECM) for Walk-in and Reach-in Coolers/Freezers/ 29.5 Strip Curtain for Walk-in Coolers and Freezers 27 2.10 Shell 27 2.10.1 Windows 27 2.10.2 Ceiling and Wall Insulation 28 Volume 2: Commercial and Industrial Measures 21.1 Clothes Washer 2.1.1 Clothes Washer 2.1.2 Compressed Air No Loss Condensate Drain	28 176228
2.8.1 Motors 23 2.8.2 Pool Pump 23 2.8.3 Pool Pump Timer 24 2.8.4 Pump Optimization 24 2.8.5 Variable Frequency Drives for Pumps and Fans on Hydronic HVAC Systems 24 2.8.6 Variable Frequency Drives for HVAC Supply and Return Fans 24 2.8.7 Efficient Pumps 25 2.9 Refrigeration 26 2.9.1 Commercial Solid and Glass Door Refrigerators & Freezers 26 2.9.2 Refrigerated Beverage Vending Machine 26 2.9.3 Door Heater Controls for Cooler or Freezer 26 2.9.4 Electronically Commutated Motors (ECM) for Walk-in and Reach-in Coolers/Freezers/ 26 2.9.5 Strip Curtain for Walk-in Coolers and Freezers 27 2.10 Shell 27 2.10.1 Windows 27 2.10.2 Ceiling and Wall Insulation 28 2-1 Appliances 2-1 Appliances 2-1 Compressed Air No Loss Condensate Drain 2-1 Compressed Air No Loss Condensate Drain	30 178230
2.8.2 Pool Pump 23 2.8.3 Pool Pump Timer 24 2.8.4 Pump Optimization 24 2.8.5 Variable Frequency Drives for Pumps and Fans on Hydronic HVAC Systems 24 2.8.6 Variable Frequency Drives for HVAC Supply and Return Fans 24 2.8.7 Efficient Pumps 25 2.9 Refrigeration 26 2.9.1 Commercial Solid and Glass Door Refrigerators & Freezers 26 2.9.2 Refrigerated Beverage Vending Machine 26 2.9.3 Door Heater Controls for Cooler or Freezer 26 2.9.4 Electronically Commutated Motors (ECM) for Walk-in and Reach-in Coolers/Freezers/ 2.9.5 Strip Curtain for Walk-in Coolers and Freezers 27 2.10 Shell 27 2.10.1 Windows 27 2.10.2 Ceiling and Wall Insulation 28 Volume 2: Commercial and Industrial Measures 21 2.1 Appliances 21.1 Clothes Washer 2.1.2 Clothes Dryer 22.2 Compressed Air No Loss Condensate Drain	33 <u>181233</u>
2.8.3 Pool Pump Timer 24 2.8.4 Pump Optimization 24 2.8.5 Variable Frequency Drives for Pumps and Fans on Hydronic HVAC Systems 24 2.8.6 Variable Frequency Drives for HVAC Supply and Return Fans 24 2.8.7 Efficient Pumps 25 2.9 Refrigeration 26 2.9.1 Commercial Solid and Glass Door Refrigerators & Freezers 26 2.9.2 Refrigerated Beverage Vending Machine 26 2.9.3 Door Heater Controls for Cooler or Freezer 26 2.9.4 Electronically Commutated Motors (ECM) for Walk-in and Reach-in Coolers/Freezers/ 2.9.5 Strip Curtain for Walk-in Coolers and Freezers 27 2.10 Shell 27 2.10.1 Windows 27 2.10.2 Ceiling and Wall Insulation 28 Volume 2: Commercial and Industrial Measures 21.1 Clothes Washer 2.1.2 Clothes Dryer 2.2 Compressed Air 2.2 Compressed Air No Loss Condensate Drain 2.2 Compressed Air No Loss Condensate Drain	33 <u>181233</u>
2.8.4 Pump Optimization 24 2.8.5 Variable Frequency Drives for Pumps and Fans on Hydronic HVAC Systems 24 2.8.6 Variable Frequency Drives for HVAC Supply and Return Fans 24 2.8.7 Efficient Pumps 25 2.9 Refrigeration 26 2.9.1 Commercial Solid and Glass Door Refrigerators & Freezers 26 2.9.2 Refrigerated Beverage Vending Machine 26 2.9.3 Door Heater Controls for Cooler or Freezer 26 2.9.4 Electronically Commutated Motors (ECM) for Walk-in and Reach-in Coolers/Freezers/ 2.9.5 Strip Curtain for Walk-in Coolers and Freezers 2.9.5 Strip Curtain for Walk-in Coolers and Freezers 27 2.10 Shell 27 2.10.1 Windows 27 2.10.2 Ceiling and Wall Insulation 28 Yolume 2: Commercial and Industrial Measures 2.1.1 Clothes Washer 2.1.2 Clothes Dryer 2.1.2 Clothes Dryer 2.2 Compressed Air 2.2.1 Compressed Air No Loss Condensate Drain	37 185237
2.8.5 Variable Frequency Drives for Pumps and Fans on Hydronic HVAC Systems	40 187240
2.8.6 Variable Frequency Drives for HVAC Supply and Return Fans	12 <u>189242</u>
2.8.7 Efficient Pumps	14 191244
2.9 Refrigeration	48 195248
2.9.1 Commercial Solid and Glass Door Refrigerators & Freezers	51 198251
2.9.2 Refrigerated Beverage Vending Machine	62 203262
2.9.3 Door Heater Controls for Cooler or Freezer. 26 2.9.4 Electronically Commutated Motors (ECM) for Walk-in and Reach-in Coolers/Freezers. 2.7 2.9.5 Strip Curtain for Walk-in Coolers and Freezers. 27 2.10 Shell. 27 2.10.1 Windows. 27 2.10.2 Ceiling and Wall Insulation. 28 Colume 2: Commercial and Industrial Measures. 2.1 Appliances 2.1 Clothes Washer. 2.1.2 Clothes Dryer. 2.2 Compressed Air No Loss Condensate Drain	52 203262
2.9.3 Door Heater Controls for Cooler or Freezer. 26 2.9.4 Electronically Commutated Motors (ECM) for Walk-in and Reach-in Coolers/Freezers. 2.7 2.9.5 Strip Curtain for Walk-in Coolers and Freezers. 27 2.10 Shell. 27 2.10.1 Windows. 27 2.10.2 Ceiling and Wall Insulation. 28 Colume 2: Commercial and Industrial Measures. 2.1 Appliances 2.1.1 Clothes Washer. 2.1.2 Clothes Dryer. 2.2 Compressed Air. 2.2.1 Compressed Air No Loss Condensate Drain	56 207266
2.9.5 Strip Curtain for Walk-in Coolers and Freezers 27 2.10 Shell 27 2.10.1 Windows 27 2.10.2 Ceiling and Wall Insulation 28 Colume 2: Commercial and Industrial Measures 2.1 Appliances 2.1.1 Clothes Washer 2.1.2 Clothes Dryer 2.2 Compressed Air 2.2.1 Compressed Air No Loss Condensate Drain	59 210269
2.10 Shell 27 2.10.1 Windows 27 2.10.2 Ceiling and Wall Insulation 28 Folume 2: Commercial and Industrial Measures 21 2.1 Appliances 2.1.1 Clothes Washer 2.1.2 Clothes Dryer 2.2 Compressed Air 2.2.1 Compressed Air No Loss Condensate Drain 2.2.1 Compressed Air No Loss Condensate Drain	s272 213272
2.10.1 Windows 27 2.10.2 Ceiling and Wall Insulation 28 Solume 2: Commercial and Industrial Measures 21 2.1 Appliances 2.1.1 Clothes Washer 2.1.2 Clothes Dryer 2.2.2 Compressed Air 2.2.1 Compressed Air No Loss Condensate Drain 2.2.1 Compressed Air No Loss Condensate Drain	
2.10.2 Ceiling and Wall Insulation	78 218278
2.1 Appliances 2.1.1 Clothes Washer. 2.1.2 Clothes Dryer. 2.2 Compressed Air 2.2.1 Compressed Air No Loss Condensate Drain.	78 218278
2.1 Appliances	83 223283
2.1.1 Clothes Washer 2.1.2 Clothes Dryer 2.2 Compressed Air 2.2.1 Compressed Air No Loss Condensate Drain	1
2.1.2 Clothes Dryer 2.2 Compressed Air 2.2.1 Compressed Air No Loss Condensate Drain	5
2.2.1 Compressed Air No Loss Condensate Drain	5
2.2.1 Compressed Air No Loss Condensate Drain	11
•	16
2.2.2 Compressed Air Leak Repair	16
	18
2.2.3 Compressed Air Nozzle	21
2.2.4 VSD Air Compressor	24

Appendix H - TRM - Vol. 2: C&I Measures

2.3 Food Service.	<u>2</u>
2.3.1 Combination Oven	2
2.3.2 Commercial Steam Cooker	3
2.3.3 Fryer	31
2.3.4 Convection Oven	42
2.3.5 Griddle	4'
2.3.6 Kitchen Demand Ventilation Controls	51
2.3.7 Hot Food Holding Cabinet	5,
2.3.8 Pre-Rinse Spray Valve.	5
2.4 Hot Water.	60
2.4.1 Low Flow Faucet Aerator	61
2.4.2 Circulator Pump	6
2.4.3 Heat Pump Water Heater	6
2.4.4 Low Flow Showerheads	72
2.5 HVAC	7'
2.5.1 Small Commercial Learning Thermostats	7
2.5.2 Small Commercial Programmable Thermostats	8
2.5.3 Demand Controlled Ventilation	8
2.5.4 Advanced Roof Top Unit (RTU) Controls	89
2.5.5 Electric Chiller	92
2.5.6 Heat Pump Systems	9
2.5.7 Packaged Terminal Air Conditioner (PTAC) Packaged Terminal Heat Pump (PTHP)	10
	10
2.5.8 Single-Package and Split System Unitary Air Conditioner	
2.5.9 High Volume Low Speed Fans	11
2.5.10 Chiller Tune Up	119
2.5.11 Efficient Cooling Towers (TRC request)	12
2.5.12 Dedicated Outdoor Systems (DOAS)	12
2.6 Lighting.	13
2.6.1 Fluorescent Delamping	13
2.6.2 High Performance and Reduced Wattage T8 Fixtures and Lamps (Retired, effective 1/1/2025)	131
2.6.3 LED Bulbs and Fixtures	140
2.6.4 LED Screw Based Omnidirectional Bulb (Retired, effective 8/1/2023)	15
2.6.5 T5 Fixtures and Lamps (Retired, effective 1/1/2025)	160
2.6.6 LED Exit Sign	16
2.6.7 LED Specialty Lamp (Retired, effective 8/1/2023)	16
2.6.8 Lighting Power Density	17
2.6.9 Metal Halide Fixtures and Lamps (Retired, effective 1/1/2025)	170

Formatted: Font color: Auto

2.6.10 Lighting Controls.	182
2.6.11 Street Lighting (Retired, effective 1/1/2025)	186
2.7 Miscellancous	189
2.7.1 Laptop Computer	189
2.7.2 Computer Power Management Software	192
2.7.3 Heat Pump Pool Heater	194
2.7.4 Computer Server	196
2.8 Motors and Pumps	198
2.8.1 Motors	198
2.8.2 Pool Pump	202
2.8.3 Pool Pump Timer	205
2.8.4 Pump Optimization	207
2.8.5 Variable Frequency Drives for Pumps and Fans on Hydronic HVAC Systems	209
2.8.6 Variable Frequency Drives for HVAC Supply and Return Fans	213
2.8.7 Efficient Pumps	216
2.9 Refrigeration.	221
2.9.1 Commercial Solid and Glass Door Refrigerators & Freezers	221
2.9.2 Refrigerated Beverage Vending Machine	225
2.9.3 Door Heater Controls for Cooler or Freezer	228
2.9.4 Electronically Commutated Motors (ECM) for Walk-in and Reach-in Coolers/Freezers	231
2.9.5 Strip Curtain for Walk-in Coolers and Freezers	234
2.10 Shell	237
2.10.1 Windows	237
2.10.2 Ceiling and Wall Insulation-	242
Volume 2: Commercial and Industrial Measures	1
2.1 Appliances	6
2.1.1 Clothes Washer.	
2.1.2 Clothes Dryer	12
2.2 Compressed Air	17
2.2.1 Compressed Air No Loss Condensate Drain	17
2.2.2 Compressed Air Leak Repair	19
2.2.3 Compressed Air Nozzle	22
2.2.4 VSD Air Compressor	26
2.3 Food Service	29
2.3.1 Combination Oven.	29
2.3.2 Commercial Steam Cooker	34
2.3.3 Fryer-	40

2.3.4 Convection Oven	4
2.3.5 Griddle	4
2.3.6 Kitchen Demand Ventilation Controls	52
2.3.7 Hot Food Holding Cabinet.	54
2.3.8 Pre-Rinse Spray Valve	50
2.4 Hot Water	6
2.4.1 Low Flow Faucet Aerator	61
2.4.2 Circulator Pump	6
2.4.3 Heat Pump Water Heater	6′
2.4.4 Low Flow Showerheads	7
2.5 HVAC	7′
2.5.1 Small Commercial Learning Thermostats	7
2.5.2 Small Commercial Programmable Thermostats	8′
2.5.3 Demand Controlled Ventilation	
2.5.4 Advanced Roof Top Unit (RTU) Controls.	89
2.5.5 Electric Chiller	
2.5.6 Heat Pump Systems	9′
2.5.7 Packaged Terminal Air Conditioner (PTAC) - Packaged Terminal Heat Pump (PTHP)	10
	10
2.5.8 Single-Package and Split System Unitary Air Conditioner	
2.5.9 High Volume Low Speed Fans	
2.5.10 Chiller Tune Up	119
2.5 12 Destinated Outsides Continue (DOAS)	12
2.5.12 Dedicated Outdoor Systems (DOAS)	
2.6 Lighting	
2.6.1 Fluorescent Delamping	13:
2.6.2 High Performance and Reduced Wattage T8 Fixtures and Lamps (Retired, effective 1/1/2025)	13
2.6.3 LED Bulbs and Fixtures.	140
2.6.4 LED Screw Based Omnidirectional Bulb (Retired, effective 8/1/2023)	15
2.6.5 T5 Fixtures and Lamps (Retired, effective 1/1/2025)	16
2.6.6 LED Exit Sign	16
2.6.7 LED Specialty Lamp (Retired, effective 8/1/2023)	16
2.6.8 Lighting Power Density	17
2.6.9 Metal Halide Fixtures and Lamps (Retired, effective 1/1/2025)	17
2.6.10 Lighting Controls.	182
2.6.11 Street Lighting (Retired, effective 1/1/2025)	18
2.7 Miscellaneous	18
2.7.1 Laptop Computer	189

Appendix H - TRM - Vol. 2: C&I Measures

2.7.2 Computer Power Management Software	192
2.7.3 Heat Pump Pool Heater	194
2.7.4 Computer Server	196
2.8 Motors and Pumps	198
2.8.1 Motors	198
2.8.2 Pool Pump	202
2.8.3 Pool Pump Timer	205
2.8.4 Pump Optimization	207
2.8.5 Variable Frequency Drives for Pumps and Fans on Hydronic HVAC Systems	209
2.8.6 Variable Frequency Drives for HVAC Supply and Return Fans	213
2.8.7 Efficient Pumps	216
2.9 Refrigeration	221
2.9.1 Commercial Solid and Glass Door Refrigerators & Freezers	221
2.9.2 Refrigerated Beverage Vending Machine	225
2.9.3 Door Heater Controls for Cooler or Freezer	228
2.9.4 Electronically Commutated Motors (ECM) for Walk in and Reach-in Coolers/Freezers	231
2.9.5 Strip Curtain for Walk-in Coolers and Freezers	234
2.10 Shell	237
2.10.1 Windows	237
2.10.2 Ceiling and Wall Insulation.	242
Volume 2: Commercial and Industrial Measures	1
2.1 Appliances	
2.1.1 Clothes Washer	
2.1.2 Clothes Dryer	10
2.2 Compressed Air	15
2.2.1 Compressed Air No Loss Condensate Drain	15
2.2.2 Compressed Air Leak Repair	
2.2.3 Compressed Air Nozzle	
2.2.4 VSD Air Compressor	23
2.3 Food Service	26
2.3.1 Combination Oven	
2.3.2 Commercial Steam Cooker	31
2.3.3 Fryer	36
2.3.4 Convection Oven	
	40
2.2.5 Cuidallo	40 45
2.3.5 Griddle	45
2.2.5 Cuidallo	4 <u>5</u>

Formatted: Default Paragraph Font, Check spelling and grammar

Formatted: Default Paragraph Font, Check spelling and grammar

Formatted: Default Paragraph Font, Check spelling and grammar

Formatted: Default Paragraph Font, Check spelling and grammar

Formatted: Default Paragraph Font, Check spelling and grammar

Formatted: Default Paragraph Font, Check spelling and

Formatted: Default Paragraph Font, Check spelling and grammar

Formatted: Default Paragraph Font, Check spelling and

grammar

Formatted: Default Paragraph Font, Check spelling and

Formatted: Default Paragraph Font, Check spelling and

grammar

Formatted: Default Paragraph Font, Check spelling and grammar

grammar

2.3.8 Pre Rinse Spray Valve	_48 -	Formatted	
2.4 Hot Water	51	Formatted	[1]
2.4.1 Low Flow Faucet Aerator		Formatted	[2]
2-4-2 Circulator Pump	56	Formatted	[3]
2.4.3 Heat Pump Water Heater	58	Formatted	[4]
2.5 HVAC	_63	Formatted	[5]
2.5.1 Small Commercial Learning Thermostats	64	Formatted	[6]
2.5.2 Small Commercial Programmable Thermostats	67	Formatted	[7]
2.5.3 Demand Controlled Ventilation	70	Formatted	[8]
2.5.4 Advanced Roof Top Unit (RTU) Controls	74 74	Formatted	[9]
2.5.5 Electric Chiller		Formatted	[10]
2.5.6 Heat Pump Systems	84 	Formatted	[11]
2.5.7 Packaged Terminal Air Conditioner (PTAC) Packaged Terminal Heat Pump (PTHP)	94	Formatted	[12]
2.5.8 Single Package and Split System Unitary Air Conditioner	98	Formatted	[13]
2.5.9 High Volume Low Speed Fans	105	Formatted	[14]
2.5.10 Chiller Tune Up	 107	Formatted	[15]
2.6 Lighting	112	Formatted	
2.6.1 Fluorescent Delamping		Formatted	[17] [18]
2.6.2 High Performance and Reduced Wattage T8 Fixtures and Lamps	 <u>1</u>17	Formatted	[19]
2.6.3 LED Bulbs and Fixtures	. <u>. 125</u>	Formatted	[19]
2.6.4 LED Screw Based Omnidirectional Bulb (Retired, effective 8/1/2023)	<u> 131</u>	Formatted	[21]
2.6.5 T5 Fixtures and Lamps	. <u>. 137</u>	Formatted	[21]
2.6.6 LED Exit Sign	 14]	Formatted	[23]
2.6.7 LED Specialty Lamp (Retired, effective 8/1/2023)	<u> 144</u>	Formatted	[24]
2.6.8 Lighting Power Density	 149	Formatted	[25]
2.6.9 Metal Halide Fixtures and Lamps	<u> 16</u>]	Formatted	[26]
2.6.10 Occupancy Lighting Sensor Controls	<u> 165</u>	Formatted	[27]
2-6-11 Street Lighting	<u> 168</u>	Formatted	[28]
2.7 Miscellaneous	. 17 1	Formatted	[29]
2.7.1 Laptop Computer	 17]	Formatted	[30]
2.7.2 Computer Power Management Software	 174	Formatted	[31]
2.7.3 Heat Pump Pool Heater	 176	Formatted	[32]
2.7.4 Computer Server	 178	Formatted	[33]
2.8 Motors	 180	Formatted	[34]
2.8.1 Motors	<u> 180</u>	Formatted	[35]
2-8-2 Pool Pump	 184	Formatted	[36]
2.8.3 Pool Pump Timer	 186	Formatted	[37]
			([81])

Appendix H - TRM - Vol. 2: C&I Measures

	2.8.4 Pump Optimization.	. 188
	2.8.5 Variable Frequency Drives for Pumps and Fans on Hydronic HVAC Systems	. 190
	2.8.6 Variable Frequency Drives for HVAC Supply and Return Fans	. 194
2	2.9 Refrigeration	. 201
	2.9.1 Commercial Solid and Glass Door Refrigerators & Freezers	
	2.9.2 Refrigerated Beverage Vending Machine	
	2.9.3 Door Heater Controls for Cooler or Freezer	
	2.9.4 Electronically Commutated Motors (ECM) for Walk-in and Reach-in Coolers/Freezers	
	2.9.5 Strip Curtain for Walk in Coolers and Freezers	
2	2. 10 Shell	
•	<u>2-10.1 Windows</u>	
	2.10.2 Ceiling and Wall Insulation	
	2.10.2 Coming and 11 an insulation	. 220

Formatted: Default Paragraph Font, Check spelling and grammar

Volume 2: Commercial and Industrial Measures

2.1 Appliances

2.1.1 Clothes Washer

DESCRIPTION

This measure relates to the installation of a commercial-grade clothes washer meeting the ENERGY STAR® minimum qualifications. Note it is assumed the domestic hot water (DHW) and dryer fuels of the installations are known.

This measure was developed to be applicable to the following program types: TOS and NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The commercial-grade clothes washer must meet the ENERGY STAR® minimum qualifications (provided in the table below), in the following table, as required by the program. The current Version 8.0, —is effective as of February 2018. Or a top load commercial grade clothes washer exceeding the California Modernized Appliance Efficiency Database (CA MAEDBS) minimum qualifications, as of 2024 specification is effective as of February 5, 2018.

Efficiency Level		Top loading	Front Loading
Efficient	ENERGY STAR® Or CA MAEDBS	≥1.49 MEF, ≤7.92 IWF	≥2.2 MEF, ≤4.0 IWF

Formatted: Font color: Text 1

Formatted: Font color: Text 1

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is a commercial-grade clothes washer meeting the minimum federal energy efficiency baseline as of January 20132018.

Efficiency Level		Top loading	Front Loading
Baseline	Federal Standard	1.35 MEF, 8.8 IWF≥1.6 MEF, ≤8.5 WF	2.00 MEF, 4.1 IWF≥2.00 MEF, ≤5.5 WF
Efficient	ENERGY STAR®	N/A	≥2.2 MEF, ≤4.0 IWF

Formatted: Font: 11 pt

Formatted: Indent: Left: 0", Line spacing: single

Formatted: Line spacing: single

Formatted Table

DOE, Commercial Clothes Washer efficiency. cCFR: 10 CFR Part 431—Energy Efficiency Program for Certain Commercial and Industrial Equipmenthttps://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431#431.97DOE|Commercial Washers|https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431#431.97DOE|Commercial Cothes Washers|https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431#431.97DOE|Commercial Cothes Washers|https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431#431.97https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431#431.97https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431#431.97https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431#431.97https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431#431.97https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431#431.97https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431#431.97https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431#431.97https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431#431.97https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431#431.97https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431#431.97https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431#431.97https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431#431.97https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431#431.97https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431#431.97https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431#431.97https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431#431.97https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431#431.97https://www.ecfr.gov/current/title-10/chapter-II/subchapter-II/subchapter-II/subchapter-II/subchapter-II/subchapter-II/subchapter-II/subchapter-II/subchapter-II/subchapter-II/subchapter-II/subchapter-II/subch

Formatted: Font: 8 pt

Formatted: Font: 8 pt

Field Code Changed

2025 MEEIA 4 Plan MEEIA 2019-214 2025 Plan-

Revision 56.0

Appendix H - TRM - Vol. 2: C&I Measures

The Modified Energy Factor (MEF) includes unit operation, water heating, and drying energy use, with the higher the value the more efficient the unit; "The quotient of the capacity of the clothes container, divided by the total clothes washer energy consumption per cycle, with such energy consumption expressed as the sum of the machine electrical energy consumption, the hot water energy consumption, and the energy required for removal of the remaining moisture in the wash load."

The Integrated Water Factor (IWF) indicates the total water consumption of the unit, with the lower the value the less water required; "The quotient of the total weighted per-cycle water consumption for all wash cycleseold wash, divided by the capacity of the clothes washer."²

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 11 years.³

DEEMED MEASURE COST

The incremental cost is assumed to be \$200.4

LOADSHAPE

Loadshape - Miscellaneous BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = [(Capacity + \underbrace{x}_{MEFbase} * Ncycles) + \underbrace{x}_{(\%CW_{base}} + (\%DHW_{base} + \underbrace{x}_{\%ElectricDHW}) + (\%Dryerbase + \underbrace{x}_{\%ElectricDryer}))] - [(Capacity * \underbrace{\frac{1}{MEFeff}} * Ncycles) + \underbrace{x}_{(\%CWeff} + (\%DHWeff + \underbrace{x}_{\%ElectricDryer}))]$

Where:

Capacity = Clothes washer capacity (cubic feet)

²Clothes Washers Key Product Criteria | ENERGY STARHths://www.energystar.gov/products/clothes washers/key product criteriaENERGY STAR|Clothes Washers/hey product criteriaENERGY STAR|Clothes Washers/hey product criteriaENERGY STAR|Clothes Washers/hey product criteriaENERGY STAR|Clothes Washers|https://www.energystar.gov/products/clothes washers/key product criteriaEnERGY STAR|Clothes Washers|https://www.energystar.gov/products/clothes Washers|https://www.energy.gov/ere/buildings/articles/issuance-2014-12-05-energy-conservation-standards-commercial-clothes Appliance Magazine, September 2007 as referenced in ENERGY STAR|Clothes Washer Calculator.

⁴ ENERGY STAR® | https://dnr.mo.gov/sites/dnr/files/media/file/2021/01/energy-star-appliance-calculator.xlsx ("Clothes Washer Calcs" tab Cell E11)Based on Industry Data 2007 as referenced in ENERGY STAR® Commercial Clothes Washer Calculator.

Formatted: Indent: Left: 0"

Formatted: Subscript

Formatted: Subscript

Formatted Table

Formatted: Footnotes

Field Code Changed

Formatted: Font: 9 pt, Font color: Accent 1

Formatted: Font: 9 pt, Underline, Font color: Blue

Formatted: Default Paragraph Font, Font color: Black

Formatted: Font color: Text 1

Formatted: Footnotes Char

Formatted: Underline, Font color: Blue

Field Code Changed

Formatted: Font: 9 pt, Font color: Blue

Formatted: Underline, Font color: Blue

Formatted: Font color: Blue

Formatted: Footnotes, Space After: 0 pt, Line spacing: single

	= Actual - If capacity is unknown, assume 3.1–8 cubic feet 5
MEF _{base}	= Modified Energy Factor of baseline unit
	= Actual. If unknown, assume average values
	provided below for early replacement, else Ffederal
	Sstandard in following table.
MEF _{eff}	= Modified Energy Factor of efficient unit, must
	exceed minimum values in following table.

<u>Standard</u>	Top Load	Front Load
Baseline- Federal standard	1.35 MEF ⁶	2.00 MEF ⁷
Efficient - ENERGY STAR®	N/A	2.39 MEE ⁸
Efficient - CA MAEDBS	1.50 MEF ⁹	

Ncycles = Number of wash Cycles cycles per year
= 219010
%CW = Percentage of total energy consumption for clothes
washer operation (different for baseline and efficient
unit – see table below)

Percentage of total energy consumption used for
water heating (different for baseline and efficient unit

see table below)

SENERGY STAR® | Average volume of certified models | <u>ENERGY STAR!Average</u> volume|https://www.energystar.gov/productfinder/product/certified commercial clothes washers/resultsENERGY STAR® | Average volume|https://www.energystar.gov/productfinder/product/certified commercial clothes washers/resultsENERGY STAR® | Average volume of certified models | https://www.energystar.gov/product/inder/product/certified-commercial-clothes-washers/resultshttps://www.energystar.gov/product/certified-commercial-clothes-washers/resultshtes/sensels-index-general-clothes-washers/sensels-index-general-clothes-washers/sensels-index-general-clothes-washers/sensels-index-general-clothes-washers/sensels-index-general-clothes-washers-general-clothes-washers-general-clothes-washers-general-clothes-washers-general-clothes-washers-general-clothes-washers-general-clothes-washers-general-clothes-washers-general-clothes-washers-general-clothes-washers-general-clothes-washers-general-clothes-washers-general-clothes-washers-general-clothes-washers-general-clothes-washers-general-clothes-washers-general-clothes-was

Footnote 1

⁸ CA MAEDBS & ENERGY STAR, Weighted MEF average, Aggregated in local file "2024 ENERGY STAR®, CA MAEDB: Clothes Washer.xlsx"

⁹ CA MAEDBS, MEF average of 110 top load units, "Commercial Top Load Clothes Washers", (August 2024), Aggregated in local file "2024 ENERGY STAR®, CA MAEDBS Clothes Washer.xlsx"

¹⁰ Based on DOE Technical Support Document, 2009; Chapter 8 "Life-Cycle Cost and Payback Period Analysis", p 8-15.

2025 MEEIA 4 Plan MEEIA 2019 214 2025 Plan

Revision 56.0

Formatted: Subscript Formatted: Subscript Formatted: Font: 11 pt, Bold, Font color: Background 1 Formatted: Centered, Keep lines together Formatted: Font: 11 pt Formatted: Font: 11 pt Formatted: Keep lines together Formatted: Font: 11 pt Formatted: Font: 11 pt Formatted: Centered, Keep lines together Formatted: Font: 11 pt Formatted: Font: 11 pt Formatted: Font: 11 pt Formatted: Space Before: 3 pt, Keep lines together Formatted: Centered, Keep lines together **Formatted Table** Formatted: Font: 11 pt Formatted: Centered, Space Before: 6 pt, Keep lines together Formatted: Font: 11 pt Formatted: Font: 11 pt Formatted: Keep lines together Formatted: Keep lines together Formatted: Font: 11 pt Formatted: Centered, Keep lines together Formatted: Font: 11 pt **Formatted** ... [38] Formatted: Keep lines together Formatted: Font: 11 pt Formatted: Keep lines together **Formatted Table** Formatted: Underline, Font color: Blue

Field Code Changed

Formatted: Footnotes

Formatted: Font: Italic

Formatted

Formatted: Font color: Blue

... [39]

Appendix H - TRM - Vol. 2: C&I Measures

%Dryer = Percentage of total energy consumption for dryer

operation (different for baseline and efficient unit -

see table below)

%Electric_{DHH} = Percentage of DHW savings assumed to be electric

<u>w</u>w

%Electric_{Dryer} = Percentage of dryer savings assumed to be electric

Efficiency Level	Percentage of Total Energy Consumption 11			
Efficiency Level	%CW %DHW %Dryer			
Federal Standard	6.5%	25.9%	67.6%	
ENERGY STAR®	3.5%	14.1%	82.4%	

DHW fuel	%Electric _{DHW}
Electric	100%
Natural Gas	0%

Dryer fuel	%Electric _{Dryer}
Electric	100%
Natural Gas	0%

Using the default assumptions provided above, the prescriptive savings for each configuration are presented below. 12

	ΔkWh			
Efficiency Level	Electric DHW	Gas DHW	Electric DHW	Gas DHW
	Electric Dryer	Electric Dryer	Gas Dryer	Gas Dryer
ENERGY STAR®	808.2 679	229.3 92	725.3 735	146.5 149

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

 ΔkWh = Energy Savings as calculated above

Formatted Table

¹¹ The percentage of total energy consumption that is used for the machine, heating the hot water, or by the dryer is different depending on the efficiency of the unit. Values are based on a data provided in the ENERGY STAR® Calculator for Commercial Clothes Washers.

Clothes Washers.

12 Note that the baseline savings is based on the weighted average baseline MEF (as opposed to assuming front baseline for front-efficient unit and top baseline for top- efficient unit). The reasoning is that the support of the program of more efficient units (which are predominately front loading) will result in some participants switching from planned purchase of a top loader to a front loader.

Appendix H - TRM - Vol. 2: C&I Measures

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor = 0.0001379439¹³

Using the default assumptions provided above, the prescriptive savings for each configuration are presented below.

	$\Delta \mathrm{kW}$			
Efficiency Level				Gas DHW
·	Electric Dryer	Electric Dryer	Gas Dryer	Gas Dryer
ENERGY STAR®	0.1115 <u>0.0937</u>	0.0316 <u>0.0127</u>	0.1001 <u>0.1014</u>	0.0202 <u>0.0205</u>

NATURAL GAS SAVINGS

 $\Delta Therms = [[(Capacity*\frac{1}{\textit{MEFbase}} + \underline{\textbf{x}}.Ncycles) + \underline{\textbf{x}}.((\%DHWbase + \underline{\textbf{x}}.\%Natural \\ GasDHW*R_eff) + (\%Dryerbase + \underline{\textbf{x}}.\%GasDryer\%Gas_Dryer))] - [(Capacity + \underline{\textbf{x}}...) \\ \frac{1}{\textit{MEFeff}} * Ncycles) + \underline{\textbf{x}}.((\%DHWeff + \underline{\textbf{x}}.\%GasDHW + \underline{\textbf{x}}.\%Natural Gas_DHW*R_eff) + (\%Dryereff * \%GasDryer\%Gas_Dryer))]] + .))]]\underline{\textbf{x}}.Therm_convert$

Where:

%Gas_{DHW} = Percentage of DHW savings assumed to be Natural natural Gas gas

R eff = Recovery efficiency factor

 $=1.26^{14}$

%Gas_{Dryer} = Percentage of dryer savings assumed to be Natural Gas gas

Therm convert = Conversion factor from kWh to Thermtherm

= 0.03412

Other factors as defined above.

DHW fuel	%Gas _{DHW}
Electric	0%
Natural Gas	100%

¹³ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes an Coincident Peak Factors" Business program end use category load shape: Miscellaneous, "2016 Appendix E - End Use Shapes an Coincident - Factors.pdf" , Ameren Missouri End Use Energy Loadshape and Coincident Peak Factor 2016 01-12 xls (mo.gov) Based on Ameren Missouri 2016 Loadshape for Business Miscellaneous End Use. Upon inspection and comparison the residential clothes washer coincidence factor, this is a reasonable assumption until data becomes available to inform-technology specific coincidence factor. Given that business laundry schedules are likely more variable compared to residential, follows that less overlap with the system peak hour is possible.

Formatted: Line spacing: Multiple 1.04 li

Revision 56.0

¹⁴ To account for the different efficiency of electric and natural gas hot water heaters (gas water heater: recovery efficiencies ranging from 0.74 to 0.85 (0.78 used), and electric water heater with 0.98 recovery efficiency (http://www.energystar.gov/ia/partners/bldrs_lenders_raters/downloads/Waste_Water_Heat_Recovery_Guidelines.pdf). Therefore a factor of 0.98/0.78 (1.26) is applied.

Appendix H - TRM - Vol. 2: C&I Measures

Dryer fuel	%Gas _{Dryer}
Electric	0%
Natural Gas	100%

Using the default assumptions provided above, the prescriptive savings for each configuration are presented below:

	ΔTherms			
Efficience Level	Electric DHW	Gas DHW	Electric DHW	Gas DHW
Efficiency Level	Electric Dryer	Electric Dryer	Gas Dryer	Gas Dryer
ENERGY STAR®	0.0	24.9	2.8	27.7

WATER IMPACT DESCRIPTIONS AND CALCULATION

 $\Delta Water(gallons) = Capacity + \underline{\mathbf{x}}(IWFbase - IWFeff) + \underline{\mathbf{x}}Ncycles$

Where:

WFbase = Water Factor of baseline clothes washer WFeff = Water Factor of efficient clothes washer

= Actual - If unknown assume average values provided below

Using the default assumptions provided above, the prescriptive water savings for each efficiency level are presented below.

	WF			∆Water (gallons per year)
Efficiency Level	Top Loaders	Front Loaders	Weighted Average	Weighted Average
Federal Standard 15	8.5	5.5	7.4	n/a
ENERGY STAR®	4.5		19,874	

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

¹⁵ Weighted average MEF of federal standard rating for frontloading and top- loading units. Baseline weighting is based upon the relative top v front loading percentage of available non-ENERGY STAR® commercial product in the CEC database (accessed 11/26/2015) and ENERGY STAR® weighting is based on eligible products as of 11/26/2015. The relative weightings are as follows, see more information in "Commercial Clothes Washer Analysis.xlsx":

Efficiency Level	Front	Top
Baseline	37%	63%
ENERGY STAR®	99%	1%

Formatted: Left

Formatted: Font color: Background 1

Formatted Table

2.1.2 Clothes Dryer

DESCRIPTION

This measure is for the installation of a residential clothes dryer, utilized in a commercial setting, meeting the ENERGY STAR® criteria. ENERGY STAR® qualified clothes dryers save energy through a combination of more efficient drying and reduced runtime of the drying cycle. More efficient drying is achieved through increased insulation, modifying operating conditions (such as air flow and/or heat input rate) improving air circulation through better drum design or booster fans, and improving efficiency of motors. Reducing the runtime of dryers through automatic termination by temperature and moisture sensors is believed to have the greatest potential for reducing energy use in clothes dryers. ¹⁶ ENERGY STAR® provides criteria for both gas and electric clothes dryers.

This measure was developed to be applicable to the following program types: TOS and NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

Clothes dryer must meet the ENERGY STAR® version 1.1 criteria, as required by the program.

Definition of Baseline Equipment

The baseline condition is a clothes dryer meeting the minimum federal requirements for units manufactured on or after January 1, 2015. As the DOE Federal Efficiency Standard performs testing with the D1 method in their appendix and the ENERGY STAR® certifies with the D2 test, the Ffederal Standard CEF value is adjusted.

Deemed Lifetime of Efficient Equipment

The expected measure life is assumed to be 14 years. 17

Deemed Measure Cost

Dryer Size	Incremental Cost 18
Standard	\$75
Compact	\$105

LOADSHAPE

Loadshape - Miscellaneous BUS

Α	lgo	rith	ım

16 ENERGY STAR*, "Market & Industry Scoping Report, Residential Clothes Dryers", Table 8. (November 2011), http://www.energystar.gov/ia/products/downloads/ENERGY_STAR_Scoping_Report_Residential_Clothes_Dryers.pdf

17 Based on an average estimated range of 12-16 years. "ENERGY STAR* Market & Industry Scoping Report, Residential_Clothes Dryers", (November 2011), http://www.energystar.gov/ia/products/downloads/ENERGY_STAR_Scoping_Report_Residential_Clothes_Dryers.pdf

18 Cost based on ENERGY_STAR* Savings_Calculator for ENERGY_STAR* Qualified Appliances. https://www.energystar.gov/sites/default/files/asset/document/appliance_calculator.xlsx ("Clothes Dryer Calcs" tab Cell E8) https://document.gov/sites/dnr/files/media/file/2021/01/energy-star-appliance-calculator.xlsx ("Clothes Dryer Calcs" tab Cell E8)

Formatted: Font: 12 pt, Font color: Text 1 Formatted: Font: 12 pt, Font color: Text 1 Formatted: Font: Font color: Text 1 Formatted: Font: Italic, Font color: Text 1 Formatted: Font: 9 pt, Underline, Font color: Blue Formatted: Font: Font color: Text 1 Formatted: Font: 9 pt, Underline, Font color: Blue Formatted: Underline Formatted: Font color: Text 1 Formatted: Normal, Indent: Left: 0" Formatted: Font color: Blue

Appendix H - TRM - Vol. 2: C&I Measures

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = (Load/CEF_{pase} - Load/CEF_{eff}) *_{X} Ncycles *_{X} %Electric$

Formatted: Subscript

Formatted: Subscript

Where:

Load

= The average total weight (lbs.) of clothes per drying cycle. If dryer size is unknown, assume standard.

DIEG IS WITHING WITH, WESTERING STURIES		
<u>Dryer Size</u>	Load (lbs.) ¹⁹	
Standard	<u>8.45</u>	
Compact	3	

 CEF_{base}

= Combined energy factor (CEF) (lbs./kWh) of the baseline unit is based on existing federal standards energy factor and adjusted to CEF as performed in the ENERGY STAR® analysis. 20 If product class unknown, assume electric, standard.

Product Class	<u>CEFbase</u> (lbs./kWh)
Vented/Ventless Electric, Standard (≥ 4.4 ft³)	<u>3.11.93</u>
Vented/Ventless Electric, Compact (120V) (< 4.4 ft ³)	<u>3.0180</u>
Vented Electric, Compact (240V) (<4.4 ft ³)	2.73 3.45
Ventless Electric, Compact (240V) (<4.4 ft ³)	<u>2.13</u> 68
Vented Gas	2.843.48 ²¹

CEFeff

= CEF (lbs./kWh) of the ENERGY STAR® unit based on ENERGY STAR® requirements. 22 If product class unknown, assume electric, standard.

Formatted: Subscript

Formatted: Subscript

19 Based on ENERGY STAR® test procedures, https://www.energystar.gov/index.cfm?e=clothesdry.pr=crit_clothes=dryer Based on ENERGY STAR® test procedures.

 $\underline{\textbf{https://www.energystar.gov/index.cfm?c-clothesdry.pr_crit_clothes_dryersENERGY_STARENERGY_STAR@}\ | \textbf{Certification to the start of the start$

criteria https://www.energystar.gov/index.cfm?c=clothesdry.pr crit clothes dryers

20 ENERGY STAR® Draft 2 Version-1.0-1 Clothes Dryers Data and Analysis

21 Federal standards report CEF for gas clothes dryers in terms of lbs/kWh. To determine gas savings, this number is later

converted to therms.

22 ENERGY STAR® Clothes Dryers Key Product Criteria, -

https://www.energystar.gov/index.cfm?c=clothesdry.pr crit clothes dryers

Formatted: Font color: Text 1, Superscript

Field Code Changed

Formatted: Font: 9 pt, Underline, Font color: Blue

Formatted: Font: 9 pt

Formatted: Font color: Text 1, Superscript

Formatted: Not Superscript/ Subscript

Formatted: Not Superscript/ Subscript

Formatted: Font color: Auto

Formatted: Font color: Auto

Appendix H - TRM - Vol. 2: C&I Measures

Product Class	CEFeff (lbs./kWh)
Vented or Ventless Electric, Standard (≥ 4.4 ft3)	<u>3.93</u>
Vented or Ventless Electric, Compact (120V) (<4.4 ft3)	3.80
Vented Electric, Compact (240V) (< 4.4 ft3)	<u>3.45</u>
Ventless Electric, Compact (240V) (< 4.4 ft3)	2.68
<u>Vented Gas</u>	3.48 ²³

Ncycles

= Number of dryer cycles per year. Use actual data if available. If unknown, refer to the table below.²⁴

,	
Application	Cycles per Year
Multi-family	<u>1,074</u>
<u>Laundromat</u>	<u>1,483</u>
On-Premise Laundromat	3,607

%Electric

= 100% for electric dryers, 5% for gas dryers²⁵

Dryer Size	Load (lbs.) ²⁶
Standard	8.45
Compact	3

Product Class	CEFbase (lbs./kWh)
Vented Electric, Standard (≥ 4.4 ft³)	3.11
Vented Electric, Compact (120V) (< 4.4 ft ³)	3.01
Vented Electric, Compact (240V) (<4.4 ft ³)	2.73
Ventless Electric, Compact (240V) (<4.4 ft ³)	2.13
Vented Gas	2.84 ²⁷

Formatted: Font color: Blue

²³ Federal standards report CEF for gas clothes dryers in terms of lbs/kWh. To determine gas savings, this number is later converted

 $[\]frac{\text{to therms.}}{^{24}} \text{ NOPR analysis for DOE Commercial Clothes Washer standard. Annual use cycles of 1,074 and 1,483 for multifamily and 1,48$ laundromat applications, respectively. https://www.regulations.gov/document?D=EERE-2012-BT-STD-0020-0021. On-premise laundromat cycle average value for dryer cycles in healthcare facility, hotels, drycleaners and laundromats from tests conducted in Nicor Gas Emerging Technology Program's Commercial Dryer Modulation Retrofit Public Project Report. Metering data in

local file: "VEIC GTI Analysis.xlsx"

25 %Electric accounts for the fact that some of the savings on gas dryers comes from electricity (motors, controls, etc.). 5% was determined using a ratio of the electric to total savings from gas dryers given by ENERGY STAR® Draft 2 Version 1.0-1 Clothes

The first Value reported in 2015 FPA EnergySTAR® appliance calculator.

²⁶ Based on ENERGY STAR* test procedures. https://www.energystar.gov/index.efm?e=elothesdry.pr_erit_elothes_dryers
²⁷ Federal standards report CEF for gas elothes dryers in terms of lbs/kWh. To determine gas savings, this number is later

converted to therms.

Appendix H - TRM - Vol. 2: C&I Measures

Product Class	CEFeff (lbs./kWh)
Vented or Ventless Electric, Standard (≥ 4.4 ft3)	3.93
Vented or Ventless Electric, Compact (120V) (<4.4 ft3)	3.80
Vented Electric, Compact (240V) (< 4.4 ft3)	3.45
Ventless Electric, Compact (240V) (< 4.4 ft3)	2.68
Vented Gas	3.48 ²⁸

Application	Cycles per Year	
Multi family	1,074	
Laundromat	1,483	
On Premise Laundromat	3,607	

Using defaults provided above, with the average CEF efficiency of ENERGY STAR certified dryers:

	ΔkWh		
Product Class	Multifamily	Laundromat	On-Premise Laundromat
Vented/Ventless Electric, Standard (≥ 4.4 ft³)	608.9 96	840.7 132	2044.9 322
Vented/Ventless Electric, Compact (120V) (< 4.4 ft ³)	222.5 342	307.3 472	747.4 1,149
Vented Electric, Compact (240V) (<4.4 ft ³)	246.3 0	<u>340.10</u>	<u>827.20</u>
Ventless Electric, Compact (240V) (<4.4 ft ³)	310.4 <u>310</u>	428.7 <u>428</u>	1042.6 1,040
Vented Gas	29.4 0	4 <u>0.6</u> 0	98.7 0

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = h * CF$

Where:

 $\Delta kWh \\$

= Energy savings as calculated above.

CF

= Summer peak coincidence demand (kW) to annual energy (kWh)

factor

 $= 0.0001379439^{29}$

Formatted: Indent: Left: 0"

Formatted Table

²⁸ Federal standards report CEF for gas clothes dryers in terms of lbs/kWh. To determine gas savings, this number is later converted to therms.

²⁹ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors" Business program end-use category load shape: Miscellaneous, "2016 Appendix E - End Use Shapes and Coincident Factors.pdf" , Ameren Missouri End Use Energy Loadshape and Coincident Peak Factor 2016 01-12.xlsx (mo.gov) Based on Ameren Missouri 2016 Loadshape for Business Miscellaneous End Use. Upon inspection and comparison to the Residential clothes washer coincidence factor, this is a reasonable assumption until data becomes available to inform a technology specific coincidence factor. Given that business laundry schedules are likely more variable compared to residential, it follows that less overlap with the system peak hour is possible.

Using defaults provided above:

	ΔkW		
Product Class	Multifamily	Laundromat	On-Premise Laundromat
Vented Electric, Standard (≥ 4.4 ft ³)	0. 0840	0. <u>01160-182</u>	0. 2821 - <u>0443</u>
	<u>0132</u>		
Vented Electric, Compact (120V) (<4.4 ft ³)	0. 0307	0. 0424 -0651	0. 1031 -1584
	<u>0472</u>	0. 0121 0031	0. 1031 <u>1364</u>
Vented Electric, Compact (240V) (<4.4 ft ³)	0.0340 0	0.0469 0	0.1141 <u>0</u>
Ventless Electric, Compact (240V) (<4.4 ft ³)	0.0428	0. 0591 - <u>0589</u>	0. 1438 - <u>1435</u>
Vented Gas	0.0041 <u>0</u>	0.0056 <u>0</u>	<u>0.01360</u>

NATURAL GAS ENERGY SAVINGS

Natural gas savings only apply to ENERGY STAR® vented gas clothes dryers.

$$\Delta Therm = \left(\frac{Load}{CEFbase} - \frac{Load}{CEFeff}\right) *-x Ncycles *-x Therm_convert *-x %Gas$$

Where:

Therm_convert = Conversion factor from kWh to Therm

=0.03413

%Gas = Percent of overall savings coming from gas

= 0% for electric units and 84% for gas units³⁰

Using defaults provided above:

 $\Delta Therms = (8.45/2.84 - 8.45/3.48) \stackrel{*}{=} N cycles \stackrel{*}{=} 0.03413 \stackrel{*}{=} 0.84$

	ΔTherms		
Product Class	Multi-family	Laundromat	On-Premise Laundromat
Vented Gas	16.8 0	23.3 0	56.6 0
A 11	00' 1 1	1	1.1

All certified models (2024) have efficiency values equal to the standard, resulting in zero savings.

PEAK GAS SAVINGS

Savings for this measure is assumed to be evenly spread across the year. The Peak Gas Savings is therefore assumed to be:

 $\Delta Therms$

Formatted: CambriaTextFormula

³⁰ % Gas accounts for the fact that some of the savings on gas dryers comes from electricity (motors, controls, etc.). 84% was determined using a ratio of the gas to total savings from gas dryers given by ENERGY STAR® Draft 2 Version 1.0 Clothes Dryers Data and Analysis.

Appendix H - TRM - Vol. 2: C&I Measures

 $\Delta PeakTherms = \underline{\hspace{1cm}}$ 365.25

Where:

 Δ Therms = Therm impact calculated above

365.25 = Days per year

Using defaults provided above:

	ΔPeakTherms			
Product Class	Multi-family	ly Laundromat	On-Premise	
	Multi-family		Laundromat	
Vented Gas	0.0461 <u>0</u>	0.0637 <u>0</u>	0.1549 <u>0</u>	

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

2.2 Compressed Air

2.2.1 Compressed Air No Loss Condensate Drain

DESCRIPTION

No-loss condensate drains remove condensate as needed without venting compressed air, resulting in less air demand and better efficiency. Replacement or upgrades of existing no-loss drains are not eligible for this measure.

This measure was developed to be applicable to the following program type: RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is a no-loss condensate drain.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a standard condensate drain (open valve, timer, or both).

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The lifetime of a no-loss condensate drain is assumed to be 13 years.³¹

DEEMED MEASURE COST

The measure cost is \$700-79478 per drain.³²

LOADSHAPE

Air Comp BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = CFM_{reduced} * kW_{CFM} * Hours$

Where:

 $CFM_{reduced}$ = Reduced air consumption (CFM) per drain = 3 CFM^{33} Formatted: Font: (Default) +Body (Calibri)

-

Formatted: Font: (Default) +Body (Calibri)

Formatted Table

Formatted: Underline, Font color: Blue

Field Code Changed

Formatted: Underline, Font color: Blue

Formatted: Font color: Blue

Formatted: Justified, Space After: 0.15 pt

^{31 &}quot;Measure Life Study", by Energy & Resource Solutions (prepared for the Massachusetts Joint Utilities), "Measure Life Study", Table 1-1, 2005, Measure Life Study for Massachusetts Joint Utilities (ers-inc.com) https://www.ers-inc.com/wp-content/uploads/2018/04/Measure-Life-Study MA-Joint-Utilities ERS.pdf,

content/uploads/2018/04/Measure-Life-Study MA-Joint-Utilities ERS.pdf...

32 Based on empirical project data from ComEd Comprehensive Compressed Air Study program and VEIC review of pricing data found in CAS Cost Data.xls.Ameren MO DSM program participants 2020 to 2024, equipment and labor cost, 7 projects.

³³ Reduced CFM consumption is based on a 90 CFM timer drain opening for 10 seconds every 300 seconds as the baseline. Loc file: "Install NoLoss CondDrainValves worksheet, cell G44, See." Industrial System Standard Deemed Saving Analysis.xls."

Appendix H - TRM - Vol. 2: C&I Measures

Formatted Table

 kW_{CFM}

= System power demand reduction per reduced air consumption (kw/CFM), depending on the type of compressor control, see table below³⁴

Compressor Control Type	<u>kW_{CFM}</u>
Reciprocating On/off Control	<u>0.184</u>
Reciprocating - Load/Unload	<u>0.136</u>
Screw Load/Unload	<u>0.152</u>
Screw Inlet Modulation	<u>0.055</u>
Screw - Inlet Modulation w/ Unloading	<u>0.055</u>
Screw Variable Displacement	<u>0.153</u>
Screw VFD	0.178

Compressor Control Type	<u>kW/CFMW</u> _{CFM}
Reciprocating - On/off Control	0.184
Reciprocating - Load/Unload	<u>0.136</u>
Screw - Load/Unload	<u>0.152</u>
Screw - Inlet Modulation	0.055
Screw - Inlet Modulation w/ Unloading	0.055
Screw - Variable Displacement	<u>0.153</u>
Screw - VFD	0.178

<u>Shift</u>	Hours
Single shift (8/5)	1976 hours: 7 AM 3 PM, weekdays, minus some holidays and
Single Sinit (6/3)	scheduled down time
2 shift (16/5)	3952 hours: 7AM 11 PM, weekdays, minus some holidays and
2 SHIII (10/3)	scheduled down time
3 shift (24/5)	5928 hours: 24 hours per day, weekdays, minus some holidays and
3 SHITT (24/3)	scheduled down time
4 shift (24/7)	8320 hours: 24 hours per day, 7 days a week minus some holidays
4 SHIII (24//)	and scheduled down time

Hours

- = Compressed air system pressurized hours
- = Use actual hours if known, otherwise assume values in table below

<u>Hours</u>

³⁴ Calculated based on <u>load curves from Compressed Air Challenge.</u> Aggregated data the type of compressor control. This assumeds the compressor will be between 40% and 100% capacity-, <u>Worksheet "Install High Efficiency Nozzles"</u>, <u>Range N18:AG38</u>, <u>before and after the changes to the system demand</u>. <u>See-Local file:</u> "Industrial System Standard Deemed Saving Analysis.xls."

	<u>1976 hours:</u>
Single shift (8/5)	7 AM-3 PM, weekdays, less holidays & scheduled down time 1976
	hours: 7 AM 3 PM, weekdays, minus some holidays and
	scheduled down time
	3952 hours:
2 -1-:0 (16/5)	7AM – 11 PM, weekdays, less holidays & scheduled down
2-shift (16/5)	time3952 hours: 7AM 11 PM, weekdays, minus some holidays
	and scheduled down time
	<u>5928 hours:</u>
2 1:0 (24/5)	24 hours per day, weekdays, less holidays & scheduled down
3-shift (24/5)	time5928 hours: 24 hours per day, weekdays, minus some holidays
	and scheduled down time
	8320 hours:
4-shift (24/7)	24 hours per day, 7 days, less holidays & scheduled down time8320
	hours: 24 hours per day, 7 days a week minus some holidays and
	scheduled down time

Compressor Control Type	kW_{CFM}
Reciprocating - On/off Control	0.184
Reciprocating Load/Unload	0.136
Screw - Load/Unload	0.152
Screw Inlet Modulation	0.055
Screw Inlet Modulation w/ Unloading	0.055
Screw Variable Displacement	0.153
Screw VFD	0.178

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh + XCF$

Formatted: Font: Italic

Where:

 Δ kWh = Electric energy savings, calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $=0.0001379439^{35}$

MEASURE CODE:

Formatted: Font: 9 pt

Formatted: Font: 9 pt

Page 25

³⁵ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes an Coincident Peak Factors" Blusiness program end use eategory load shape: Air Compressor, "2016 Appendix E. End Use Shape and Coincident Factors:pdf", Ameren Missouri End Use Energy Loadshape and Coincident Peak Factor 2016 01 12.xls (mo.gov) 2016 Ameren Missouri Coincident Peak Demand Factor for Commercial Compressed Air. See reference "Amere Missouri 2016 Appendix E. End Use Shapes and Coincident Factors:pdf."

2.2.2 Compressed Air Leak Repair

DESCRIPTION

This measure applies to an installed air compressor system that has developed leaks-leaks. Leaks in a compressed air system lead to an increase in energy use to maintain the necessary pressure in the system.

Savings are calculated by using information collected through survey and measurement of the compressed air system, including the cubic feet per minute (CFM) of the airflow of each leak using ultrasonic leak detection equipment.

DEFINITION OF EFFICIENT EQUIPMENT

Efficient Equipment is defined as the state of the air compressor system after leaks have been repaired. It is not necessarily the air compressor with no leaks left as some leaks may be impossible to reach or have substantial difficulty in fixing, therefore the efficient equipment is one that has all leaks repaired that have been stated to be repaired.

DEFINITION OF BASELINE EQUIPMENT

Baseline equipment is characterized by the condition of the compressed air system at the time of inspection before the leaks are repaired.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The effective useful life is 2 years. ³⁶

DEEMED MEASURE COST

Measure cost should include the inspection and repair cost.

LOADSHAPE

Air Comp BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

When a CFM-bin approach model built with trended data is not available, the simplified approach listed below may be used,

The following algorithm is applicable to the trim air compressor

 $\Delta kWh = CFM$ leak x *-kW/CFMWCFM x CFCAF x *-Hours

Where:

CFM_{leak}

= CFM <u>leaks repaired</u>leaving the air compressor system through leaks

36 2022 WI TRM_a-PA Consulting Group. "Focus on Energy, Business Programs: Measure Life Study Final Report". (August 25, 2009). https://focusonenergy.com/sites/default/files/bpmeasurelifestudyfinal_evaluationreport.pdf (See table1-2 on page 1-4)

Formatted: Indent: Left: 0", Right: 0", Space After: 0 pt, Line spacing: single

Formatted: Font: Not Bold

Formatted: Font: Cambria Math, Not Italic

Formatted: Cambria12 Char

Formatted: Cambria12 Char, Font: 12 pt

Formatted: Cambria12 Char

Formatted: Cambria12 Char, Font: 12 pt

Formatted: Cambria12 Char

Formatted: Font: Not Italic

Formatted: Cambria12, Space After: 0 pt, Line spacing: single, Tab stops: Not at 2.3" + 4"

Appendix H - TRM - Vol. 2: C&I Measures

= <u>Sum of CFM losses</u>Use actual value if known, otherwise approximate value can be found using dB from ultrasonic measurement and psig reading and thein the table below³⁷

			0 '	_	
<u>Digital</u> Reading	- <u>10-PSIG</u> -	<u>25-PSIG</u>	50 PSIG	<u>75-PSIG</u>	100-PSIG
<u>10 dB</u>	0.05	0.1	0.2	0.3	0.5
<u>20 dB</u>	0.15	0.3	0.5	0.9	0.8
<u>30 dB</u>	0.4	0.5	0.8	<u>1.1</u>	<u>1.4</u>
<u>40 dB</u>	0.5	0.8	<u>1.1</u>	1.4	<u>1.7</u>
<u>50 dB</u>	<u>1.9</u>	<u>2</u>	2.2	1.8	2
<u>60 dB</u>	2.3	2.6	2.8	<u>3</u>	3.6
<u>70 dB</u>	<u>3</u>	<u>3.4</u>	<u>3.9</u>	<u>4.9</u>	<u>5.2</u>
<u>80 dB</u>	3.6	<u>5.1</u>	<u>5.6</u>	6.8	<u>7.7</u>
<u>90 dB</u>	5.3	6.8	<u>7.1</u>	<u>7.7</u>	<u>8.4</u>
100 dB	6	7.3	9.6	10	10.6

kW/CFMWCFM

= System power demand reduction per reduced air consumption from CAGI data sheets (kw/CFM),generation efficiency, depending on the type of compressor control, see table below³⁸-obtained from model plate or CAGI sheets, full load power/full flow. Adjust for output pressure if different than specification sheets.

=If unknown, assume 0.19 kW/CFM.

Compressor Control Type	kW/CFM _{CFM}
Reciprocating On/off Control	<u>0.184</u>
Reciprocating - Load/Unload	<u>0.136</u>
Screw Load/Unload	<u>0.152</u>
Screw Inlet Modulation	<u>0.055</u>
Screw Inlet Modulation w/ Unloading	<u>0.055</u>
Screw Variable Displacement	<u>0.153</u>
Screw VFD	<u>0.178</u>

CCAF

=Trim compressor control type adjustment factor³⁹

=Values applicable to trim air compressor, in following table.; in a multiple air compressor plant, additional modeling may be required to determine the CCAF.

Control Method CCAF

Systems",p2|https://ecommons.udayton.edu/cgi/viewcontent.cgi?article=1144&context=mee_fac_pub

Formatted: Font: 11 pt
Formatted: Font: 11 pt

Formatted: Font: (Default) Times New Roman, 11 pt

Formatted: Font: (Default) Times New Roman, 11 pt

Formatted: Font: 9 pt
Formatted: Font: 9 pt

Formatted: Left, Indent: Left: 0.01"

Formatted: Font: 9 pt

Page 27

³⁷ Values extrapolated from "Compressed Air Ultrasonic Leak Detection Guide" from UE Systems. Readings compensated for atmospheric pressure and taken at 40 kHz. (See page 6) Local file: "UE Systems compressed air ultrasonic leak detection.jpg" https://www.yumpu.com/en/document/read/10787703/compressed-air-ultrasonic-leak-detection-guide-swagelok-energy

²⁸ Calculated based on the type of compressor control. This assumes the compressor will be between 40% and 100% capacity before and after the changes to the system demand. See "Industrial System Standard Deemed Saving Analysis.xls."

³⁹ NREL, Factors based on power vs capacity curves from table 5 on page 16 for reciprocating, rotary screw compressors and table 2 on page 9 for centrifugal compressors, "Chapter 22: Compressed Air Evaluation Protocol", https://www.nrel.gov/docs/fy17osti/68577.pdfhttps://www.nrel.gov/docs/fy17osti/68577.pdfSchmidt, Kissock, "Estimating Energy Savings in Compressed Air

Appendix H - TRM - Vol. 2: C&I Measures

Reciprocating – On/Off control	1.00
Reciprocating - Load/Unload	0.74
Screw-Load/Unload oil free	0.73
Screw - Load/Unload 1 gal CFM	0.43
Screw – Load/Unload 3 gal CFM	0.53
Screw – Load/Unload 5 gal CFM	0.63
Screw – Load/Unload 10 gal CFM	0.73
Screw-inlet modulation w/o blowdown	0.29
Screw-inlet modulation, blowdown	0.74
Screw-variable displacement	0.60
Screw-variable speed drive	0.97
Centrifugal IBV blowdown	0.20
Centrifugal IGV blowdown	0.26
Start/Stop	1.00

E-	rmat	4~4	T_	ᆸ	_

Reciprocating On/Off controlInlet	<u>1.000.31</u>
<u>Modulation</u>	
Reciprocating: Load/UnloadLoad/Unload	<u>0.740.40</u>
Screw: Load/Unload oil freeVariable	<u>0.730.750</u>
<u>Displacement</u>	
Screw: Load/Unload 1gal/CFM	<u>0.90.43</u>
storageVariable Speed	
Screw: Load/Unload 3gal/CFM	1.000.53
storageStart/Stop	
Screw: Load/Unload 5 gal/CFM storage	<u>0.63</u>
Screw: Load/Unload 10 gal/CFM storage	<u>0.73</u>
Screw: Inlet Modulation	<u>0.30</u>
Screw: Inlet Modulation w/unloading	<u>0.30</u>
Screw: Variable Displacement	<u>0.60</u>
Screw: Variable Speed Drive	0.97
Centrifugal Compressor	Slope of full
	load power to
	zero flow power

Formatted: Font color: Background 1
Formatted: Centered

Formatted Table

Hours

- = Compressed air system pressurized hours
- = <u>Use actual hoursActual hours</u>, or if <u>knownunknown</u>, <u>otherwise</u> assume values in table below, based on <u>business compressor</u> operating schedule

<u>Shift</u>	<u>Hours</u>
Single shift (8/5)	1976 hours: 7 AM—3 PM, weekdays, minusless-some holidays ∧ scheduled down time
2-shift (16/5)	<u>3952 hours:</u>

Formatted Table

Appendix H - TRM - Vol. 2: C&I Measures

	7AM – 11 PM, weekdays, less holidays & scheduled down time, weekdays, minus some holidays and scheduled down time
3-shift (24/5)	5928 hours: 24 hours per day, weekdays, less holidays & scheduled down timeweekdays, minus some holidays and scheduled down time
4-shift (24/7)	8320 hours: -24 hours per day, 7 days-a week-, less holidays & scheduled down timeminus some holidays and scheduled down time

Digital Reading	10 PSIG	25 PSIG	50 PSIG	75 PSIG	100 PSIG
10 dB	0.05	0.1	0.2	0.3	0.5
20 dB	0.15	0.3	0.5	0.9	0.8
30 dB	0.4	0.5	0.8	1.1	1.4
4 0 dB	0.5	0.8	1.1	1.4	1.7
50 dB	1.9	2	2.2	1.8	2
60 dB	2.3	2.6	2.8	3	3.6
70 dB	3	3.4	3.9	4.9	5.2
80 dB	3.6	5.1	5.6	6.8	7.7
90 dB	5.3	6.8	7.1	7.7	8.4
100 dB	6	7.3	9.6	10	10.6

Compressor Control Type	kW _{CFM}
Reciprocating On/off Control	0.184
Reciprocating - Load/Unload	0.136
Screw Load/Unload	0.152
Screw Inlet Modulation	0.055
Screw - Inlet Modulation w/ Unloading	0.055
Screw - Variable Displacement	0.153
Screw VFD	0.178

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh + \underline{\mathbf{x}} CF$

Where:

 $\Delta kWh \\$ = Electric energy savings, calculated above

= Summer peak coincidence demand (kW) to annual energy (kWh) factor = 0.0001379439^{40} CF

Formatted: Footnotes

⁴⁰Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors" 2016 Ameren Missouri Coincident Peak Demand Factor for Commercial Compressed Air. See reference "Ameren Missouri 2016 Appendix E - End Use Shapes and Coincident Factors.pdf."

Ameren Missouri	Appendix H	· TRM – Vol. 2: C&I Me	easures
MEASURE CODE:			
0005 MEELA 4 0040 04 EV	Durining 50.0	_	20
2025 MEEIA 4 2019 21 Plan	Revision <u>56</u> .0	Р	age 30

2.2.3 Compressed Air Nozzle

DESCRIPTION

This measure applies to the replacement of a standard air nozzle with high-efficiency air nozzle used in a compressed air system. High-efficiency air nozzles use the Coandă effect to pull in free air and use significantly less compressed air for blowing off parts or for drying. These nozzles have the added benefits of noise reduction and improved safety in systems with greater than 30 psig. The measure is applicable to continuous air blow off processing and manual air blow off tools.

This measure was developed to be applicable to the following program types: DI and RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is a <u>high efficiency</u> compressed air nozzle meeting program requirements.

The air flow, CFM, is from the manufacturer model specification sheet, for the applicable working pressure.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a standard air nozzle that is OSHA approved—for hand tools, or a standard blow off nozzle for continuous processing.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is 15 years.41

DEEMED MEASURE COST

Incremental measure costs are presented in the following table.⁴²

Nozzle Diameter	Measure Cost
1/8"	\$42
1/4"	\$ 57 <u>59</u>
5/16 <u>3/8</u> "	\$ 87 236
1/2"	\$ 121 <u>335</u>

LOADSHAPE

Air Comp BUS

Formatted Table

^{41 &}quot;Focus on Energy Evaluation - Business Programs: Measure Life Study," prepared for State of Wisconsin Public Service Commission by PA Consulting Group, August 25, 2009 (See page 89 or search "compressed air nozzle").

⁴² Costs are from EXAIR's website and are an average of nozzles that meet the flow requirements. Models include Atto Super, Pico Super, Nano Super, Micro Super, Mini Super, Super and Large Super nozzles. www.exair.com. Accessed March 20, 2014. Data in local file: "2024 Air nozzle incremental cost.xlsx"

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = (\underbrace{SCFM * SCFM\%Reduced}_{CFM_{base}} - \underbrace{CFM_{eff}}_{)} - *kW/\underbrace{CCFM} * \underbrace{CCAF\%Use}_{} *$

Hours x % Use

Where:

SCFM_{base} = Air flow through standard <u>open</u> nozzle.

= Actual rated flow at 80 psi, if known. If unknown, use CFM by orifice diameter for rounded edge, from table below. - 43, 4445

Orifice Diameter	<u>SCFM</u>
<u>1/16"</u>	<u>5</u>
<u>1/8"</u>	<u>21</u>
<u>1/41/4"</u>	58- 85
<u>5/16"3/8"-</u>	113 193-
1/2"	<u>343280</u>

 $\underline{CFM_{eff}}$

=Engineered nozzle rate flow at 80 psi.

SCFM%Reduced = Percent reduction in air loss per nozzle.

= Estimated at 50%⁴⁶

= System power generation efficiency, obtained from model plate or CAGI sheets, full load power/full flow. Adjust for output pressure if kW/100CFM

different than specification sheets.

=If unknown, assume 0.19 kW/100 CFM, typical air compressor Trim compressor control type adjustment factor⁴⁷ **CCAF**

=Values applicable to trim air compressor, in following table.

Control Method	CCAF
Inlet ModulationReciprocating - On/Off	0.31 1.00
control	
Load/UnloadReciprocating –	0.40 <u>0.74</u>
Load/Unload	
Screw-Load/Unload oil free	0.73
Variable DisplacementScrew –	0.700.43
Load/Unload 1 gal CFM	

Formatted Table

Formatted Table

Formatted Table

Formatted Table Formatted: Footnotes

Formatted: Font color: Blue Formatted: Font: 9 pt, Font color: Blue Formatted: Font color: Blue Formatted: Font: 9 pt, Font color: Black Formatted: Font: 9 pt, Font color: Black

Formatted: Font: 9 pt, Font color: Black Formatted: Font: 9 pt, Font color: Black

Formatted: Underline, Font color: Blue

⁴⁴ Moss, Sanford, "Flow of gases", https://www.engineersedge.com/fluid_flow/images/oriifce-pressure-drop.gif

AT NREL, Factors based on power vs capacity curves from table 5 on page 16 for reciprocating, rotary screw compressors and table 2 on page 9 for centrifugal compressors, "Chapter 22: Compressed Air Evaluation Protocol https://www.nrel.gov/docs/fy17osti/68577.pdf

Appendix H - TRM - Vol. 2: C&I Measures

Screw – Load/Unload 3 gal CFM	<u>0.53</u> 0.90
Variable Speed	
Screw – Load/Unload 5 gal CFM	0.63
Screw - Load/Unload 10 gal CFM	<u>0.73</u>
Screw-inlet modulation w/o blowdown	0.29
Screw-inlet modulation, blowdown	<u>0.74</u>
Screw-variable displacement	<u>0.60</u>
Screw-variable speed drive	0.97
Centrifugal IBV blowdown	0.20
Centrifugal IGV blowdown	0.26
Start/Stop	1.00

Air Compressor Type	AkW/CFM
Reciprocating - On/off Control	<u>0.18</u>
Reciprocating Load/Unload	<u>0.14</u>
Screw Load/Unload	<u>0.15</u>
Screw Inlet Modulation	<u>0.06</u>
Screw Inlet Modulation w/	<u>0.06</u>
<u>UnloadingScrew</u> Variable Displacement	<u>0.15</u>
Screw VFD	<u>0.18</u>

%USE

= Percent of the compressor total operating hours that the nozzle is it

use

= Custom, or if unknown, assume 5%⁴⁸—

Hours

= Compressed air system pressurized hours= Use actual hours if known, otherwise assume values in table

below.

Shift	Hours
Single shift (8/5)	1976 hours:
Single shift (8/3)	7 AM – 3 PM, weekdays, minus some holidays and scheduled down time
2-shift (16/5)	3952 hours:
2-SHIII (10/3)	7AM – 11 PM, weekdays, minus some holidays and scheduled down time
	5928 hours:
3-shift (24/5)	24 hours per day, weekdays, minus some holidays and scheduled down
	time
	8320 hours:
4-shift (24/7)	24 hours per day, 7 days a week minus some holidays and scheduled down
	time

%Use

= Percent of the compressor total operating hours that the nozzle is in

use

Formatted Table

Formatted Table

⁴⁸ Assumes 50% handheld air guns and 50% stationary air nozzles. Manual air guns tend to be used less than stationary air nozzles and a conservative estimate of 1 second of blow-off per minute of compressor run time is assumed. Stationary air nozzles are commonly more wasteful as they are often mounted on machine tools and can be manually operated resulting in the possibility of a long term open blow situation. An assumption of 5 seconds of blow-off per minute of compressor run time is used.

= Custom, or if unknown, assume 5%⁴⁹

<u>Shift</u>	<u>Hours</u>
Single shift (8/5)	1976 hours: 7 AM 3 PM, weekdays, minus some holidays and scheduled
Single sinit (6/3)	down time
2 shift (16/5)	3952 hours: 7AM 11 PM, weekdays, minus some holidays and scheduled
<u> 2 SNIII (16/5)</u>	down time
2 shift (24/5)	5928 hours: 24 hours per day, weekdays, minus some holidays and
3 SMIT (24/3)	scheduled down time
4 shift (24/7)	8320 hours: 24 hours per day, 7 days a week minus some holidays and
	scheduled down time

-Orifice Diameter-	SCFM-
1/8"	21-
1/4"	58
5/16"-	113-
1/2"	280

Air Compressor Type	AkW/CFM
Reciprocating On/off Control	0.18
Reciprocating Load/Unload	0.14
Screw - Load/Unload	0.15
Screw Inlet Modulation	0.06
Screw Inlet Modulation w/	0.06
UnloadingScrew Variable Displacement	0.15
Screw - VFD	0.18

Shift	Hours
Single shift (8/5)	1976 hours: 7 AM 3 PM, weekdays, minus some holidays and scheduled down time
2 shift (16/5)	3952 hours: 7AM 11 PM, weekdays, minus some holidays and scheduled down time
3-shift (24/5)	5928 hours: 24 hours per day, weekdays, minus some holidays and scheduled down time
4-shift (24/7)	8320 hours: 24 hours per day, 7 days a week minus some holidays and scheduled down time

SUMMER COINCIDENT PEAK DEMAND SAVINGS

Where:

 ΔkWh = Electric energy savings, calculated above

⁴⁹ Assumes 50% handheld air guns and 50% stationary air nozzles. Manual air guns tend to be used less than stationary air nozzles, and a conservative estimate of 1 second of blow-off per minute of compressor run time is assumed. Stationary air nozzles are commonly more wasteful as they are often mounted on machine tools and can be manually operated resulting in the possibility of a long term open blow situation. An assumption of 5 seconds of blow-off per minute of compressor run time is used.

Ameren	Muccol	ırı
	IVIIOSUL	41 I

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor = 0.0001379439⁵⁰

NATURAL GAS SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

Formatted: Indent: Left: 0"

⁵⁰ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"016 Ameren Missouri Coincident Peak Demand Factor for Commercial Compressed Air. See reference "Ameren Missouri 2016 Appendix E - End Use Shapes and Coincident Factors.pdf."

Formatted: Footnotes

2.2.4 VSD Air Compressor

DESCRIPTION

This measure relates to the installation of an air compressor with a variable frequency drive, load/no load controls, or variable displacement control. A baseline modulating compressor regulates output by choking off the inlet air, which is not efficient. Efficient compressors use a variable speed drive on the motor to match output to the load. Savings are calculated using representative baseline and efficient demand numbers for compressor capacities according to the facility's load shape, and the number of hours the compressor runs at that capacity. Demand curves are as per US Department of Energy (DOE) data for a variable speed compressor versus a mModulating compressor. This measure applies only to an individual compressor ≤ 200 hp. Only one compressor per compressed air distribution system is eligible.

This measure was developed to be applicable to the following program type: TOS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The high efficiency equipment is a compressor 5-200 hp with variable speed control.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a modulating compressor with blow down 5-200 hp

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

10 years.51

DEEMED MEASURE COST52

```
Incremental Cost ($) = ((127 \text{ x hp}_{compressor}) + 1446) \text{ x } 1.2443
```

Where:

hp_{compressor} = compressor motor nominal horsepower

127 and 1,446 = compressor motor nominal hp to incremental cost conversion factor

and offset

LOADSHAPE

Air Comp BUS

Algorithm

 $^{^{51}}$ Based on data provided by vendors, reference file "VSD compressor lifetime and costs.xls."

⁵² Based on data provided by vendors, reference file "VSD compressor lifetime and costs.xls."

⁵³ Adjustment for inflation since incremental cost study is in \$2008. The U.S. Bureau of Labor Statistic CPI Inflation Calculator was used to adjust \$2008 (JanuaryJuly) to \$220214 (JanuaryJuly). The resulting factor was 1.2443. This adjustment was evaluated against current pricing of compressors (20212024) and found to be a reasonable and appropriate.

Appendix H - TRM - Vol. 2: C&I Measures

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 ΔkWh = 0.9 x hp_{compressor} x HOURS x (CF_b - CF_e)

Where:

 ΔkWh = gross customer annual kWh savings for the measure

hp_{compressor} = compressor motor nominal horsepower

0.9 = compressor motor nominal horsepower to full load kW conversion factor⁵⁴ HOURS = compressor total annual hours of operation. Custom input, if unknown use

the defaults based on shift structure below.

<u>Shift</u>	<u>Hours</u>
Single shift (8/5)	1976 hours: 7 AM – 3 PM, weekdays, minus some holidays and scheduled down
Single sinit (6/3)	<u>time</u>
2-shift (16/5)	3952 hours: 7AM – 11 PM, weekdays, minus some holidays and scheduled
<u>2-81111 (10/3)</u>	down time
3-shift (24/5)	5928 hours: 24 hours per day, weekdays, minus some holidays and scheduled
<u>3-8IIII (24/3)</u>	down time
4-shift (24/7)	8320 hours: 24 hours per day, 7 days a week minus some holidays and
4-SIIII (24/7)	scheduled down time
<u>Unknown</u> /	5702 hours: Weighting of 16% single shift, 23% two shift, 25% three shift and
Weighted average55	36% continual

<u>Cobb</u> = baseline compressor factor, refer to table below

Formatted Table

54Conversion factor based on a linear regression analysis of the relationship between air compressor motor nominal horsepower and full load kW from power measurements of 72 compressors at 50 facilities on Long Island. See "VSD Air Compressor – Supporting Information_with40to50hpbucket.xlsx" for more information.

55 Weighting based on DOE evaluation of the Compressed Air Challenge, section 2.1.5 Facility Operating Schedules. (see Table 2-5 on page 2-3 https://www.compressedairchallenge.org/data/sites/1/media/library/evaluation/Evaluation.pdf.

Formatted: Font: (Default) Times New Roman

Formatted: Underline, Font color: Blue

Appendix H - TRM - Vol. 2: C&I Measures

<u>Baseline</u> <u>Compressor</u>	Compressor Factor (≤ 40 hp) ⁵⁶	$\frac{\text{Compressor}}{\text{Factor}} \\ (> 40 - < 50 \text{hp} 49 \\ \text{hp})^{57}$	Compressor Factor (50 – 200 hp) ⁵⁸
Modulating w/ Blowdown	0.890	0.886	0.863
Load/No-Load w/ 1 Gallon/CFM	0.909	0.905	0.887
Load/No-Load w/ 3 Gallon/CFM	0.831	0.827	0.811
Load/No-Load w/ 5 Gallon/CFM	0.806	0.802	<u>0.786</u>

Formatted: Left

Formatted: Font: 11 pt

Formatted Table

CFe

= efficient compressor<u>factor</u>⁵⁹

=0.705 for units ≤ 40 hp

=0.701 for units > 40 hp and < 50 hp

=0.658 for units 50 - 200 hp

Baseline Compressor	Compressor Factor (≤ 40 hp) ⁶⁰	Compressor Factor (> 40 < 50hp) ⁶¹	Compressor Factor (50 200 hp) ⁶²
Modulating w/ Blowdown	0.890	0.886	0.863
Load/No Load w/ 1 Gallon/CFM	0.909	0.905	0.887
Load/No Load w/ 3 Gallon/CFM	0.831	0.827	0.811
Load/No-Load w/ 5 Gallon/CFM	0.806	0.802	0.786

Formatted Table

⁵⁶ Compressor factors were developed using DOE part load data for different compressor control types as well as load profiles from 50 facilities employing air compressors less than or equal to 40 hp. See "VSD Air Compressor – Supporting Information with 40 to 50 hpb ucket.xlsx" for more information.

Compressor factors for the size range between 40 and 50 hp were interpolated from data used to derive the compressor factors for the other size ranges. See "VSD Air Compressor – Supporting Information with 40 to 50 hp bucket.xlsx" for more information.
Sompressor factors for this size range were developed using DOE part-load data for different compressor control types as well as load profiles from 45 compressors and 20 facilities. This data comes from ComEd Custom and Industrial Systems programs. The compressors were filtered to reflect only rotary screw compressors, between 50 and 200 hp, and operating a minimum of 4 hours per day, Additionally, compressors with clear and consistent baseload profiles were excluded from this analysis. See "VSD Air Compressor – Supporting Information with 40 to 50 hpbucket.xlsx" for more information.

So Compressor factors were developed using DOE part load data for different compressor control types as well as load profiles

⁵⁹ Compressor factors were developed using DOE part load data for different compressor control types as well as load profiles from 50 facilities employing air compressors less than or equal to 40 hp. The "variable speed drive" compressor factor has been adjusted up from the 0.675 presented in the analysis to 0.705 to account for the additional power draw of the VSD.See "VSD Air Compressor – Supporting Information_with40to50hpbucket.xlsx" for more information.

⁶⁹ Compressor factors were developed using DOE part load data for different compressor control types as well as load profiles from 50 facilities employing air compressors less than or equal to 40 hp. See "VSD Air Compressor—Supporting Information_with40to50hpbucket.xlsx" for more information.

64-Compressor factors for the size range between 40 and 50 hp were interpolated from data used to derive the compressor factors for the other size ranges. See "VSD Air Compressor—Supporting Information—with40to50hpbucket.xlsx" for more information—62-Compressor factors for this size range were developed using DOE part-load data for different compressor centrol types as well as load profiles from 45 compressors and 20 facilities. This data comes from ComEd Custom and Industrial Systems programs. The compressors were filtered to reflect only rotary screw compressors, between 50 and 200 hp, and operating a minimum of 4 hours per day, Additionally, compressors with clear and consistent baseload profiles were excluded from this analysis. See "VSD Air Compressor—Supporting Information—with40to50hpbucket.xlsx" for more information.

Formatted: Footnotes, Line spacing: single

Formatted: Font color: Text 1

Formatted: Font: Font color: Text 1

Formatted: Font: Font color: Text 1
Formatted: Footnotes

Formatted: Footnotes, Indent: Left: 0"

Formatted: Footnotes, Line spacing: single

Formatted: Footnotes

Shift	Hours
Single shift (8/5)	1976 hours: 7 AM – 3 PM, weekdays, minus some holidays and scheduled down
Single Sinit (6/3)	time
2 shift (16/5)	3952 hours: 7AM 11 PM, weekdays, minus some holidays and scheduled
2 SHIII (10/3)	down time
3 chift (24/5)	5928 hours: 24 hours per day, weekdays, minus some holidays and scheduled
3-SHIII (24/3)	down time
4 shift (24/7)	8320 hours: 24 hours per day, 7 days a week minus some holidays and scheduled
7 SHIII (27/7)	down time
Unknown /	5702 hours: Weighting of 16% single shift, 23% two shift, 25% three shift and
Weighted average ⁶³	36% continual

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta k = \Delta kWh *-\underline{\mathbf{x}} CF$

Where:

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor⁶⁴ $=0.0001379439^{65}$

MEASURE CODE:

Formatted: Footnotes, Left, Line spacing: single

Formatted: Footnotes

⁶³⁻Weighting based on DOE evaluation of the Compressed Air Challenge, section 2.1.5 Facility Operating Schedules.

⁶⁴ Ameren Missouri Coincident Peak Demand Factor for Commercial Compressed Air. See reference "Ameren Missouri 2016

Appendix E - End Use Shapes and Coincident Factors.pdf."

65 Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

2.3 Food Service

2.3.1 Combination Oven

DESCRIPTION

This measure applies to full or half-sized electric ENERGY STAR® combination ovens with a pan capacity ≥ 3 and ≤ 40 and to full or half-sized natural gas fired ENERGY STAR® combination ovens with a pan capacity ≥ 5 and ≤ 40 capacity ≥ 5 and ≤ 20 and to full or half-sized natural gas fired ENERGY STAR® combination ovens with a pan capacity ≥ 6 -installed in a commercial kitchen. Combination ovens combine the function of hot air convection (convection mode), saturated and superheated steam heating (steam mode), and combination convection/steam mode for moist heating, to perform steaming, baking, roasting, re-thermalizing, and proofing of various food products. ENERGY STAR® certified combination ovens are approximately 20% more efficient than standard ovens.

This measure was developed to be applicable to the following program type: TOS.

If applied to other program types, measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be an ENERGY STAR® certified combination oven meeting idle energy rate (kW or Btu/hr) and cooking efficiency (%) limits, as determined by fuel type, operation mode (steam or convection), and pan capacity.

ENERGY STAR® Requirements (Version 3.0, Effective October 12, 2023) ⁶⁶(Version 2.2, Effective October 7, 2015)

Fuel Type	Operation	Idle Rate (Btu/hr for Gas, kW	Cooking-Energy
		for Electric)	Efficiency (%)
Natural Gas	Steam Mode	≤ 200P+6,511	<u>≥41</u> ◆
(5-40 pan)	Convection Mode	≤ 140P+3,800 Natural Gas	<u>≥ 57 ≥ 41</u>
Natural Gas	Steam Mode	<u>Natural Gas ≤ 200P+6,511</u>	≥ 56
Natural Gas	Convection Mode	≤ 150P+5,425	
Natural Gas		ŕ	
Electric	Steam Mode	\leq 0.133P+0.64	≥ <u>55</u>
(5-40 pan)	Convection Mode	$\leq 0.083P + 0.35 + 0.35 = 0.083P + 0.35 = 0.083P + 0.35 = 0.083P $	≥ 78 Steam Mode ≥ 55
Electric (5-40	Steam Mode Steam	0.133P+0.6400	≥ 76
pan) Electric	Mode	≤0.080P+0.4989	
	Convection Mode		
Electric	Steam Mode	≤ 0.60P	≥ <u>51</u>
<u>(3-4</u>	Convection Mode≤	≤ 0.05P+0.55Convection Mode	$\geq 70 \leq 200P + 6.511$
pan)Convection	200P+6,511		
Mode	_		

Formatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted Table

Formatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted: Font color: Text 1

Formatted: Footnote Char, Font: 9 pt, No underline, Font color: Text 1

Formatted: Footnote Char, Font: 9 pt, No underline, Font color: Text 1

Formatted: Hyperlink

66 ENERGY STAR | Commercial Oven

https://www.energystar.gov/products/commercial food service_equipment/commercial_ovens/key_product_criteria_ENERGY_STARENERGY_STAR®_| Commercial OvenFood Service Equipment | Commercial Ovens | ENERGY_STAR®_version 3.0 | https://www.energystar.gov/products/commercial_food_service_equipment/commercial_ovens/key_product_criteria_

Appendix H - TRM - Vol. 2: C&I Measures

Note: P = Pan capacity as defined in Section 1.T of the Commercial Ovens Program Requirements Version 2.23.0.6

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new electric or natural gas combination oven that is not ENERGY STAR® certified.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years. ⁶⁸

DEEMED MEASURE COST

The incremental capital cost for each type of combination oven for this measure is \$4,3001,850628 is listed in the following table.

Equipment	<u>Size</u>	Incremental Cost. 69	
Electric combination oven	≥15 pans and	\$1,850	
	<29 pansAll		
	sizes		
.	≥30 pans	\$2,692	
Gas Electric combination oven	All sizes	\$1,701	

LOADSHAPE

Cooking BUS

⁶⁷ Pan capacity is defined as the number of steam table pans the combination oven is able to accommodate as per the ASTM F1495-05-20 standard specification, required for ENERGY STAR® product certification.

https://www.energystar.gov/sites/default/files/Commercial%20Ovens%20Final%20Version www.energystar.gov/sites/default/files/asset/document/ENERGY%20STAR% Final%20Specification.pdf https://www.energystar.gov/sites/default/files/2024

03/CFS%20Equipment%20Calculator,xlsxhttps://www.energystar.gov/sites/default/files/asset/document/commercial_kitchen uipment calculator.xlsx

«ENERGY STAR», "Results Detail" worksheet (Equipment Life field), Commercial Kitchen Equipment Savings Calculator, (March 2024), https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsxLifetime from ENERGY STAR[®] Commercial Kitchen Equipment Savings Calculator, which cites reference as "FSTC research on available

https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx (See "Oven Calcs" tab) https://www.energystar.gov/sites/default/files/asset/document/commercial_kitchen_equipment_calculator.xlsx

69 ENERGY STAR®, "Oven Calcs" hidden worksheet (Incremental Cost field), Commercial Kitchen Equipment Saving Calculator, (March 2024), https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xl.

Algorithms and assumptions derived from ENERGY STAR* Commercial Kitchen Equipment Savings Calculate https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx

⁶Nicor Gas Energy Efficiency Plan 2011-2014. Revised Plan Filed Pursuant to Order Docket 10-0562, May 27, 2011. https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fwww.caetrm.com%2Fmedia%2Freferencedocuments%2FSWFS003_Combi_Oven_Prices_11072023.xlsx&wdOrigin=BROWSELINK

Formatted: Font: 11 pt, Font color: Background 1 Formatted: Font: 11 pt, Font color: Background 1

Formatted: Font: 11 pt, Font color: Background 1

Formatted: Centered

Formatted Table

Formatted: Font: 11 pt

Formatted: Body Text, Indent: Left: 0", Right: 0"

Formatted: Font color: Text 1

Formatted: Footnotes, Right: 0", Line spacing: single

Formatted: Hyperlink

Field Code Changed

Formatted: Hyperlink

Formatted: Underline

Formatted: Font: Italic

Formatted: Underline, Font color: Auto

Formatted: Font: 9 pt

Formatted: Underline

Formatted: Font: 9 pt

Formatted: Font: 9 pt

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Custom calculation for an electric combination oven below, default values are provided for each input and in the following tables, sourced from the "<u>Commercial Kitchen Equipment Savings</u> <u>Calculator</u>", published by ENERGY STAR® on March 2024.-71

 $\overline{\Delta \text{CookingEnergy}_{\text{ConvElec}}}$

= Difference in cooking energy between baseline and efficient combination oven in convection mode

= FoodCookedElec=x (EFOODConvElec / ElecEFFConvBase - EFOODConvElec / ElecEFFConvEE) = x %Conv

= Difference in cooking energy between baseline and efficient

△CookingEnergysteamElec = Difference in cooking energy between baseline and efficient combination oven in steam mode = FoodCookedElec ★ (EFOODSteamElec / ElecEFFSteamBase)

 EFOODSteamElec / ElecEFFSteamEE) *x %Steam

 ΔIdleEnergyconvElec
 = Difference in idle energy between baseline and efficient combination oven in convection mode

= ((ElecIDLE_{ConvBase} *<u>x</u> ((Hours - FoodCooked_{Elec} /ElecPC_{ConvBase}) *<u>x</u> %_{Conv})) - (ElecIDLE_{ConvEE} *<u>x</u> ((Hours - FoodCooked_{Elec} /ElecPCConvEE) *<u>x</u> %_CConv)))

ΔIdleEnergy_{SteamElec} = Difference in idle energy between baseline and efficient combination oven in steam mode

= [(ElecIDLE_{SteamBase} *<u>X</u> ((Hours - FoodCooked_{Elec}/ ElecPCSteamBase) *<u>X</u> %Steam)) - (ElecIDLESteamEE *<u>X</u> ((Hours - FoodCookedElec / ElecPCSteamEE) *<u>X</u> %Steam))]

<u>APreHeatEnergyElec</u> = <u>Difference in preheat energy between baseline and efficient</u> = <u>PreHeatCony - PreHeatEE</u>, Formatted: Indent: Left: 0.1", Right: 0.1", Line spacing:

Multiple 1.1 li

Formatted: Font: (Default) Times New Roman

Formatted: Normal, Indent: Left: -0", Right: 0", Space After: 9.85 pt

Formatted

Formatted: Font: Italic

Formatted: Indent: Left: 0.1", Right: 0.1", Space After: 1.65 pt, Line spacing: Multiple 1.1 li, Tab stops: 0.5", Centered + 3.22", Centered

... [41]

... [42]

... [43]

... [44]

... [45]

... [46]

Formatted: Space Before: 1 pt, After: 1 pt

Formatted

Formatted: Font: Cambria Math

Formatted: Space Before: 1 pt, After: 1 pt

Formatted

Formatted

Formatted: Space Before: 1 pt, After: 1 pt

Formatted

Formatted: Space Before: 1 pt, After: 1 pt

Formatted

Formatted: Space Before: 1 pt, After: 1 pt

Formatted

Formatted: Space Before: 1 pt, After: 1 pt

Formatted: Font: Italic

Field Code Changed

⁷¹ ENERGY STAR®, Algorithms and assumptions derived from ENERGY STAR® Commercial Kitchen Equipment Savings Calculator, (March 2024), https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx

Appendix H - TRM - Vol. 2: C&I Measures

							Formatted: Space Before: 1 pt, After: 1 pt
Days		= Annual days of operation			-	Formatted: Space Before: 1 pt, After: 1 pt	
		= Custom Actual, or, if unknown, use 365.25 days per year					
1,000		<u>-Watt-hour</u> to kWl					Formatted: Space Before: 1 pt, After: 1 pt
FoodCooked _E		d cooked per day					Formatted: Space Before: 1 pt, After: 1 pt
		<u>ual, if unknown,</u> Ci 1 or 250 - <u>125</u> lbs if		nknown _ , use	e 200 lbs if P		
EFOODConvEle		ΓM energy to food ction mode	for electric co	ombination o	oven in	4	Formatted: Space Before: 1 pt, After: 1 pt
		Watt-hour h /lb					
ElecEff		.2 Wh/lb					Formatted: Space Before: 1 pt, After: 1 pt
2100211		king e Energy effic	eiency of elect	ric combina	tion oven		Tornattea. Space before. 1 pt, Arter. 1 pt
		tom or if unknowr					
	table b						Formatted: Font: Bold, Font color: Background 1
	<u>Equip</u>	oment, B	ase <u>E</u> E	fficient, _			Formatted: Font: Bold
	<u>ElecEFF</u> _{Conv}		2%	<u>78%</u>		4 W.	Formatted: Font: Bold
	ElecEFF _{Conv}			<u>70%</u>		100	Formatted: Font: Bold
	<u>ElecEFF</u> _{Steam}			55% 510/		4 111	Formatted: Centered, Space Before: 1 pt, After: 1 pt
0/	<u>ElecEFF</u> _{Steam}			51%		4 11 11	Formatted: Space Before: 1 pt, After: 1 pt
%Conv		= Percentage of time in convection mode = Custom or, if unknown, Actual, or if unknown, use 50%			11 11 1	Formatted Table	
EFOOD _{SteamEl}		ΓM energy to food				* '' ''	Formatted: Space Before: 1 pt, After: 1 pt
LI CODSteamE	mode	in chergy to root	Tot Ciccuite Co	onioniation c	, von m steam		Formatted: Space Before: 1 pt, After: 1 pt
	= 30.8	3 W <u>att-hour</u> h/lb				1, 1,	Formatted Table
%steam		centage of time in	steam mode			4 / / /	Formatted: Space Before: 1 pt, After: 1 pt
	= 1 - 9					///	Formatted: Space Before: 1 pt, After: 1 pt
ElecIDLEBase		energy rate (W) o				4///	Formatted: Space Before: 1 pt, After: 1 pt
	table b		i, Actual, of 1	<u>l ulikilowii,</u> i	use values from		Formatted: Space Before: 1 pt, After: 1 pt
		Convection Mo	de Ste	am Mode			Formatted: Space Before: 1 pt, After: 1 pt
	Pan Capacity					4	Formatted: Space Before: 1 pt, After: 1 pt
	<u>⇔ 155</u>	<u>1,754680</u>	5,2	260 2,090			Formatted: Space Before: 1 pt, After: 1 pt
	≥ 45 to <3040	2,966 1,320	80,0	366- 5,260			Formatted: Space Before: 1 pt, After: 1 pt
	<u>≥ 30</u>	<u>4,418</u>		<u>11,875</u>		4	Formatted: Space Before: 1 pt, After: 1 pt
		<u>Base</u>		EE		-	Formatted: Space Before: 1 pt, After: 1 pt
	ElecEFF _{Conv}	72%	_	'68%		4	Formatted: Space Before: 1 pt, After: 1 pt
	ElecEFF _{Steam}	<u>4952%</u>		<u>55%</u>		4 1	Formatted Table
Hours		rage daily hours o		C 1	10.1	*////	Formatted: Space Before: 1 pt, After: 1 pt
	= Cus day	tom or, if unknow	1, Actual, or 1	<u>r unknown,</u> ı	use 12 hours per		Formatted: Space Before: 1 pt, After: 1 pt
	uay					1	Formatted: Space Before: 1 pt, After: 1 pt
						\	

Formatted: Space Before: 1 pt, After: 1 pt

Appendix H - TRM - Vol. 2: C&I Measures

ElecPC_{Base}

= Production capacity (lbs/hr) of baseline electric combination

= Custom or, if unknown, Actual, or if unknown, use values from table below

tuble below				
Pan Capacity	Convection Mode (ElecPC _{ConvEEBase)}	Steam Mode (ElecPC _{SteamEEBase)}		
<u>⇔45</u>	<u>119 79</u> 29	<u>17712645</u>		
\geq 155 to 40	201 -1 66 07	349 295 151		
	Convection Mode (ElecIDLE _{ConvBase)}	Steam Mode (ElecIDLE _{SteamBase)}		
<u><15</u>	<u>1,754</u>	<u>5,260</u>		
≥ 15 to <30	<u>2,966</u>	<u>8,866</u>		
<u>≥ 30</u>	<u>4,418</u>	<u>11,875</u>		

ElecIDLEConvEE

= Idle energy rate of ENERGY STAR® electric combination oven

in convection mode

= $(0.083 \times \underline{x}P + 0.498935) \times \underline{x}1,000$ for 5-40 pan capacity

 $= (0.05 \pm xP + 0.55) \pm x1,000$ for 3-4 pan capacity

ElecPC_{EE} = Production capacity (lbs/hr) of ENERGY STAR® electric

combination oven

= Custom or, if unknown, Actual, or if unknown, use values from table below

Pan Capacity	Convection Mode (ElecPC _{ConvEE})	Steam Mode (ElecPC _{SteamEE)}
> < 15 5	119- 37	177- 59
$\geq 155 \text{ to } 40$	201 -174	349- 247

ElecIDLEsteamEE

= Idle energy rate of ENERGY STAR® electric combination oven

in steam mode

 $= (0.133 \pm xP + 0.64) \pm x1,000$ for 5-40 pan capacity $= (0.60 \times xP + 0.64) \times x1,000$ for 3-4 pan capacity

	Base	EE
ElecEFF _{Conv}	72%	76%
ElecEFF _{Steam}	49%	55%

Pan Capacity	Convection Mode (ElecIDLE _{ConvBase)}	Steam Mode (ElecIDLE _{SteamBase)}
<15	1,320	5,260
<u>≥ 15</u>	2,280	8,710

Pan Capacity	Convection Mode (ElecPC _{ConvBase)}	Steam Mode (EleePC _{SteamBase)}
<15	79	126

Formatted: Space Before: 1 pt, After: 1 pt

Formatted: Space Before: 1 pt, After: 1 pt **Formatted Table**

Formatted: Space Before: 1 pt, After: 1 pt

Formatted: Space Before: 1 pt, After: 1 pt Formatted: Space Before: 1 pt, After: 1 pt

Formatted: Space Before: 1 pt, After: 1 pt

Formatted Table

Formatted: Font color: Text 1

Formatted: Space Before: 1 pt, After: 1 pt

Formatted: Font color: Text 1

Formatted: Space Before: 1 pt, After: 1 pt

Formatted: Font color: Text 1

Formatted: Space Before: 1 pt, After: 1 pt

Formatted Table

Formatted: List Paragraph, Left, Indent: Left: 0.25",

Space Before: 1 pt, After: 1 pt

Formatted: Space Before: 1 pt, After: 1 pt

Formatted: Space Before: 1 pt, After: 1 pt

Formatted: Space Before: 1 pt, After: 1 pt Formatted: Space Before: 1 pt, After: 1 pt

Appendix H - TRM - Vol. 2: C&I Measures

≥15	166	295

Pan Capacity	Convection Mode (ElecPC _{ConvEE})	Steam Mode (ElecPC _{SteamEE)}
<15	119	177
<u>≥15</u>	201	349

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta k = \Delta kWh *-x CF$

Where:

 ΔkWh = Electric energy savings, calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001998949^{72}$

Other variables as defined above.

NATURAL GAS ENERGY SAVINGS

Custom calculation for a gas combination oven below:73

 $\Delta Therms = (\Delta Cooking Energy_{ConvGas} + \Delta Cooking Energy_{SteamGas} + \Delta Idle Energy_{ConvGa} + \Delta Idle Energy_{SteamGas}) * Days/100,000$

Where:

 $\Delta Therms = (\Delta CookingEnergy_{ConvGas} + \Delta CookingEnergy_{SteamGas} +$

 $\Delta IdleEnergy_{ConvGa} + \Delta IdleEnergy_{SteamGas} +$

<u>ΔPreHeatEnergy_{Gas}) * Days/100,000</u>

Where:

 Δ CookingEnergy_{ConvGas} = Difference in cooking energy between baseline and efficient

combination oven in convection mode

= FoodCookedGas -x (EFOODConvGas /

GasEFFConvBase EFOODConvGas/ GasEFFConvEE) *

x %Conv

ΔCookingEnergy_{SteamGas} = Difference in cooking energy between baseline and efficient

combination oven in steam mode

= FoodCookedGas *x (EFOODSteamGas / GasEFFSteamBase - EFOODSteamGas / GasEFFSteamEE) *x %Steam

Formatted: Indent: Left: 0.1", Right: 0.1", Line spacing: Multiple 1.1 li

Formatted: Cambria12

Formatted: Font: Cambria Math

Formatted: Cambria12 Char, Font: Cambria

Formatted: Cambria12 Char, Font: Cambria, 12 pt

Formatted: Cambria12 Char, Font: Cambria

Formatted: Cambria12 Char, Font: Cambria

Formatted: Cambria12 Char, Font: Cambria, 12 pt

Formatted: Cambria12 Char, Font: Cambria

Formatted: Cambria12 Char, Font: Cambria, 12 pt

Formatted: Cambria12 Char, Font: Cambria

Formatted: Cambria12 Char, Font: Cambria, 12 pt

Formatted: Cambria12 Char, Font: Cambria

Formatted: Cambria12 Char, Font: Cambria, 12 pt

Formatted: Cambria12 Char, Font: Cambria

Formatted: Cambria12 Char, Font: Cambria

Formatted: Cambria12 Char, Font: Cambria, 12 pt

Formatted: Font: 9 pt

Formatted: Space After: 1.3 pt

⁷² Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors" 2016 Ameren Missouri Coincident Peak Demand Factor for Commercial Electric Cooking. See reference "Ameren Missouri"

²⁰¹⁶ Appendix E - End Use Shapes and Coincident Factors.pdf." Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

⁷³ Algorithms and assumptions derived from ENERGY STAR® Commercial Kitchen Equipment Savings Calculator.

Appendix H - TRM - Vol. 2: C&I Measures

∆IdleEnergy_{ConvGas}

= Difference in idle energy between baseline and efficient

combination oven in convection mode

= ((Gas1DLEConvBase **x ((Hours - FoodCookedGas / GasPCConvBase) **x %Conv)) - (Gas1DLEConvEE ** x ((Hours - FoodCookedGas / GasPCConvEE) **

x %Conv)))

 $\Delta IdleEnergy_{SteamGas}$

= Difference in idle energy between baseline and efficient

combination oven in steam mode

= [(GasIDLESteamBase **x ((Hours - FoodCookedGas / GasPCSteamBase) **x %Steam)) - (GasIDLESteamEE **

x ((Hours - FoodCookedGas / GasPCSteamEE) *

x %Steam))]

 $\underline{\Delta PreHeatEnergy_{SteamGas}}$

=Difference in daily preheat energy from baseline to efficient

100,000

= Btu to therms conversion factor

FoodCooked_{Gas}

= Food cooked per day for gas combination oven

= Custom, or, if unknown, use 200 lbs if P < 15, 250 lbs if $15 \le P$

30, or 400 lbs if $P \ge 30$

EFOOD_{ConvGas}

= ASTM energy to food for gas combination oven in convection

mode = 250 Btu/lb

GasEff

= Cooking energy efficiency of gas combination oven

= Custom or, if unknown, Actual, or if unknown, use values from

table below

	<u>Base</u>	
<u>GasEFF</u> _{Conv}	<u>52%</u>	<u>56%</u>
<u>GasEFF_{Steam}</u>	<u>39%</u>	<u>41%</u>

EFOODSteamGas

= ASTM energy to food for gas combination oven in steam mode

= 105 Btu/lb

GasIDLE_{Base}

= Idle energy rate (Btu/hr) of baseline gas combination oven

= Custom or, if unknown, Actual, or if unknown, use values from

table below

	(GasIDLE _{ConvBase)}	(GasIDLE _{SteamBase)}	
<u>< 15</u>	8,747 9,840	18,656 24,003	
$15 \le P \ 30$	10,788 11,734	24,562 27,795	
<u>≥30</u>	<u>13,000</u> 15,376	<u>43,300</u> 27,957	

GasPCBase

= Production capacity (lbs/hr) of baseline gas combination oven

= Custom or, if unknown, Actual, or if unknown, use values from

table below

Pan Capacity	Convection Mode	Steam Mode
I all Capacity		
<u>< 15</u>	<u>125</u>	<u>195</u>
<u>15 ≤ P 30</u>	<u>176</u>	<u>211</u>
<u>≥30</u>	<u>392</u>	<u>579</u>

GasIDLEConvEE

= Idle energy rate of ENERGY STAR® gas combination oven in convection mode

2025 MEEIA 4 2019 21 Plan

Revision 56.0

Page 46

Formatted Table

Formatted Table

Formatted Table

Appendix H - TRM - Vol. 2: C&I Measures

Formatted Table

 $= 150140 *_{X}P + 5,4253,800$

GasPC_{EE} = Production capacity (lbs/hr) of ENERGY STAR® gas

combination oven

= Custom or, if unknown, Actual, or if unknown, use values from table below

Pan Capacity	Convection Mode (GasPC _{ConvEE)}	Steam Mode (GasPC _{SteamEE)}
<u>< 15</u>	<u>124</u>	<u>172</u>
$15 \le P \ 30$	<u>210</u>	<u>277</u>
≥30	394	640

GasIDLE_{SteamEE}

= Idle energy rate of ENERGY STAR® gas combination oven in

steam mode

 $=200*_{\underline{x}}P +6,511$

Other variables as defined above.

	Base	<u>P.E</u>
GasEFF _{Conv}	52%	56%
GasEFF _{Steam}	39%	41%

Pan Capacity	Convection Mode (GasIDLE _{ConvBase)}	Steam Mode (GasIDLE _{SteamBase)}
< 15	8,747	18,656
15 ≤ P 30	10,788	24,562
≥30	13,000	43,300

Pan Capacity	Convection Mode	Steam Mode
	(GasPC _{ConvBase)}	(GasPC _{SteamBase)}
< 15	125	195
15 ≤ P 30	176	211
≥ 30	392	579

Don Consoits	Convection Mode	Steam Mode
Pan Capacity		
< 15	124	172
$15 \le P \cdot 30$	210	277
≥30	394	640

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

Ameren Missouri		Appendix H - TRM - Vol. 2: C&I Measures	
	MEASURE CODE:		

2.3.2 Commercial Steam Cooker

DESCRIPTION

This measure applies to electric or natural gas fired ENERGY STAR® steam cookers installed in a commercial kitchen. Commercial steam cookers contain compartments where steam energy is transferred to food by direct contact. ENERGY STAR® certified steam cookers have shorter cook times, higher production rates, and reduced heat loss due to better insulation and more efficient steam delivery.

This measure was developed to be applicable to the following program type: TOS.

If applied to other program types, measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be an ENERGY STAR® certified steam cooker meeting idle energy rate (W or Btu/hr) and cooking efficiency (%) limits, as determined by fuel type and pan capacity.

ENERGY STAR®, Requirements (Version 1.2, Effective August 1, 2003)

<u> </u>					
	Electric Efficiency Requirements		Natural Gas Efficiency		
Pan Capacity	Idle Energy Rate	Cooking	Idle Energy Rate	Cooking	
	Idle Energy Rate	Efficiency		Efficiency	
3-pan	≤ 400 W		≤ 6,250 Btu/hr		
4-pan	≤ 530 W		≤ 8,350 Btu/hr		
5-pan	≤ 670 W	≥ 50%	≤ 10, 400 <u>4</u>17	≥ 38% N/A	
			Btu/hr		
6-pan and larger	≤ 800 W		≤ 12,500 Btu/hr		

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new electric or natural gas steam cooker that is not ENERGY STAR® certified.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years.74

DEEMED MEASURE COST

74 Lifetime-ENERGY STAR®, "Results Detail" worksheet (Equipment Life field), Commercial Kitchen Equipment Savings Calculator, (March 2024), https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx from ENERGY STAR®-Commercial Kitchen Equipment Savings Calculator, which cites reference as "FSTC research on available models, 2009." https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx (See "Steam Cookers Calce" tab)

http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equipment_calculator.xlsx

Formatted: Underline

Formatted: Font: Not Bold
Formatted: Font: Not Bold

Appendix H - TRM - Vol. 2: C&I Measures

Actual incremental cost for this measure should be used. If actuals are unavailable use \$4,1502,000 for all electric cooker pan sizes and \$1,000 for gas cooker.⁷⁵

LOADSHAPE

Cooking BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Custom calculation for an electric steam cooker below with inputs for the existing cooker and efficient cooker; otherwise use deemed values from the variable default value and the table that follows, sourced from the EnergyStar Commercial Equipment Savings Calculator, 276

```
\Delta kWh = (\Delta IdleEnergy + \Delta CookingEnergy) * Days/1,000 Where:
\Delta kWh
                   = (\Delta IdleEnergy + \Delta CookingEnergy - + -\Delta PreHeatEnergy) - x - Days/
                   1,000
Where:
ΔIdleEnergy
                  = Difference in idle energy between baseline and efficient steam cooker
                   = [(1 - SteamMode) *x(IdleRate_{base} + SteamMode) *
                   x \ Production_{base} \frac{ProductionBase}{ProductionBase} + x \ Pans + x \ EFOOD/
                   Eff_{base}) EffBase) *- x (Hours - FoodCooked/(ProductionBase *-
                   x Pans))] - [(1 - SteamMode) *-x(IdleRate_{ESTAR} + IdleRate_{ESTAR})]
                   SteamMode - x Production_{ESTAR} - x Pans - x
                   x EFOOD/Eff_{ESTAR} \frac{EffESTAR}{ESTAR} *x (Hours - FoodCooked/
                   (Production_{ESTAR} \frac{ProductionESTAR}{x} + x Pans))]
                  =Difference in preheat energy between baseline and efficient cooker
<u>∆PreHeatEnergy</u>
                   =104.3Watt-hour
ΔCookingEnergy
                  = Difference in cooking energy between baseline and efficient steam cooker
```

 $= (FoodCooked +x EFOOD / Eff_{base} - EffBase) - (FoodCooked +x EFOOD / Eff_{base} - EffBase)$

Days $x EFOOD/Eff_{ESTAR}EffESTAR$)
= Annual days of operation
= Custom Actual.or, if unknown, use 365.25 days per year

1,000 = Watth to kWh conversion factor
SteamMode = Time (%) in constant steam mode

SteamMode = Time (%) in constant steam mode = Actual Custom or, if unknown, use 40%

IdleRateBase = Idle energy rate (W) of baseline electric steam cooker

Formatted: Font: Italic

Formatted: Body Text, Justified, Indent: Left: 0", Right: 0", Space After: 0 pt, Line spacing: single

Formatted Table

Formatted: Font: (Default) Times New Roman

Formatted: Left

Formatted: Font: 9 pt

Formatted: Left, Indent: Left: 0"

⁷⁵ Cost from ENERGY STAR® Commercial Kitchen Equipment Savings Calculator, which cites reference as "EPA research using AutoQuotes, October 2020." https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx (See "Steam Cookers Calcs" tab rows 10 &51)Ameren Missouri Technical Resource Manual Effective January 1, 2018.

⁷⁶ Algorithms and assumptions derived from ENERGY STAR® Commercial Kitchen Equipment Savings Calculator.

Appendix H - TRM - Vol. 2: C&I Measures

= 1,100200 W for steam generator, or 1,000 W for all others⁷⁷

IdleRate_{ESTAR} = Idle energy rate (W) of ENERGY STAR® electric steam cooker

= Actual Custom, i or, if unknown, use value from table below as determined by

pan capacity

Pan Capacity	IdleRate _{ESTAR}
<u>3</u>	<u>400</u>
<u>4</u>	<u>530</u>
<u>5</u>	<u>670</u>
<u>6 to 10</u>	<u>800</u>
10	800

Production_{Base} = Production capacity (lb/hr) per pan of baseline electric steam cooker

= Actual, if unknown, use 23.3 lb/hr

Production_{ESTAR} = Production capacity (lb/hr) per pan of ENERGY STAR® electric steam cooker

= Custom or, if Actual, if unknown, use 16.7 lb/hr

Pans = Pan capacity of steam cooker

= Custom or, Actual, if unknown, use 6 pans

EFOOD = ASTM energy to food <u>testing standard</u>

= 30.8 Wh/lbatt-hour/lb

Eff_{Base} = Cooking efficiency (%) of baseline electric steam cooker $\frac{78 \text{ pp}}{100}$

= Actual, if unknown, use 2830%

Effestar = Cooking efficiency (%) of ENERGY STAR® electric steam cooker

= Custom or, if Actual, if unknown, use 50%

Hours = Average daily hours of operation

= Custom or Acutal, if unknown, use 12 hours per day

FoodCooked = Food cooked per day (lbs)

= Custom or, Actual, if unknown, use 100 pounds

Pan Capacity	IdleRate _{ESTAR}
3	400
4	530
5	670
6	800
10	800

Savings for all pan capacities are presented in the table below.

Energy Consumption of Electric Steam Cookers			
Pan Capacity kWh _{Base} kWh _{ESTAR} Savings (kWh)			

²⁷ Idle energy rate for baseline steam cookers is the average of rates provided by ENERGY STAR[®] for steam generator and boiles based cookers. (Average of 1000 & 1200 in formula in "Steam Cooker Cales" tab cell "D26")

78 ENERGY STAR®, "Steam Cooker Calcs" hidden worksheet: Cells C21, Commercial Kitchen Equipment Savings Calculator, (March 2024), Source of algorithms and assumptions for savings, https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx

²⁹ Cooking efficiency for baseline steam cookers is the average of efficiencies provided by ENERGY STAR® Commercial

Kitchen Equipment Savings Calculator for steam generator and boiler-based cookers. (Average of .30 & .26 in formula in "Stea Cooker Cales" tab cell "C21"))

Formatted: Footnotes

Formatted Table

Appendix H - TRM - Vol. 2: C&I Measures

3	<u>37,857</u> <u>18,438.9</u>	<u>17,642</u> 7,637.6	<u>7,3843</u> <u>10,801.3</u>
4	<u>45,004</u> <u>23,018.6</u>	<u>21,543 9,784.1</u>	<u>8,569</u> <u>13,234.5</u>
5	<u>52,047 27,563.8</u>	<u>25,509</u> <u>11,953.8</u>	<u>9,693</u> <u>15,609.9</u>
6	<u>59,040 32,091.7</u>	<u>29,410</u> <u>14,100.1</u>	<u>10,822 17,991.6</u>
10	<u>86,803</u> <u>50,134.5</u>	<u>41,452</u> <u>21,384.3</u>	<u>16,564</u> <u>28,750.1</u>
Average	<u>56,150</u> <u>30,249.5</u>	<u>27,111</u> 12,972.0	<u>10,606</u> 17,277.5

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWh + x CF$$

Where:

ΔkWh = Electric energy savings, calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

=0.000199894980

Other variables as defined above.

NATURAL GAS ENERGY SAVINGS

Custom calculation for a natural gas steam cooker below; otherwise use deemed value from the table that follows.⁸¹

$$-\Delta Therms = (\Delta IdleEnergy + \Delta CookingEnergy + \Delta PreHeatEnergy)_{*}$$

$$Days/100,000$$

Where:

 \triangle IdleEnergy = [(1 - SteamMode) **x(IdleRateBase + SteamMode **)

x ProductionBase *-x Pans *-xEF00D/EffBase) *-

x (Hours - FoodCooked/(ProductionBase \rightarrow

x Pans))] - [(1 - SteamMode) +x (IdleRateESTAR + SteamMode +x ProductionESTAR +x Pans +x EF00D/ EffESTAR) +x (Hours - FoodCooked/ProductionESTAR +

x Pans)

 $\triangle CookingEnergy = (FoodCooked + x EFOOD/EffBase) - (FoodCooked + x EFOOD/EffBase)$

x EFOOD / EffESTAR)

ΔPreHeatEnergy =Difference in daily preheat energy from baseline to efficient

100,000 = Btu to therms conversion factor

80 Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors" 2016 Ameren Missouri Coincident Peak Demand Factor for Commercial Electric Cooking. See reference "Ameren Missouri 2016 Appendix E - End Use Shapes and Coincident Factors.pdf."

Formatted: Font: Cambria Math, Italic

Formatted: Indent: Left: 1", Right: 0.2", Line spacing: Multiple 1.1 li

Formatted: Font: 9 pt

⁸¹ ENERGY STAR®, Algorithms and assumptions derived from Commercial Kitchen Equipment Savings Calculator, (March 2024), https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsxAlgorithms and assumptions derived from ENERGY STAR®-Commercial Kitchen Equipment Savings Calculator.

Appendix H - TRM - Vol. 2: C&I Measures

IdleRate_{Base} = Idle energy rate (Btu/hr) of baseline gas steam cooker

 $= 16,500 \text{ Btu/hr}^{82}$

IdleRate_{ESTAR} = Idle energy rate (Btu/hr) of ENERGY STAR® gas steam cooker

= Custom or, if unknown, Actual, or if unknown, use value from table

below as determined by pan capacity

	pun supusity
Pan Capacity	IdleRate _{ESTAR}
<u>3</u>	<u>6,250</u>
<u>5-4</u>	<u>10,4008,333</u>
<u>6-5</u>	<u>12,500</u> 10,417
10-6 to 10	12,500

Production_{Base} = Production capacity (lb/hr) per pan of baseline gas steam cooker

= 23.3 lb/hr

Production_{ESTAR} = Production capacity (lb/hr) per pan of ENERGY STAR® gas steam

cooker

= Custom or, if unknown, Actual, or if unknown, use 20 lb/hr

EFOOD = ASTM energy to food

= 105 Btu/lb

Eff_{Base} = Cooking efficiency (%) of baseline gas steam cooker⁸³

= 16.5%

= Cooking efficiency (%) of ENERGY STAR® gas steam cooker

Effestar = Custom or if unknown, Actual, if unknown use 38%

Other variables as defined above.

Pan Capacity	IdleRate _{ESTAR}
3	6,250
5	10,400
6	12,500
10	12.500

Savings for all pan capacities are presented in the table below.

Energy Consumption of Gas Steam Cookers			
Pan Capacity	Savings (Therms)		
3	1,301.5	492.8	808.7
5	1,842.1	795.7	1,046.4
6	2,107.2	947.8	1,159.4
10	3,157.4	1,344.5	1,812.9
Average	1,996.0	845.0	1,150.0

Formatted: Keep with next

Formatted Table

⁸² Idle energy rate for baseline steam cookers is the average of rates provided by ENERGY STAR® for steam generator and boiler-based cookers. (See formula in "Steam Cooker Calcs" tab cell "F26").

⁸³ Cooking efficiency for baseline steam cookers is the average of efficiencies provided by ENERGY STAR® for steam generator and boiler-based cookers (See formula in "Steam Cooker Calcs" tab cell "F21").

WATER IMPACT DESCRIPTIONS AND CALCULATION

Custom calculation below; otherwise use deemed value of 134,412.0 gallons per year.84 Savings are the same for electric and gas steam cookers.

$$\Delta Water = (WaterUseBase - WaterUseESTAR) + x Hours$$

+ x Days

Where:

WaterUse_{Base} = Water use (gal/hr) of baseline steam cooker

= 40 gal/hr

WaterUse_{ESTAR} = Water use (gal/hr) of ENERGY STAR[®] steam cooker⁸⁵

= Custom or, if unknown, Actual, or if unknown, use 9.3 gal/hr

Other variables as defined above

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

 $^{^{84} \} Algorithms \ and \ assumptions \ derived \ from \ ENERGY \ STAR^{\$} \ Commercial \ Kitchen \ Equipment \ Savings \ Calculator.$

⁸⁵ Water use for ENERGY STAR® steam cookers is the average of water use values provided by ENERGY STAR® for steam generator, boiler-based, and boiler-less cookers (See formula in "Steam Cooker Calcs" tab cell "G19" average of 15,10 &3).

2.3.3 Fryer

DESCRIPTION

This measure applies to electric or natural gas fired ENERGY STAR® certified fryers installed in a commercial kitchen. ENERGY STAR® fryers offer shorter cook times and higher production rates through advanced burner and heat exchanger designs. Fry pot insulation reduces standby losses, resulting in lower idle energy rates. Standard-sized ENERGY STAR® fryers are up to 30% more efficient, and large-vat ENERGY STAR® fryers are up to 35% more efficient, than standard fryers.

This measure was developed to be applicable to the following program type: TOS.

If applied to other program types, measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be an ENERGY STAR® certified fryer meeting idle energy rate (W or Btu/hr) and cooking efficiency (%) limits, as determined by both fuel type and fryer capacity (standard versus large vat).

ENERGY STAR® Requirements (Version 23.0, Effective April 22, 2011)October 1, 2016)

	Electric Efficiency Requirements		Natural Gas Require	
Fryer Capacity	Idle Energy Rate	Cooking Efficiency Consumption	Idle Energy Rate	Cooking Efficiency Consumption
Standard Open Deep-Fat Fryer	≤ 1,000 <u>800</u> W	≥ 83%	≤ 9,000 Btu/hr	> 50%
Large Vat Open Deep-Fat Fryer	≤1,100 W	<u>≥ 80%</u>	≤ 12,000 Btu/hr	≥ 30 / 0

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new electric or natural gas fryer that is not ENERGY STAR® certified.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years.86

DEEMED MEASURE COST

The incremental capital cost for this measure is \$210-1,500 for standard electric, \$0500 for large vat electric, \$1,000 for standard gas, and \$1,1202,000 for large vat gas fryers.87

SENERGY STAR, "Results Detail" worksheet (Equipment Life), **Commercial Kitchen Equipment Savings Calculator*, (March 2024), **https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx.**Lifetime from ENERGY STAR** Commercial Kitchen Equipment Savings Calculator, which cites reference as "FSTC research on available models, 2009." https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx (See "Fryer Cales" tabhhttps://www.energystar.gov/sites/default/files/asset/document/commercial kitchen_equipment_calculator.xlsx.

***ENERGY STAR**, "Fryer Cales" hidden worksheet (Incremental Cost), **Commercial Kitchen Equipment Savings Calculator*, (March 2024), https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx

Measure costs from ENERGY STAR Commercial Kitchen Equipment Savings Calculator (See formula in "Fryer Cales" tab cells "CO:F9"), which cites reference as "EPA research using AutoQuotes, October 2020EPA research using AutoQuotes, 2012."

Formatted: Body Text, Justified, Indent: Left: 0"

Formatted: Centered

Formatted: Footnotes, Line spacing: single

Formatted: Underline

Formatted: Footnotes, Indent: Left: 0"

Formatted: Underline

Appendix H - TRM - Vol. 2: C&I Measures

LOADSHAPE Cooking BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Custom calculation for an electric fryer below; otherwise use deemed value of 952.33,128.1231 kWh for standard fryers and 2,537.92,696.720 kWh for large vat fryers.⁸⁸

 ΔkWh = $(\Delta IdleEnergy + \Delta CookingEnergy + \Delta CookingEnergy +$ $\Delta PreHeatEnergy) * Days/1,000$ Where: ΔIdleEnergy = Difference in idle energy between baseline and efficient fryer $= (ElecIdle_{base} = ElecIdle_{base} + x (Hours - FoodCooked))$ $ElecPC_{base} = ElecPCBase$)) - $ElecIdle_{ESTAR} = ElecIdleESTAR = ElecIdleESTAR$ $x (Hours - FoodCooked/ElecPC_{ESTAR} ElecPCESTAR))$ =Difference in daily preheat energy between baseline and efficient ΔPreHeatEnergy ΔCookingEnergy = Difference in cooking energy between baseline and efficient fryer = (FoodCooked +x EFOODElec/ $ElecEff_{base} = ElecEff_{base}$) - (FoodCooked -x EFOOD_{Elec}/ ElecEffestar) <u>∆PreHeatEnergy</u> =Difference in daily preheat energy from baseline to efficient =Actual, or if unknown, 500 watts for standard and large vat Days = Annual days of operation = Custom or, if unknown, Actual, or if unknown, use 365.25 days per year

1,000 = Wh to kWh conversion factor

ElecIdle_{Base} = Idle energy rate of baseline electric fryer

= 1,050-200 W for standard fryers and 1,350 W for large vat fryers

ElecIdle_{ESTAR} = Idle energy rate of ENERGY STAR® electric fryer

= Custom or, if unknown, Actual, or if unknown, use 1,000800 W for

standard fryers and 1,100 for large vat fryers

Hours = Average daily hours of operation

= Custom or, if unknown, Actual, or if unknown, use 16 hours per day

for a standard fryer and 12 hours per day for a large vat fryer

FoodCooked = Food cooked per day

= Custom or, if unknown, Actual, or if unknown, use 150 pounds

 $ElecPC_{Base}$ = Production capacity of baseline electric fryer

Formatted: Justified, Indent: Left: -0", Right: 0", Space

After: 8.75 pt

⁸⁸ ENERGY STAR®, "Results Detail" worksheet: Cells F25:F28, Commercial Kitchen Equipment Savings Calculator, (March 2024), Source of algorithms and assumptions for savings, https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsxAlgorithms and assumptions derived from ENERGY STAR® Commercial Kitchen Equipment Savings Calculator https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx (See "Results Detail" tab Cells F25:F28):

Appendix H - TRM - Vol. 2: C&I Measures

= 65 lb/hr for standard fryers and 100 lb/hr for large vat fryers $= \text{Production capacity of ENERGY STAR}^{\text{@}} \text{ electric fryer}$

= Custom or, if unknown, Actual, or if unknown, use 70 lb/hr for

standard fryers and 110 lb/hr for large vat fryers

 $EFOOD_{Elec}$ = ASTM energy to food

= 167 Wh/lb

ElecEff_{Base} = Cooking efficiency of baseline electric fryer

= 75% for standard fryers and 70% for large vat fryers = Cooking efficiency of ENERGY STAR[®] electric fryer

= Custom or, if unknown, Actual, or if unknown, use 8083% for both

ElecEff_{ESTAR} standard and 80% for large vat fryers

Other variables as defined above

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta k = \Delta kWh + x CF$

Where:

 Δ kWh = Electric energy savings, calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001998949^{89}$

Other variables as defined above.

NATURAL GAS ENERGY SAVINGS

Custom calculation for a natural gas fryer below; otherwise use deemed value of 507.9512 therms/yr for standard fryers and 415.1420 therms/yr for large vat fryers.⁹⁰

$$-\Delta Therms = (\Delta Idle Energy + \Delta Cooking Energy + \Delta Pre Heat Energy)
*-x Days/100,000$$

Where:

 \triangle IdleEnergy = (GasIdleBase +x (Hours - FoodCooked/

GasPCBase)) - (GasIdleESTAR + x)(Hours - FoodCooked/GasPCESTAR))

<u>APreHeatEnergy</u> <u>Difference in daily preheat energy between baseline and efficient</u> ΔCookingEnergy = (FoodCooked +x EFOODGas/GasEffBase) - (FoodCooked +x EFOODGas/GasEffBase)

 $x EFOOD_{Gas}/GasEff_{ESTAR}$

<u>ΔPreHeatEnergy</u> = Difference in daily preheat energy between baseline and efficient

2016 Appendix E - End Use Shapes and Coincident Factors.pdf."

Formatted: Indent: Left: 0", Right: 0", Line spacing: single

Formatted: Indent: Left: 1", Right: 0.3"

Formatted: Font: 9 pt

Formatted: Font: 9 pt

⁸⁹ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors" 2016 Ameren Missouri Coincident Peak Demand Factor for Commercial Electric Cooking. See reference "Ameren Missouri

⁹⁰ Algorithms and assumptions derived from ENERGY STAR® Commercial Kitchen Equipment Savings Calculator https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx_(See "Fryer Cales" tab).

Appendix H - TRM - Vol. 2: C&I Measures

100,000 = Btu to therms conversion factor GasIdle_{Base} = Idle energy rate of baseline gas fryer

= 14,000 Btu/hr for standard fryers and 16,000 Btu/hr for large vat

fryers

GasIdle_{ESTAR} = Idle energy rate of ENERGY STAR $^{\text{®}}$ gas fryer

= Custom or, if unknown, Actual, or if unknown, use 9,000 Btu/hr for

standard fryers and 12,000 Btu/hr for large vat fryers

GasPc_{Base} = Production capacity of baseline gas fryer

= 60 lb/hr for standard fryers and 100 lb/hr for large vat fryers

= Production capacity of ENERGY STAR® gas fryer

= Custom or, if unknown, Actual, or if unknown, use 65 lb/hr for

GasPcestar standard fryers and 110 lb/hr for large vat fryers

 $EFOOD_{Gas}$ = ASTM energy to food

= 570 Btu/lb

GasEff_{Base} = Cooking efficiency of baseline gas fryer

= 35% for both standard and large vat fryers = Cooking efficiency of ENERGY STAR® gas fryer

= Custom or, if unknown, Actual, or if unknown, use 50% for both

GasEff_{ESTAR} standard and large vat fryers

Other variables as defined above

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

2.3.4 Convection Oven

DESCRIPTION

This measure applies to either full or half-sized electric ENERGY STAR® convection ovens and to half-full sized natural gas fired ENERGY STAR® convection ovens installed in a commercial kitchen. Convection ovens are general purpose ovens that use fans to circulate hot, dry air over the food surface. ENERGY STAR® certified convection ovens are approximately 20% more efficient than standard ovens.

This measure was developed to be applicable to the following program type: TOS.

If applied to other program types, measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be an ENERGY STAR® certified convection oven meeting idle energy rate (kW or Btu/hr) and cooking efficiency (%) limits, as determined by both fuel type and oven capacity (full size versus half size).

ENERGY STAR® Requirements (Version 2.23.0, Effective October 7, 2015 January 12, 2023) 91

Formatted: Body Text, Justified, Indent: Left: 0"

	Electric Efficiency Requirements		
Oven Capacity	Idle Energy Rate	Cooking Efficiency	
Electric, Full Size, ≥ 5 pans	≤ 1 .60 <u>.40</u> <u>kW</u> kW	≥ 71 <u>76</u> %	
Electric, Half Size Full Size, < 5 pans	≤ 1.00 kW	<u>≥ 76%</u>	
Half Size	≤ 1.00 kW	≥ 71%	
Gas, full size	≤9,500 Btu/hr	≥ 49%	

Formatted: Line spacing: single Formatted: Line spacing: single Formatted: Centered, Line spacing: single Formatted: Centered, Line spacing: single Formatted: Line spacing: single Formatted Table

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new electric or natural gas convection oven that is not ENERGY STAR® certified.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years.92

DEEMED MEASURE COST

91 https://www.energystar.gov/products/commercial food service equipment/commercial ovens/key product criteria
92 ENERGY STAR®, "Results Detail" worksheet (Equipment Life), Commercial Kitchen Equipment Savings Calculator, (March
2024), https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx Lifetime from ENERGY
STAR® Commercial Kitchen Equipment Savings Calculator, which cites reference as "FSTC research on available models,
2009." https://www.energystar.gov/sites/default/files/asset/document/commercial_kitchen_equipment_calculator.xlsx.

Formatted: Font: 9 pt
Formatted: Font: 9 pt
Formatted: Indent: Left: 0"
Formatted: Underline

2025 MEEIA 4 2019 21 Plan

Revision 56.0

Page 60

Appendix H - TRM - Vol. 2: C&I Measures

The incremental capital cost for this measure is \$8280 for half-size oven and \$1,191 for full size ovens.93

LOADSHAPE

Cooking BUS

Formatted: Indent: Left: 0"

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Custom calculation for an electric convection oven below; otherwise use 1,938.51,090 W for \geq 5 pan full-size ovens, 4,576 W for \leq 5 pan and 2,491 W for half-size ovens2,001 kWh for full-size ovens and 192.1244 kWh for half-size ovens.94

 $-\Delta kWh = (\Delta IdleEnergy + \Delta CookingEnergy) * Days/1,000$

Where:

 ΔkWh = $(\Delta IdleEnergy + \Delta CookingEnergy +$

 $\Delta CookingEnergy$ PreHeatEnergy) $\times x$ Days/1,000

Where:

Where:

ΔIdleEnergy = Difference in idle energy between baseline and efficient convection

oven

= (ElecIdleBase + x (Hours - FoodCooked/ElecPCBase)) - (ElecIdleESTAR + x (Hours - FoodCooked/ElecPCESTAR))

Formatted Table

⁹³ Measure cost from ENERGY STAR® https://www.energystar.gov/sites/default/files/2024-

^{03/}CFS%20Equipment%20Calculator.xlsx (See "Oven Calcs" tab rows 11 and 149) which cites reference as "EPA research on available models using AutoQuotes, 2013.

 $[\]frac{https://www.energystar.gov/sites/default/files/asset/document/ENERGY\%20STAR\%20Version\%203.0\%20Commercial\%20Ovns\%20Final\%20Specification.pdf." \\$

⁹⁴ Algorithms and assumptions derived from ENERGY STAR® Commercial Kitchen Equipment Savings Calculator. https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx (See "Results Detail" tab Cells F26:F43)ENERGY STAR®, "Results Detail" worksheet: Cells F26:F43, Commercial Kitchen Equipment Savings Calculator, (March 2024), Source of algorithms and assumptions for savings, https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx

ΔCookingEnergy = Difference in cooking energy between baseline and efficient

convection oven

= (FoodCooked + x EFOODElec/ElecEffBase) - $(FoodCooked \xrightarrow{} x EFOODElec/ElecEffESTAR)$

<u>ΔPreHeatEnergy</u> =Difference in daily preheat energy from baseline and efficient oven

Days = Annual days of operation

= Custom or, if unknown, Actual, or if unknown, use 365.25 days per

year

= Wh to kWh conversion factor 1.000

ElecIdle_{Base} = Idle energy rate of baseline electric convection oven

 $= \frac{2,0001,630}{2}$ W for ≥ 5 pan full-size ovens, 2,000 W for ≤ 5 pan and

1,0301,510-W for half-size ovens

= Idle energy rate of ENERGY STAR® electric convection oven ElecIdleestar

= Custom or, if unknown, Actual, or if unknown, use 1,600 W for full-

size ovens and 1,000 W for half-size ovens values in efficient

equipment table

Hours = Average daily hours of operation

= Custom or, if unknown, Actual, or if unknown, use 12 hours per day

FoodCooked = Food cooked per day

= Custom or, if unknown, Actual, or if unknown, use 100 pounds

ElecPC_{Base} = Production capacity of baseline electric convection oven, <u>lb/hr</u>

= 102 for ≥5 pan full-size ovens, 68 for <5 pan and 45 for half-size

ovens90 lb/hr for full-size ovens and 45 lb/hr for half-size ovens

= Production capacity of ENERGY STAR® electric convection oven

= Custom or, if unknown, Actual, or if unknown, use 98 for ≥5 pan full-size ovens, 60 for <5 pan and 42 for half-size ovens 90 lb/hr for

full-size ovens and 50 lb/hr for half-size ovens

EFOOD_{Elec} = ASTM energy to food for electric convection oven

=73.2 Wh/lb

ElecEff_{Base} = Cooking efficiency of baseline electric convection oven

> = $\underline{74\%}$ for ≥ 5 pan full-size ovens, 65% for ≤ 5 pan and 64% for halfsize ovens65% for full-size ovens and 68% for half-size ovens

= Cooking efficiency of ENERGY STAR® electric convection oven ElecEffestar

= Custom or, if unknown, Actual, or if unknown, use 71% for full-size

and half-size ovensvalues in efficient equipment table

ElecPCESTAR

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWh - x CF$$

Where:

 ΔkWh = Electric energy savings, calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

=0.000199894995

Other variables as defined above.

NATURAL GAS ENERGY SAVINGS

Custom calculation for a natural gas convection oven below, otherwise use deemed value of 129.4711 therms/yr.96

 $\Delta Therms = (\Delta IdleEnergy + \Delta CookingEnergy) * Days/100,000$

Where:

<u>∆Therms</u> $= (\Delta IdleEnergy + \Delta CookingEnergy + \Delta PreHeatEnergy) *$

Days/100,000

Where:

ΔIdleEnergy = (GasIdleBase + x (Hours - FoodCooked))

GasPCBase)) - (GasIdleESTAR - x (Hours -

FoodCooked/GasPCESTAR))

= (FoodCooked - x EFOODGas/GasEffBase) -ΔCookingEnergy

 $(FoodCooked \xrightarrow{*} EFOODGas/GasEffESTAR)$

ΔPreHeatEnergy =Difference in daily preheat energy from baseline and efficient

oven, if unknown, assume 1,190 BTU/hr

100,000 = Btu to therms conversion factor

= Idle energy rate of baseline gas convection oven $GasIdle_{Base} \\$

= 15,100<u>12,245</u> Btu/hr

= Idle energy rate of ENERGY STAR® gas convection oven

GasIdleestar = Custom or, if unknown, Actual, or if unknown, use 12,0009,500

= Production capacity of baseline gas convection oven $GasPC_{Base} \\$

= 83 - 95 lb/hr

= Production capacity of ENERGY STAR® gas convection oven GasPCestar

95 Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors" 2016 Ameren Missouri Coincident Peak Demand Factor for Commercial Electric Cooking. See

2016 Appendix E - End Use Shapes and Coincident Factors.pdf."

Formatted: Body Text **Formatted Table**

Formatted: Font: 9 pt

Formatted: Font: 9 pt

Algorithms and assumptions derived from ENERGY STAR® Commercial Kitchen Equipment Savings Calculate https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx

Appendix H - TRM - Vol. 2: C&I Measures

Formatted: Subscript

Formatted: Justified

= Custom or, if unknown, Actual, or if unknown, use 86-91 lb/hr

= ASTM energy to food for gas convection oven $EFOOD_{Gas} \\$

= 250 Btu/lb

= Cooking efficiency of baseline gas convection oven $GasEff_{Base} \\$

= 44<u>48</u>%

GasEffestar = Cooking efficiency of ENERGY STAR® gas convection oven

= Custom or, if unknown, Actual, or if unknown, use 494946%.

- Cooking efficiency of ENERGY STAR® gas convection oven

GasEffestar = Custom or, if unknown, use 46%49%.

Other variables as defined above.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

2.3.5 Griddle

DESCRIPTION

This measure applies to electric or natural gas fired ENERGY STAR® certified griddles installed in a commercial kitchen. ENERGY STAR® commercial griddles achieve approximately 10% higher efficiency than standard griddles with strategies such as highly conductive or reflective plate materials and improved thermostatic controls.

This measure was developed to be applicable to the following program type: TOS.

If applied to other program types, measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be a new ENERGY STAR® electric or natural gas fired griddle meeting idle energy rate limits as determined by fuel type.

ENERGY STAR® Requirements (Version 1.2, Effective May 8, 2009 for natural gas and January 1, 2011 for electric griddles) 97

,	,		
Electric Efficiency Requirements		Natural Gas Efficiency Requirements	
Idle Energy Rate Cooking Efficiency Consumption		Idle Energy Rate	Cooking Efficiency Consumption
≤ 320 W/ft² ≤ 1.00 kW	Reported	\leq 2,650 Btu/hr/ft ² N/A	Reported

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new electric or natural gas fired griddle that is not ENERGY STAR® certified.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years.98

DEEMED MEASURE COST

The incremental capital cost for this measure is:

Electric: \$850 for a single sided and \$0 for double sided an electric griddle and Gas: \$360-1,250 for a single sided gas griddle and \$0 for double sided.99

Formatted: Indent: First line: 0.5"

Formatted: Underline

Formatted: Body Text, Indent: Left: 0"

Formatted Table

97_https://www.energystar.gov/products/commercial_food_service_equipment/commercial_griddles/key_products_criteria_
98_ENERGY_STAR®, "Results Detail" worksheet (Equipment Life), Commercial Kitchen Equipment Savings Calculator, (Marc 2024), https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx_Lifetime-from_ENERGY_STAR® Commercial Kitchen Equipment Savings Calculator, which cites reference as "FSTC research on available models, 2009." https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx_(See "Griddle Calcs" tab rows 10 & 50)

http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equipment_calculator.xlsx

99 Measure costs from ENERGY STAR® Commercial Kitchen Equipment Savings Calculator, which cites reference as

"EPA research on available models using AutoQuotes, <u>July</u> 20126."

Formatted: Font: 9 pt
Formatted: Indent: Left: 0"

Page 65

LOADSHAPE

Cooking BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Custom calculation for an electric griddle below; otherwise use deemed value of 1,910.4 2,641kWh. 100

 $\Delta kWh = (\Delta IdleEnergy + \Delta CookingEnergy) * Days/1,000$

Where:

 ΔkWh = $(\Delta IdleEnergy + \Delta CookingEnergy +$

 $\Delta PreHeatEnergy$) x Days/1,000

Where:

 Δ IdleEnergy = Difference in idle energy between baseline and efficient griddle

 $= [(ElecIdle_{Base} *_{x} Width *_{x} Depth) *_{x} (Hours -$

 $FoodCooked/ElecPC_{Base})] - [(ElecIdle_{ESTAR} *_{x} Width *_{x} Depth)]$

 $\underline{*_{\underline{x}}}$ (Hours – FoodCooked/ElecPC_{ESTAR}))

 Δ CookingEnergy = Difference in cooking energy between baseline and efficient

riddle

= (FoodCooked *x EFOODElec / ElecEffBase) - (FoodCooked *x

EFOODElec / ElecEffestar)

<u>ΔPreHeatEnergy</u> = Difference in daily preheat energy baseline and efficient griddle

=Actual, if unknown, assume 2,000 W, 1 per day

Days = Annual days of operation

= Custom or, if unknown, Actual, or if unknown, use 365.25 days

per year

1,000 = Wh to kWh conversion factor

ElecIdle_{Base} = Idle energy rate of baseline electric griddle

 $= 400 \text{ W/ft}^2$

ElecRate_{ESTAR} = Idle energy rate of ENERGY STAR[®] electric griddle

= Custom or, if unknown, Actual, or if unknown, use 320 W/ft²

Width = Griddle width

= Custom or, if unknown, Actual, or if unknown, use 3 feet

Depth = Griddle depth

= Custom or, if unknown, Actual, or if unknown, use 2 feet

Formatted: Indent: Left: 0"

Formatted: Body Text, Indent: Left: 0", Right: 0", Space After: 0 pt

Formatted: No widow/orphan control

Formatted Table

Formatted: Font: Italic

http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_eode=COG. https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx (See "Griddle Calcs" tab rows 23 & 51).

rows 23 & 51).

100 ENERGY STAR®, "Results Detail" worksheet, Commercial Kitchen Equipment Savings Calculator, (March 2024), Source of
algorithms and assumptions for savings, https://www.energystar.gov/sites/default/files/2024-

algorithms and assumptions for savings, https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx.Algorithms and assumptions derived from ENERGY STAR®-Commercial Kitchen Equipment Savings Calculator.

Formatted: Footnotes

Appendix H - TRM - Vol. 2: C&I Measures

Hours = Average daily hours of operation

= Custom or, if unknown, Actual, or if unknown, use 12 hours per

day

FoodCooked = Food cooked per day

= Custom or, if unknown, Actual, or if unknown, use 100 pounds

ElecPC_{Base} = Production capacity of baseline electric griddle

= 35 lb/hr

ElecPC_{ESTAR} = Production capacity of ENERGY STAR[®] electric griddle

= Custom or, if unknown, Actual, or if unknown, use 40 lb/hr

 $EFOOD_{Elec}$ = ASTM energy to food

= 139 Wh/lb

Elec Eff_{Base} = Cooking efficiency of baseline electric griddle

=65%

ElecEffestar = Cooking efficiency of ENERGY STAR® electric griddle

= Custom or, if unknown, Actual, or if unknown, use 70%

Other variables as defined above.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh + \underline{\mathbf{x}} CF$

Where:

 Δ kWh = Electric energy savings, calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $=0.0001998949^{101}$

Other variables as defined above.

NATURAL GAS ENERGY SAVINGS

Custom calculation for a natural gas griddle below; otherwise use deemed value of 131.4 therms.¹⁰²

$$\Delta Therms = (\Delta IdleEnergy + \Delta CookingEnergy) * Days/100,000_{\bot}$$

Where:

 \triangle IdleEnergy = [GasIdle_{Base} $\underline{*}_{x}$ (Width $\underline{*}_{x}$ Depth) $\underline{*}_{x}$ (Hours –

 $FoodCooked/GasPC_{Base})$ | - [GasIdle_ESTAR $\stackrel{*}{=}$ x] (Width $\stackrel{*}{=}$ x] Depth) $\stackrel{*}{=}$

(Hours – FoodCooked/GasPC_{ESTAR}))

 Δ CookingEnergy = $(FoodCooked \stackrel{*}{=} \underbrace{x} EFOOD_{Gas}/GasEff_{Base}) - (FoodCooked \stackrel{*}{=} \underbrace{x} EFOOD_{Gas}/GasEff_{Base})$

EFOODGas/ GasEffestar)

Formatted: Font: Times New Roman, Not Italic

Formatted: Font: Italic
Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic

¹⁰¹ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors" 2016 Ameren Missouri Coincident Peak Demand Factor for Commercial Electric Cooking. See reference "Ameren Missouri

²⁰¹⁶ Appendix E - End Use Shapes and Coincident Factors.pdf."

¹⁰² Algorithms and assumptions derived from ENERGY STAR® Commercial Kitchen Equipment Savings Calculator.

ΔPreHeatEnergy =Difference in daily preheat energy baseline and efficient griddle

-100,000 = Btu to therms conversion factor GasIdle_{Base} = Idle energy rate of baseline gas griddle

 $= 3,500 \text{ Btu/hr/ft}^2$

GasIdle_{ESTAR} = Idle energy rate of ENERGY STAR® gas griddle

= Custom or, if unknown, Actual, or if unknown, use 2,650

Btu/hr/ft²

GasPC_{Base} = Production capacity of baseline gas griddle

= 25 lb/hr

GasPC_{ESTAR} = Production capacity of ENERGY STAR® gas griddle

= Custom or, if unknown, Actual, or if unknown, use 45 lb/hr

 $EFOOD_{Gas}$ = ASTM energy to food

= 475 Btu/lb

GasEff_{Base} = Cooking efficiency of baseline gas griddle

= 32%

= Cooking efficiency of ENERGY STAR® gas griddle

GasEff_{ESTAR} = Custom or, if unknown, Actual, or if unknown, use 38%

Other variables as defined above.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

2.3.6 Kitchen Demand Ventilation Controls

DESCRIPTION

Installation of commercial kitchen demand ventilation controls that vary the ventilation based on cooking load and/or time of day. This measure applies to the following program types: RF, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be a control system that varies the exhaust rate of kitchen ventilation (exhaust and/or makeup air fans) based on the energy and effluent output from the cooking appliances (i.e., the more heat and smoke/vapors generated, the more ventilation needed). This involves installing a new temperature sensor in the hood exhaust collar and/or an optic sensor on the end of the hood that sense cooking conditions which allows the system to automatically vary the rate of exhaust to what is needed by adjusting the fan speed accordingly.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is kitchen ventilation that has constant speed ventilation motor.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT 103

The expected measure life is assumed to be 15 years.

MEASURE COST 10310380

The incremental capital cost for this measure is:

Measure Category	Incremental Cost (\$/HP)
DVC Control Retrofit	\$1,991
DVC Control New	\$1,991

LOADSHAPE

Cooking BUS

Algorithm

Calculation of Savings

Annual energy use was based on monitoring results from five different types of sites, as summarized in PG&E Food Service Equipment work paper.

Electric Energy Savings 10480

Formatted: Not Highlight

Formatted: Left, Indent: Left: 0.01"

Field Code Changed

Formatted: Indent: Left: 0", First line: 0"

¹⁰³ Pacific Gas & Electric Company Work Paper PGECOFST116 Demand Ventilation Controls Revision # 4.

https://www.nvenergy.com/publish/content/dam/nvenergy/brochures_arch/about-nvenergy/rates-regulatory/recent-regulatory-filings/nve/irp/NVE-18-06003-IRP-VOL9.pdf (NVE-18-06003-IRP-VOL9.pdf See page 147,182,340 first paragraph).

Appendix H - TRM - Vol. 2: C&I Measures

Measure Name	Annual Energy Savings per Unit (kWh/HP)
DVC Control Retrofit	4,197
DVC Control New	4,197

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWhkWhsavings *x CF$

Where:

ΔkWh = Electric energy savings, calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001998949^{105}$

NATURAL GAS SAVINGS

 $\Delta Therms = CFM + x HP + x Annual Heating Load / (Eff(heat) + x 100,000)$

Where:

CFM = the average airflow reduction with ventilation controls per hood

=430 cfm/HP

HP = actual if known, otherwise assume 7.75 HP^{106}

Annual Heating = Annual heating energy required to heat fan exhaust make-up air

Load dependent on location. Actual, else value in table below.

<u>Zone</u>	Annual Heating Load (BTU/cfm)
Missouri Average ¹⁰⁷	<u>137,000</u>

Eff(heat) = Heating Efficiency

= actual if known, otherwise assume 80%108

100,000 = conversion from Btu to Therm

105 Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"See reference "Ameren Missouri 2016 Appendix E - End Use Shapes and Coincident Factors.pdf." 106 "Illinois Statewide Technical Reference Manual for Energy Efficiency Version 6.0, Volume 2: Commercial and Industrial Measures," Section 4.2.16, Kitchen Demand Ventilation Controls; L Statewide TRM IL Statewide TRM Version 6.0 - Illinois Energy Efficiency Stakeholder Advisory Group (ilsag.info)https://s3.amazonaws.com/ilsag/IL TRM Effective 010118 v6.0 Vol. 2 C and I 020817 Final.pdf (107 Opinion Dynamics Used https://s3.amazonaws.com/ilsag/2020 IL TRM Version 8.0 dated October 17-2019 Final Volumes 1.4 Compiled.pdfhttps://s3.amazonaws.com/ilsag/2020 IL TRM Version 8.0 dated October-17-2019 Final Volumes 1.4 Compiled.pdfhttps://s3.amazonaws.com/ilsag/2020 IL TRM Version 8.0 dated October-17-2019 Final Volumes 1.4 Compiled "AMO TRM Updates— Heating Load Estimate for Kitchen DCV 2020-06-12.xlsx", pdf pdf-fto compare savings values by weather zone from the IL TRM to zone-specific HDD values, and determined a linear relationship between Heating Load and HDD, then applied that linear relationship to HDD values (using base 60) for MO weather stations to estimate Heating Load values for zones in Ameren Missouri territory

weather stations to estimate Heating Load values for zones in Ameren Missouri territory

108 "Illinois Statewide Technical Reference Manual for Energy Efficiency Version 6.0, Volume 2: Commercial and Industrial
Measures", Section 4.2.16, Kitchen Demand Ventilation Controls; IL Statewide TRM IL Statewide TRM Version 6.0 - Illinois
Energy Efficiency Stakeholder Advisory GroupIllinois Energy Efficiency Stakeholder Advisory Group
(ilsag.info)https://s3.amazonaws.com/ilsag/IL-TRM-Effective-010118-v6.0-Vol-2-C-and-1-020817-Final-pdf

Formatted: Keep with next, Keep lines together

Formatted: Keep with next, Keep lines together

Formatted Table

Formatted: Keep with next, Keep lines together

Formatted Table

Formatted: Font: 9 pt

Zone	Annual Heating Load (BTU/cfm)
Missouri Average ¹⁰⁹	137,000

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

Measure Code:

Lised https://s3.amazonaws.com/ilsag/2020_IL_TRM_Version_8.0_dated_October_17-2019_Final_Volumes_1_4_Compiled.pdf to compare savings values by weather zone from the IL_TRM to zone-specific HDD values, and determined a linear relationship between Heating Load and HDD, then applied that linear relationship to HDD values (using base 60) for MO weather stations to estimate Heating Load values for zones in Ameren Missouri territory

Formatted: Footnotes, No widow/orphan control

2.3.7 Hot Food Holding Cabinet

DESCRIPTION

This measure applies to electric ENERGY STAR® certified hot food holding cabinets (HFHCs) installed in a commercial kitchen. ENERGY STAR® HFHCs achieve approximately 70% higher efficiency than standard models by incorporating better insulation which reduces heat loss, offers better temperature uniformity within the cabinet from top to bottom, and keeps the external cabinet cooler. In addition, many certified HFHCs may include additional energy saving devices such as magnetic door gaskets, auto-door closures, or dutch doors.

This measure was developed to be applicable to the following program type: TOS.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be a new ENERGY STAR® electric HFHC meeting idle energy rate limits as determined by product interior volume.

ENERGY STAR® Requirements (Version 2.0, Effective October 1, 2011) 110

Interior Volume (ft ³)	Idle Energy Consumption Rate (W)
0 < V < 13	≤ 21.5 V
13 ≤ V < 28	≤ 2.0 V + 254.0
28 ≤ V	≤ 3.8 V + 203.5

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new electric HFHC that is not ENERGY STAR® certified.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years.111

DEEMED MEASURE COST

Actual incremental costs should be used if available. If actual costs are unknown, assume \$1,7831,000.¹¹²

LOADSHAPE

Cooking BUS

110 ENERGY STAR®, .

https://www.energystar.gov/products/commercial food service equipment/commercial hot food holding cabinets/key productivia

<u>criteria</u>

III ENERGY STAR®, "Results Detail" worksheet (Equipment Life), Commercial Kitchen Equipment Savings Calculator, (March 2024), https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx Lifetime from ENERGY STAR® Commercial Kitchen Equipment Calculator, which cites reference as "FSTC research on available models, 2009."

¹¹² ENERGY STAR® https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx. Ameren Missouri Technical Resource Manual — Effective January 1, 2018.

Formatted Table

Formatted: Hyperlink, Font: 9 pt, No underline, Font color: Black

Field Code Changed

Formatted: Footnotes, Line spacing: single

Formatted: Underline

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS¹¹³

 $\Delta kWh = (IdleRate_{Base} - IdleRate_{EE}) * Hours * Days/1,000$

Where:

IdleRate_{Base} = Idle energy rate (W) of baseline HFHC

 $= 40 - 30 *_{X} V$

V = Interior volume (ft^3) of new HFHC

= Custom

IdleRate_{ESTAR} = Idle energy rate (W) of ENERGY STAR[®] HFHC

= See table below for idle energy rates based on interior volume

Interior Volume (ft³)	Idle Energy Consumption Rate (Watt)
<u>0 < V < 13</u>	21.5 *x V
$\underline{13 \le V \le 28}$	$(2.0 *_{X} V) + 254.0$
28 ≤ V	(3.8 *x V) + 203.5

Hours = Average daily hours of operation

= Custom or, if unknown, Actual, or if unknown, use 15 hours per

dav

Days = Annual days of operation

= Custom or, if unknown, Actual, or if unknown, use 365.25 days

per year

1,000 = Wh to kWh conversion factor

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta k = \Delta kWh + x CF$$

Where:

 Δ kWh = Electric energy savings, calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $=0.0001998949^{114}$

113_ENERGY STAR®, "Results Detail" worksheet, Commercial Kitchen Equipment Savings Calculator, (March 2024), Source of algorithms and assumptions for savings, https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsxAlgorithms and assumptions derived from Commercial Kitchen Equipment Calculator.

Formatted Table

Formatted: Footnotes Char, Font: 12 pt

Formatted: Footnotes Char

Formatted: Footnotes Char, Font: 12 pt

Formatted: Footnotes Char, Font: 12 pt, Not

Superscript/ Subscript

Formatted: Footnotes Char, Font: 12 pt

Formatted: Footnotes Char

Formatted: Footnotes Char, Font: 12 pt

Formatted: Footnotes Char, Font: 12 pt, Not Italic

Formatted: Footnotes Char, Font: 12 pt

Formatted: Footnotes Char

Formatted: Footnotes Char, Font: 12 pt

Formatted: Footnotes Char

Formatted: Footnotes Char, Font: 12 pt

Formatted: Footnotes Char, Font: 12 pt

¹¹⁴ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors" 2016 Ameren Missouri Coincident Peak Demand Factor for Commercial Electric Cooking. See reference "Ameren Missouri 2016 Appendix E - End Use Shapes and Coincident Factors.pdf."

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

2.3.8 Pre-Rinse Spray Valve

DESCRIPTION

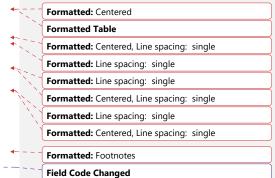
Pre-rinse valves use a spray of water to remove food waste from dishes prior to cleaning in a dishwasher. More efficient spray valves use less water, thereby reducing water consumption, water heating cost, and waste water (sewer) charges. Pre-rinse spray valves include a nozzle, squeeze lever, and dish guard bumper. The primary impacts of this measure are water savings. Reduced hot water consumption saves either natural gas or electricity, depending on the type of energy the hot water heater uses.

This measure was developed to be applicable to the following program types: TOS, RF, and DI. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the new or replacement pre-rinse spray nozzle must use less than 1.6 gallons per minute. the maximum flow for the product class, as listed by the DOE Energy Conservation Efficiency Standards, effective January 2019.

	Maximum Flow Rate
Class 1, \leq 5.0 ozf	<u><1.00 gpm</u>
<u>Class 2, >5.0 ozf to ≤8.0 ozf</u>	<1.20 gpm
<u>Class 3, >8.0 ozf</u>	<1.28 gpm


DEFINITION OF BASELINE EQUIPMENT

The baseline equipment will vary based on the delivery method with the maximum flow rate from the Code of Federal RegulationsDOE Energy ConservationEfficiency-Conservation Standards¹¹⁵ and is defined below: The current eodestandard, effective January 2019 is the baseline for TOS, the previous eodestandard, effective January 2006, the baseline for retrofits and direct install.

Product Class (spray force, ozf)	Time of Sale <u>Flow</u> <u>Rate</u>	Retrofit, Direct Install <u>, Flow Rate</u>
Class $1, \le 5.0 \text{ ozf}$	1.6.00 gpm gallons per minute	<u>1.6 gpm</u>
<u>Class 2, >5.0 ozf to ≤8.0 ozf</u>	<u>1.20 gpm</u>	<u>1.6 gpm</u>
<u>Class 3, >8.0 ozf</u>	<u>1.28 gpm</u>	<u>1.6 gpm</u>

¹¹⁵ US Energy Policy and Conservation Act, "Commercial Prerinse spray Valves, (January 2019), https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431/subpart-0#431.266DOE Energy Conservation Standards|Part-431| https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431/subpart-0#431.266

Formatted Table

The baseline equipment is assumed to be 1.6 gallons per minute. The Energy Policy Act of 2005 sets the maximum flow rate for pre-rinse spray valves at 1.6 gallons per minute at 60 pounds per square inch of water pressure when tested in accordance with ASTM F2324-03. This performance standard went into effect January 1, 2006.

Actual existing flow rates should be used when possible. If unknown, baseline can be assumed to be 2.23 gallons per minute.116 If existing pre-rinse spray valve flow rate is unknown, then existing pre rinse spray valve must have been installed prior to 2006. The Energy Policy Act of 2005 sets the maximum flow rate for pre-rinse spray valves at 1.6 gallons per minute at 60 pounds per square inch of water pressure when tested in accordance with ASTM F2324 03. This performance standard went into effect January 1, 2006. However, field data shows that not all nozzles in use have been replaced with the newer flow rate nozzle. Products predating this standard can use up to five gallons per minute.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 5 years.117

Formatted: Indent: Left: 0.1", Line spacing: single, No widow/orphan control

Formatted: Indent: Left: 0.1", Right: 0", Line spacing: single, No widow/orphan control

Formatted: Hyperlink

¹¹⁶ Verification measurements taken at 195 installations showed average pre flowrates of 2.23 gallons per minute. IMPACT ANID

 $[\]label{eq:process} PROCESS EVALUATION FINAL REPORT for CALIFORNIA URBAN WATER CONSERVATION COUNCIL 2004-5 PRERINSE SPRAY VALVE INSTALLATION PROGRAM (PHASE 2) (PG&E Program # 1198-04; SoCalGas Program 1200-04) ("CUWCC Report," Feb 2007).$

¹¹⁷ Consistent with Ameren Missouri MEEIA 2016-18 and KCPL TRM assumptions. Also consistent with DOE Final Determination Technical Support Document: Commercial Pre-Rinse Spray Valves, https://www.regulations.gov/document/EERE-2019-BT-STD-0034-0020.

DEEMED MEASURE COST

When available, the actual cost of the measure should be used. If unknown, a default value of \$92.90¹¹⁸ may be assumed.

LOADSHAPE

Cooking BUS

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS (NOTE WATER SAVINGS MUST FIRST BE CALCULATED)

```
\Delta kWH = \Delta Gallons *x 8.33 *x 1 *x (T_{out} Tout - T_{in} Tin)
*x (1/EFF<sub>Elec</sub> EFFElec) / 3,413
```

Where:

ΔGallons = amount of water saved as calculated below in Water Impact Calculation

8.33 = specific mass in pounds of one gallon of water (lbm/gal)

1 = Specific heat of water: 1 Btu/lbm/°F T_{out} = Water Heater Outlet Water Temperature

= Custom, otherwise assume $Tin + 70^{\circ}F$ temperature rise from Tin^{119}

T_{in} = Inlet Water Temperature

= Custom, otherwise assume $58.47.9F_{59.3F^{120}}$

 EFF_{Elec} = Efficiency of electric water heater supplying hot water to pre-rinse spray

valve

=CustomActual, otherwise assume 97%121

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWh - x CF$$

Where:

 Δ kWh = Electric energy savings, calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

Formatted: Indent: Left: 0.1"

Formatted: Indent: Left: 0.1", Space After: 0 pt, Line spacing: single

¹¹⁸Average of costs recognized by Ameren Missouri (\$85.8) and KCPL (\$100).

 ¹¹⁹ If unknown, assume a 70 degree temperature rise from Tin per Food Service Technology Center calculator assumptions to account for variations in mixing and water heater efficiencies.
 120 National Weather Service. Average soil temperature at 40" depth during 2015 - 2023 data of six stations in Ameren

¹²⁰ National Weather Service. Average soil temperature at 40" depth during 2015 - 2023 data of six stations in Ameren Missouri service territory. https://www.weather.gov/ncrfc/LMI_SoilTemperatureDepthMaps. Using 40" deep soil temp as a proxy at Powell Gardens SCAN site. Average by month of available data from 3/28/02_10/11/14: 12 month average is 57.898. http://www.wec.nres.usda.gov/nwec/site?sitenum=2061.

¹²¹ This efficiency value is based on IECC 2012/2015 performance requirement for electric resistant water heaters rounded without the slight adjustment allowing for reduction based on size of storage tank.

 $= 0.0001998949^{122}$

NATURAL GAS ENERGY SAVINGS

 Δ Therms = Δ Gallons $\underline{*_x}$ 8.33 $\underline{*_x}$ 1 $\underline{*_x}$ (T_{out} - T_{in}) $\underline{*_x}$ (1/EFF_{Gas}) / 100,000

Formatted: Font: Times New Roman, Not Italic

Formatted: Indent: Left: -0.01", Right: 0", Line spacing:

Formatted: Indent: Left: 0", First line: 0"

Where:

EFFGas

= Efficiency of gas water heater supplying hot water to pre-rinse

spray valve

= CustomActual, otherwise assume 80%123

Other variables as described above.

WATER IMPACT CALCULATION

 $\Delta Gallons = (FLO_{base} \frac{FLO_{base} - FLO_{eff} FLOeff}{TLOeff}) *x 60 *x HOURS_{day} \frac{1}{TLOeff} + x DAYS_{year} \frac{1}{TLOeff}$

Where:

 FLO_{base}

= Base case flow in gallons per minute (gal/min). Use actual when appropriate if available, otherwise use values in table below. ¹²⁴w

 $\bar{\tau}$

<u>Product Class</u> (spray force, ozf)	Time of Sale Flow Rate(gpm)	Retrofit, Direct Install, Flow Rate
Class 1, ≤ 5.0 ozf	1.00 gpm	<u>1.6 gpm</u>
<u>Class 2, >5.0 ozf to ≤8.0 ozf</u>	1.20 gpm	<u>1.6 gpm</u>
<u>Class 3, >8.0 ozf</u>	<u>1.28 gpm</u>	<u>1.6 gpm</u>

FLOeff

= Efficient case flow in gallons per minute (gal/min). Use actual flow rate if known, otherwise use values in table below.

Product Class (spray force, ozf)	
Class $1, \le 5.0 \text{ ozf}$	1.00 gpm

Formatted Table

single

¹²² Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors" 2016 Ameren Missouri Coincident Peak Demand Factor for Commercial Electric Cooking. See reference "Ameren Missouri

2016 Appendix E - End Use Shapes and Coincident Factors.pdf."

123 IECC 2012/2015, Table C404.2, Minimum Performance of Water-Heating Equipment.

124 EPA, https://www.epa.gov/watersense/pre-rinse-spray-valves

Formatted: Font: 9 pt
Formatted: Font: 9 pt
Formatted: Hyperlink
Formatted: Font: 9 pt
Formatted: Indent: Left: 0"

Appendix H - TRM - Vol. 2: C&I Measures

<u>Class 2, >5.0 ozf to ≤8.0 ozf</u>	<u>1.20 gpm</u>
<u>Class 3, >8.0 ozf</u>	<u>1.28 gpm</u>

60

- = Minutes per hour
- HOURS_{day} = Hours per day that the pre-rinse spray valve is used at the site, custom, otherwise use values in the table below.\(^{125}

Application	HOURS _{day}
Small, quick- service restaurants	<u>1</u>
Medium-sized casual dining restaurants	1.5
Large institutional establishments with cafeteria	3

$DAYS_{year} \\$

= Days per year pre-rinse spray valve is used at the site, custom, otherwise 312 days/yr based on assumed 6 days/wk x 52 wk/yr = 312 day/yr.

Parameter	Time of Sale	Retrofit, Direct Install
FLO _{base}	1.6 gal/min ¹²⁶	2.23 gal/min ¹²⁷
FLO _{eff}	1.06 gal/min ¹²⁸	1.06 gal/min

Application	HOURS _{day}
Small, quick service restaurants	4
Medium sized casual dining restaurants	1.5
Large institutional establishments with eafeteria	3

MEASURE CODE:

125 Hours primarily based on PG& E savings estimates, algorithms, sources (2005), Food Service Pre-Rinse Spray Valves.

Formatted: Footnotes, Line spacing: single

Formatted: Footnotes, Space After: 0 pt

Formatted: Footnotes

Formatted Table

on the FSTC website is 1.06.

¹²⁶ The baseline equipment is assumed to be 1.6 gallons per minute. The Energy Policy Act (EPAct) of 2005 sets the maximum flow rate for pre-rinse spray valves at 1.6 gallons per minute at 60 pounds per square inch of water pressure when tested in accordance with ASTM F2324-03. This performance standard went into effect January 1, 2006.

www.l.eere.energy.gov/femp/pdfs/spee_prerinsesprayvavles.pdf.

123 Verification measurements taken at 195 installations showed average pre flowrates of 2.23 gallons per minute. IMPACT AND PROCESS EVALUATION FINAL REPORT for CALIFORNIA URBAN WATER CONSERVATION COUNCIL 2004-5

PRERINSE SPRAY VALVE INSTALLATION PROGRAM (PHASE 2) (PG&E Program # 1198-04; SoCalGas Program 1200-

^{04) (&}quot;CUWCC Report," Feb 2007).

128-1.6 gallons per minute used to be the high efficiency flow, but more efficient spray valves are available ranging down to 0.64 gallons per minute per Federal Energy Management Program which references the Food Services Technology Center web site with the added note that even more efficient models may be available since publishing the data. The average of the nozzles listed

2.4 Hot Water

2.4.1 Low Flow Faucet Aerator

DESCRIPTION

This measure relates to the direct installation of a low flow faucet aerator<u>or low flow faucet</u> in a commercial building. Expected applications include small business, office, restaurant, or motel. For multifamily or senior housing, the residential low flow faucet aerator should be used.

This measure was developed to be applicable to the following program type: DI, RF, TOS-

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

Efficient Low flow faucets or aerators for bathrooms sinks meeting the EPA WaterSense flow rate of \leq 1.5 gpm. ¹²⁹nee

Efficient flow faucets Faucets or aerators for kitchen sinks exceeding the DOE Federal Regulations values in the Code of Federal Regulations listed for maximum allowable water flow at of \leq 2.2 gpm. ¹³⁰ the DOE F

Faucets or aerators for public lavatories exceeding the IPC Plumbing Code of \$\leq 2.20.5 \text{ gpm}\$. In Efficient water flow bathroom equipmentlavatory faucets labeled with WaterSensemeeting the EPA WaterSense requirements are eligible for private use, such as private restrooms in hospitals and hotels. Efficient lavatory faucets exceeding the flow requirements of the local plumbing code installed in public areas are eligible. Lavatory faucets To qualify for this measure the installed equipment must be an energy efficient faucet aerator or faucet, exceeding the DOE Energy Standards for a private lavatory, at 1.5 gpm or less, and a kitchen faucet at 2.2 gpm or less. For public lavatory, exceedingmust exceed the applicable code version of the IPC Internation Plumbing Code (IPC)., of 0.5 gpm. for bathrooms rated at 1.5 gallons per minute (GPM) or less or for kitchens rated at 2.2 GPM or less. Where a local building code is not stated, the 2015 IPC maximum flow rate of 0.5 gpm is the baseline. Savings are calculated on an average savings per faucet fixture basis.

Water Sense Faucet Requirements (Effective October 2007)¹³²

Product Class (spray force, ozf)Fixture	Maximum Flow Ratee, gpm
Class 1, ≤ 5.0 ozfLavatory, privateBathroom faucet,	≤1.5 <1.002.21.5 gpm
private	S1.5 - S1.002.21.5 gpiii

Formatted: Indent: Left: 0", Right: 0", Space After: 0

Formatted: Centered, Line spacing: single

Formatted Table

Formatted: Font: 11 pt

pt, Line spacing: single

129 US EPA, "High Efficiency Lavatory Faucet Specification", (October 2007), US EPA|Bathroom faucet|https://www.epa.gov/watersense/bathroom-faucetshttps://www.epa.gov/watersense/bathroom-faucets|130 CFR:: 10 Part 430, Kitchen faucet maximum flow rate, "Energy Conservation Program For Consumer Products", https://www.eef.gov/current/title-10/chapter-II/subchapter-D/part-430|DOE|Kitchen faucet|https://www.epa.gov/system/files/documents/2023-08/ws-homes-TRM-5-KitchenFaucetsTechSheet_0.pdf | 131 ICC Plumbing Code, Maximum flow rate table, "Chapter 6 — Water Supply and Distribution", 2021 ICC|Plumbinghttps://codes.iccsafe.org/content/IPC2021P3/chapter-6-water-supply-and-distribution (see table 604.4) | 132 Bathroom Faucets | US EPAUS EPA|Bathroom Faucets | https://www.epa.gov/watersense/bathroom-faucets | 133 Income Faucets | US EPAUS EPA|Bathroom Faucets | https://www.epa.gov/watersense/bathroom-faucets | 134 Income Faucets | US EPAUS EPA|Bathroom Faucets | https://www.epa.gov/watersense/bathroom-faucets | 135 Income Faucets | US EPAUS EPA|Bathroom Faucets | https://www.epa.gov/watersense/bathroom-faucets | 135 Income Faucets | US EPAUS EPA|Bathroom Faucets | https://www.epa.gov/watersense/bathroom-faucets | 135 Income Faucets | US EPAUS EPA|Bathroom Faucets | https://www.epa.gov/watersense/bathroom-faucets | 135 Income Faucets | US EPAUS EPA|Bathroom Faucets | https://www.epa.gov/watersense/bathroom-faucets | 135 Income Faucets | US EPAUS EPA|Bathroom Faucets | https://www.epa.gov/watersense/bathroom-faucets | 135 Income Faucets | 135 Income

Formatted: Font color: Accent 1

Field Code Changed

Formatted: Font: 9 pt, Font color: Accent 1

Formatted: Font: 9 pt

Formatted: Font: 9 pt, Font color: Accent 1

Field Code Changed

Formatted: Font: 9 pt

Appendix H - TRM - Vol. 2: C&I Measures

Class 2, >5.0 ozf to ≤8.0 ozfLavatory, publicKitchen faucetsink	< 1.200.5 2.2 gpm
Class 3, >8.0 ozfKitchen,Lavatory faucet, public	< <u>1.282.2</u> 0.5 gpmm

DEFINITION OF BASELINE EQUIPMENT

The baseline condition <u>for a private lavatory faucet (non-metering)</u> and <u>kitchen faucet is assumed to be a standard bathroom faucet aeratorflow faucet rated at 2.2 gpm5 GPM, which has been the DOE Energy Standard since 1998¹³³, or more, or a standard kitchen faucet aerator rated at 2.75 GPM or more. flow rate faucet or aerator is the maximum flow requirement by the DOE Federal Regulations¹³⁴inimum</u>

<u>Fixture</u>	Maximum-Flow Rate ± gpm TOS
Lavatory - faucet or aeratory. private	<u>2.2</u>
Kitchen faucet or aerator	<u>2.2</u>
Lavatory faucet, public	<u><0.5</u>
Kitchen faucet or aerator,	< <u>2.2 gpm2.2</u>

Product Class (spray force, ozf)	Maximum Flow Rate
$\underline{\text{Class } 1, \leq 5.0 \text{ ozf}}$	<u><1.00 gpm</u>
<u>Class 2, >5.0 ozf to ≤8.0 ozf</u>	<u><1.20 gpm</u>
<u>Class 3, >8.0 ozf</u>	<u><1.28 gpm</u>

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

Formatted: Centered, Line spacing: single Formatted: Centered, Line spacing: single

Formatted: Centered
Formatted: Font: 11 pt
Formatted: Font: 11 pt
Formatted: Centered
Formatted: Centered

¹³³-WaterSense at Work Section 3.3: Faucets (epa.gov)

 $[\]frac{134}{430} \underline{\text{IBID 130130126DOE}} \underline{\text{Energy Standard https://www.eefr.gov/current/title-10/chapter-II/subchapter-D/part-}} \\ \frac{430\#430.32}{430\#430.32} \underline{\text{Constant of the properties of th$

Appendix H - TRM - Vol. 2: C&I Measures

The expected measure life is assumed to be 10 years. 1359 years. 136

Formatted: Font: Times New Roman

DEEMED MEASURE COST

The incremental cost for this measure is $\$8.009.40^{137}$ for faucet low flow aerator and $\$44.40^{138}$ for kitchen swivel low flow or program actual cost.

LOADSHAPE

Water Heating BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Note these savings Savings are per faucet retrofitted. 139

$$\Delta kWh = \%ElectricDHW -x ((GPM_{base} GPMbase - GPM_{low} GPMlow) / GPM_{base} GPMbase) -x Usage +x EPG_{electric} EPGelectric -x ISR$$

Where:

%ElectricDHW = <u>Actual</u>

=If unknown, reference the water heat proportion by fuel type in the table below¹⁴⁰ proportion of water heating supplied by electric resistance heating (see values in table below)

DHW fuel	%Electric_DHW
Electric	100 37.5%
Fossil Fuel	<u>062.0%</u>

Formatted: CambriaTextFormula, Indent: Left: 0", Right: 0", Space After: 0 pt, Line spacing: single

Formatted Table

Formatted Table

June 2007. "http://neep.org/uploads/EMV%20Forum/EMV%20Studies/measure_life_GDS%5B1%5D.pdf."

TRC program tracking data, Ameren MO C&I program participants (2014 to 2024), self-reported water heating fuel source, Local file: "2.4.1. C&I water heat source 2014 to 2024"

Formatted: Footnotes Char Formatted: Footnotes Char

Formatted: Footnotes Char

Formatted: Footnotes Char

Field Code Changed Formatted: Footnotes

Formatted: Footnotes

Formatted: Font: Not Italic

¹³⁵ Navigant Consulting, "-ComEd Effective Useful Life Research Report", page 20 (May 14, 2018), https://www.icc.illinois.gov/docket/P2017-0312/documents/287811/files/501915.pdfAs recommend Effective Useful Life Research Report', May 2018 (see page 21):

136 Table C-6, Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates

¹³⁷ Direct-install price per faucet assumes cost of aerator and install time. (2011, Market research average of \$3 and as install time of \$5 (20min @ \$15/hr). Ameren MFLI direct install costs, Program years 2022 to 2023. Local file: "2.4.1 Low flo faucet aerator costs MFLI 2022 to 2023.xlsx"

¹³⁹ This algorithm calculates the amount of energy saved per aerator by determining the fraction of water consumption savings for the upgraded fixture. Due to the distribution of water consumption by fixture type, as well as the different number of fixture in a building, several variables must be incorporated.

Appendix H - TRM - Vol. 2: C&I Measures

	<u>Unknown-Other</u> 430.5% ¹⁴¹	
GPM_{base}	= Average flow rate, in gallons per minute, of the baseline faucet	Formatted: Centered
	"as used" Flow rate in gallons per minute, actual, or sourced from	
	baseline equipment table.	
	= 1.2 ¹⁴² or custom based on metering studies ¹⁴³	
$\mathrm{GPM}_{\mathrm{low}}$	= Average flow rate, in gallons per minute, of the low-flow faucet	
	erator "as-used" Flow rate in gallons per minute, actual or certified	
	quipment rate.	
	= 0.94 ¹⁴⁴ or custom based on metering studies ¹⁴⁵	Formatted: Indent: Left: -0.09", First line: 0.09", Right:
Usage	= Estimated usage of mixed water (mixture of hot water from water	0.04"
	heater line and cold-water line) per faucet (gallons per year)	
	= If data is available to provide a reasonable custom estimate it	
	should be used, if not use the defaults in the table below (or	
	substitute custom information into the calculation):	

¹⁴¹ Default assumption for unknown fuel is based on EIA Commercial Building Energy Consumption Survey (CBECS) 2012 for Midwest North Central Region (see 'HC8.9 Water Heating in Midwest Region.xls'). If utilities have specific evaluation results providing a more appropriate assumption for buildings in a particular market or geographical area, then they should be used.

¹⁶¹ Representative baseline flow rate for kitchen and bathroom faucet aerators from sources 1, 2, 3, and 4. This accounts for all throttling and differences from rated flow rates. The most comprehensive available studies did not disaggregate kitchen use from bathroom use, but instead looked at total flow and length of use for all faucets. This makes it difficult to reliably separate kitchen water use from bathroom water use.

¹⁴²Representative baseline flow rate for kitchen and bathroom faucet aerators from sources 1, 2, 3, and 4. This accounts for all throttling and differences from rated flow rates. The most comprehensive available studies did not disaggregate kitchen use from bathroom use, but instead looked at total flow and length of use for all faucets. This makes it difficult to reliably separate kitchen water use from bathroom water use.

¹⁴³ Measurement should be based on actual average flow consumed over a period of time rather than a onetime spot measurement for maximum flow. Studies have shown maximum flow rates do not correspond well to average flow rate due to occupant behavior which does not always use maximum flow.

¹⁴⁴Average retrofit flow rate for kitchen and bathroom faucet aerators from sources 1, 2, 3, and 4. This accounts for all throttling and differences from rated flow rates. Assumes all kitchen aerators at 2.2 gpm or less and all bathroom aerators at 1.5 gpm or less. The most comprehensive available studies did not disaggregate kitchen use from bathroom use, but instead looked at total flow and length of use for all faucets. This makes it difficult to reliably separate kitchen water use from bathroom water use. It is possible that programs installing low-flow aerators lower than the 2.2 gpm for kitchens and 1.5 gpm for bathrooms will see a lower overall average retrofit flow rate.

¹⁴⁵ Measurement should be based on actual average flow consumed over a period of time rather than a onetime spot measurement for maximum flow. Studies have shown maximum flow rates do not correspond well to average flow rate due to occupant behavior which does not always use maximum flow.

1.0

WaterTemp

Appendix H - TRM - Vol. 2: C&I Measures

	Gallons HW		Estimated				Annual gatlons -	:	[I	Formatted: Font: 9 pt
Building	per unit	Unit		Multiplier 148	Unit	<u>Days per</u>	mixed water		` {[Formatted: Font: 9 pt
<u>Type</u>	per day 146		Eaucets 147	<u>(C)</u>		<u>year (D)</u>	<u>per faucet</u> - <u>(A*xB*x€*x</u>		[1	Formatted: Font: 9 pt
	<u>(A)</u>		<u>(B)</u>				<u>D)</u>		` (ī	Formatted: Font: 9 pt
Small Office	1_	_ person	<u>100%</u>	<u>10</u>	employees - per-faucet -	<u>250</u>	<u>2,500</u>		`(Formatted: Indent: Left: 0"
Large Office	1	person	100%	45	employees	250	11,250		` [ī	Formatted: Font: 9 pt
Fast Food	0.5	1/1	500/				0.501		` -[I	Formatted: Font: 9 pt
Restaurant	<u>θ.7</u>	- <u>meal/day</u> -	50%	<u>/5</u>	faucet	<u>365</u>	19,581		` {I	Formatted: Font: 9 pt
Sit-Down Restaurant	<u>2.4</u>	- <u>meal/day</u> -	<u>50%</u>	<u>36</u>	meals per _ faucet	<u>365</u>	<u>15,768</u>		[Formatted: Font: 9 pt
<u>Retail</u>	<u>2</u>	employee	<u>100%</u>	<u>5</u>	employees per faucet	<u>365</u>	<u>3,650</u>		{1	Formatted: Font: 9 pt
Grocery	2	employee	<u>100%</u>	<u>5</u>	employees per faucet	<u>365</u>	<u>3,650</u>		- {1	Formatted: Font: 9 pt
Warehouse	<u>2</u>	employee	<u>100%</u>	<u>5</u>	employees per faucet	<u>250</u>	<u>2,500</u>		- {I	Formatted: Font: 9 pt
Elementary School	<u>θ.6</u>	person	<u>50%</u>	<u>50</u>	students per faucet	<u>200</u>	<u>3,000</u>		(1	Formatted: Font: 9 pt
Jr-High	<u>1.8</u>	- person	- 5 0 %	50	students per	200	9,000		[1	Formatted: Font: 9 pt
High School				_					_	
<u>Health</u>	<u>90</u>	Unit Faucets 47 (C) Unit Unit Days per wear (D)	<u> </u>	=======================================	_ >	Formatted: Font: 9 pt				
Motel	20	room	25%	1		<u>365</u>	1,825		\succeq	Formatted: Font: 9 pt
						265	1.050		ال آ	Formatted: Font: 9 pt
Hotel	<u>14</u>	room	<u>25%</u>		<u>room</u>	365	<u>1,278</u>		- [Formatted: Font: 9 pt
Other	1	employee	<u>100%</u>	<u>20</u>		<u>250</u>	<u>5,000</u>		[1	Formatted: Font: 9 pt
EPGelectric	= E1	nergy per g	allon of mi	xed water	used by fau	cet (electr	ic water		` { [Formatted: Font: 10 pt
		,						l I		
8.33						= 0.0800 k	wh/gal			
0.33	- s _I	becilic weig	gin or water	i (ibs/gallo	11)					

= Heat Capacity of water (btu/lb-F)

= Assumed temperature of mixed water

Formatted: Font color: Text 1

Formatted: Font: 9 pt, Underline, Font color: Text 1

Formatted: Underline

Formatted: Font: 9 pt, Font color: Text 1

Formatted: Font color: Text 1

¹⁴⁶ ASHRAE, "Table 2-45 Chapter 49, Chapter 51: Service Water Heating", Table 6: Hot Water Demands and Use for Various Types of Buildings, 20072023 ASHRAE Handbook, HVACHVAC Applications Handbook (2023).

¹⁴⁷ Pacific Institute, Eestimated based on data provided in Appendix E, "Appendix E: Waste Not, Want Not: The Potential for Urban Water Conservation in California Details of Commercial Water Use and Potential Savings, by Sector," (2003), https://pacinst.org/wp-content/uploads/2013/02/appendix e3.pdf/https://pacinst.org/publication/waste not want not/

¹⁴⁸ Based on review of the Illinois plumbing code (Employees and students per faucet). Retail, grocery, warehouse and health ar estimates. Meals per faucet estimated as 4 bathroom and 3 kitchen faucets and average meals per day of 250 (based on Californis study above Waste Not, Want Not: The Potential for Urban Water Conservation in California - Pacific Institute (pacinst.org) 250/7 = 36. Fast food assumption estimated.

Appendix H - TRM - Vol. 2: C&I Measures

 $= 90-91 \text{ F}^{149}$

SupplyTemp = Assumed temperature of water entering building

 $= \frac{57.959.8632}{59.358.4} F^{150}$

 $RE_{electric}$ = Recovery efficiency of electric water heater

=98% 151

3412 = Converts Btu to kWh (Btu/kWh) ISR = In service rate of faucet aerators

= Assumed to be 1.0

Building Type	Gallons HW per unit per day (A)	<u>Unit</u>	Estimated % HW from Faucets 153 (B)	Multiplier	<u>Unit</u>		Annual gallons mixed water per faucet (A*B*C*D)
Small Office		_ <u>person</u> _	100%	<u>10</u>	<u>employees per</u> <u>faucet</u>	<u>250</u>	2,500
Large Office		_ <u>person</u> _	100%	<u>45</u>	<u>employees per</u> <u>faucet</u>	<u>250</u>	11,250
Fast Food Restaurant	<u>0.7</u>	- meal/day -	<u>50%</u>	75	meals per faucet	<u>365</u> -	<u>9,581</u>
Sit-Down Restaurant	<u>2.4</u>	- <u>meal/day</u> -	50%	<u>36</u>	meals per faucet	<u>365</u> -	<u>15,768</u>
Retail	2	employee	100%	<u></u>	<u>employees per</u> <u>faucet</u>	<u>365</u>	<u> 3,650</u>

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

http://www.wcc.nrcs.usda.gov/nwcc/site?sitenum=2061USDA NR|Air Water|Missouri|2019-

2023,40"|http://www.wcc.nrcs.usda.gov/nwcc/site?sitenum=2061

151 Electric water heater have recovery efficiency of 98%, as sourced from available products on the AHRI Certification Directory: https://beta.ahridirectory.org/search/24http://www.ahrinet.org/ARI/util/showdoc.aspx?doe=576

152 Table 2-45 Chapter 49, Service Water Heating, 2007 ASHRAE Handbook, HVAC Applications.

Field Code Changed

Formatted: Indent: Left: 0.01"

Formatted: Left, Indent: Left: 0.01"

¹⁴⁹ Cadmus and Opinion Dynamics Showerhead and Faucet Aerator Meter Study Memorandum dated June 2013, directed to Michigan Evaluation Working Group. If the aerator location is unknown an average of 91% should be used which is based on the assumption that 70% of household water runs through the kitchen faucet and 30% through the bathroom

^{(0.7*}x93)+(0.3*x86)=0.91Temperature cited from SBW Consulting, Evaluation for the Bonneville Power Authority, 1994, https://www.efis.psc.mo.gov/Document/Display/34102http://www.bpa.gov/energy/n/reports/evaluation/residential/faucet_aerator <u>cefm</u>. This is a variable that would benefit from further evaluation. ¹⁵⁰National Weather Service|MO soil temp 40"|6 stations|2015 to

^{2023|}https://www.weather.gov/nerfe/LMI_SoilTemperatureDepthMaps National Weather Service. Average soil temperature at 40" depth during 2015 - 2023 data of six stations in Ameren Missouri service territory.

https://www.weather.gov/ncrfc/LMI_SoilTemperatureDepthMaps National Weather Service|MO-soil temp 40"|6 stations|2015 to 2023|https://www.weather.gov/nerfe/LMI_SoilTemperatureDepthMa Using 40" deep soil temp as a proxy at Powell Gardens SCAN site. Average by month of available data from 3/28/02 10/11/14: 12 month average is 57.898.

Estimated based on data provided in Appendix E, "Waste Not, Want Not: The Potential for Urban Water Conservation in California," http://www.pacinst.org/reports/urban_usage/appendix_e.pdf.

¹⁵⁴ Based on review of the Illinois plumbing code (Employees and students per faucet). Retail, grocery, warehouse and health are estimates. Meals per faucet estimated as 4 bathroom and 3 kitchen faucets and average meals per day of 250 (based on California study above) - 250/7 = 36. Fast food assumption estimated.

Grocery	2	employee	<u>100%</u>	<u>5</u>	<u>employees per</u> <u>faucet</u>	<u>365</u>	<u>3,650</u>		 - +	Formatted: Underline
Warehouse _	<u>2</u>	<u>employee</u>	<u>100%</u>	<u>\$</u>	<u>employees per</u> faucet	<u>250</u> .	<u>2,500</u>	1	 - +	Formatted: Underline
Elementary _ School	<u>0.6</u>	person	50%	<u>50</u>	<u>students per</u> <u>faucet</u>	<u>200</u> -	3,000	-	 	Formatted: Underline
Jr High/High School	<u>1.8</u>	person	<u>50%</u>	<u>50</u>	<u>students per</u> <u>faucet</u>	<u>200</u>	9,000	_	 - +	Formatted: Underline
Health	<u>90</u>	<u>patient</u>	<u>25%</u>	2	Patients per	<u>365</u>	<u>16,425</u>		 - +	Formatted: Underline
Motel	<u>20</u>	<u>room</u>	<u>25%</u>	<u>+</u>	faucet per room	<u>365</u>	<u>1,825</u>		 	Formatted: Underline
<u>Hotel</u>	<u> </u>	<u>room</u>	<u>25%</u>	<u></u>	faucet per room	<u>365</u>	<u>1,278</u>	L	 	Formatted: Underline
Other	<u> </u>	employee	<u> 100%</u>	<u>20</u>	<u>employees per</u> <u>faucet</u>	<u>250</u>	<u>5,000</u>		 	Formatted: Underline

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh \stackrel{*}{\underline{}\underline{}} CF$

Where:

 Δ kWh = calculated value above on a per faucet basis

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $=0.0001811545\frac{155}{1}$

FOSSIL FUEL IMPACT DESCRIPTIONS AND CALCULATION

 $\Delta Therms = \%FossilDHW * \underline{x} ((GPM_{base} - GPM_{low}) / GPM_{base}) * \underline{x} Usage * \underline{x} EPG_{gas} * \underline{x} ISR$

Where:

%FossilDHW = proportion of water heating supplied by fossil fuel heating (see

table below)

EPG_gas = Energy per gallon of mixed water used by faucet (gas water

heater)

= $(8.33 *_{\underline{x}} 1.0 *_{\underline{x}} (WaterTemp - SupplyTemp)) / (RE_gas *_{\underline{x}})$

100,000) = 0.00772 Therm/gal

RE_gas = Recovery efficiency of gas water heater

 $=67\%^{115}$

100,000 = Converts Btus to Therms (Btu/Therm)

Other variables as defined above.

DHW fuel	%Fossil_DHW
Electric	0%

Formatted Table

155 Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

Formatted: Left, Indent: Left: 0", Don't keep lines together

Fossil Fuel	100%
Unknown	57%156

WATER IMPACT DESCRIPTIONS AND CALCULATION

 $\Delta gallons = ((GPM_{base} - GPM_{low}) / GPM_{base}) *_{\underline{x}} Usage *_{\underline{x}} ISR$

Variables as defined above

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

SOURCES USED FOR GPM ASSUMPTIONS

Source ID	Reference
1	2000, Mayer, Peter, William DeOreo, and David Lewis. Seattle Home Water Conservation
T	Study. December 2000.
	2003, Mayer, Peter, William DeOreo. Residential Indoor Water Conservation Study.
2	Aquacraft, Inc. Water Engineering and Management. Prepared for East Bay Municipal Utility
	District and the US EPA. July 2003.
2	2011, DeOreo, William. Analysis of Water Use in New Single Family Homes. By Aquacraft.
÷	For Salt Lake City Corporation and US EPA. July 20, 2011.
	2008, Schultdt, Marc, and Debra Tachibana. Energy related Water Fixture Measurements:
4	Securing the Baseline for Northwest Single Family Homes. 2008 ACEEE Summer Study on
	Energy Efficiency in Buildings.

MEASURE CODE:

¹⁵⁶ Default assumption for unknown fuel is based on EIA Commercial Building Energy Consumption Survey (CBECS) 2012 for Midwest North Central Region (see 'HC8.9 Water Heating in Midwest Region.xls'). If utilities have specific evaluation results providing a more appropriate assumption for buildings in a particular market or geographical area, then they should be used. ¹¹⁵ Review of AHRI Directory suggests range of recovery efficiency ratings for new Gas DHW units of 70-87%. Average of existing units is estimated at 75%. Commercial properties are more similar to MF homes than SF homes. MF hot water is often provided by a larger commercial boiler. This suggests that the average recovery efficiency is somewhere between a typical central boiler efficiency of .59 and the .75 for single family home. An average is used for this analysis by default.

2.4.2 Circulator Pump

DESCRIPTION

Demand control recirculation pumps seek to reduce inefficiency by combining control via temperature and demand inputs, whereby the controller will not activate the recirculation pump unless both (a) the recirculation loop return water has dropped below a prescribed temperature (e.g. 100°F) and (b) a CDHW demand is sensed as water flow through the CDHW system.

This measure was developed to be applicable to the following program types: TOS, RF, and NC.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

Re-circulating pump shall cycle on based on (a) the recirculation loop return water dropping below a prescribed temperature (e.g. 100°F) and (b) a CDHW demand is sensed as water flow through the CDHW system.

DEFINITION OF BASELINE EQUIPMENT

The base case for this measure category is an existing, un-controlled recirculation pump on a gasfired Central Domestic Hot Water System.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The effective useful life is 15 years.157

DEEMED MEASURE COST

The assumed measure cost is \$1,200 per pump. 158

LOADSHAPE

Miscellaneous BUS

Algorithm

CALCULATION OF ENERGY SAVINGS

Savings shown are per pump.

ELECTRIC ENERGY SAVINGS

157 Benningfield Group. (2009). PY 2009 Monitoring Report: Demand Control for Multifamily Central Domestic Hot Water
 Folsom, CA: Prepared for Southern California Gas Company, October 30, 2009 (see page 11).
 158 Gas Technology Institute. (2014). 1003: Demand-based domestic hot water recirculation Public public project report. Des

158 Gas Technology Institute. (2014), 1003: Demand-based domestic hot water recirculation Public project report. Des Plaines, IL: Prepared for Nicor Gas, January 7, 2014, (see page 5https://www.ilsag.info/wpcontent/uploads/SAG_files/Portfolio_Planning_Process/Small_Group_Follow-

up Calls/Grundfos/1003 Demand CDHW Public Project Report REVISED FINAL 08-06-2014.pdf

Formatted: Font: Not Italic

Formatted: Footnotes, Left, Line spacing: single

Farmanttada Hadardina Farst salam Plan

Formatted: Underline, Font color: Blue

Field Code Changed

Formatted: Font color: Blue

Formatted: Font color: Blue

Formatted: Font: Not Italic

Appendix H - TRM - Vol. 2: C&I Measures

Deemed at 651 kWh per pump. 159

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $= \Delta kWh - CF$ ΔkW

Where:

 Δ kWh = calculated value above on a per faucet basis

= Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $=0.0001379439^{160}$

NATURAL GAS SAVINGS

 Δ Therms = 55.9 * x number of dwelling units¹⁶¹

WATER IMPACT DESCRIPTIONS AND CALCULATION

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

Formatted: Footnotes, Left, Line spacing: single, No widow/orphan control

Formatted: Footnotes

Formatted: Font: Cambria

Formatted: Cambria12

Formatted: Font color: Accent 1

the Nicor Gas Emerging Technology Program study. 1003: Demand-based domestic hot water recirculation Public project report. Des Plaines, IL: Prepared for Nicor Gas, January 7, 2014, this value is the average (725 & 578) kWh saved per pump. Note this value does not reflect savings from electric units but electrical savings from gas-fired units (see page 9). 160 Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes

and Coincident Peak Factors".

161 IBID 159459155, AverageBased on results from the Nicor Gas Emerging Technology Program study, this value is the average

therms saved per dwelling unit for water heating.

¹⁵⁹ Gas Technology Institute. (2014). 1003: Demand-based domestic hot water recirculation public project report. Des Plaines, IL: Prepared for Nicor Gas, January 7, 2014. Average of 725 kWh and 578 kWh reported savings per pump, page 9. Value is pump only savings and not water heater savings. (https://www.ilsag.info/wpcontent/uploads/SAG files/Portfolio Planning Process/Small Group Follow-up Calls/Grundfos/1003 Demand CDHW Public Project Report REVISED FINAL 08-06-2014.pdf)Based on results from

2.4.3 Heat Pump Water Heater

DESCRIPTION

This measure applies to the installation of a heat pump water heater (HPWH) in place of a standard electric <u>storage</u> water heater in a commercial building. Savings are presented dependent on the heating system installed in the building due to the impact of the heat pump water heater on the heating and cooling loads.

This measure was developed to be applicable to the following program types: TOS_NC.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be a heat pump water heater meeting program efficiency requirements.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is assumed to be a new, electric storage water heater meeting federal minimum efficiency standards. Residential storage water heaters greater than 55 gallons may not be eligible as the baseline is near that of a heat pump water heater.

Equipment	Size	Draw	Efficiency, UEF	1
Residential duty commercial		All	0.80 UEF	4
>12kW and≤58.6 kW			*****	1
Residential storage, ≤75				4
kBTUh Residential storage	≤55 gal	Very small	$.8808_{-}(0.0008 \text{ x V}_{rated})$	ı
≤75 kBTUh		•		i
Residential storage, ≤75				4
kBTUh Residential storage	≤55 gal	Low	.9254 - (0.0003 x V _{rated})	l
≤75 kBTUh				
Residential storage, ≤75				4
kBTUhResidential storage	≤55 gal	Medium	$.9307 - (0.0002 \times V_{rated})$	4
≤75 kBTUh				7
Residential storage, ≤75	<i><55</i> 1	II: -1.	.9349 <u>- (0.0011-0001</u> x	1 5
kBTUhResidential storage	≤55 gal	High	V_{rated})	
Residential storage, ≤75 kBTUh	>55 gal and	Very small	1.9236 - (0.0011 x V _{rated})	1
Residential storage, \$15 KB I OII	-≤1-2θ gal -gal -	very siliali	1.9230 - (0.0011 X V _{rated})	
D: 4	>55 gal and	T	2.0440 (0.0011 - 17	Ì.
Residential storage, ≤75 kBTUh_	-≤1-20 gal gal -	Low	2.0440 - (0.0011 x V _{rated})	r

https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-430/subpart-C#p-430.32(d)(1) for residential water heaters and CFR:: 10 Part 430, Electric storage water heater efficiency, "Energy Conservation Program For Consumer Products", https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-430/subpart-C#p-430.32(d)(1) for residential water heaters and CFR:: 10 Part 430, Electric storage water heater efficiency, "Energy Conservation Program For Industrial Products", for commercial water heaters.

Federal standards for ≤55 gallon and ≤12 kW storage water heaters are from 10 CFR §430.32(d). Federal standards for >120 gallo and>12 kW storage water heaters are from 10 CFR §431.110. Since the federal standard effectively requires a heat pump water heater for residential electric storage water heaters >55 gallons and ≤120 gallons, this measure excludes those units.

Formatted: Font: 11 pt, Bold, Font color: Background 1 Formatted: Font: 11 pt, Bold, Font color: Background 1 Formatted: Font: 11 pt, Bold, Font color: Background 1 Formatted: Centered, Space After: 0 pt **Formatted Table** Formatted: Font: 11 pt Formatted: Space After: 0 pt Formatted: Left, Space After: 0 pt Formatted: Space After: 0 pt Formatted: Font: 11 pt, Subscript Formatted: Space After: 0 pt Formatted: Font: 11 pt, Subscript Formatted: Left, Space After: 0 pt Formatted: Space After: 0 pt **Formatted** [... [47] Formatted: Centered, Space After: 0 pt Formatted: Left, Space After: 0 pt **Formatted** ... [48] Formatted: Left, Space After: 0 pt Formatted: Centered, Space After: 0 pt Formatted: Centered, Space After: 0 pt Formatted: Font: 11 pt Formatted: Font: 11 pt **Formatted** ... [49] Formatted: Left, Space After: 0 pt Formatted: Font: 11 pt **Formatted** ... [50]

Formatted: Centered, Space After: 0 pt

Formatted: Footnotes, Left, Right: 0", Space After: 0

... [51]

Formatted

pt, Line spacing: single

Appendix H - TRM - Vol. 2: C&I Measures

Residential storage, ≤75 kBTUh	>55 gal and	Medium	2.1171 - (0.0011 x V _{rated})] •
	≤120 gal gal	ivieurum		ľ
Residential storage, ≤75 kBTUh	>55 gal and	High	2.2418 - (0.0001x V _{rated})	•
	≤120 gal gal	nigir		Τ
Commercial storage, all	All	Medium	0.98	
				4

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 13-15 years. 163

DEEMED MEASURE COST

Actual costs should be used where available. Incremental capital costs are presented in the table below for heat pump water heaters with energy factors (EF) of 2.0 and 2.4 and rated from 40 gallons to 80 gallons of storage volume. 164s of 40 gallons and 50 gallons, respectively: 165

EF Type	Rated Volume (gal)	Incremental Cost
2.0 Heat Pump	40 40 to 50	\$1, 340.30 <u>154</u>
2.4Heat Pump	50- 55 to 65	\$1, 187.58 <u>269</u>
Heat Pump	<u>66 to 80</u>	<u>\$1,646</u>

For larger HPWHs, incremental capital costs are presented below based on heating capacity.¹⁶⁶

Heating Capacity (MBtu/hr)	Incremental Cost
10-50	\$4,000 .00
>50-100	\$7,000 .00
>100-300	\$10,000 .00
>300-500	\$14,000 .00
>500	\$18,000 .00

LOADSHAPE

Water Heating BUS

163 DOE, Table 1.2, lifetime of storage water heaters, "Energy Conservation Program: Energy Conservation Standards for Consumer Water Heaters", <a href="https://www.federalregister.gov/documents/2024/05/06/2024-09209/energy-conservation-program-energy-conservation-standards-for-consumer-water-heaters 2010 Residential Heating Products Final Rule Technical Support Document, U.S. DOE, Table 8.7.2.

¹⁶⁴ Big box retail online pricing (August 2024), Comparison of electric resistance to heat pump water heater for three manufacturer's with the same model series, Local file: "2.4.3 Electric water heater retail cost August 2024 data xlsx"
 ¹⁶⁵ Cost information is based upon data from "2010-2012 WA017 Ex Ante Measure Cost Study Draft Report," Iron, February
 ²⁰¹⁰ Social Study Draft Report, "100, 100 Per la Noving Vision Indiana"

28, 2014. See "NR HW Heater_WA017_MCS Results Matrix - Volume I_August2016.xls" for more information_(See Equipment Results Matrix tab cells Z862:Z863).

166 MEMD, Commercial heat pump water heater incremental costs, "Commercial" worksheet, Cell range Q332:Q336_2024 _ _
MEMD Master Database. https://www.michigan.gov/mpsc/regulatory/ewr/michigan-energy-measures-database Costs for larger heat pump water heaters are from 2017 Michigan Energy Measures Database.xlsx and are based on heat pump water heaters with a COP ≥3.0 (See Commercial tab cells Q239:Q243).

Formatted: Font: 11 pt Formatted: Font: 11 pt, Subscript Formatted: Font: 11 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Centered, Space After: 0 pt Formatted: Font: 11 pt Formatted: Font: 11 pt Formatted: Font: 11 pt Formatted: Font: 11 pt, Subscript Formatted: Font: 11 pt Formatted: Space After: 0 pt Formatted: Space After: 0 pt Formatted: Centered, Space After: 0 pt **Formatted Table Formatted Table**

Formatted Table

Formatted: Font: 11 pt
Formatted: Font: 11 pt

Formatted: Left, No widow/orphan control, Don't keep lines together

Formatted: No underline

Field Code Changed

Formatted: Footnotes

Formatted: Font: Italic

Formatted: Footnotes, Line spacing: single

Formatted: Font: 9 pt, Font color: Accent 1

Formatted: Font color: Accent 1

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

<u>*x</u> 3,412) <u>*x</u> %ElectricHeat

Where:

Tout

 T_{IN}

1.0

kWh cool = Cooling savings from conversion of heat in building to water heat¹⁶⁷ kWh heat = Heating cost from conversion of heat in building to water heat (dependent on heating fuel) = Efficiency of baseline water heater according to federal standards, **UEF**BASE expressed as Uniform Energy Factor (EF) or Thermal Efficiency (E+) = See table below UEFEE = <u>U</u>EF of heat pump water heater = Actual HWUGAL. = Estimated annual hot water consumption (gallons) = Actual if possible to provide reasonable custom estimate. If not, two methodologies are provided below to develop an estimate. γWater = Specific weight of water = 8.33 pounds per gallon

¹⁶⁷This algorithm calculates the heat removed from the air by subtracting the heat pump water heater electric consumption from the total water heating energy delivered. This is then adjusted to account for location of the heat pump unit and the coincidence of

the waste heat with cooling requirements, the efficiency of the central cooling, and latent cooling demands.

168 Ideally, the actual set point of the water heater should be used. If not available, 125 degrees is provided as an estimate of unmixed output temperature. While plumbing code generally limits temperatures at the end use, it typically does not limit the water heater system, which can be anywhere in the range 120-201 degrees. For applications such as laundry and dishwashing, health and safety regulations may require water to be initially heated to higher temperatures. Since temperature set points can vary widely, market, program, or site-specific data should be used whenever possible.

= Incoming water temperature from well or municipal system

169 National Weather Service. Average soil temperature at 40" depth during 2015 - 2023 data of six stations in Ameren Missouri service territory. https://www.weather.gov/ncrfc/LMI_SoilTemperatureDepthMaps_National_Weather_Service|MO_soil_temp=40"|6-stations|2015_to=2023|https://www.weather.gov/ncrfc/LMI_SoilTemperatureDepthMaps_Using 40" deep-soil_temp-as-a proxy at Powell Gardens SCAN site. Average by month of available data from 3/28/02 10/11/14: 12 month-average is 57.898. http://www.wec.nrcs.usda.gov/nwce/site?sitenum=2061.

Formatted: Font: Cambria, Italic Formatted: Font: Cambria, Italic

Formatted: Left

Formatted: Font: 9 pt

= Tank temperature

= 57.89859.38.4 °F 169

= Actual, if unknown assume 125 °F 168

= Heat capacity of water (1 Btu/lb*x°F)

Appendix H - TRM - Vol. 2: C&I Measures

LM = Latent multiplier to account for latent cooling demand ¹⁷³ = 3.0 for St. Louis, MO COP _{COOL} = COP of central air conditioner = Actual COP _{HEAT} = Actual. Note: electric resistance heating and heat pumps will have an efficiency greater than or equal to 100% %Cool = Percentage of buildings with central cooling = 100% for cooling in the home and 0% for no cooling in the home %ElectricHeat = Percentage of buildings with electric heat	3,412	= Conversion factor from Btu to kWh
= 0.5 for HPWH installation in an unknown location ¹⁷⁰ = 0.0 for installation in an unconditioned space 53% = Portion of reduced waste heat that results in cooling savings ¹⁷¹ 43% = Portion of reduced waste heat that results in increased heating load ¹⁷² LM = Latent multiplier to account for latent cooling demand ¹⁷³ = 3.0 for St. Louis, MO COP _{COOL} = COP of central air conditioner = Actual COP _{HEAT} = Actual. <i>Note: electric resistance heating and heat pumps will have an efficiency greater than or equal to 100%</i> %Cool = Percentage of buildings with central cooling = 100% for cooling in the home and 0% for no cooling in the home %ElectricHeat = Percentage of buildings with electric heat	LF	= Location Factor
= 0.0 for installation in an unconditioned space 53% = Portion of reduced waste heat that results in cooling savings ¹⁷¹ 43% = Portion of reduced waste heat that results in increased heating load ¹⁷² LM = Latent multiplier to account for latent cooling demand ¹⁷³ = 3.0 for St. Louis, MO COP _{COOL} = COP of central air conditioner = Actual COP _{HEAT} = Actual. Note: electric resistance heating and heat pumps will have an efficiency greater than or equal to 100% %Cool = Percentage of buildings with central cooling = 100% for cooling in the home and 0% for no cooling in the home %ElectricHeat = Percentage of buildings with electric heat		= 1.0 for HPWH installation in a conditioned space
= Portion of reduced waste heat that results in cooling savings ¹⁷¹ 43% = Portion of reduced waste heat that results in increased heating load ¹⁷² LM = Latent multiplier to account for latent cooling demand ¹⁷³ = 3.0 for St. Louis, MO COP _{COOL} = COP of central air conditioner = Actual COP _{HEAT} = Actual. Note: electric resistance heating and heat pumps will have an efficiency greater than or equal to 100% %Cool = Percentage of buildings with central cooling = 100% for cooling in the home and 0% for no cooling in the home %ElectricHeat = Percentage of buildings with electric heat		= 0.5 for HPWH installation in an unknown location ¹⁷⁰
43% = Portion of reduced waste heat that results in increased heating load 172 LM = Latent multiplier to account for latent cooling demand 173 = 3.0 for St. Louis, MO COPCOOL = COP of central air conditioner = Actual COPHEAT = Actual. Note: electric resistance heating and heat pumps will have an efficiency greater than or equal to 100% %Cool = Percentage of buildings with central cooling = 100% for cooling in the home and 0% for no cooling in the home %ElectricHeat = Percentage of buildings with electric heat		= 0.0 for installation in an unconditioned space
LM = Latent multiplier to account for latent cooling demand ¹⁷³ = 3.0 for St. Louis, MO COP _{COOL} = COP of central air conditioner = Actual COP _{HEAT} = Actual. Note: electric resistance heating and heat pumps will have an efficiency greater than or equal to 100% %Cool = Percentage of buildings with central cooling = 100% for cooling in the home and 0% for no cooling in the home %ElectricHeat = Percentage of buildings with electric heat	53%	= Portion of reduced waste heat that results in cooling savings ¹⁷¹
= 3.0 for St. Louis, MO COPCOOL = COP of central air conditioner = Actual COPHEAT = Actual. Note: electric resistance heating and heat pumps will have an efficiency greater than or equal to 100% %Cool = Percentage of buildings with central cooling = 100% for cooling in the home and 0% for no cooling in the home %ElectricHeat = Percentage of buildings with electric heat	43%	= Portion of reduced waste heat that results in increased heating load ¹⁷²
COP _{COOL} = COP of central air conditioner = Actual COP _{HEAT} = Actual. <i>Note: electric resistance heating and heat pumps will have an efficiency greater than or equal to 100%</i> %Cool = Percentage of buildings with central cooling = 100% for cooling in the home and 0% for no cooling in the home %ElectricHeat = Percentage of buildings with electric heat	LM	= Latent multiplier to account for latent cooling demand ¹⁷³
= Actual COP _{HEAT} = Actual. Note: electric resistance heating and heat pumps will have an efficiency greater than or equal to 100% %Cool = Percentage of buildings with central cooling = 100% for cooling in the home and 0% for no cooling in the home %ElectricHeat = Percentage of buildings with electric heat		= 3.0 for St. Louis, MO
COPHEAT = Actual. Note: electric resistance heating and heat pumps will have an efficiency greater than or equal to 100% %Cool = Percentage of buildings with central cooling = 100% for cooling in the home and 0% for no cooling in the home %ElectricHeat = Percentage of buildings with electric heat	COPCOOL	= COP of central air conditioner
### ### ### ### ### ### ### ### ### ##		= Actual
%Cool = Percentage of buildings with central cooling = 100% for cooling in the home and 0% for no cooling in the home %ElectricHeat = Percentage of buildings with electric heat	COP_{HEAT}	= Actual. Note: electric resistance heating and heat pumps will have an
= 100% for cooling in the home and 0% for no cooling in the home %ElectricHeat = Percentage of buildings with electric heat		efficiency greater than or equal to 100%
%ElectricHeat = Percentage of buildings with electric heat	%Cool	= Percentage of buildings with central cooling
6 6		= 100% for cooling in the home and 0% for no cooling in the home
	%ElectricHeat	= Percentage of buildings with electric heat
= 100% for electric heating fuel and 0% for gas heating fuel		= 100% for electric heating fuel and 0% for gas heating fuel
= 1000/ for electric beating fuel and 00/ for gas beating fuel	%Cool	efficiency greater than or equal to 100% = Percentage of buildings with central cooling = 100% for cooling in the home and 0% for no cooling in the home = Percentage of buildings with electric heat

Equipment Type	Size Category	Federal Standard Minimum Efficiency
HPWH ≤12 kW	≤55 gallon	EF: $0.96 - (0.0003 \times x \text{ rated volume in gallons})$
HPWH >12 kW	>120 gallon	Et: 98% ¹⁷⁴

Method 1 to estimate HWU_{GAL} – Consumption per water heater capacity

HWUHWUGAL = Consumption/cap - x Capacity

¹⁷⁰ Professional judgment.

2025 MEEIA 4 2019-21 Plan

Revision 56.0

Formatted: Font: Not Italic

¹⁷¹ Based on 193 days where CDD 65>0, divided by 365.25. CDD days determined from TMY data with a base temp of 65°F.

¹⁷² Based on 157 days where HDD 60>0, divided by 365.25. HDD days determined from TMY data with a base temp of 60°F.

¹⁷³ The Latent Multiplier is used to convert the sensible cooling savings calculated to a value representing sensible and latent cooling loads. The values are derived from the methodology outlined in Infiltration Factor Calculation Methodology by Bruce Harley, Senior Manager, Applied Building Science, CLEAResult 11/18/2015 and is based upon an 8760 analysis of sensible and total heat loads using hourly climate data.

¹⁷⁴ Efficiency of baseline water heaters >120 gallons based on search of electric storage water heaters >120 gallons available on

^{1/4} Efficiency of baseline water heaters >120 gallons based on search of electric storage water heaters >120 gallons available of AHRI directory.

Appendix H - TRM - Vol. 2: C&I Measures

Where:

Consumption/cap = Estimate of consumption per gallon of tank capacity, dependent

on Building Type (see table below)¹⁷⁵

Capacity = Capacity of hot water heater in gallons

= Actual

Building Type	Consumption/cap
Grocery, Convenience Store, and Restaurant	803
Lodging, Hospital, and Multifamily	630
Health Clinic, Church, Warehouse	433
Education, Office, and Retail	594
Industrial	558
Agriculture	558
Average Non Residential	558

Method 2 to estimate HWUGAL – Consumption by facility size¹⁷⁶

Building Type	Gallons HW per unit per day	Unit	Units/1000 ft ²	Days per year	Gallons / 1000 ft² floor area	4
Small Office	1	person	2.3	250	575	4-
Large Office	1	person	2.3	250	575	4
Fast Food Restaurant	0.7	meal/day	784.6	365	200, 458 <u>465</u>	4
Sit-Down Restaurant	2.4	meal/day	340	365	297,840	4-
Retail	2	employee	1	365	730	4.
Grocery	2	employee	1.1	365	803	∢.
Warehouse	2	employee	0.5	250	250	4.
Elementary School	0.6	person	9.5	200	1,140	4
Jr High/High School	1.8	person	9.5	200	3,420	4
Health	90	patient	3.8	365	124,830	•
Motel	20	room	5	365	36,500	4√
Hotel	14	room	2.2	365	11,242	
Other	1	employee	0.7	250	175	1

SUMMER COINCIDENT PEAK DEMAND SAVINGS

¹⁷⁵ Based on Cadmus analysis. Annual hot water usage in gallons based on CBECS (2003) consumption data for West North Central (removed outliers of 1,000 kBtu/hr or less) to calculate hot water usage. Annual hot water gallons per tank size gallons based on the tank sizing methodology found in ASHRAE 2011 HVAC Applications. Chapter 50 Service Water Heating. Demand assumptions (gallons per day) for each Building Type based on ASHRAE Chapter 50 and "Technology Data Characterizing Water Heating in Commercial Buildings: Application to End Use Forecasting," Lawrence Berkeley National Library, December 1995. VEIC considers these values to be relatively conservative estimates that may benefit from future evaluation.

¹⁷⁶ Technology Data Characterizing Water Heating in Commercial Buildings: Application to End Use Forecasting," Lawrence Berkeley National Library, December 1995 (See Table 2, page 6).

Formatted: Normal, Space After: 8 pt, Line spacing: Multiple 1.08 li

Formatted: Font: Not Italic

Formatted: Keep with next, Keep lines together

Formatted: Font color: Auto

 $\Delta kW = \Delta kWh x + CF$

Formatted: Font: Cambria Math, Italic

Where:

ΔkWh = Electric energy savings, as calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001811545^{177}$

NATURAL GAS SAVINGS

 $\frac{\Delta therms = \left[\;\left((1-1/EF_{EE})*\;HWU_{GAL}*\;\gamma Water*\;T_{out}-T_{in}\right)*\;1.0\right)*\;LF*\;53\%\right]/\left(\eta Heat*\;100.000\right)*\;\% GasHeat}{100.000)*\;\% GasHeat}$

Where:

<u>ATherms</u> = Heating cost from conversion of heat in building to water heat

for buildings with natural gas heat 178

= Conversion factor from Btu to therms

ηHeat = Efficiency of heating system

= Actual

%GasHeat = Percentage of buildings with gas heat

= 0% for Electric Heating Fuel =100% for Gas Heating Fuel

Other variables as defined above.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

Formatted: Font color: Text 1

¹⁷⁷ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors" 2016 Ameren Missouri Coincident Peak Demand Factor for Commercial Water Heating. See reference "Ameren Missouri 2016 Appendix E - End Use Shapes and Coincident Factors.pdf."

reference "Ameren Missouri 2016 Appendix E – End Use Shapes and Coincident Factors.pdf."

178: This is the additional energy consumption required to replace the heat removed from the building during the heating season by the heat pump water heater. The variable kWh heating (electric resistance) is that additional heating energy for a building with electric resistance heat (COP 1.0). This formula converts the additional heating kWh for an electric resistance building to the MMBtu required in a natural gas heated building, applying the relative efficiencies.

2.4.14 Low Flow Showerheads

Formatted: Font color: Text 1

Formatted: Font color: Text 1

DESCRIPTION

This measure relates to the direct installation of a low flow flow faucet aerator or low flowshowerhead faucet in a commercial building or common areas in other building types. Expected application include small business, office, restaurant, or motel. For For in-unit multifamily or housing living units, the residential low flow faucet aeratorshowerhead should be used.

This measure was developed to be applicable to the following program type: DI, RF, TOS

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

Low flow faucets or aerators for bathrooms showerheads meeting the EPA WaterSense flow rate of $\leq 1.52.0$ gpm. $^{179\overline{180}}$

Faucets or aerators for kitchen sinks exceeding the DOE Federal Regulations of ≤2.2 gpm. ¹⁸¹ Faucets or aerators for public lavatories exceeding the IPC Plumbing Code of ≤0.5 gpm. 182

<u>Fixture</u>	Maximum Flow Rate, gpm	
Bathroom faucet. privateShowerhead	· <u><1-52.0</u>	
<u>Kitchen faucet</u>	<u> </u>	
Lavatory faucet, public	<u><0.5</u>	

DEFINITION OF BASELINE EQUIPMENT

The baseline condition flow rate faucet or aeratorshowerhead is the maximum flo by the DOE Federal Regulations 1832.5 gpm.

<u>Fixture</u>	Flow Rate, gpm
Lavatory faucet or	
aeratorShowerhead	<u>2.3±</u>

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Background 1

Formatted: Centered **Formatted Table**

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Red

Formatted: Font color: Text 1 Formatted: Font color: Text 1

Formatted: Font color: Background 1

Formatted Table

Formatted: Font color: Text 1

Formatted: Font color: Text 1

¹⁷⁹ DOE, Showerhead regulations,

DOE|Showerheads|https://www.epa.gov/watersense/showerheads#:~:text=Did%20you%20know%20that%20standard.no%20m re%20than%202.0%20gpm.https://www.epa.gov/watersense/showerheads#:~:text=Did%20you%20know%20that%20standard,

0%20more%20than%202.0%20gpm.

180 US EPA|Bathroom faucet|https://www.epa.gov/watersense/bathroom-faucets

181 DOE|Kitchen faucet|https://www.epa.gov/system/files/documents/2023-08/ws-homes-TRM-5-

KitchenFaucetsTechSheet 0.pdf

1882-2021 ICC|Plumbing|https://codes.iccsafe.org/content/IPC2021P3/chapter-6-water-supply-and-distribution

183 DOE|Energy Standard|https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-430#430.32

Formatted: Font: 9 pt

Formatted: Font: 9 pt

Formatted: Left, Indent: Left: 0", First line: 0"

Field Code Changed

Formatted: Footnote

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 9 years. 184 10 years. 185

DEEMED MEASURE COST

The incremental cost for this measure is \$12.008.00186, or program actual-. 187

LOADSHAPE

Water Heating BUS, or Water Heating RES if installed in the common area of multi-family housing.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Note these savings are per faucetshowerhead retrofitted. 188

<u>AkWh = %ElectricDHW *x, { (GPMbase*x, Lbase - GPMlow*x, Llow) / GPMbase} *x, Usage NSPD*x</u> 365.25*x, EPGelectric *x, ISR

Where:

<u>%ElectricDHW</u> = proportion of water heating supplied by electric resistance heating (see values in table below)

	<u>%Electric DHW</u>
Electric	100%
Fossil Fuel	<u>0%</u>
Unknown	43%189

Table C-6, Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007. "http://neep.org/uploads/EMV%20Forum/EMV%20Studies/measure_life_GDS%5B1%5D.pdf."

Associates, Page C-14, Table C-6, "Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures", (GDS Associates, June 2007). (page C-14). Evaluations indicate that consumer dissatisfaction may lead to reductions in persistence, particularly in Multi-Family.

*** Direct-install price per faucet assumes cost of aerator and install time. (2011, Market research average of \$3 and assess and install time of \$5 (20min @ \$15/hr).

187 Direct-install price per showerhead assumes cost of showerhead (Market research average of \$7 and assess and install time of \$5 (20min @ \$15/hr).

has This algorithm calculates the amount of energy saved per aerator by determining the fraction of water consumption savings for the upgraded fixture. Due to the distribution of water consumption by fixture type, as well as the different number of fixtures in a building, several variables must be incorporated.

¹⁸⁹ Default assumption for unknown fuel is based on EIA Commercial Building Energy Consumption Survey (CBECS) 2012 for Midwest North Central Region (see 'HC8.9 Water Heating in Midwest Region.xls'). If utilities have specific evaluation results Formatted: Font color: Text 1 Formatted: Font: Cambria, Italic, Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font color: Background 1

Formatted: Centered

Formatted: Font color: Text 1

Formatted Table

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1
Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Auto

Formatted: Footnote, Line spacing: single

Formatted: Font: (Default) Times New Roman

Formatted: Font color: Auto

Formatted: Footnote, Left, Line spacing: single

Formatted: Font: (Default) Times New Roman

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

<u>GPM</u> base	= Flow rate in gallons per minute, actual, or sourced from baseline		Formatted: Font color: Text 1
	equipment table.2.675 gpm if unknown.		
Lbase	=Shower length in minutes with baseline showerhead		Formatted: Font color: Text 1
	=8.20 minutes	177	Formatted: Font color: Text 1, Subscript
<u>GPM_{low}</u>	= Flow rate in gallons per minute, actual or certified equipment rate.	`	Formatted: Font color: Text 1
Llow	=Shower length in minutes with low flow showerhead	(Formatted: Font color: Text 1
NGDD	=8.20 minutes		Formatted: Font color: Text 1
NSPD	=Estimated showers per day per showerhead	(Formatted: Font color: Text 1, Subscript
EPGelectric	=Actual. If unknown, apply 1.0 conservative assumption. =Energy per gallon of hot water supplied by electric	\\\	Formatted: Font color: Text 1
ET Gelectric	=(8.33 lbs/gallon x 1BTU/lb F* x1.0 *x(ShowerTemp-	, ', ', '	Formatted: Font color: Text 1
*	upplyTemp)/(RE _{electric} *x3412)	'''', '	Formatted: Font color: Text 1
	=0.125 kWh/gallon		Formatted: Font color: Text 1
8.33	=Specific weight of water (lbs/gallon)		Formatted: Font color: Text 1, Subscript
1.0	=Heat capacity of water (BTU/lb-°F)		Formatted: Font color: Text 1
ShowerTemp	=Assumed mixed water temperature		Formatted: Font color: Text 1
	=105.0 F ¹⁹⁰ 101°F		Formatted: Font color: Text 1
SupplyTemp	=Assumed water temperature entering water heater		Formatted: Font color: Text 1
	$=61.59.33 \mathrm{F}^{191}58.4^{192}$		Formatted: Font color: Text 1
Usage	= Estimated usage of mixed water (mixture of hot water from water		Formatted: Font color: Text 1
<u>Osage</u>	heater line and cold-water line) per faucet (gallons per year)		Formatted: Font color: Text 1
	= If data is available to provide a reasonable custom estimate it	11111	Formatted: Font color: Text 1
	should be used, if not use the defaults in the table below (or	1111	Formatted: Font color: Text 1
	substitute custom information into the calculation):	111	Formatted: Font color: Text 1
		11	Formatted: Font color: Text 1
		','	Formatted: Font color: Text 1
			Formatted: Font color: Text 1

providing a more appropriate assumption for buildings in a particular market or geographical area, then they should be used.
Representative baseline flow rate for kitchen and bathroom faucet aerators from sources 1, 2, 3, and 4. This accounts for a throttling and differences from rated flow rates. The most comprehensive available studies did not disaggregate kitchen use from bathroom use, but instead looked at total flow and length of use for all faucets. This makes it difficult to reliably separate kitche water use from bathroom water use.

Formatted: Not Superscript/ Subscript

Formatted: Font color: Red

water use from bathroom water use.

190 Ameren Missouri Efficient Kits Evaluation: PY2018, https://www.efis.psc.mo.gov/Document/Display/15870, page 32.

191 National Weather Service. Average soil temperature at 40" depth during 2015 - 2023 data of six stations in Ameren Missouri service territory, https://www.weather.gov/ncrfc/LMI_SoilTemperatureDepthMaps Based on the DOE's Building America Standard DHW Event Schedule calculator. Average annual water main temperatures were determined for each defined weather zone in Missouri. The overall average of 60 83 is taken to represent the statewide average input water temperature.

zone in Missouri. The overall average of 60.83 is taken to represent the statewide average input water temperature.

192 National Weather Service|MO soil temp 40"|6 stations|2015

2023|https://www.weather.gov/ncrfc/LMI_SoilTemperatureDepthMaps

	Gallons		Estimated			Days	<u>Annual</u>	1		
Building		- Unit -	% HW from	Multiplier		Days per	gallons mixed water			Formatted: Font color: Text 1
<u>Type</u>				— <u>(C)</u>		year (D)	per faucet			
	<u>(A)</u>		<u>(B)</u>			<u> </u>	(A*B*C*D)			
Small Office	<u>_</u> ŧ	person	<u> 100%</u>	10	<u>employees</u> - per faucet -	<u>250</u>	2,500			Formatted: Font color: Text 1
Large Office	1	noncon	100%	45	employees	250	11,250			
Large Office	±	<u>person</u>	10070	12	per faucet -	230	11,230			Formatted: Font color: Text 1
<u>Fast Food</u> Restaurant	<u>0.7</u>	meal/day	<u>50%</u>	· <u>75</u> ·	<u>meals per</u> faucet	- <u>365</u>	<u>9,581</u>			Formatted: Font color: Text 1
<u>Sit-Down</u>	2.4	meat/day	50%	· 36 ·	meals per	- 365	15,768- -			Formatted: Font color: Text 1
Restaurant	Z.4	mear-day	3070	50	faucet	303	13,700			
<u>Retail</u>	<u>2</u>	employee	<u>100%</u>	5	employees per faucet	<u>365</u>	<u>3,650</u>			Formatted: Font color: Text 1
Grocery	<u>2</u>	employee	100%	5	employees	365	3,650			
Grocery		employee	10070	5	per faucet -	_ 505	5,050			Formatted: Font color: Text 1
<u>Warehouse</u>	<u>2</u>	employee	<u> 100%</u>	5	<u>employees</u> per faucet –	<u>250</u>	<u>2,500</u>			Formatted: Font color: Text 1
Elementary	<u>0.6</u>	- person -	50%	50	students per	- -200-	3,000			Formatted: Font color: Text 1
School	0.0	person	3070	50	faucet	200	5,000			
<u>Jr High/High</u> _ School	<u>1.8</u>	person	<u>50%</u>	· <u>50</u> ·	students per faucet	<u>200</u> -	<u>9,000</u>			Formatted: Font color: Text 1
	00	4.	250/	2	Patients per	265	16.425			
<u>Health</u>	<u>90</u>	patient	<u>25%</u>	2	<u>faucet</u>	<u> 365</u>	16,425			Formatted: Font color: Text 1
Motel	<u>20</u>	room	<u>25%</u>	<u></u>	faucet per room	<u>365</u>	<u>1,825</u>			Formatted: Font color: Text 1
TT-4-1	1.4		250/	1	faucet per	265	1 279			
Hotel	<u>14</u>	room _	<u>25%</u>	1	<u>room</u>	<u> 365</u>	1,278			Formatted: Font color: Text 1
Other	<u>±</u>	<u>employee</u>	<u> 100%</u>	<u>20</u>	<u>employees</u> - per faucet -	<u>250</u>	<u>5,000</u>			Formatted: Font color: Text 1
EPGelectric	= Energ	gy per gal	lon of mixe	d water us	sed by fauce	t (elect	ric water			Formatted: Font color: Text 1
	heater)									Formatted: Font color: Text 1
					<u>vTemp)) / (</u>					Formatted: Font: Cambria, Italic, Font color: Text 1
0.22			<u>((90 – 57.9)</u> t of water (1		(x, 3412) = 0	0.0800	kWh/gal		","	Formatted: Font: Cambria, Italic, Font color: Text 1
8.33					2					Formatted: Font: Cambria, Italic, Font color: Text 1
1.0			of water (bt							Formatted: Font: Cambria, Italic, Font color: Text 1
WaterTemp	= Assu	med temp	erature of n	nixed wat	<u>er</u>					Formatted: Font color: Text 1
										Formatted: Font color: Text 1
		_								Formatted: Font color: Text 1
Table 2.45 Chapter 4	O Service Wa	ter Heating	<u> 2007 ASHD</u> AF	Handbook	HVAC Applicat	ions-			1,11	Formatted: Font color: Text 1
•	ble 2-45 Chapter 49, Service Water Heating, 2007 ASHRAE Handbook, HVAC Applications: imated based on data provided in Appendix E, "Waste Not, Want Not: The Potential for Urban Water Conservation in							111	Formatted: Font color: Red	
ifornia," http://www.		_							''	Formatted: Font color: Red
Based on review of the mates. Meals per fau									\	Formatted: Font color: Red

Califo 195 Ba

estimates. Meals per faucet estimated as 4 bathroom and 3 k study above) 250/7 = 36. Fast food assumption estimated.

	$=90 \mathrm{F}^{-196}$	I	
SupplyTemp	= Assumed temperature of water entering building		Formatted: Font color: Red
	= 58.4 F ¹⁹⁷		
REelectric	= Recovery efficiency of electric water heater		Formatted: Font color: Text 1
3412	= 98% 198 = Converts Btu to kWh (Btu/kWh)		Formatted: Font color: Text 1
			Formatted: Font color: Text 1
ISR	= In service rate of faucet aerators = Assumed to be 1.0		Formatted: Font color: Text 1
	- Assumed to be 1.0		Formatted: Font color: Text 1
SUMMER COINCIDE	NT PEAK DEMAND SAVINGS		Formatted: Font color: Text 1
$\Delta kW = \Delta kWh *$	<u>« CF</u>	ایجر	Formatted: Font color: Text 1
Where:			Formatted: CambriaTextFormula
	lculated value above on a per showerhead faucet-basis		
	ummer peak coincidence demand (kW) to annual energy (kWh) factor		Formatted: Font color: Text 1
	0001811545 ¹⁹⁹ , unless, installed in the common area of multi-family sing.	. —	Formatted: Font color: Text 1
	0000887318 ²⁰⁰ if installed in the common area living area of multi-		
	ily housing.		Formatted: Font color: Text 1
Frank Frank	The state of the s		Formatted: Font color: Text 1
	T DESCRIPTIONS AND CALCULATION		
$\Delta Therms == \%I$	FossilDHW +x (GPM _{base} GPM base +x LL _{base} base - GPM _{low} GPMlov _{low} Llow) +x NSPD+x 365.25+x EPG _{aas} EPGgas +x ISR	z ← − ·	Formatted: Space After: 0 pt, Line spacing: single
	PMbase - GPMbw) / GPMbase) * Usage * EPGgas * ISR		Formatted: Font color: Text 1
Where:			
%FossilDH	<u>W</u> = proportion of water heating supplied by fossil fuel heating (see table below)		
	DHW fuel %Fossil DHW		Formatted: Font color: Background 1
	Electric 0%		Formatted: Font color: Text 1
	Fossil Fuel 100%		Formatted: Font color: Text 1
-			
196 Tamparatura cited from	SBW Consulting, Evaluation for the Bonneville Power Authority, 1994,	1	
1 // 1	1 31 W Consuming, Evaluation for the Dominevine Fower Administry, 1994,		

Formatted: Left, Indent: Left: 0", Don't keep lines together

Formatted: Font: 9 pt

 $[\]underline{\text{http://www.bpa.gov/energy/n/reports/evaluation/residential/faucet_aerator.cfm.} This is a variable that would benefit from further than the following the following$ evaluation.

103 National Weather Service MO soil temp 40" 6 stations 2015 to

²⁰²³ https://www.weather.gov/ncrfc/LMI_SoilTemperatureDepthMaps

¹⁹⁸ Electric water heater have recovery efficiency of 98%: http://www.ahrinet.org/ARI/util/showdoc.aspx?doc=576

¹⁹⁹ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes

Americal Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors" Residential program end-use category load shape: Water heating, "2016 Appendix E - End Use Shapes and Coincident Factors: pdf", AmerenMissouriEnd UseEnergyLoadshape_and_CoincidentPeakFactor_2016_01_12.xlsx (mo.gov)

Appendix H - TRM - Vol. 2: C&I Measures

A	<u>Unknown</u> <u>57%²⁰¹</u>	Formatted: Font color: Text 1
EPG_gas	= Energy per gallon of mixed water used by showerheadfaucet	Formatted: Font color: Text 1
	(gas water heater) = (8.33 *x 1.0 *x (WaterTemp - SupplyTemp)) / (RE gas *x	Formatted: Font color: Text 1
	$\frac{-(6.53 + \chi 1.0 + \chi (\text{water reinb} - \text{Supply reinb}))}{100,000} = 0.00772 \text{ Therm/gal}$	Formatted: Font color: Text 1
RE gas	= Recovery efficiency of gas water heater	Formatted: Font color: Text 1
400.000	$=67\%^{115}$	Formatted: Font color: Text 1
100,000	= Converts Btus to Therms (Btu/Therm)	Formatted: Font color: Text 1
Other variab	les as defined above.	Formatted: Font color: Text 1
		Formatted: Font color: Text 1
DHW fuel	%Fossil_DHW	Formatted: Font color: Text 1
<u>ectric</u> essil Fuel	100%	Formatted: Font color: Text 1
ssii ruei known	579/ ₂ ²⁰²	Formatted: Font color: Text 1
		Formatted: Font color: Text 1
TER IMPACT DE	SCRIPTIONS AND CALCULATION	Formatted: Font color: Text 1
allons = $\pm x$ (GP)	M _{base} *x L _{base} - GPM _{low} *xL _{low}) *x NSPD*x 365.25*xISR	Formatted: Font color: Text 1

MEASURE CODE:

N/A

Variables as defined above

((GPM_{base} - GPM_{low}) / GPM_{base}) * Usage * ISR

DEEMED O&M COST ADJUSTMENT CALCULATION

²⁴¹-Default assumption for unknown fuel is based on EIA Commercial Building Energy Consumption Survey (CBECS) 2012 for Midwest North Central Region (see 'HC8.9 Water Heating in Midwest Region.xls'). If utilities have specific evaluation results providing a more appropriate assumption for buildings in a particular market or geographical area, then they should be used. ⁴¹⁵ Review of AHRI Directory suggests range of recovery efficiency ratings for new Gas DHW units of 70-87%. Average of existing units is estimated at 75%. Commercial properties are more similar to MF homes than SF homes. MF hot water is often provided by a larger commercial boiler. This suggests that the average recovery efficiency is somewhere between a typical central boiler efficiency of .59 and the .75 for single family home. An average is used for this analysis by default.

²⁰² Default assumption for unknown fuel is based on EIA Commercial Building Energy Consumption Survey (CBECS) 2012 for Midwest North Central Region (see 'HC8.9 Water Heating in Midwest Region.xls'). If utilities have specific evaluation results providing a more appropriate assumption for buildings in a particular market or geographical area, then they should be used. ⁴⁴⁵ Review of AHRI Directory suggests range of recovery efficiency ratings for new Gas DHW units of 70-87%. Average of existing units is estimated at 75%. Commercial properties are more similar to MF homes than SF homes. MF hot water is often provided by a larger commercial boiler. This suggests that the average recovery efficiency is somewhere between a typical central boiler efficiency of .59 and the .75 for single family home. An average is used for this analysis by default.

Ameren	MICCO	ırı
	IVIIOSU	ull

2.5 HVAC

<u>Table: Table 1</u> Effective Full Load Heating and Cooling Hours, by Building Type

		an AFB vg)		ln, NE W)		dison, IA (E)	Kai (S`	iser W)		irardeau E)	St Louis	s Metro	Kansa	s City
Building Type	Heating EFLH	Cooling EFLH	Heating EFLH	Cooling EFLH	Heating EFLH	Cooling EFLH	Heating EFLH	Cooling EFLH	Heating EFLH	Cooling EFLH	Heating EFLH	Cooling EFLH	Heating EFLH	Cooling EFLH
Large Office	1039	1846	1141	1756	1088	1539	997	1918	861	1784	988	1869	1056	1792
Medium Office	649	1350	740	1245	728	1146	567	1412	528	1323	645	1386	708	1325
Small Office	946	1114	1030	1041	1029	975	926	1165	769	1082	893	1159	989	1097
Warehouse	991	415	1201	380	1227	357	1189	457	851	391	1059	433	1207	400
Stand-alone Retail	1012	1000	1125	903	1139	808	968	1076	891	965	994	986	1036	946
Strip Mall	1030	970	1124	884	1148	794	984	1044	905	944	1001	956	1039	916
Primary School	806	1019	892	958	898	852	798	1155	666	1016	785	1195	840	971
Secondary School	719	812	803	724	867	677	754	911	603	800	712	873	779	779
Supermarket	1279	875	1367	800	1405	672	1330	902	1120	837	1248	846	1344	820
Quick Service Restaurant	1233	1013	1414	916	1513	819	1316	1127	1025	973	1262	1035	1387	970
Full Service Restaurant	1367	1119	1499	1014	1655	952	1442	1234	1156	1114	1380	1124	1473	1059
Hospital	3388	3318	3205	3055	3467	2733	3891	3448	2913	3312	3170	3413	3372	3215
Outpatient Health Care	3203	3113	3261	2834	3150	2627	3128	3217	3001	3109	3013	3265	3164	2994
Small Hotel - Building	602	2247	697	2097	760	1914	620	2386	436	2304	575	2277	669	2207
Large Hotel - Building	1656	2148	1472	2016	1980	1916	1943	2369	1202	2186	1551	2363	1692	2155
Midrise Apartment - Building	1462	1132	1599	1028	1710	901	1590	1214	1208	1085	1433	1171	1580	1090
C&I Average ²⁰³	1067	1018	1196	937	1217	865	1118	1085	910	996	1060	1053	1164	986

Formatted: Font: 12 pt, Font color: Text 1

Formatted: Font color: Text 1

Formatted: Caption, Right: 0", Space After: 0 pt

²⁰³ See Volume 1 for details on modeling calculations and assumptions.

2.5.1 Small Commercial Learning Thermostats

DESCRIPTION

This measure characterizes the energy savings from the installation of a new programmable learning thermostat for reduced cooling and heating energy consumption through temperature setback during unoccupied or reduced demand times as well as automatic adjustments based on occupancy patterns and various independent variables such as weather. This measure is limited to small businesses as defined by programs, 204 as they have smaller HVAC systems that are similar to residential HVAC systems and may be controlled by a simple manual adjustment thermostat. Mid- to large-sized businesses will typically have a building automation system or some other form of automated HVAC controls. This measure is only appropriate for single zone heating systems. Custom calculations are required for savings for learning thermostats installed in multizone systems.

This measure was developed to be applicable to the following program types: RF, DI, and TOS.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The criteria for this measure are established by replacement of a manual-only temperature control with one that has the capability to adjust temperature set-points according to various independent variables without manual intervention.

DEFINITION OF BASELINE EQUIPMENT

For new thermostats the baseline is a non-programmable thermostat requiring manual intervention to change the temperature set-point.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life of a learning thermostat is assumed to be <u>10-9</u> years²⁰⁵ based upon equipment life only.²⁰⁶ a residential EUL analysis.

DEEMED MEASURE COST

Actual material and labor costs should be used if the implementation method allows. If unknown, the capital cost for this measure is assumed to be \$264224. 207

LOADSHAPE

Cooling BUS

Formatted: Not Superscript/ Subscript

Formatted: Font: Not Italic

Formatted: Font: Not Italic

Formatted: Font: Not Italic

Formatted: Hyperlink, Font: 9 pt, No underline, Font color: Black

Field Code Changed

Formatted: Font: 9 pt

 $^{^{\}rm 204}$ The square footage of the small office prototype building modeled in is 7,500 sf.

²⁰⁵ Table 1, HVAC Controls, Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GD Associates, 2007-CADMUS, "EUL analysis of residential smart communicating thermostat – Vendor A and B", Memorandum for Southern California Edison, (February 2019), for the California eTRM, Residential Smart Thermostat Measure, https://www.caetrm.com/measure/SWHC039/08/.

⁻HYPERLINK "https://www.caetrm.com/measure/SWHC039/08/"

Smart Thermostat, Residential | ETRM (caetrm.com)

rm the persistence of savings to further refine measure life assumption. As this characterization depends heavily upon a large seale but only 2-year study of the energy impacts of programmable thermostats, the longer-term impacts should be assessed. ²⁰⁷ Ameren Missouri Technical Resource Manual — Effective January 1, 2018. This current value was reviewed and confirme using PY20 program data.DSM Business Program participants, 1/2019 through 7/2024, includes equipment-eost and labor eost-Local file: "2.5.1 Measure Cost.xlsx"

Heating BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

```
\begin{split} \Delta \Delta kWh &= \Delta \Delta kWh_{cooling} \Delta kWhcooling + \Delta \Delta kWh_{heating} \Delta kWhcooling_{cooling} \Delta kWhcooling \\ &= 1/eff \ EFF + EFLHCOOLEFLH_{COOL} x \\ &+ kBtuh_{COOL}BtuhCOOL / 1000 x \ (1/SEER2) + x \ ESF_{COOL}ESFCOOL \\ \Delta kWh_{heating} &= EFLH_{HEAT} \ x \ kBTUh_{HEAT} \ x \ (1/HSPF2) \ x \ ESF_{HEAT} \end{split}
```

Where:

eff <u>EFFSEER2</u> = <u>Efficiency of HVAC unitSeasonal Energy Efficiency</u>

Ratio for cooling

= Actual; If not available, assume 10 SEER or if unknown,

assume 13.4 SEER2.

HSPF2 =Heating Seasonal Performance Factor

= Actual; or if unknown, assume 8.2 HSPF2.

EFLH_{COOL} = Effective Full Load Cooling Hours

= Actual; or if unknown, refer to Table 1 Table 1

Table 1Table 1by building type.

EFLH_{COOL} = Effective Full Load Cooling H Hours

<u>EFLH_{HEAT}</u> = Actual; or if unknown, Actual; If not available, refer to

Table 1 Table

type.section 2.7 HVAC

Btuhcool = Cooling System system Capacity 2,000 Btu/h

kBTUhcool = Actual

kBTUh_{HEAT} =Heating system capacity: 1,000 Btuh/h

=Actual

-ESF_{COOL} = Cooling energy savings factor

Formatted: CambriaTextFormula, Indent: Left: 0", Right: 0", Space Before: 3 pt, After: 3 pt, Line spacing: single

Formatted: Space Before: 3 pt, After: 3 pt

Formatted: CambriaTextFormula, Right: 0", Space After: 0 pt, Line spacing: single

Formatted Table

Formatted: Font color: Text 1

Formatted: Font: Italic

Formatted: Font: Not Italic

Formatted: Font color: Text 1

Formatted Table

Formatted: Font color: Text 1

Formatted: Font: Italic

Formatted: Font: Not Italic

Formatted: Font color: Text 1

Formatted: Subscript

= Ass	ume 0.139^{208}_{\bullet}		Formatted: Font: 12 pt			
ESH нват <mark>ESFнват</mark> =Hea	ting energy savings factor		Formatted: Font: (Default) Times New Roman			
<u> </u>	<u>ame 0.125²⁰⁹ </u>		Formatted: Font: (Default) Times New Roman			
SUMMER COINCIDENT PEAK D	EMAND SAVINGS		Formatted: Font: (Default) Times New Roman, Subscript			
	$\Delta kW = \Delta kW h_{cool} \Delta kW *-x CF$	◆ \ \',	Formatted: Font: (Default) Times New Roman			
Where:		-1, ,	Formatted: Font: (Default) Times New Roman			
$\Delta kWh = \frac{Electric}{Coc}$	oling electric energy savings, as calculated above		Formatted: Font: Cambria Math			
CF = Summer pea = 0.00091068	ak coincidence demand (kW) to annual energy (kWh) factor 40^{210}		Formatted: CambriaTextFormula, Right: 0", Space After: 0 pt, Line spacing: single			
NATURAL GAS ENERGY SAVING	es					
<u> 4Therms = SQFT * Saving</u> <u>kBTUh_{GAS} x (1/AFUE) x ES</u>	$sFactor*PF/(100*AFUE_{EXIST})\Delta ThermS_{heating} = EFLH_{HEAT}x$ F_{HEAT}					
A			Formatted: Font: Cambria Math, Italic			
Where:		·				
SQFT	= Square footage of building controlled by thermostat					
EFLH _{HEAT} SavingsFacto	F Effective Full Load Heating Hours					
	= Actual; or if unknown, refer to Table 1 Table 1 Table 1 Table	=	Formatted: Font color: Text 1			
, pres	1 Table 1by building type = 9.940 kBtu/sf yr ²¹¹		Formatted: Font: Italic			
AFUE _{EXIST} <u>kBTUh</u> _{Gas}	= <u>Heating system capacity: 1,000 Btuh/h</u>		Formatted: Font: Not Italic			
100 A FILE	=Actual		Formatted: Font color: Text 1			
100 <u>AFUE</u>	= Converts kBtu to therms, 1 therm = 100 kBtuAnnual Fuel Utilization Efficiency					
	=Actual, or if unknown, assume 0.80.	ı				
ESF _{HEAT}	Heating energy savings factor		Formatted: Subscript			
EST HEAT	=Assume 0.125 ²¹²		Tomattee. Subscript			
	Assume 0.125	/	Formatted: Footnotes, Left, Line spacing: single, No widow/orphan control			
		1,	Formatted: Font: Not Italic			
²⁰⁸ Cadmus (Aarish, C., M. Perussi, A. Ri	etz, and D. Korn). Evaluation of the 2013–2014 Programmable and Smart Thermosta	ıt 🔸 🔑	Field Code Changed			
	n Indiana Public Service Company and Vectren Corporation. 2015(January 2015): [Pa		Formatted: Footnotes			
content/uploads/2015/06/Cadmus Vectre 2b13f74c4e52%20%20.	en_Nest_Report_Jan2015.pdf?submissionGuid=7cbc76e9-41bf-459a-94f5-		Formatted: Left, Indent: Left: 0", First line: 0", Don't keep lines together			
209 IBID 210 Ameren Missouri TRM Volume 1 - A	ppendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shape:	4 / /	Formatted: Footnotes, Left, Line spacing: single			
and Coincident Peak Factors" 211 Heating Savings Factors for the programmable thermostar	are calculated as the savings in annual building load divided by the square footage of the prototype building (5.500 sf) and	4//	Formatted: Font: Not Italic			
converted to kBtu.	7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1	1/-	Formatted: Footnotes			
	etz, and D. Korn). Evaluation of the 2013–2014 Programmable and Smart Thermosta Indiana Public Service Company and Vectren Corporation. (January 2015)	<u>t •</u> /	Formatted: Font: Not Italic			
http://www.cadmusgroup.com/wp-	n Nest Report Jan2015.pdf?submissionGuid=7cbc76e9-41bf-459a-94f5-		Formatted: Underline, Font color: Blue			

Ameren	Missouri

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

Formatted: Space After: 4.9 pt

2.5.2 Small Commercial Programmable Thermostats

DESCRIPTION

This measure characterizes the energy savings from the installation of a new programmable thermostat for reduced heating and cooling energy consumption through temperature set-back during unoccupied or reduced demand times. This measure is limited to small businesses as defined by programs, ²¹³ as they have smaller HVAC systems that are similar to residential HVAC systems and may be controlled by a simple manual adjustment thermostat. Mid- to large-sized businesses will typically have a building automation system or some other form of automated HVAC controls. This measure is only appropriate for single zone heating systems. Custom calculations are required for savings for programmable thermostats installed in multi-zone systems.

This measure was developed to be applicable to the following program types: RF and DI.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The criteria for this measure are established by replacement of a manual-only temperature control with one that has the capability to adjust temperature set-points according to a schedule without manual intervention.

DEFINITION OF BASELINE EQUIPMENT

For new thermostats the baseline is a non-programmable thermostat requiring manual intervention to change the temperature set-point.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life of a programmable thermostat is assumed to be 8 years²¹⁴ based upon equipment life only.²¹⁵

DEEMED MEASURE COST

Actual material and labor costs should be used if the implementation method allows. If unknown, the capital cost for this measure is assumed to be \$181160.216

LOADSHAPE

Cooling BUS

²¹³ The square footage of the small office prototype building modeled in is 7,500 sf.

²¹⁴ Table 1, HVAC Controls, Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, 2007.

²¹⁵ Future evaluation is strongly encouraged to inform the persistence of savings to further refine measure life assumption. As this characterization depends heavily upon a large scale but only 2-year study of the energy impacts of programmable thermostats, the longer-term impacts should be assessed.

longer-term impacts should be assessed.

216 Based upon Nicor, https://www.ilsag.info/wp-content/uploads/Nicor-Gas-2022-2025-EE-Plan_filed-March-2021.pdf (see measure# 239 pg 141, \$84 measure cost + \$56 labor + \$28 material) Illinois Rider 30 Business EER Program Database, Paid Rebates with Programmable Thermostat Installation Costs, Program to Date as of January 11, 2013. If Missouri average costs are available, they should be used.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = SQFTft + x SavingsFactor + x PF / EER_{EXIST} EEREXIST$

Where:

Sqft = Square footage of building controlled by thermostat

SavingsFactor = $0.578 \text{ kWh/sf-yr}^{217}$

PF = Persistence Factor to account for thermostat being placed on hold,

reset or bypassed.

= Actual if provided in program evaluation, else assume 50%²¹⁸

EER_{EXIST} = Efficiency rating of existing cooling equipment EER (btu hr/W)

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kW + x CF$

Where:

 ΔkWh = Electric energy savings, as calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0009106840^{219}$

NATURAL GAS ENERGY SAVINGS

 $\Delta Therms = SQFTft + x SavingsFactor + x PF / (100 + x AFUE_{EXIST}AFUEEXIST) + Whereighter SavingsFactor + x PF / (100 + x AFUE_{EXIST}AFUEEXIST) + x SavingsFactor + x PF / (100 + x AFUEEXIST) + x SavingsFactor + x PF / (100 + x AFUEEXIST) + x SavingsFactor + x PF / (100 + x AFUEEXIST) + x SavingsFactor + x PF / (100 + x AFUEEXIST) + x SavingsFactor + x PF / (100 + x AFUEEXIST) + x SavingsFactor + x PF / (100 + x AFUEEXIST) + x SavingsFactor + x PF / (100 + x AFUEEXIST) + x SavingsFactor + x PF / (100 + x AFUEEXIST) + x SavingsFactor + x PF / (100 + x AFUEEXIST) + x SavingsFactor + x PF / (100 + x AFUEEXIST) + x SavingsFactor + x PF / (100 + x AFUEEXIST) + x SavingsFactor + x PF / (100 + x AFUEEXIST) + x SavingsFactor + x PF / (100 + x AFUEEXIST) + x SavingsFactor + x PF / (100 + x AFUEEXIST) + x SavingsFactor + x PF / (100 + x AFUEEXIST) + x SavingsFactor + x PF / (100 + x AFUEEXIST) + x SavingsFactor + x PF$

Where:

SQFT SQft = Square footage of building controlled by thermostat

 $\underline{thermostats} \underline{http://eec.ucdavis.edu/files/Usability_of_residential_thermostats.pdf.}$

Formatted: Cambria12, Right: 0", Space After: 0 pt, Line spacing: single

Formatted: Cambria12

Formatted: Cambria12, Right: 0", Space After: 0 pt, Line spacing: single

Formatted: Hyperlink

Formatted: Left, Indent: Left: 0", Don't keep lines together

²¹⁷ Cooling savings factors for the programmable thermostat are calculated as the savings in annual building load divided by the square footage of the small office prototype building (5,500 sf).
²¹⁸ This factor is based on consideration of the findings from a number of evaluations, including Sachs et al, "Field Evaluation of

²¹⁸ This factor is based on consideration of the findings from a number of evaluations, including Sachs et al, "Field Evaluation of Programmable Thermostats," US DOE Building Technologies Program, December 2012, p35; "low proportion of households that ended up using thermostat-enabled energy saving settings"

https://www.nrel.gov/docs/fy13osti/56637.pdfhttp://apps1.eere.energy.gov/buildings/publications/pdfs/building_america/field_eval_thermostats.pdf%20, and Meier et al., "Usability of residential thermostats: Preliminary investigations," Lawrence Berkeley National Laboratory, March 2011, p1;

[&]quot;The majority of occupants operated thermostats manually, rather than relying on their programmable features and almost 90% of respondents reported that they rarely or never adjusted the thermostat to set a weekend or weekday program. Photographs of thermostats were collected in one on-line survey, which revealed that about 20% of the thermostats displayed the wrong time and that about 50% of the respondents set their programmable thermostats on "long term hold" (or its equivalent)." https://eta.lbl.gov/publications/usability-residential-

²¹⁹ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

Ameren Missouri

Appendix H - TRM - Vol. 2: C&I Measures

Savings Factor $= 9.940 \text{ kBtu/sf-yr}^{220}$

= Converts kBtu to therms, 1 therm = 100 kBtu

AFUE_{EXIST} = Efficiency rating of existing heating equipment (AFUE), in decimal form.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

²²⁰ Heating Savings Factors for the programmable thermostat are calculated as the savings in annual building load divided by the square footage of the prototype building (5,500 sf) and converted to kBtu.

2.5.3 Demand Controlled Ventilation

DESCRIPTION

Demand control ventilation (DCV) automatically adjusts building ventilation rates based on occupancy. DCV is part of a building's ventilation system control strategy. It may include hardware, software, and controls as an integral part of a building's ventilation design. Active control of the ventilation system provides the opportunity to reduce heating and & cooling energy use.

The primary component is a control sensor to communicate either directly with the economizer or with a central computer. The component is most typically a carbon dioxide (CO₂) sensor, occupancy sensor, or turnstile counter. This measure is modeled to assume night time set backs are in operation and minimum outside air is being used when the building is unoccupied.

This measure was developed to be applicable to the following program type: RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment condition is defined by new CO₂ sensors installed on return air systems where no other sensors were previously installed. Additionally, commissioned control logic and installed hardware must be capable of reducing ventilation rates based on sensor input. For heating savings, this measure does not apply to any system with terminal reheat (constant volume or variable air volume). For a terminal reheat system, a custom savings calculation should be used to determine the heating savings; cooling savings are still applicable to the measure.

DEFINITION OF BASELINE EQUIPMENT

The base case for this measure is a space with no demand control capability, and is not required by the local building code. The current code minimum for outside outdoor air (OA) is 17-5 CFM per occupant (ASHRAE 62.1-2022) for office buildings, which is the value assumed in this measure.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The deemed measure life is 10 years.221

DEEMED MEASURE COST

As a retrofit measure, the actual cost of installation should be used for screening. Costs should include the hardware and labor costs to install the sensors. Additional purchase and installation costs for any other component of the DCV system that was not previously existing should also be included.

LOADSHAPE

Cooling BUS

²²¹ Based on CO₂ sensor estimated life, determined through conversations with contractors to have a minimum lifetime of 10 years. It is recommended that they are part of a normal preventive maintenance program, as calibration is an important part of extending useful life. Although they are not subject to mechanical failure, they can fall out of tolerance over time.

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

For facilities heated by natural gas, cooling savings are:

$$\Delta kWh = SQFT_{cond} / 1000 + x SF_{cooling}$$

For facilities heated by heat pumps, heating and cooling savings are:

 $\Delta kWh = SQFT_{cond} / 1000 + x SF_{cooling} + SQFT_{cond} / 1000 + x SF_{Heat HP}$ For facilities heated by electric resistance heating and cooling savings are:

 $\Delta kWh = SQFT_{cond} / 1000 + x SF_{cooling} + SQFT_{cond} / 1000 + x SF_{Heat ER}$

 $\Delta KVVII = SQII cona / 1000 \xrightarrow{\longrightarrow} SI cooling +$

Where:

SQFT_{cond} = Square footage of conditioned space commissioned with DCV
SF_{cooling} = Cooling Savings Factor, including cooling and fan energy savings
SF_{Heat HP} = Heating Savings factor for facilities heated by Heat Pump (HP)
SF_{Heat ER} = Heating Savings factor for facilities heated by Electric Resistance (ER)

Savings factors are based on Building Type and weather zone – see tables below.²²²

	SF _{cooling} (kWh/1000 SqFt)						<u> </u>
	North East		South East	South	St	Kansa	
Building Type	(Fort	West	(Cape	West	Louis		Unknown
	Madison,	(Lincol	Girardeau,	(Kaiser,	Metro,	City,	(Knob
	IA)	n, NE)	MO)	MO)	MO	MO	Noster, MO)
Office - Low-rise	475	533	535	634	649	555	579
Office - Mid-rise	448	502	504	597	611	523	545
Office - High-rise	468	525	527	624	639	547	570
Religious Building	567	635	639	756	774	662	690
Restaurant	561	629	632	748	765	655	683
Retail - Department Store	654	734	737	873	893	764	797
Retail - Strip Mall	399	447	449	532	544	466	486
Convenience Store	631	708	711	842	862	737	769
Elementary School	353	395	397	470	481	412	430
High School	340	382	384	454	465	398	415
College/University	442	495	498	589	603	516	538
Healthcare Clinic	384	431	433	513	525	449	468
Lodging	605	679	682	808	827	707	738
Manufacturing	500	560	563	666	682	584	609

²²² Energy savings factors were calculated using weather data and methodology consistent with ASHRAE standards. Savings are calculated on an annual basis for each given weather zone in Missouri. Original energy savings for DCV were developed for Illinois utilizing standards, inputs and approaches as set forth by ASHRAE 62.1 and 90.1. These savings factors were then translated into Missouri-specific values using adjustment factors based on differences in heating and cooling degree hours. See DCV savings factors v1.xlsx for derivation.

Formatted: Cambria12, Indent: First line: 0"

Formatted: Cambria12, Indent: First line: 0"

Formatted: Cambria12, Indent: First line: 0"

Ameren Missouri

Appendix H - TRM - Vol. 2: C&I Measures

Special Assembly	176	524	526	625	650	556	580
Auditorium	470	334	536	033	650	330	380

	SF Heat HP (kWh/1000 SqFt)						
Building Type	North East (Fort Madison, IA)	North West (Lincoln, NE)	South East (Cape Girardeau, MO)	South West (Kaiser, MO)	St Louis Metro, MO	Kansas City, MO	Average/ Unknown (Knob Noster, MO)
Office - Low-rise	171	191	145	151	156	176	159
Office - Mid-rise	114	128	97	100	104	117	106
Office - High-rise	154	172	130	135	140	158	143
Religious Building	1,118	1,248	945	983	1,018	1,149	1,036
Restaurant	799	892	675	702	727	821	740
Retail - Department Store	277	310	234	244	252	285	257
Retail - Strip Mall	184	205	155	161	167	189	170
Convenience Store	134	150	114	118	122	138	125
Elementary School	475	531	402	418	433	488	440
High School	465	519	393	409	423	478	431
College/University	923	1,031	780	812	840	949	856
Healthcare Clinic	331	370	280	291	301	340	307
Lodging	157	175	132	138	143	161	145
Manufacturing	122	136	103	107	111	125	113
Special Assembly Auditorium	1,335	1,490	1,128	1,173	1,215	1,371	1,236

	SF Heat ER (kWh/1000 SqFt)						
Building Type	North East (Fort Madison, IA)	North West (Lincoln, NE)	South East (Cape Girardeau, MO)	South West (Kaiser, MO)	St Louis Metro, MO	Kansas City, MO	Average/ Unknown (Knob Noster, MO)
Office - Low-rise	514	574	434	452	468	528	476
Office - Mid-rise	343	383	290	301	312	352	318
Office - High-rise	461	515	390	406	420	474	428
Religious Building	3,354	3,744	2,835	2,948	3,053	3,446	3,108
Restaurant	2,396	2,675	2,025	2,106	2,181	2,462	2,220
Retail - Department Store	832	929	703	731	757	855	771
Retail - Strip Mall	551	615	465	484	501	566	510
Convenience Store	403	450	341	354	367	414	374
Elementary School	1,426	1,592	1,205	1,253	1,298	1,465	1,321
High School	1,395	1,557	1,179	1,226	1,270	1,433	1,292
College/University	2,770	3,093	2,341	2,435	2,521	2,846	2,567
Healthcare Clinic	993	1,109	839	873	904	1,020	920
lodging	470	525	397	413	428	483	436
Manufacturing	365	408	309	321	332	375	338
Special Assembly Auditorium	4,004	4,470	3,384	3,519	3,644	4,114	3,709

Formatted Table

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWhcooling x *-CF$$

Where:

Δ kWh_{cooling} = Electric energy savings, as calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0009106840^{223}$

NATURAL GAS SAVINGS

$$\Delta Therms = SQFT_{cond} / 1000 + x SF_{Heat Gas}$$

Where:

 $SF_{\,Heat\,Gas}$ Savings factor for facilities heated by natural gas – see table below

	SF _{Heat Gas} (Therm/1000 sq ft)						
Building Type	North East (Fort Madison, IA)	North West (Lincoln, NE)	South East (Cape Girardeau, MO)	South West (Kaiser, MO)	St Louis Metro, MO	Kansas City, MO	Average/ Unknown (Knob Noster, MO)
Office - Low-rise	22	24	19	19	20	23	20
Office - Mid-rise	15	16	12	13	13	15	14
Office - High-rise	20	22	17	17	18	20	18
Religious Building	143	160	121	126	130	147	133
Restaurant	102	114	86	90	93	105	95
Retail - Department Store	35	40	30	31	32	36	33
Retail - Strip Mall	23	26	20	21	21	24	22
Convenience Store	17	19	15	15	16	18	16
Elementary School	61	68	51	53	55	62	56
High School	60	66	50	52	54	61	55
College/University	118	132	100	104	108	121	109
Healthcare Clinic	42	47	36	37	39	44	39
lodging	20	22	17	18	18	21	19
Manufacturing	16	17	13	14	14	16	14
Special Assembly Auditorium	171	191	144	150	155	175	158

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

²²³ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

Ameren	

Appendix H - TRM - Vol. 2: C&I Measures

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

Formatted: Indent: Left: -0", Right: 3.12", Space After: 5 pt

2.5.4 Advanced Roof Top Unit (RTU) Controls

DESCRIPTION

A traditional packaged HVAC rooftop unit uses a zone thermostat to control the operation of the compressor or the gas furnace, depending on whether the zone thermostat is calling for cooling or heating. Under a conventional control scheme, the compressor or furnace is cycled on or off to maintain the zone thermostat set point with the supply fan operating continuously (when the building is occupied) to provide sufficient ventilation air and provide comfort heating and cooling for the space. The supply-fan speed is typically not capable of modulation, so it supplies constant air volume under all modes of operations.

Modulating the supply fan in conjunction with demand-controlled ventilation (DCV) can reduce both heating/cooling energy and fan energy requirements. This measure describes the energy savings realized by retrofitting traditional RTUs with advanced controllers that enable integrated air-side economization, supply-fan speed control (by installing a variable speed drive), and demand-controlled ventilation.

This measure is applicable to the following program type: RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

A traditional RTU retrofitted and commissioned with advanced controls that allow for modulation of supply fan speed in conjunction with demand-controlled ventilation (DCV).

DEFINITION OF BASELINE EQUIPMENT

Packaged heating and cooling equipment with constant speed supply fans providing ventilation at the design rate at all times when the fan is operating and when the building is occupied.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life for HVAC application is 15 years.²²⁴

DEEMED MEASURE COST

As a retrofit measure, actual costs should be specified when available. Default measure costs are listed below based on RTU supply fan horsepower rating:²²⁵

Supply Fan Size (226-(hp)	Controller	Installation Labor	Total Retrofit Cost
1	\$2,200	\$750	\$2,950
2	\$2,600	\$750	\$3,350
3	\$3,500	\$750	\$4,250
5	\$4,000	\$750	\$4,750
7.5	\$4,142	\$750	\$4,892

Formatted Table

Formatted: Indent: Left: 0"

Page 99

²²⁴ ASHRAE, Chapter 38: Owning and Operating Costs, Table 4, "Heating, Ventilating and Air Conditioning Applications", (2023 edition) for electronic building controls. Consistent with other HVAC variable speed drive lifetimes.

²²⁵ Advanced Rooftop Control (ARC) Retrofit: Field-Test Results, PNNL-22656. U.S. Department of Energy, (July 2013).

²²⁶ Interpolation may be used to estimate controller cost for motor sizes not listed.

LOADSHAPE HVAC BUS

Algorithm

CALCULATION OF SAVINGS

Although advanced RTUs controls can enable operating strategies that result in heating and cooling savings, field testing has shown variable results (in some instances increased heating/cooling energy consumption has been observed). Field testing has suggested that upwards of 90% of total energy savings can be attributed to reduced fan energy requirements, and therefore the following savings estimates are limited to those relating to fan energy consumption.

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = P_{sf} Psf + x SF + x Hours_{fan} Hoursfan$

Where:

 P_{sf} = Nominal horsepower of supply fan motor

SF = Fan energy savings factor_227-(kWh/hour/horsepower)

 $=0.558^{228}$

Hours_{fan} = Annual operating hours for fan motor based on Building Type. Default hours

are provided for HVAC applications by Building Type.²²⁹ When available, actual hours should be used, especially in instances where RTU operation is seasonal.

227 Based on average field testing results outlined in Advanced Rooftop Control (ARC) Retrofit: Field-Test Results, PNNL-22656. U.S. Department of Energy, July 2013. Savings factors were consistent across the capacity range. See "RTU Control Savings.xlsx" for additional details.

228 US Department of Energy, "Advanced Rooftop Control (ARC) Retrofit: Field-Test Results, PNNL-22656.", page 86, (July 2013). https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-22656.pdf? hstc=249664665.3c4d37ff926a6dcbd64478550ad8ba16.1723665944789.1723665944789.1723665944789.1

22605.pdf/ hstc=249664665.3c4d5/ff)26addcbdd44/850dad8ba16.1/23665944/89.1/23665944/89.1/23665944/89.1 (23665944/89.1 & fc=249664665.1.1723665944789. hsfp=2087961721. Savings factors were consistent across the capacity range. See "RTU Control Savings.xlsx" for additional details.

²²⁹ Hours per year are estimated using the modeling results and represent the total number of hours the fans are operating for heating, cooling and ventilation for each Building Type.

Formatted: Footnotes, Indent: Left: 0"

Formatted: Footnotes

Formatted: Cambria12

Formatted: Font: 9 pt, Underline, Font color: Accent 1

Field Code Changed

Appendix H - TRM - Vol. 2: C&I Measures

Building Type	Total Fan Run Hours
Large Office	6753
Medium Office	6968
Small Office	6626
Warehouse	6263
Stand-alone Retail	6679
Strip Mall	6687
Primary School	5906
Secondary School	6702
Supermarket	6900
Quick Service Restaurant	7679
Full Service Restaurant	7664
Hospital	8760
Outpatient Health Care	8760
Small Hotel - Building	8760
Large Hotel - Building	8760
Midrise Apartment Building	8728
Nonresidential Average	6773

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh + x CF$

Where:

 Δ kWh = As calculated above.

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0004439830^{230}$

NATURAL GAS ENERGY SAVINGS

If fossil fuel impacts are expected, a custom analysis should be used to support them.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

Formatted: Keep with next Formatted: Keep with next **Formatted Table** Formatted: Keep with next Formatted: Cambria12

²³⁰ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

2.5.5 Electric Chiller

DESCRIPTION

This measure involves the installation of a new electric chiller meeting the efficiency standards presented below. This measure could relate to the replacement of an existing unit at the end of its useful life or the installation of a new system in an existing building (i.e., time of sale). Only single-chiller applications should be assessed with this methodology. For multiple chiller projects, a custom analysis should be used to establish savings.

This measure was developed to be applicable to the following program types: TOS and NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to exceed the efficiency requirements defined by the program.

DEFINITION OF BASELINE EQUIPMENT

In order for this characterization to apply, the baseline equipment is assumed to meet the 2015 IECC energy efficiency requirements. Chillers are rated for both the full load efficiency and the integrated part load efficiency. Chiller efficiency can be sourced by either Path A when the system is designed for full load efficiency, or Path B when designed for part load efficiency., effective January 1, 2024.

Prior to January 1, 2024, the applicable baseline is assumed to meet the efficiency requirements set forth by local jurisdictions. When local code does not exist, use of IECC 2012 is defined as the building code baseline. In most cases, this will be some version of IECC. Depending on the version, this will correspond to the requirements defined within Table 503.2.3(7) in the case of IECC 2009, Table 403.2.3(7) in the case of either IECC 2012 or the IECC 2015, or Table C403.3.2(7) in the case of IECC 2018.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 20-23 years.231

DEEMED MEASURE COST

The incremental capital cost for this measure is \$106.23 per ton. ²³² measure is based on the IPLV efficiency improvement over a code based minimum efficient chiller. The cost is per 0.01 IPLV improvement over code, per ton. A 150 ton screw chiller with an IPLV of 0.374, has an incremental cost of \$27,834, when the minimum code based efficiency is 0.44.

Water cooled, electrically operated, positive displacement (rotary screw and scroll) (\$/ton)							
Capacity (tons)	> 0.72 kW/ton	< 0.72 and	< 0.68 and	0.64 kW/ton and			
		> 0.68 kW/ton	≥ 0.64 kW/ton	less			

²³¹ 2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05, "Effective/Remaining Useful Life Values," California Public Utilities Commission, December 16, 2008 (Cell-D85 "Updated 2014 EUL table" sheet). ASHRAE, Chapter 38: Owning and Operating Costs, Table 4, "Heating, Ventilating and Air Conditioning Applications", (2023 edition) for centrifugal chillers (page 38.3).

Formatted: Font: 12 pt

Formatted: Footnotes, Indent: Left: 0"

²³² Ameren Missouri Technical Resource Manual Effective January 1, 2018.

Ameren Missouri

Appendix H - TRM - Vol. 2: C&I Measures

< 50	\$76	\$126	n/a	n/a
>= 50 and < 100	\$38	\$63	n/a	n/a
>= 100 and <150	\$25	\$42	n/a	n/a
>= 150 and <200	\$0	\$61	\$122	\$183
>= 200	\$0	\$31	\$61	\$92

<u>Equipment</u>	Incremental Cost ²³³ - \$/0.01 1PLV above code/ton	<u>Base IPLV</u>
Water cooled screw chiller	<u>\$28</u>	2015 IECC or better
Water cooled centrifugal chiller	\$35	2015 IECC or better

Water cooled, electrically operated, positive displacement (reciprocating) (\$/ton)						
	<u>> 0.60</u>	< 0.60	0.58			
Capacity		and>				
(tons)		0.58	and			
		kW/ton	less			
< 100	\$73	\$110	\$183			
>= 100	\$49	\$73	\$122			
and <150						
>= 150	\$37	\$55	\$92			
and <200						
>= 200	\$61	\$91	\$152			
and <300						
>= 300	\$30	\$46	\$76			

LOADSHAPE

Cooling BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

For a chiller operating primarily at full load, (Path A compliance).

 $\Delta kWh = TONS + \chi (IPLV_{BASE} + IPLV_{EE} + IPLV_{EE} + \chi EFLH)$

For a chiller operating primarily at part load, (Path B compliance).

²³³ Incremental cost aggregated from Southern California Edison data in the California eTRM, "Water Cooled Chiller" measure incremental cost data (November 2020), https://www.caetrm.com/measure/SWHC005/03/, Aggregated data in file "SWHC005 Water-Cooled Chiller Cost Data 2020Q3 aggregated by 0.01 IPLV per ton.xlsx"

Formatted: Font: 11 pt, Bold, Font color: Background 1

Formatted: Font: 11 pt, Bold, Font color: Background 1

Formatted: Centered

Formatted Table

Formatted: Font: 11 pt, Bold, Font color: Background 1

Formatted: Font: 11 pt

Formatted: Centered

Formatted: Font: 11 pt

Formatted: Centered
Formatted: Font: 11 pt

Formatted Table

Formatted: Indent: Left: 0", Right: 0.1"

Formatted: Font: (Default) Times New Roman, Not

Italic

Formatted: Cambria12, Space Before: 4 pt, After: 4 pt, Line spacing: single, Tab stops: Not at 3.01" + 4.8"

Formatted: Footnotes

Formatted: Font: 9 pt, Font color: Blue

Formatted: Font: 9 pt

Formatted: Font: 9 pt

Appendix H - TRM - Vol. 2: C&I Measures

Formatted Table

Formatted: Subscript

Formatted: Subscript

Formatted: Cambria12

Formatted: Line spacing: single

Formatted: Line spacing: single

Formatted Table

Formatted: Font color: Text 1

 $\Delta kWh = TONS x (FL_{BASE} - FL_{EE}) x EFLH$

Where:

TONS = Chiller nominal cooling capacity in tons (note: 1 ton = 12,000 Btu/hr)

= Actual installed

IPLV_{BASE} =Efficiency of baseline equipment expressed as Integrated Part Load Value

(kW/ton). Chiller units are dependent on chiller type. See 'Chiller Units, Conversion Values' and 'Baseline Efficiency Values by Chiller Type' and Capacity in the Reference Tables section.

=Code based minimum part load efficiency for same type, capacity installed

FLBASE = Efficiency of baseline equipment expressed as Full Load (kW/ton).

=Code based minimum part load efficiency for same type, capacity installed

IPLV_{EE}²³⁴ = Efficiency of high efficiency equipment expressed as Integrated Part Load

Value (kW/ton)²³⁵ = Actual installed

FLEE, = Efficiency of high efficiency equipment expressed as Full Load (kW/ton)

=Actual installed

EFLH = Equivalent Full Load Hours for cooling are provided in <u>Table 1Table</u>

1Table 1. section 2.7 HVAC

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWH - x CF$

Where:

 ΔkWh = Annual electricity savings, as calculated above

CF _= Summer peak coincidence demand (kW) to annual energy (kWh) factor for Cooling

 $= 0.0009106840^{236}$

NATURAL GAS ENERGY SAVINGS

N/A

²³⁴ Integrated Part Load Value is a seasonal average efficiency rating calculated in accordance with ARI Standard 550/590. It may be calculated using any measure of efficiency (EER, kW/ton, COP), but for consistency, it is expressed in terms of IPLV here.

here.

235 Can determine IPLV from standard testing or looking at engineering spees for design conditions. Standard data is available from AHRnetLorg. http://www.ahrinet.org/.

²³⁶ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

REFERENCE TABLES

Chillers Ratings - Chillers are rated with different units based on equipment type as shown below

Equipment Type	Unit
Air cooled, electrically operated	EER
Water cooled, electrically operated, positive displacement (reciprocating)	kW/ton
Water cooled, electrically operated, positive displacement (rotary screw and scroll)	kW/ton

In order to convert chiller equipment ratings to IPLV the following relationships are provided

kW/ton = 12 / EER

 $kW/ton = 12 / (COP \times 3.412)$

COP = EER / 3.412

COP = 12 / (kW/ton) / 3.412

EER = 12 / kW/tonEER = COP x 3.412

Baseline Efficiency Values by Chiller Type and Capacity:

Note: Efficiency requirements depend on the path (Path A or Path B) that the building owner has chosen to meet compliance requirements. For air cooled and absorption chillers, Path A should be assumed. For water cooled chillers, the building owner should be consulted and the relevant path used for calculations. When unknown, Path A should be used.

TABLE 503.2.3(7)

			BEFORE	1/1/2010	AS OF 1/1/2010 ^c				
EQUIPMENT TYPE					PAT	на	PAT	нв	
	SIZE CATEGORY	UNITS	FULL LOAD	IPLV	FULL LOAD	IPLV	FULL LOAD	IPLV	TEST PROCEDURE
	< 150 tons	EER			≥ 9.562	≥ 12.500	NAd	NAd	
Air-cooled chillers	≥ 150 tons	EER	≥ 9.562	≥ 10.416	≥ 9.562	≥ 12.750	NAd	NAd	
Air cooled without condenser, electrical operated	All capacities	EER	≥ 10.586	≥ 11.782	Air-cooled ch be rated with comply with t requirements	matching cor	ndensers an	d	
Water cooled, electrically operated, reciprocating	All capacities	kW/ton	≤ 0.837	≤ 0.696		Reciprocating units must comply with water cooled positive displacement efficiency			
	< 75 tons	kW/ton			≤ 0.780	≤ 0.630	≤0.800	≤ 0.600	
Water cooled, electrically operated, positive displacement	≥ 75 tons and < 150 tons	kW/ton	≤ 0.790	≤ 0.676	≤ 0.775	≤ 0.615	≤ 0.790	≤ 0.586	AHRI
	≥ 150 tons and < 300 tons	kW/ton	≤ 0.717	≤ 0.627	≤ 0.680	≤ 0.580	≤0.718	≤ 0.540	550/590
	≥ 300 tons	KW/ton	≤ 0.639	≤ 0.571	≤ 0.620	≤ 0.540	≤ 0.639	≤ 0.490	
	< 150 tons	kW/ton	≤ 0.703	≤ 0.669					
Water cooled,	≥ 150 tons and < 300 tons	kW/ton	≤ 0.634	≤ 0.596	≤ 0.634	≤ 0.596	≤0.639	≤ 0.450	
electrically operated, centrifugal	≥ 300 tons and < 600 tons	kW/ton	≤ 0.576	≤ 0.549	≤ 0.576	≤ 0.549	≤0.600	≤ 0.400	
	≥ 600 tons	kW/ton	≤ 0.576	≤ 0.549	≤ 0.570	≤ 0.539	≤ 0.590	≤ 0.400	
Air cooled, absorption single effect	All capacities	COP	≥ 0.600	NRe	≥ 0.600	NRe	NAd	NAd	
Water-cooled, absorption single effect	All capacities	COP	≥ 0.700	NRe	≥ 0.700	NRe	NAd	NAd	AHRI560
Absorption double effect, indirect-fired	All capacities	COP	≥ 1.000	≥ 1.050	≥ 1.000	≥ 1.050	NAd	NAd	
Absorption double All	All capacities	COP	≥ 1.000	≥ 1,000	≥ 1.000	≥ 1,000	NAd	NAd	

For SI: 1 ton = 907 kg, 1 British thermal unit per hour = 0.2931 W

a. The chiller equipment requirements do not apply for chillers used in ICMT-temperature applications where the design leaving fluid temperature is < 40°F,
b. Section 12 contains a complete specification of the referenced test procedure, including the referenced year Version of the test procedure.
c. Compliance with this standard can be obtained by meeting the minimum requirements of Path A or B. However, both the full load and IPLV must be met to fulfill the requirements of Path A or B. However is not applicable and cannot be used for compliance.

TABLE C403.2.3(7) MINIMUM EFFICIENCY REQUIREMENTS: WATER CHILLING PACKAGES*

			BEFORE	1/1/2010	50 65000	AS OF 1	/1/2010 ^b	816502 D		
	1				PAT	TH A	PAT	нв	1	
EQUIPMENT TYPE	SIZE CATEGORY	UNITS	FULL	IPLV	FULL LOAD	IPLV	FULL LOAD	IPLV	TEST PROCEDURE	
Atr-cooled chillers	< 150 tons	EER	≥ 9.562	≥10.4	≥ 9.562	≥ 12.500	NA	NA		
Air-cooled chillers	≥ 150 tons	EER	29.302	16	≥ 9.562	≥ 12.750	NA	NA	1	
Air cooled without condenser, electrical operated	All capacities	EER	≥ 10.586	≥ 11.782	Air-cooled chillers without condens- ers shall be rated with matching con- densers and comply with the air-cooled chiller efficiency requirements		ng con- ir-cooled			
Water cooled, electrically operated, reciprocating	All capacities	kW/ton	≤ 0.837	≤ 0.696	water coo	ating units oled positiv y requirem	ve displace			
	< 75 tons	kW/ton			≤ 0.780	≤ 0.630	≤ 0.800	≤ 0.600		
Water cooled, electrically operated, post-	≥ 75 tons and < 150 tons	kW/ton	≤ 0.790	≤ 0.676	≤ 0.775	≤ 0.615	≤ 0.790	≤ 0.586	AHRI	
tive displacement	≥ 150 tons and < 300 tons	kW/ton	≤ 0.717	≤ 0.627	≤ 0.680	≤ 0.580	≤ 0.718	≤ 0.540	550/590	
	≥ 300 tons	kW/ton	≤ 0.639	≤ 0.571	≤ 0.620	≤ 0.540	≤ 0.639	≤ 0.490		
	< 150 tons	kW/ton	≤ 0.703	≤ 0.669						
Water cooled, electrically operated,	≥ 150 tons and < 300 tons	kW/ton	≤ 0.634	≤ 0.596	≤ 0.634	≤ 0.596	≤ 0.639	≤ 0.450		
centrifugal	≥ 300 tons and < 600 tons	kW/ton	≤ 0.576	≤ 0.549	≤ 0.576	≤ 0.549	≤ 0.600	≤ 0.400		
	≥ 600 tons	kW/ton	≤ 0.576	≤ 0.549	≤ 0.570	≤ 0.539	≤ 0.590	≤ 0.400	1	
Air cooled, absorption single effect	All capacities	COP	≥ 0.600	NR	≥ 0.600	NR	NA	NA NA		
Water cooled, absorption single effect	All capacities	COP	≥ 0.700	NR	≥ 0.700	NR	NA	NA	AHRI 560	
Absorption double effect, indirect fired	All capacities	COP	≥ 1.000	≥ 1.050	≥ 1.000	≥ 1.050	NA	NA	AHRI 560	
Absorption double effect, direct fired	All capacities	COP	≥ 1.000	≥ 1.000	≥ 1.000	≥ 1.000	NA	NA		

Formatted: Indent: Left: 0", Space After: 8 pt, Line spacing: Multiple 1.08 li

Formatted: Left, Right: 0", Space After: 8 pt

Formatted: Space After: 8 pt

Capacities Capacities

TABLE C403.2.3(7)
WATER CHILLING PACKAGES – FEFICIENCY REQUIREMENTS^{A, b, d}

EQUIPMENT PARE	AUTT 0475000W		BEFORE 1/1/2015		AS OF	1/1/2015	TEST
EQUIPMENT TYPE	SIZE CATEGORY	UNITS	Path A	Path B	Path A	Path B	PROCEDURE
Air-cooled chillers			≥ 9.562 FL		≥ 10.100 FL	≥ 9.700 FL	
	< 150 Tons	EER	≥ 12.500 IPLV	NA°	≥ 13.700 IPLV	≥ 15,800 IPLV	
Air-cooled chillers	≥ 150 Tons	(Btu/W)	≥ 9.562 FL	NA°	≥ 10.100 FL	≥9.700 FL	İ
	2 150 10ms		≥ 12.500 IPLV	NA.	≥ 14.000 IPLV	≥ 16.100 IPLV	İ
Air cooled without condenser, electrically operated	All capacities	EER (Btu/W)	Air-cooled c matching con				
	< 75 Tons		≤ 0.780 FL	≤ 0.800 FL	≤ 0.750 FL	≤ 0.780 FL	İ
	< /5 Tons		≤ 0.630 IPLV	≤ 0.600 IPLV	≤ 0.600 IPLV	≤ 0.500 IPLV	İ
	≥ 75 tons and < 150 tons		≤ 0.775 FL	≤ 0.790 FL	≤ 0.720 FL	≤ 0.750 FL	Ī
	2 /3 tous and < 130 tous		≤0.615 IPLV	≤ 0.586 IPLV	≤ 0.560 IPLV	≤ 0.490 IPLV	Ī
Water cooled, electrically operated positive	≥ 150 tons and < 300 tons	kW/ton	≤ 0.680 FL	≤0.718 FL	≤ 0.660 FL	≤0.680 FL	İ
displacement	≥ 150 tons and < 500 tons	KW/ton	≤ 0.580 IPLV	≤ 0.540 IPLV	≤ 0.540 IPLV	≤ 0.440 IPLV	AHRI 550/ 590
- A2	≥ 300 tons and < 600 tons		≤ 0.620 FL	≤0.639 FL	≤ 0.610 FL	≤ 0.625 FL	
	2 300 tons and < 000 tons		≤ 0.540 IPLV	≤ 0.490 IPLV	≤ 0.520 IPLV	≤ 0.410 IPLV	
	≥ 600 tons		≤ 0.620 FL	≤0.639 FL	≤ 0.560 FL	≤ 0.585 FL	
			≤ 0.540 IPLV	≤ 0.490 IPLV	≤ 0.500 IPLV	≤ 0.380 IPLV	
	< 150 Tons		≤ 0.634 FL	≤ 0.639 FL	≤ 0.610 FL	≤ 0.695 FL	
	< 150 1 ons		≤ 0.596 IPLV	≤ 0.450 IPLV	≤ 0.550 IPLV	≤ 0.440 IPLV	
	≥ 150 tons and < 300 tons		≤ 0.634 FL	≤ 0.639 FL	≤ 0.610 FL	≤ 0.635 FL	
	≥ 150 tons and < 500 tons		≤0.596 IPLV	≤ 0.450 IPLV	≤ 0.550 IPLV	≤ 0.400 IPLV	
Water cooled, electrically	≥ 300 tons and < 400 tons	kW/ton	≤ 0.576 FL	≤0.600 FL	≤0.560 FL	≤ 0.595 FL	
operated centrifugal	2 300 tons and < 400 tons	E W/IOII	≤0.549 IPLV	≤ 0.400 IPLV	≤ 0.520 IPLV	≤ 0.390 IPLV	
	≥ 400 tons and < 600 tons		≤ 0.576 FL	≤0.600 FL	≤ 0.560 FL	≤ 0.585 FL	Ī
	_ 400 totts and < 000 totts		≤0.549 IPLV	≤ 0.400 IPLV	≤ 0.500 IPLV	≤ 0.380 IPLV	Ī
	≥ 600 Tons		≤ 0.570 FL	≤0.590 FL	≤ 0.560 FL	≤ 0.585 FL	Ī
	2 000 1 ons		≤ 0.539 IPLV	≤ 0.400 IPLV	≤ 0.500 IPLV	≤ 0.380 IPLV	Ī
Air cooled, absorption, single effect	All capacities	COP	≥ 0.600 FL	NA°	≥ 0.600 FL	NA°	
Water cooled absorption, single effect	All capacities	COP	≥ 0.700 FL	NA°	≥ 0.700 FL	NA°	
Absorption, double effect, indirect fired	All capacities	COP	≥ 1.000 FL ≥ 1.050 IPLV	NA°	≥ 1.000 FL ≥ 1.050 IPLV	NA°	AHRI 560
Absorption double effect direct fired	All capacities	COP	≥ 1.000 FL ≥ 1.000 IPLV	NA°	≥ 1.000 FL ≥ 1.050 IPLV	NA°	

a. The requirements for centrifugal chiller shall be adjusted for nonstandard rating conditions in accordance with Section C403.2.3.1 and are only applicable for the range of conditions listed in Section C403.2.3.1. The requirements for air-cooled, water-cooled positive displacement and absorption chillers are at standard rating conditions defined in the reference test procedure.
b. Both the full-load and IPLV requirements shall be met or exceeded to comply with this standard. Where there is a Path B, compliance can be with either Path A or Path B for any application.
c. NA means the requirements are not applicable for Path B and only Path A can be used for compliance.
d. FL represents the full-load performance requirements and IPLV the part-load performance requirements.

TABLE C403.3.2(7)
WATER CHILLING PACKAGES — EFFICIENCY REQUIREMENT St. b. d

EQUIPMENT TYPE	SIZE CATEGORY	UNITS	BEFORE	1/1/2015	AS OF	1/1/2015	TEST
EQUIPMENT TIPE	SIZE CATEGORI	UNITS	Path A	Path B	Path A	Path B	PROCEDURE®
	< 150 Tons		≥ 9.562 FL	NAc	≥ 10.100 FL	≥ 9.700 FL	
Air-cooled chillers	< 150 IOHS	EER	≥ 12.500 IPLV	INA.	≥ 13.700 IPLV	≥ 15,800 IPLV	
All-cooled chillers	≥ 150 Tons	(Btu/W)	≥ 9.562 FL	NAG	≥ 10.100 FL	≥ 9.700 FL	
	2 130 10115		≥ 12.500 IPLV	INA-	≥ 14.000 IPLV	≥ 16.100 IPLV	
Air cooled without condenser, electrically operated	All capacities	EER (Btu/W)		ndensers and co	condenser shall b omplying with air- equirements.		
	< 75 Tons		≤ 0.780 FL	≤ 0.800 FL	≤ 0.750 FL	≤ 0.780 FL	
	< /0 IONS		≤ 0.630 IPLV	≤ 0.600 IPLV	≤ 0.600 IPLV	≤ 0.500 IPLV	
	> 75 tons and < 150 tons	1	≤ 0.775 FL	≤ 0.790 FL	≤ 0.720 FL	≤ 0.750 FL	
	2 /o tons and < 150 tons		≤ 0.615 IPLV	≤ 0.586 IPLV	≤ 0.560 IPLV	≤ 0.490 IPLV	
Water cooled, electrically operated positive	≥ 150 tons and < 300 tons	kW/ton	≥ 0.680 FL	≥ 0.718 FL	≥ 0.660 FL	≥ 0.680 FL	
operated positive displacement	2 150 tons and < 300 tons	KVV/ton	≥ 0.580 IPLV	≥ 0.540 IPLV	≥ 0.540 IPLV	≥ 0.440 IPLV	AHRI 550/590
and process of the second	≥ 300 tons and < 600 tons		≤ 0.620 FL	≤ 0.639 FL	≤ 0.610 FL	≤ 0.625 FL	
	2 300 tons and < 000 tons		≤ 0.540 IPLV	≤ 0.490 IPLV	≤ 0.520 IPLV	≤ 0.410 IPLV	
	≥ 600 tons		≤ 0.620 FL	≤ 0.639 FL	≤ 0.560 FL	≤ 0.585 FL	
			≤ 0.540 IPLV	≤ 0.490 IPLV	≤ 0.500 IPLV	≤ 0.380 IPLV	
	< 150 Tons		≤ 0.634 FL	≤ 0.639 FL	≤ 0.610 FL	≤ 0.695 FL	
		-	≤ 0.596 IPLV	≤ 0.450 IPLV	≤ 0.550 IPLV	≤ 0.440 IPLV	
	≥ 150 tons and < 300 tons		≤ 0.634 FL	≤ 0.639 FL	≤ 0.610 FL	≤ 0.635 FL	
			≤ 0.596 IPLV	≤ 0.450 IPLV	≤ 0.550 IPLV	≤ 0.400 IPLV	
Nater cooled, electrically	≥ 300 tons and < 400 tons	kW/ton	≤ 0.578 FL	≤ 0.600 FL	≤ 0.560 FL	≤ 0.595 FL	
operated centrifugal	2 300 tons and < 400 tons	KVV/ton	≤ 0.549 IPLV	≤ 0.400 IPLV	≤ 0.520 IPLV	≤ 0.390 IPLV	1
	≥ 400 tons and < 600 tons	1	≤ 0.578 FL	≤ 0.600 FL	≤ 0.560 FL	≤ 0.585 FL	
	2 400 tons and < 000 tons		≤ 0.549 IPLV	≤ 0.400 IPLV	≤ 0.500 IPLV	≤ 0.380 IPLV	
	> 600 Tons	1	≤ 0.570 FL	≤ 0.590 FL	≤ 0.560 FL	≤ 0.585 FL	
	2 000 Ions		≤ 0.539 IPLV	≤ 0.400 IPLV	≤ 0.500 IPLV	≤ 0.380 IPLV	
Air cooled, absorption, single effect	All capacities	COP	≥ 0.600 FL	NAª	≥ 0.600 FL	NAª	
Nater cooled absorption, single effect	All capacities	COP	≥ 0.700 FL	NA°	≥ 0.700 FL	NA°	
Absorption, double effect, indirect fired	All capacities	COP	≥ 1.000 FL ≥ 1.050 IPLV	NAº	≥ 1.000 FL ≥ 1.050 IPLV	NA°	AHRI 560
Absorption double effect direct fired	All capacities	COP	≥ 1.000 FL ≥ 1.000 IPLV	NA°	≥ 1.000 FL ≥ 1.050 IPLV	NAc	

a. The requirements for centrifugal chiller shall be adjusted for nonstandard rating conditions in accordance with Section C403.3.2.1 and are only applicable for the range of conditions listed in Section C403.3.2.1. The requirements for air-cooled, water-cooled positive displacement and absorption chillers are at standard rating conditions defined in the reference set procedure.

b. Both the full-load and IPLV requirements shall be met or exceeded to comply with this standard. Where there is a Path B, compliance can be with either Path A or Path B for any application.

c. NA means the requirements are not applicable for Path B and only Path C and to use of or compliance.

d. FL represents the full-load performance requirements and IPLV the part-load performance requirements.

MEASURE CODE:

2.5.6 Heat Pump Systems

DESCRIPTION

This measure applies to the installation of high efficiency air-cooled, water source, ground water source, and ground source heat pump systems. This measure could apply to replacing an existing unit at the end of its useful life, or installation of a new unit in a new or existing building.

This measure was developed to be applicable to the following program types: TOS.

RetrofitEREP and NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

For this characterization to apply, the efficient equipment is assumed to be a high-efficiency aircooled, water source, ground water source, or ground source heat pump system that exceeds both the full load and part load efficiencies associated with the applicable code described in the Definition of Baseline Equipment. the heating and cooling efficiency listed in Federal Energy Conservation Efficiency Standards.

Federal Energy Conservation Efficiency Standards (effective January 20123)²³⁷

Formatted: Font: Not Bold

Formatted: Font: Not Bold

237 DOE|https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431DOE|Title10,Part-431|https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431

Formatted: Font: 9 pt

Formatted: Font: 9 pt

Formatted: Font: 9 pt, Font color: Black

Field Code Changed

Formatted: Font: 9 pt

<u>Heat</u> <u>Rejection</u>	Capacity - kBTUh	ER heat or No heat Type	Supplemental <u>ER heat or No</u> <u>heat</u> All other heat	Heat Source -All other heat 0.58 - lew/ton and less	
		13.4	\$11013.4 SEER2	13.4 SEER2	
	< 100- 65	SEER2Packaged\$73	<u>6.7 HSPF2</u>	6.7 HSPF2 \$183	
		1 or 3 phase			
	<65	Split	14.3 SEER2	14.3 SEER2	
	*05	1 or 3 phase	7.5 HSPF2	7.5 HSPF2	
	≥65 and		\$73 14.1 IEER	\$12213.9 IEER	
	<135 >= 100	\$49Packaged	3.4 COP.	3.4 COP.	
Air Source	and <150				
	≥135 and		\$55 <u>13.5 IEER</u>	\$9213.3 IEER	
	< <u>≤</u> 240 <u>>= 150</u>	\$37Packaged	3.3 COP.	3.3 COP.	
	and <200,				
	≥240 <u>and</u>		<u>\$91</u> 12.5 IEER	\$15212.3 IEER	
	<u><760</u> and≤	\$61 Packaged	3.2 COP.	<u>3.2 COP</u>	
	≤ 760>= 200	ψ01 <u>I dekuged</u>			
	and <300				
	<u><17</u>	Packaged	<u>12.2 F</u>		
	17	<u>r ackagea</u>	<u>4.3 C</u>		
Water Source	≥17 and <65	Packaged	<u>13.0 EER</u>		
			<u>4.3 COP</u>		
	≥65 and <135	Packaged	13.0 EER		
		- wantagou	<u>4.3 C</u>	<u>OP</u>	
	≥>760=300	\$30Packaged	\$46	\$ 76	

For VRF Heat pumps, heat pumps, vertical heat pumps, and other heat pumps, refer to the tables within the Federal Energy Conservation Efficiency Standards.

DEFINITION OF BASELINE EQUIPMENT

<u>Time of Sale, New Construction:</u> For this characterization to apply, the baseline equipment is assumed to be a standard-efficiency air- cooled, water source, ground water source, or ground source heat pump system that meets the 2015 IECC energy efficiency requirements, effective January 1, 2024. Federal Energy Conservation Efficiency Standards.

Formatted: Centered
Formatted: Font: Bold
Formatted: Font: Bold, Font color: Background 1
Formatted: Font: Bold, Font color: Background 1
Formatted: Centered, Indent: Left: 0.03"
Formatted: Font: 11 pt, Bold, Font color: Background 1
Formatted: Font: 11 pt, Bold, Font color: Background 1
Formatted: Font: Bold, Font color: Background 1
Formatted: Font: Bold, Font color: Background 1
Formatted: Font color: Text 1
Formatted: Font: Not Bold, Font color: Text 1
Formatted: Font: Not Bold, Font color: Text 1
Formatted: Font: Not Bold, Font color: Auto
Formatted: Font color: Text 1
Formatted: Font color: Text 1
Formatted: Centered
Formatted: Font color: Text 1
Formatted: Font color: Text 1
Formatted: Font: Not Bold, Font color: Text 1
Formatted: Font: Not Bold, Font color: Text 1
Formatted: Font color: Text 1
Formatted: Font color: Text 1
Formatted: Centered
Formatted: Font: Not Bold, Font color: Text 1
Formatted: Font: Not Bold, Font color: Text 1
Formatted: Font: Not Bold, Font color: Auto
Formatted: Font color: Text 1
Formatted: Font color: Text 1
Formatted: Font: Not Bold, Font color: Text 1
Formatted: Font: Not Bold, Font color: Text 1

Formatted Table

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Ameren Missouri

Appendix H - TRM - Vol. 2: C&I Measures

Retrofit, Early Replacement: For this characterization to apply, the existing equipment is working with a remaining useful life. After, remaining useful life period, the baseline is the Time of Sale baseline meeting the Federal Energy Conservation Efficiency Standards.

For unit with a capacity less than 65 kBTUh, the baseline efficiency may be converted to the newer ratings expressed by SEER2 and HSPF2.

Prior to January 1, 2024, the applicable baseline is assumed to be similar equipment meeting the energy efficiency requirements of local building code. When local code does not exist, use of IECC 2012 is defined as the building code baseline.

The rating conditions for the baseline and efficient equipment efficiencies must be equivalent. Equipment capacities less than 65 kBtu/hr may be rated with the SEER2 efficiency (single phase, residential units), while larger units rated with EER or IEER.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 15 years.²³⁸

DEEMED MEASURE COST

For analysis purposes, the incremental capital cost for this measure is assumed as \$\frac{100-104}{100}\$ per ton per SEER or IEER unit increase over the base case efficiency for air-cooled units. The incremental cost for all other equipment types should be determined on a site-specific basis.

For a 120,000 BTUh, 16.1 IEER air cooled heat pump without auxiliary heat, the incremental cost is:

10 tons x (16.1 IEER - 14.1 IEER) x \$104 = \$2,080

LOADSHAPE

Cooling BUS Heating BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

For units with cooling capacities less than 65 kBtu/hr:

Formatted: Space After: Auto

Formatted: Footnotes Char, Font: 10 pt

Formatted: Footnotes Char, Font: 10 pt, Underline, Font color: Blue

Formatted: Font color: Accent 1

²³⁸ ASHRAE, Chapter 38: Owning and Operating Costs, Table 4, "Heating, Ventilating and Air Conditioning Applications",
(2023 edition) for commercial air to air heat pumps (pg 651 or 38.3). Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, Inc., June 2007 (Page C-13).

²³⁹ Based on a review of TRM incremental cost assumptions from Vermont, Wisconsin, and California-AESC Inc, ASK Energy Inc, SDGE, "Industry Standard Practice Study of Commercial Unitary Air Conditioning and Heat Pumps Systems", page 36 (September 2021) https://www.caetrm.com/media/reference-documents/Unitary HVAC ISP Report Final.pdf

SEERbase

Appendix H - TRM - Vol. 2: C&I Measures

```
\Delta kWh = Annual \, kWh \, Savings_{cool} \, Annual \, kWh \, Savings_{cool} \, + \,
        Annual kWh Savingsheat
                                                                                                                                                                                                                                            Formatted: CambriaTextFormula, Space After: Auto,
                                                                                                                                                                                                                                             Tab stops: Not at 0.5" + 2.84"
        ___ Annual kWh Savings<sub>cool</sub> = <del>- Annual kWh Savingscool =</del>
                                                                                                                                                                                                                                            Formatted: Font: Cambria
                                \frac{(kBtu/hr_{cool}kBtu/hrcool)}{(kBtu/hrcool)}
                                                                                                                                                                                                                                            Formatted: Indent: Left: 0.2", Line spacing: 1.5 lines
                                                                                                                                                                                                                                            Formatted: CambriaTextFormula, Indent: Left: 0.61",
                                                                  +x \left[ (1/SEER2_{base}SEER2base) - (1/SEER2_{EE}SEER2ee) \right]
                                                                                                                                                                                                                                             Space After: 0 pt, Line spacing: 1.5 lines, Tab stops:
                                                                  +x EFLH<sub>cool</sub> EFLHcool</sub>
                                                                                                                                                                                                                                            Not at 1.74" + 6.54"
              Annual\ kWh\ Savings_{heat}\ -Annual\ kWh\ Savingsheat\ =
                                                                                                                                                                                                                                            Formatted: Font: Cambria
                                 (kBtu/hr_{heat}kBtu/hrheat)
                                                                 +x[(1/HSPF2_{base}HSPF2base) - (1/HSPF2_{EE}HSPF2ee})]
                                                                 *-x EFLHheat EFLHheat
For units with cooling capacities equal to or greater than 65 kBtu/hr:
    \Delta kWh = Annual \, kWh \, Savings_{cool} + Annual \, kWh \, Savings_{heat}
                  Annual kWh Savings _{cool} = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } = _{ } =
                                                                                                                                                                                                                                            Formatted: Font: (Default) Calibri
                                                                                                                                                                                                                                            Formatted: Indent: Left: 0.3", Space After: Auto
                                                    kBtu/hr_{cool} x [(1/IEER_{base}) - (1/IEER_{EE})] x EFLH_{cool}
                                                                                                                                                                                                                                            Formatted: Space After: Auto
          Annual\ kWh\ Savings_{heat}\ =
                                                                                                                                                                                                                                            Formatted: Indent: Left: 0.3", First line: 0"
                                    kBtu/hr_{heat} \times \left[\frac{1}{(COP_{base}x\ 3.412)} - \frac{1}{(COP_{EE}\ x\ 3.412)}\right] \times EFLH_{heat}
               AkWh = Annual kWh Savingscool + Annual kWh Savingsheat
                                                                                                                                                                                                                                             Formatted: CambriaTextFormula, Space After: 0 pt, Tab
                                                                                                                                                                                                                                            stops: Not at 0.5" + 0.69"
         Annual kWh Savingscool = (kBtu/hrcool) * [(1/IEERbase) - (1/IEERee)] * EFLHcool
               Annual kWh Savingsheat = (kBtu/hrheat)/3.412 * [(1/COPbase) - (1/COPee)] * EFLH
                                                                                                                                                                                                                                            Formatted: Font: (Default) Cambria
Where:
                                             = Capacity of the cooling equipment in kBtu per hour (1 ton of cooling
                                              capacity equals 12 kBtu/hr).
                                              = Actual installed
```

Seasonal Energy Efficiency Ratio of the baseline equipment
 SEER from tables below, based on current DOE energy efficiency

standards for TOS,NCthe applicable IECC.
=SEER based on existing efficiency for Retrofit

Appendix H - TRM - Vol. 2: C&I Measures

= For units with cooling capacity <65kbtu/hr and efficient unit is measured	l
in terms of SEER2 convert SEERhan to SEER2han 240	

SEER_{ee} = Seasonal Energy Efficiency Ratio of the energy efficient equipment.

= Actual installed

EFLH_{cool} = Equivalent Full Load Hours for cooling are provided in <u>Table 1</u>, <u>Effective</u>

Full Load Heating and Cooling Hours, by Building Type Table 1 Effective Full Load Heating and Cooling Hours, by Building Type Table 1 Effective Full Load Heating and Cooling Hours, by Building Type Section 2.7 HVAC

End Use.

HSPF_{base} = Heating Seasonal Performance Factor of the baseline equipment

= HSPF from tables below, based on the applicable IECC. For units with cooling capacity <65kbtu/hr and efficient unit is measured in terms of

HSPF2, convert HSPF_{base} to HSPF2_{base}.²⁴¹

HSPF_{ee} = Heating Seasonal Performance Factor of the energy efficient equipment.

= Actual installed. If rating is COP, HSPF = COP *x 3.413

EFLH_{heat} = Heating mode equivalent full load hours are provided in <u>Table 1</u>, <u>Effective</u>

Full Load Heating and Cooling Hours, by Building Type Table 1 Effective Full Load Heating and Cooling Hours, by Building Type Table 1 Effective Full Load Heating and Cooling Hours, by Building Type section 2.7 HVAC

End Use.

IEER_{base} = Integrated Energy Efficiency Ratio of the baseline equipment

= IEER from tables below, based on the applicable IECC.

IEER_{ee} = Integrated Energy Efficiency Ratio of the energy efficient equipment.

= Actual installed

kBtu/hr_{heat} = Capacity of the heating equipment in kBtu per hour.

= Actual installed

3.412 = Btu per Wh.

COP_{base} = Coefficient of performance of the baseline equipment

= COP from tables below, based on the applicable IECC. If rating is HSPF,

3.413412

COPee = Coefficient of performance of the energy efficient equipment.

= Actual installed

²⁴⁰ SEER to SEER2 conversion factor: SEER2 = SEER x 96%. Conversion factor for SEER to SEER2 is used when converting an existing system that is rated in SEER to SEER2. This is to meet the DOE M1 CFR Standard beginning January 1, 2023. The efficiency levels of the existing, baseline, and efficient case must be expressed in the same metrics (e.g., both SEER or SEER2) before applying formulas.

²⁴¹ HSPF to HSPF2 conversion factor: HSPF2 = HSPF x 87%. Conversion factor for HSPF to HSPF2 is used when converting an

Formatted: Font color: Text 1
Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

²⁴¹ HSPF to HSPF2 conversion factor: HSPF2 = HSPF x 87%. Conversion factor for HSPF to HSPF2 is used when converting an existing system that is rated in HSPF to HSPF2. This is to meet the DOE M1 CFR Standard beginning January 1, 2023. The efficiency levels of the existing, baseline, and efficient case must be expressed in the same metrics (e.g., both HSPF or HSPF2) before applying formulas.

Minimum Efficiency Requirements: 2009 IECC

TABLE 503.2.3(2)
UNITARY AIR CONDITIONERS AND CONDENSING UNITS, ELECTRICALLY OPERATED, MINIMUM EFFICIENCY REQUIREMENTS

EQUIPMENT TYPE	SIZE CATEGORY	SUBCATEGORY OR RATING CONDITION	MINIMUM EFFICIENCyb	TEST PROCEDURE ^a
	< 65,000 Btu/h ^a	Split system	13.0 SEER	
	< 65,000 Bill/II-	Single package	13.0 SEER	
	≥ 65,000 Btu/h and < 135,000 Btu/h	Split system and single package	10.1 EERc (before Jan 1, 2010) 11.0 EERc (as of Jan 1, 2010)	AHRI210/240
Air cooled, (Cooling mode)	≥ 135,000 Btu/h and < 240,000 Btu/h	Split system and single package	9.3 EERc (before Jan 1, 2010) 10.6 EERc (as of Jan 1, 2010)	
	≥ 240,000 Btu/h	Split system and single package	9.0 EERc 9.2 IPLYc (before Jan 1, 2010) 9.5 EERc 9.2 IPLYc (as of Jan 1, 2010)	AHRI 340/360
Through-the-Wall		Split system	10.9 SEER (before Jan 23, 2010) 12.0 SEER (as of Jan 23,2010)	
(Air cooled, cooling mode)	> 30,000 Buvh⁵	Single package	10.6 SEER (before Jan 23, 2010) 12.0 SEER (as of Jan 23,2010)	AHRI210/240
	< 17,000 Btu/h	86°F entering water	11.2 EER	AHRI/ASHRAE 13256
Water Source (Cooling mode)	≥ 17,000 Btu/h and < 135,000 Btu/h	86°F entering water	12.0 EER	AHRIASHRAE 13256
Groundwater Source (Cooling mode)	< 135,000 Btu∕h	59°F entering water	16.2 EER	AHRI/ASHRAE 13256
Ground source (Cooling mode)	< 135,000 Btu/h	77°F entering water	13.4 EER	AHRI/ASHRAE 13256
E17170100	< 65.000 Btu/h ^d	Split system	7.7 HSPF	
	(Cooling capacity)	Single package	7.7 HSPF	
Air cooled (Heating mode)	≥ 65,000 Btu/h and < 135,000 Btu/h (Cooling capacity)	47°F db/43°F wb Outdoor air	3.2 COP (before Jan 1, 2010) 3.3 COP (as of Jan 1, 2010)	AHRI210/240
	≥ 135,000 Btu/h (Cooling capacity)	47°F db/43°F wb Outdoor air	3.1 COP (before Jan 1, 2010) 3.2 COP (as of Jan 1, 2010)	AHRI 340/360

Formatted: Indent: Left: 0"

Page 115

TABLE 503.2.3(2)-continued UNITARY AIR CONDITIONERS AND CONDENSING UNITS, ELECTRICALLY OPERATED, MINIMUM EFFICIENCY REQUIREMENTS

EQUIPMENT TYPE	SIZE CATEGORY	SUBCATEGORY OR RATING CONDITION	MINIMUM EFFICIENCyb	TEST PROCEDURE®	
Through-the-wall (Air cooled, heating mode)			7.1 HSPE (before Jan 23, 2010) 7.4 HSPF (as of Jan 23, 2010)	AHRI210/240	
			7.0 HSPF (before Jan 23, 2010) 7.4 HSPF (as of Jan 23,2010)		
Water source (Heating mode)	< 135,000 Btu/h (Cooling capacity)	68°F entering water	4.2 COP	AHRI/ASHRAE 13256-1	
Groundwater source (Heating mode)	< 135,000 Btu/h (Cooling capacity)	50°F entering water	3.6 COP	AHRI/ASHRAE 13256-1	
Ground source (Heating mode)	< 135,000 Btu/h (Cooling capacity)	32°F entering water	3.1 COP	AHRI/ASHRAE 13256-1	

For SI: "C = [(OF) - 32]/1.8, 1 British thermal unit per hour = 0.2931 W

db = dry-bulb temperature, of; wb = wet-bulb temperature, of.

a. Chapter 6 contains a complete specification of the referenced test procedure, including the referenced year versions of the test procedure.

b. IPLVs and Part load rating conditions are only applicable to equipment with capacity modulation.

c. Deduct 0.2 from the required EERs and IPLVs for units with a heating section other than electric resistance heat.

d. Single-phase air-cooled heat pumps = 65,000 Btu/h are regulated by the National Appliance Energy Conservation Act of 1987 (NAECA), SEER and HSPF values are those set by NAECA.

Minimum Efficiency Requirements: 2012 IECC

TABLE C403.2.3(2) MINIMUM EFFICIENCY REQUIREMENTS: ELECTRICALLY OPERATED UNITARY AND APPLIED HEAT PUMPS

EQUIPMENT TYPE	SIZE CATEGORY	HEATING SECTION TYPE	SUBCATEGORY OR RATING CONDITION	MINIMUM EFFICIENCY	TEST PROCEDURE ^a
Air cooled	< 65.000 Btu/hb	All	Split System	13.0 SEER	
(cooling mode)	< 65,000 Ethi	All	Single Packaged	13.0 SEER	
Through-the-wall,	≤ 30.000 Btu/h ^b	All	Split System	13.0 SEER	AHRI 210/240
air cooled	S 30,000 Buvii	All	Single Packaged	13.0 SEER	
Single-duct high-velocity air cooled	< 65,000 Btu/hb	All	Split System	10.0 SEER	1
	≥ 65,000 Btu/h and	Electric Resistance (or None)	Split System and Single Package	11.0 EER 11.2 IEER	
	< 135,000 Btu/h	All other	Split System and Single Package	10.8 EER 11.0 IEER	1
Air cooled	≥ 135.000 Btu/h and	Electric Resistance (or None)	Split System and Single Package	10.6 EER 10.7 IEER	AHRI
(cooling mode)	< 240,000 Btu/h	All other	Split System and Single Package	10.4 EER 10.5 IEER	340/360
	≥ 240,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	9.5 EER 9.6 IEER	1
		All other	Split System and Single Package	9.3 EER 9.4 IEER	1
9	< 17,000 Bm/n	All	80 r entering water	11.Z EER	
Water source (cooling mode)	≥ 17,000 Btu/h and < 65,000 Btu/h	All	86°F entering water	12.0 EER	
	≥ 65,000 Btu/h and < 135,000 Btu/h	All	86°F entering water	12.0 EER	ISO 13256-1
Ground water source	< 135.000 Btu/h	All	59°F entering water	16.2 EER	1
(cooling mode)	< 135,000 Buvn	All	77°F entering water	13.4 EER]
Water-source water to water	< 135.000 Btu/h	All	86°F entering water	10.6 EER	
(cooling mode)	< 133,000 Billii	All	59°F entering water	16.3 EER	ISO 13256-2
Ground water source Brine to water (cooling mode)	< 135,000 Btu/h	All	77°F entering fluid	12.1 EER	
Air cooled	< 65,000 Btu/h ^b	, -	Split System	7.7 HSPF	
(heating mode)	~ 1000 Dull	1	Single Package	7.7 HSPF	1
Through-the-wall, (air cooled, heating mode)	≤ 30,000 Btu/h ^b	_	Split System	7.4 HSPF	AHRI 210/240
	(cooling capacity)	-	Single Package	7.4 HSPF	
Small-duct high velocity (air cooled, heating mode)	< 65,000 Btu/h ^b		Split System	6.8 HSPF	1

(continued)

Formatted: Indent: Left: 0", Space After: 0 pt
Formatted: Right: 0", Space After: 1.9 pt

TABLE C403.2.3(2)—continued MINIMUM EFFICIENCY REQUIREMENTS: ELECTRICALLY OPERATED UNITARY AND APPLIED HEAT PUMPS

EQUIPMENT TYPE	SIZE CATEGORY	HEATING SECTION TYPE	SUB-CATEGORY OR RATING CONDITION	MINIMUM EFFICIENCY	TEST PROCEDURE*
	≥ 65,000 Btu/h and		47°F db/43°F wb Outdoor Air	3.3 COP	
Air cooled	< 135,000 Btu/h (cooling capacity)		17°F db/15°F wb Outdoor Air	2.25 COP	AHRI
(heating mode)	≥ 135,000 Btu/h		47°F db/43°F wb Outdoor Air	3.2 COP	340/360
	(cooling capacity)		17°F db/15°F wb Outdoor Air	2.05 COP	
Water source	< 135,000 Btu/h	_	68°F entering water	4.2 COP	
(iteating mode)	(cooling capacity)		OO I CHESING WATER	1.2 001	i
Ground water source (heating mode)	< 135,000 Btu/h (cooling capacity)	_	50°F entering water	3.6 COP	ISO 13256-1
Ground source (heating mode)	< 135,000 Btu/h (cooling capacity)	_	32°F entering fluid	3.1 COP	
Water-source water to water	< 135,000 Btu/h	-	68°F entering water	3.7 COP	
(heating mode)	(cooling capacity)	_	50°F entering water	3.1 COP	ISO 13256-2
Ground source brine to water (heating mode)	< 135,000 Btu/h (cooling capacity)	_	32°F entering fluid	2.5 COP	

For SL 1 British thermal unit per hour = 0.2931 W, "C = [("F) - 32]/1.8.

a. Chapter 6 of the referenced standard contains a complete specification of the referenced test procedure, including the reference year version of the test procedure.

b. Single-phase, air-cooled air conditioners less than 65,000 Btu/h are regulated by NAECA. SEER values are those set by NAECA.

Minimum Efficiency Requirements: 2015 IECC

TABLE C403.2.3(2) MINIMUM EFFICIENCY REQUIREMENTS: ELECTRICALLY OPERATED UNITARY AND APPLIED HEAT PUMPS

EQUIPMENT TYPE	SIZE CATEGORY	HEATING SECTION TYPE	SUBCATEGORY OR RATING CONDITION	MINIMUM EFFICIENCY		TEST PROCEDURE*
				Before 1/1/2016	As of 1/1/2016	PROCEDURE
Air cooled (cooling mode)	< 65,000 Btu/h ^b	All	Split System	13.0 SEER°	14.0 SEER°	AHRI 210/240
			Single Package	13.0 SEER°	14.0 SEER°	
Through-the-wall.	≤ 30,000 Btu/h ^b	A11	Split System	12.0 SEER	12.0 SEER	
air cooled			Single Package	12.0 SEER	12.0 SEER	
Single-duct high-velocity air cooled	< 65,000 Btu/hb	All	Split System	11.0 SEER	11.0 SEER	
	≥ 65,000 Btu/h and	Electric Resistance (or None)	Split System and Single Package	11.0 EER 11.2 IEER	11.0 EER 12.0 IEER	AHRI 340/360
	< 135,000 Btu/h	All other	Split System and Single Package	10.8 EER 11.0 IEER	10.8 EER 11.8 IEER	
Air cooled	≥ 135,000 Btu/h and < 240,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	10.6 EER 10.7 IEER	10.6 EER 11.6 IEER	
(cooling mode)		All other	Split System and Single Package	10.4 EER 10.5 IEER	10.4 EER 11.4 IEER	
	≥ 240,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	9.5 EER 9.6 IEER	9.5 EER 10.6 IEER	
		All other	Split System and Single Package	9.3 EER 9.4 IEER	9.3 EER 9.4 IEER	
Water to Air: Water Loop (cooling mode)	< 17,000 Btu/h	A11	86°F entering water	12.2 EER	12.2 EER	
	≥ 17,000 Btu/h and < 65,000 Btu/h	A11	86°F entering water	13.0 EER	13.0 EER	ISO 13256-1
	≥ 65,000 Btu/h and < 135,000 Btu/h	All	86°F entering water	13.0 EER	13.0 EER	
Water to Air: Ground Water (cooling mode)	< 135,000 Btu/h	A11	59°F entering water	18.0 EER	18.0 EER	ISO 13256-1
Brine to Air: Ground Loop (cooling mode)	< 135,000 Btu/h	All	77°F entering water	14.1 EER	14.1 EER	ISO 13256-1
Water to Water: WaterLoop (cooling mode)	< 135,000 Btu/h	All	86°F entering water	10.6 EER	10.6 EER	
Water to Water: Ground Water (cooling mode)	< 135,000 Btu/h	All	59°F entering water	16.3 EER	16.3 EER	ISO 13256-2
Brine to Water: Ground Loop (cooling mode)	< 135,000 Btu/h	A11	77°F entering fluid	12.1 EER	12.1 EER	

(continued)

TABLE C403.2.3(2)—continued MINIMUM EFFICIENCY REQUIREMENTS: ELECTRICALLY OPERATED UNITARY AND APPLIED HEAT PUMPS

EQUIPMENT TYPE	SIZE CATEGORY	HEATING SECTION TYPE	SUBCATEGORY OR RATING CONDITION	MINIMUM EFFICIENCY		TEST PROCEDURE*	
				Before 1/1/2016	As of 1/1/2016	PROCEDURE.	
Air cooled (heating mode)	< 65,000 Btu/h ^b	_	Split System	7.7 HSPF°	8.2 HSPF°	AHRI 210/240	
		1911	Single Package	7.7 HSPF°	8.0 HSPF°		
Through-the-wall.	≤ 30.000 Btu/h ^b	_	Split System	7.4 HSPF	7.4 HSPF		
(air cooled, heating mode)	(cooling capacity)	_	Single Package	7.4 HSPF	7.4 HSPF		
Small-duct high velocity (air cooled, heating mode)	< 65,000 Btu/h ^b	_	Split System	6.8 HSPF	6.8 HSPF		
Air cooled (deating mode)	≥ 65,000 Btu/h and <135,000 Btu/h (cooling capacity)		47°F db/43°F wb outdoor air	3.3 COP	3.3 COP	AHRI	
			17°F db/15°F wb outdoor air	2.25 COP	2.25 COP		
	≥ 135,000 Btu/h (cooling capacity)		47°F db/43°F wb outdoor air	3.2 COP	3.2 COP	340/360	
			17°F db/15°F wb outdoor air	2.05 COP	2.05 COP		
Water to Air: Water Loop (heating mode)	< 135,000 Btu/h (cooling capacity)	-	68°F entering water	4.3 COP	4.3 COP		
Water to Air: Ground Water (heating mode)	< 135,000 Btu/h (cooling capacity)	-	50°F entering water	3.7 COP	3.7 COP	ISO 13256-1	
Brine to Air: Ground Loop (heating mode)	< 135,000 Btu/h (cooling capacity)	-	32°F entering fluid	3.2 COP	3.2 COP	İ	
Water to Water: Water Loop (heating mode)	< 135,000 Btu/h (cooling capacity)	=3	68°F entering water	3.7 COP	3.7 COP		
Water to Water: Ground Water (heating mode)	< 135,000 Btu/h (cooling capacity)	-	50°F entering water	3.1 COP	3.1 COP	ISO 13256-2	
Brine to Water: Ground Loop (heating mode)	< 135,000 Btu/h (cooling capacity)	-	32°F entering fluid	2.5 COP	2.5 COP		

For SI: 1 British thermal unit per hour = 0.2931 W, °C = [(°F) - 32]/1.8.

a. Chapter 6 contains a complete specification of the referenced test procedure, including the reference year version of the test procedure.

b. Single-phase, air-cooled air conditioners less than 65,000 Btu/h are regulated by NAECA. SEER values are those set by NAECA.

c. Minimum efficiency as of January 1, 2015.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWHcool*CF$

Where:

 ΔkWH = Annual cooling electricity savings, as calculated above

= Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0009106840^{242}$

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

Page 121

²⁴² Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

2.5.7 Packaged Terminal Air Conditioner (PTAC) - Packaged Terminal Heat Pump (PTHP)

DESCRIPTION

A PTAC is a packaged terminal air conditioner that cools and provides heat through an electric resistance heater (heat strip). A PTHP is a packaged terminal heat pump. A PTHP uses its compressor year-round to heat or cool. In warm weather, it efficiently captures heat from inside a space and pumps it outside for cooling. In cool weather, it captures heat from outdoor air and pumps it into a space, adding heat from electric heat strips as necessary to provide heat.

This measure characterizes:

- 1) Time of Sale: the purchase and installation of a new efficient PTAC or PTHP.
- 2) Early Replacement: the early removal of an existing PTAC or PTHP from service, prior to its natural end of life, and replacement with a new efficient PTAC or PTHP unit. Savings are calculated between existing unit and efficient unit consumption during the remaining life of the existing unit, and between new baseline unit and efficient unit consumption for the remainder of the measure life. The measure is only valid for non-fuel switching installations for example replacing a cooling only PTAC with a PTHP can currently not use the TRM.

This measure was developed to be applicable to the following program types: TOS, NC, and EREP.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to be PTACs or PTHPs that exceed the Federal Energy Efficiency Standards.²⁴³ The non-standard size equipment type applies to installations with wall openings less than 16" high or less than 42" wide, and only for retrofit applications.

Equipment Type	<u>Capacity</u>	Minimum Efficiency (Cap= Btuh)
PTAC Standard Size	<7 kBtuh	11.9 EER ◀ /
PTAC Standard Size	7kBtuh≥Cap≤15 kBtuh	14.0-(0.3 x Cap) EER ◆// /
PTAC Standard Size	≥15 kBtuh	9.5 EER ◆//
PTAC Non-Standard Size	<7 kBtuh	9.4 EER • •
PTAC Non-Standard Size	7kBtuh≥Cap≤15 kBtuh	10.9-(0.213xCap) EER ← ∠
PTAC Non-Standard Size	≥15 kBtuh	<u>7.7 EER</u> ◆
PTHP Standard Size	<u><7 kBtuh</u>	11.9 EER 3.3 COP
PTHP Standard Size	7kBtuh>Cap<15 kBtuh	14.0-(0.3 x Cap) EER 3.7-(0.052 x Cap) COP

²⁴³ DOE, <u>DOE|Commercial Air Conditioners and Heat Pumps|https://www.eefr.gov/current/title-10/chapter-D/part-431#431.97</u>Commercial Air Conditioners and Heat Pumps|https://www.eefr.gov/current/title-10/chapter-II/subchapter-D/part-431#431.97

Formatted: Font: 10 pt, Font color: Background 1 Formatted: Centered, Space After: 2 pt Formatted Table Formatted: Font: 10 pt Formatted: Space Before: 2 pt, After: 2 pt Formatted: Font: 10 pt Formatted: Space Before: 2 pt, After: 2 pt Formatted: Font: 10 pt Formatted: Space Before: 2 pt, After: 2 pt Formatted: Font: 10 pt Formatted: Space Before: 2 pt, After: 2 pt Formatted: Font: 10 pt Formatted: Space Before: 2 pt, After: 2 pt Formatted: Font: 10 pt Formatted: Space Before: 2 pt, After: 2 pt Formatted: Font: 10 pt Formatted: Space Before: 2 pt, After: 2 pt Formatted: Font: 10 pt Formatted: Space Before: 2 pt, After: 2 pt Formatted: Hyperlink **Field Code Changed**

Appendix H - TRM - Vol. 2: C&I Measures

PTHP Standard Size	>15 kBtuh	9.5 EER 2.7 COP	*	Formatted: Font: 10 pt
DTUD N. G. 1 1C'-	71D-1	9.3 EER		Formatted: Space Before: 2 pt, After: 2 pt
PTHP Non-Standard Size	<u><7 kBtuh</u>	2.7 COP		Formatted: Font: 10 pt
PTHP Non-Standard Size	7kBtuh>Cap<15 kBtuh	10.8-(0.213 x Cap) EER 2.9-(0.026 x Cap) COP		Formatted: Font: 10 pt
PTHP Non-Standard Size	≥15 kBtuh	7.6 EER 2.5 COP		Formatted: Font: 10 pt

DEFINITION OF BASELINE EQUIPMENT

TOS: the baseline conditions is the minimum efficiency that meetslisted for the equipment type in the Federal Energy Efficiency Standards by size and type.

EREP: the baseline is the existing PTAC or PTHP for the assumed remaining useful life of the unit and the new baseline as defined above for the remainder of the measure life. When the existing model data is not available, the baseline efficiency is the federal standard in effect when installed.

In order for this characterization to apply, the efficient equipment is assumed to be PTACs of PTHPs that exceed baseline efficiencies.

DEFINITION OF BASELINE EQUIPMENT

TOS: the baseline conditions is in the 2015 IECC building code, which is summarized in the baseline reference table provided below.

EREP: the baseline is the existing PTAC or PTHP for the assumed remaining useful life of the uni and the new baseline as defined above for the remainder of the measure life.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 15 years.²⁴⁴

Remaining life of existing equipment is assumed to be 5 years.²⁴⁵

DEEMED MEASURE COST

TOS: The incremental capital cost for this equipment is estimated to be \$84/ton.²⁴⁶

EREP: The measure cost is the full cost of removing the existing unit and installing a new one. The actual program cost should be used. If unknown assume \$1,047 per ton.²⁴⁷

Page 123

²⁴⁴ ASHRAE, Chapter 38: Owning and Operating Costs, Table 4, "Heating, Ventilating and Air Conditioning Applications", (2023 edition) for commercial through-the-wall air conditioners. Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, Inc., June 2007 (Page C-16)

²⁴⁵ Standard assumption of one third of effective useful life.

²⁴⁶ DEER 2008. This assumes that baseline shifts between IECC versions carries the same incremental costs. Values should be verified during evaluation

²⁴⁷ Based on DCEO – IL PHA Efficient Living Program data.

The assumed deferred cost (after 5 years) of replacing existing equipment with new baseline unit is assumed to be \$1,039 per ton.²⁴⁸ This cost should be discounted to present value using the utilities' discount rate.

LOADSHAPE

Cooling BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Electric savings for PTACs and PTHPs should be calculated using the following algorithms

ENERGY SAVINGS

TOS:

```
PTAC \Delta kWh^{249} = \Delta kWh_{cool}
PTHP \Delta kWh = \Delta kWh_{cool} + \Delta kWh_{heat}
\Delta kWh_{cool} = kBtu/hr_{cool} \stackrel{*}{=} \chi (1/EER_{base} - 1/EER_{ee}) \stackrel{*}{=} \chi EFLH_{cool}
\Delta kWh_{heat} = kBtu/hr_{heat} / 3.412 \stackrel{*}{=} \chi (1/COP_{base} - 1/COP_{ee}) \stackrel{*}{=} \chi EFLH_{heat}
EREP:
```

LLI.

ΔkWh for remaining life of existing unit (1st 5years)

```
 \Delta kWh = \Delta kWh_{cool} + \Delta kWh_{heat} 
 \Delta kWh_{cool} = kBtu/hr_{cool} \stackrel{*}{}_{\underline{X}} (1/EER_{exist} - 1/EER_{ee}) \stackrel{*}{}_{\underline{X}} EFLH_{cool} 
 \Delta kWh_{heat} = kBtu/hr_{heat} / 3.412 \stackrel{*}{}_{\underline{X}} (1/COP_{exist} - 1/COP_{ee}) \stackrel{*}{}_{\underline{X}} EFLH_{heat} 
 \Delta kWh \text{ for remaining measure life (next 10 years)} 
 \Delta kWh = \Delta kWh_{cool} + \Delta kWh_{heat} 
 \Delta kWh_{cool} = kBtu/hr_{cool} \stackrel{*}{}_{\underline{X}} (1/EER_{base} - 1/EER_{ee}) \stackrel{*}{}_{\underline{X}} EFLH_{cool}
```

= $kBtu/hr_{heat}/3.412 \stackrel{*}{\underline{}} (1/COP_{base} - 1/COP_{ee}) \stackrel{*}{\underline{}} EFLH_{heat}$

Where:

 ΔkWh_{heat}

```
kBtu/hr<sub>cool</sub> = Capacity of the cooling equipment in kBtu per hour (1 ton of cooling capacity equals 12 kBtu/hr).

= Actual installed

EFLH<sub>cool</sub> = Equivalent Full Load Hours for cooling are provided in section 2.7 Table 1 HVAC End Use

EFLH<sub>heat</sub> = Equivalent Full Load Hours for heating are provided in Table 1 section 2.7 HVAC End Use
```

Formatted: CambriaTextFormula

Formatted: CambriaTextFormula

Formatted: CambriaTextFormula

Formatted: Font: Not Italic

Formatted: CambriaTextFormula

Formatted: CambriaTextFormula

Formatted: CambriaTextFormula

Formatted: Font: Not Italic

Formatted: CambriaTextFormula
Formatted: CambriaTextFormula

Formatted: CambriaTextFormula

²⁴⁸ Based on subtracting TOS incremental cost from the DCEO data and incorporating inflation rate of 1.91%.

²⁴⁹ There are no heating efficiency improvements for PTACs since although some do provide heating, it is always through electric resistance and therefore the COPbase and COPee would be 1.0.

Appendix H - TRM - Vol. 2: C&I Measures

EERexist

= Energy Efficiency Ratio of the existing equipment, actual.

= Actual. If unknown-, determine by federal efficiency standard in effect when manufactured. assume 8.1 EER The baseline efficiency for a standard size, 1 ton unit is listed in the following table. 250

	<u>1/1/2017 -</u>	<u>1/8/2012-</u>	Prior to
<u>Date</u>	<u>Current</u>	<u>12/31/2016</u>	<u>1/8/2012</u>
PTAC	10.4 EER	10.2 EER	8.1 EER
PTHP	10.4 EER	10.4 EER	8.1 EER

EERbase

= Energy Efficiency Ratio of the baseline equipment.

= Equal to-See the table below for requirements based on Federal Energy Efficiency Standard. Standards See the table below for requirements based on 2015 IECC...

EERee

= Energy Efficiency Ratio of the energy efficient equipment. For air-cooled units < 65 kBtu/hr, if the actual EERee is unknown, assume the following conversion from SEER to EER for calculation of peak savings: 251 EER = $(-0.02 \times \underline{x}) + (1.12 \times \underline{x})$ SEER)

= Actual installed

kBtu/hr_{heat} = Capacity of the heating equipment in kBtu per hour.

= Actual installed

3.412 = Btu per Wh.

COPexist

= Coefficient of performance of the existing equipment, actual.

= If unknown, determine by federal efficiency standard in effect when manufactured. The baseline efficiency for a standard size, 1 ton unit is listed in the following table Actual. If unknown assume 1.0 COP for PTAC units and 2.6 COP²⁵³ for PTHPs.

Manufactured	1/1/2017 -	1/8/2012-	Prior to
Date	Current	12/31/2016	1/8/2012
PTAC	10.4 EER	10.2 EER	8.1 EER
PTAC	1.0 COP	1.0 COP	1.0 COP
PTHP	3.1 COP	3.1 COP	2.6 COP

COPbase

= Coefficient of performance of the baseline equipment; equal to

Federal Energy Efficiency Standardsee table below for

<u>values.</u>Coefficient of performance of the baseline equipment; see table

below for values.

 COP_{ee} = Coefficient of performance of the energy efficient equipment.

= Actual installed

²⁵⁰ Estimated using the IECC building energy code up until year 2003 (p107;

https://law.resource.org/pub/us/code/ibr/icc.iecc.2000.pdf) and assuming a 1 ton unit; EER = 10 - (0.16 * 12,000/1,000) = 8.1.

²⁵¹ Based on Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder. Note this is appropriate for single speed units only.
²⁵² Estimated using the IECC building energy code up until year 2003 (p107;

tttps://law.resource.org/pub/us/code/ibr/icc.iecc.2000.pdf) and assuming a 1 ton unit; COP = 2.9 — (0.026 * 12,000/1,000) =

Formatted: Font: 11 pt
Formatted: Font: 11 pt, Bold, Font color: Background 1
Formatted: Font: Bold, Font color: Background 1
Formatted: Centered
Formatted: Font: 11 pt, Bold, Font color: Background 1
Formatted: Font: 11 pt
Formatted: Font: 11 pt
Formatted: Font: 11 pt
Formatted: Font: 11 pt
Formatted: Font: 11 pt
Formatted: Font: 11 pt

Formatted: Font color: Background 1

Formatted: Centered

Formatted: Font: 11 pt

Formatted: Font: 12 pt

2015 IECC Building Code Baseline Efficiencies

Equipment Type	Category	Efficiency Level*
DTAC	New Construction	EER = 14 (0.3 × Cap/1000)
PTAC	Replacements ^b	EER = 10.9 - (0.213 × Cap/1000)
PTHP	New Construction	EER = 14.0 - 0.3 × Cap/1000)
		$COP = 3.7 - (0.052 \times Cap/1000)$
	Replacements ^b	EER = 10.8 (0.213 × Cap/1000)
		COP = 2.9 (0.026 × Cap/1000)

""Cap" = The rated cooling capacity of the project in Btu/hr. If the unit's capacity is less than 7000 Btu/hr, use 7,000 Btu/hr in the calculation. If the unit's capacity is greater than 15,000 Btu/hr, use 15,000 Btu/hr in the calculations.

*Replacement unit shall be factory labeled as follows "MANUFACTURED FOR REPLACEMENT APPLICATIONS ONLY; NOT TO BE INSTALLED IN NEW CONSTRUCTION PROJECTS".

Replacement efficiencies apply only to units with existing sleeves less than 16 inches (406mm) in height and less than 42 inches (1067 mm) in width.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

TOS:

 $\Delta kW = \Delta kWH_{cool} + xCF$

EREP:

ΔkW for remaining life of existing unit (1st 5years)

 $\Delta kW = \Delta kW (1st 5 years) + \chi CF$

ΔkW for remaining measure life (next 10 years)

 $\Delta kW = \Delta kW$ (next 10 years) +x CF

Where:

 ΔkWH_{cool} = Annual cooling electricity savings, as calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh)

factor for cooling = 0.0009106840

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 5.0

Formatted: Cambria12, Indent: First line: 0"

Formatted: Cambria12, Indent: Left: 0"

Formatted: Cambria12, Indent: Left: 0"

Ameren Missouri	Appendix H - TRM – Vol. 2: C8	&I Measures
MEASURE CODE:		
2025 MEEIA 4 Plan MEEIA 2019-21 Plan-F	Revision <u>56</u> .0	Page 127

2.5.8 Single-Package and Split System Unitary Air Conditioner

DESCRIPTION

This measure promotes the installation of high-efficiency unitary air-, water-, and evaporatively cooled air conditioning equipment, both single-package and split systems. Air conditioning (AC) systems are a major consumer of electricity and systems that exceed baseline efficiencies can save considerable amounts of energy. This measure could apply to the replacement of an existing unit at the end of its useful life or the installation of a new unit in a new or existing building.

This measure was developed to be applicable to the following program types: TOS and NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to be a high-efficiency air-, water-, or evaporatively cooled air conditioner that exceeds both the full load and part load efficiencies associated with the applicable code described in the Definition of Baseline Equipment. Federal Energy Conservation Efficiency Standards.

Federal Energy Conservation Efficiencyci Standards (effective January 20132023)²⁵³

			ED EL .	
Heat Rejection	Capacity, kBTUh	Туре	ER Electric resistance or heat or No heat	All other heat
	< 65	Packaged,-Split	13.4 SI 6.7 HS	
A: G	≥65 and <135	Packaged	14. <u>8</u> 4 IEER 3.4 COP	14.6 IEER
Air Source	≥135 and <240	Packaged	13.5 <u>14.2</u> IEER 3.3 COP	<u>,14.0 IEER</u>
	≥240 <u>and <760</u>	Packaged	12.5 <u>13.23</u> IEER 3.2 COP	13.0 IEER
	<u>< 65</u>	Packaged,Split	12.1	EER
W C	≥65 and <135	Packaged	<u>12.1 EER</u>	11.9 EER
Water Source	≥135 and <240	Packaged	12.5 EER	12.3 EER
	≥240 and <760	Packaged	<u>12.4 EER</u>	12.2 EER

DEFINITION OF BASELINE EQUIPMENT

<u>TOS</u>, <u>New Construction</u>: In order for this characterization to apply, the baseline equipment is assumed to be a standard-efficiency air-, water, or evaporatively cooled air conditioner that meets

Formatted: Font: Not Bold
Formatted: Font: Not Bold
Formatted: Font: Not Bold
Formatted: Font: 11 pt, Bold

Formatted: Font: Bold

Formatted: Centered, Line spacing: single, No widow/orphan control, Don't keep with next, Don't keep lines together

Formatted: Line spacing: single, No widow/orphan control, Don't keep with next, Don't keep lines together

Formatted: Font: Bold

Formatted: Font: 11 pt

Formatted: Line spacing: single, No widow/orphan control, Don't keep with next, Don't keep lines together

Commatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted: Font: 11 pt

 $[\]underline{^{253}\ DOE[Title 10,Part\ 431]https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431]}$

Appendix H - TRM - Vol. 2: C&I Measures

the 2015 IECC energy efficiency requirements, effective January 1, 2024. Federal Energy Conservation Efficiency Standards.

Retrofit, Early Replacement: For this characterization to apply, the existing equipment is working with a -remaining useful life. The efficiency is the actual if known, else the standard efficiency when manufactured. After, remaining useful life period, the baseline is the Time of Sale baseline meeting the Federal Energy ConservationEfficiency Standards Prior to January 1, 2024, the applicable baseline is assumed be similar equipment meeting the energy efficiency requirement of local building code. When local code does not exist, use of IECC 2012 is defined as the building code baseline

÷

The rating conditions for the baseline and efficient equipment efficiencies must be equivalent.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 15 years.²⁵⁴

DEEMED MEASURE COST

For analysis purposes, the incremental capital cost for this measure is assumed The incremental capital cost for this measure is assumed to be \$100-104 per ton per SEER or IEER unit increase over the base case efficiency for air-cooled units.²⁵⁵

The incremental cost for all other equipment types should be determined on a site-specific basis.

For a 144,000 BTUh, 16.2 IEER air source packaged air conditoner without heat, the incrementa cost is:

12 tons x (16.2 IEER - 14.2 IEER) x \$104 = \$2,496

LOADSHAPE

Cooling BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

For units with cooling capacities less than 65 kBtu/hr:

ASHRAE, Chapter 38: Owning and Operating Costs, Table 4, "Heating, Ventilating and Air Conditioning Applications", (2023 edition) for commercial roof top air conditioners, single zone or multi zone. Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, Inc., June 2007.
 ABSC Inc, ASK Energy Inc, SDGE, "Industry Standard Practice Study of Commercial Unitary Air Conditioning and Heat Pumps Systems", page 36 (September 2021) https://www.caetrm.com/media/reference-documents/Unitary HVAC_ISP Report Final.pdfBased on a review of TRM incremental cost assumptions from Vermont, Wisconsin, and California. This assumes that baseline shift from between IECC versions carries the same incremental costs. Values should be verified during evaluation.

Formatted: Underline

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

 $\Delta kWH = kBtu/hr *_{\underline{x}} (1/SEER_{\underline{2}base} - 1/SEER_{\underline{2}ee}) *_{\underline{x}} EFLH$

For units with cooling capacities equal to or greater than 65 kBtu/hr:

 $\Delta kWH = kBtu/hr *\underline{x} (1/IEER_{base} - 1/IEER_{ge}) *\underline{x} EFLH$

Where:

kBtu/hr = Capacity of the cooling equipment actually installed in kBtu per hour (1 ton of cooling capacity equals 12 kBtu/hr)

SEER2base = Seasonal Energy Efficiency Ratio of the baseline equipment

= SEER values from tables below, based on the applicable IECC.

= For units with cooling capacity <65kbtu/hr and efficient unit is measured in terms of SEER2, convert SEER_{base} to SEER2_{base}.²⁵⁶.

SEER2ee = Seasonal Energy Efficiency Ratio of the energy efficient equipment (actually installed)

IEER_{base} = Integrated Energy Efficiency Ratio of the baseline equipment

= IEER values from tables below, based on the applicable IECC.

 $IEER_{ee} \quad \ = Integrated \ Energy \ Efficiency \ Ratio \ of \ the \ energy \ efficient \ equipment$

(actually installed.)

EFLH = Equivalent Full Load Hours for cooling are provided in <u>Table 1 section 2.7</u>

HVAC End Use

²⁵⁶ SEER to SEER2 conversion factor: SEER2 = SEER x 96%. Conversion factor for SEER to SEER2 is used when converting an existing system that is rated in SEER to SEER2. This is to meet the DOE M1 CFR Standard beginning January 1, 2023. The efficiency levels of the existing, baseline, and efficient case must be expressed in the same metrics (e.g., both SEER or SEER2) before applying formulas.

2009 IECC Minimum Efficiency Requirements

TABLE 503.2.3(1)

EQUIPMENT TYPE	SIZE CATEGORY	SUBCATEGORY OR RATING CONDITION	MINIMUM EFFICIENCy	TEST PROCEDURE	
	- 45 000 P. 04	Split system	13.0 SEER		
	< 65,000 Btu/h ^d	Single package	13.0 SEER		
	≥ 65,000 Btu/h and < 135,000 Btu/h	Split system and single package	10.3 EERc (before Jan 1, 2010) 11.2 EERc (as of Jan 1, 2010)	AHRI210/240	
	≥ 135,000 Btu/h and < 240,000 Btu/h	Split system and single package	9.7 EERc (before Jan 1, 2010) 11.0 EERc (as of Jan 1, 2010)		
Air conditioners, Air cooled			9.5 EERc 9.7 IPLYc (before Jan 1, 2010) 10.0 EERc 9.7 IPLyg (as of Jan 1, 2010)	AHRI 340/360	
			9.2 EERc 9.4 IPLYc (before Jan 1, 2010) 9.7 EERc 9.4 IPLYc		
			(as of Jan 1, 2010)		
Through-the-wall,	< 30.000 Btu/h ^d	Split system	10.9 SEER (before Jan 23, 2010) 12.0 SEER (as of Jan 23,2010)	AHRI210/240	
Air cooled	- 30,000 Bitch	Single package	10.6 SEER (before Jan 23, 2010) 12.0 SEER (as of Jan 23,2010)	AIRCE TO 240	
Air conditioners, Water und evaporatively cooled	< 65,000 Btu/h	Split system and single package	12.1 EER		
	≥ 65,000 Btu/h and <135,000 Btu/h		11.5 EERe	AHRI210/240	
	≥ 135,000 Btu/h and < 240,000 Btu/h	Split system and single package	11.0 EERe	AHRI 340/360	
	≥ 240,000 Btu/h	Split system and single package	11.5 EERe		

Formatted: Left

For SI: 1 British thermal unit per hour = 0.2931 W
a. Chapter 6 contains a complete specification of the referenced test procedure, including the referenced year versions of the test procedure.
b. IPLVs are only applicable to equipment with capacity modulation.
c. Deduct 0.2 from the required EERs and IPLVs for units with a heating section other than electric resistance heat.
d. Single-phase air-cooled air conditioners < 65,000 Btulh are regulated by the National Appliance Energy Conservation Act of 1987 (NAECA); SEER values are those set by NAECA.

2012 IECC Minimum Efficiency Requirements

TABLE C403.2.3(1) MINIMUM EFFICIENCY REQUIREMENTS: ELECTRICALLY OPERATED UNITARY AIR CONDITIONERS AND CONDENSING UNITS

EQUIPMENT TYPE	CITE OATEOCON	HEATING	SUBCATEGORY OR	MINIMUM E	FFICIENCY	TEST	
EQUIPMENT TYPE	SIZE CATEGORY	SECTION TYPE	RATING CONDITION	Before 6/1/2011	As of 6/1/2011	PROCEDURE	
Air conditioners,	< 65.000 Btu/hb	All	Split System	13.0 SEER	13.0 SEER		
air cooled	< 65,000 Bul/n	All	Single Package	13.0 SEER	13.0 SEER	1	
Through-the-wall	≤ 30,000 Btu/h ^b	All	Split system	12.0 SEER	12.0 SEER	AHRI	
(atr cooled)	\$ 30,000 Billin	All	Single Package	12.0 SEER	12.0 SEER	210/240	
Small-duct high-velocity (air cooled)	< 65,000 Btu/hb	All	Split System	10.0 SEER	10.0 SEER	1	
	≥ 65,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	11.2 EER 11.4 IEER	11.2 EER 11.4 IEER		
	and < 135,000 Btu/h	All other	Split System and Single Package	11.0 EER 11.2 IEER	11.0 EER 11.2 IEER	Ī	
	≥ 135,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	11.0 EER 11.2 IEER	11.0 EER 11.2 IEER	1	
Air conditioners.	and < 240,000 Btu/h	All other	Split System and Single Package	10.8 EER 11.0 IEER	10.8 EER 11.0 IEER	AHRI	
air cooled	≥ 240,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	10.0 EER 10.1 IEER	10.0 EER 10.1 IEER	340/360	
	and < 760,000 Btu/h	All other	Split System and Single Package	9.8 EER 9.9 IEER	9.8 EER 9.9 IEER		
	≥ 760,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	9.7 EER 9.8 IEER	9.7 EER 9.8 IEER		
		All other	Split System and Single Package	9.5 EER 9.6 IEER	9.5 EER 9.6 IEER		
	< 65,000 Btu/h ^b	All	Split System and Single Package	12.1 EER 12.3 IEER	12.1 EER 12.3 IEER	AHRI 210/240	
	≥ 65,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	11.5 EER 11.7 IEER	12.1 EER 12.3 IEER		
	< 135,000 Btu/h	All other	Split System and Single Package	11.3 EER 11.5 IEER	11.9 EER 12.1 IEER		
	≥ 135,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	11.0 EER 11.2 IEER	12.5 EER 12.7 IEER	1	
Air conditioners, water cooled	and < 240,000 Btu/h	All other	Split System and Single Package	10.8 EER 11.0 IEER	12.3 EER 12.5 IEER	AHRI	
	≥ 240,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	11.0 EER 11.1 IEER	12.4 EER 12.6 IEER	340/360	
	and < 760,000 Btu/h	All other	Split System and Single Package	10.8 EER 10.9 IEER	12.2 EER 12.4 IEER		
	> 700 000 D. *	Electric Resistance (or None)	Split System and Single Package	11.0 EER 11.1 IEER	12.0 EER 12.4 IEER		
	≥ 760,000 Btu/h	All other	Split System and Single Package	10.8 EER 10.9 IEER	12.0 EER 12.2 IEER	1	

(continued)

Appendix H - TRM - Vol. 2: C&I Measures

TABLE C403.2.3(1)—continued
MINIMUM EFFICIENCY REQUIREMENTS:
ELECTRICALLY OPERATED UNITARY AIR CONDITIONERS AND CONDENSING UNITS

SIZE CATECODY	HEATING	SUB-CATEGORY OR	MINIMUM E	FFICIENCY	TEST
SIZE CATEGORT	SECTION TYPE	RATING CONDITION	Before 6/1/2011	As of 6/1/2011	PROCEDURE:
< 65,000 Btu/hb	All	Split System and Single Package	12.1 EER 12.3 IEER	12.1 EER 12.3 IEER	AHRI 210/240
≥ 65,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	11.5 EER 11.7 IEER	12.1 EER 12.3 IEER	
< 135,000 Btu/h	All other	Split System and Single Package	11.3 EER 11.5 IEER	11.9 EER 12.1 IEER	
≥ 135,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	11.0 EER 11.2 IEER	12.0 EER 12.2 IEER	
< 240,000 Btu/h	All other	Split System and Single Package	10.8 EER 11.0 IEER	11.8 EER 12.0 IEER	AHRI
≥ 240.000 Btu/h	Electric Resistance	Split System and Single Package	11.0 EER	11.9 EER	340/360
< 760,000 Btu/h	All other	Split System and Single Package	10.8 EER 10.9 IEER	12.2 EER 11.9 IEER	
> 760 000 Btu/b	Electric Resistance (or None)	Split System and Single Package	10.0 EER 11.1 IEER	11.7 EER 11.9 IEER	
2 700,000 Biwii	All other	Split System and Single Package	10.8 EER 10.9 IEER	11.5 EER 11.7 IEER	
≥ 135,000 Btu/h			10.1 EER 11.4 IEER	10.5 EER 14.0 IEER	
≥ 135,000 Btu/h			13.1 EER 13.6 IEER	13.5 EER 14.0 IEER	AHRI 365
≥ 135,000 Btu/h	Th.		13.1 EER 13.6 IEER	13.5 EER 14.0 IEER	18
	≥ 65,000 Btu/h and < 135,000 Btu/h ≥ 135,000 Btu/h ≥ 240,000 Btu/h < 240,000 Btu/h < 760,000 Btu/h ≥ 135,000 Btu/h ≥ 135,000 Btu/h	SECTION TYPE	SECTION TYPE	SIZE CATEGORY SECTION TYPE RATING CONDITION	SECTION TYPE RATING CONDITION Sefore 61/1/2011 As of 61/1/2011

Formatted: Right: 0.21", Space After: 0 pt

Formatted: Right, Indent: Left: 0", Right: 0.21"

For SI: 1 British thermal unit per hour = 0.2931 W.

a. Chapter 6 of the referenced standard contains a complete specification of the referenced test procedure, including the reference year version of the test procedure.

b. Single-phase, air-cooled air conditioners less than 65.000 Btu/h are regulated by NAECA. SEER values are those set by NAECA.

2015 IECC Minimum Efficiency Requirements

TABLE C403.2.3(1)

MINIMUM EFFICIENCY REQUIREMENTS:
ELECTRICALLY OPERATED UNITARY AIR CONDITIONERS AND CONDENSING UNITS

EQUIPMENT TYPE	SIZE CATEGORY		SUBCATEGORY OR	MINIMUM E	FFICIENCY	TEST	
COUPMENT THE	SEE CATEGORY	SECTION TYPE	RATING CONDITION	Before 1/1/2016	As of 1/1/2016	PROCEDURE	
Air conditioners,	< 65,000 Btu/h	All	Split System	13.0 SEER.	13.0 SEER		
air cooled	< 65,000 Bitwin	All	Single Package	13.0 SEER	14.0 SEER ^c	1	
Through-the-wall	≤ 30,000 Btu/h ^b	All	Split system	12.0 SEER	12.0 SEER	AHRI	
(air cooled)	2 30,000 Biwn	All	Single Package	12.0 SEER	12.0 SEER	210/240	
Small-duct high-velocity (air cooled)	< 65,000 Btu/h ^b	All	Split System	11.0 SEER	11.0 SEER	1	
	≥ 65,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	11.2 EER 11.4 IEER	11.2 EER 12.8 IEER		
	< 135,000 Btu/h	All other	Split System and Single Package	11.0 EER 11.2 IEER	11.0 EER 12.6 EER	1	
	≥ 135,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	11.0 EER 11.2 IEER	11.0 EER 12.4 EER	1	
Air conditioners,	and < 240,000 Btu/h	All other	Split System and Single Package	10.8 EER 11.0 IEER	10.8 EER 12.2 IEER	AHRI	
air cooled	≥ 240,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	10.0 EER 10.1 IEER	10.0 EER 11.6 IEER	340/360	
	< 760,000 Btu/h	All other	Split System and Single Package	9.8 EER 9.9 IEER	9.8 EER 11.4 IEER		
	≥ 760,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	9.7 EER 9.8 IEER	9.7 EER 11.2 IEER	1	
		All other	Split System and Single Package	9.5 EER 9.6 IEER	9.5 EER 11.0 IEER]	
	< 65,000 Btu/h ^b	All	Split System and Single Package	12.1 EER 12.3 IEER	12.1 EER 12.3 IEER	AHRI 210/240	
	≥ 65,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	12.1 EER 12.3 IEER	12.1 EER 13.9 IEER		
	< 135,000 Btu/h	All other	Split System and Single Package	11.9 EER 12.1 IEER	11.9 EER 13.7 IEER	1	
	≥ 135,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	12.5 EER 12.5 IEER	12.5 EER 13.9 IEER	1	
Air conditioners, water cooled	< 240,000 Btu/h	All other	Split System and Single Package	12.3 EER 12.5 IEER	12.3 EER 13.7 IEER	AHRI	
	≥ 240,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	12.4 EER 12.6 IEER	12.4 EER 13.6 IEER	340/360	
	and < 760,000 Btu/h	All other	Split System and Single Package	12.2 EER 12.4 IEER	12.2 EER 13.4 IEER		
	760 000 Dr. 1	Electric Resistance (or None)	Split System and Single Package	12.2 EER 12.4 IEER	12.2 EER 13.5 IEER		
	≥ 760,000 Btu/h	All other	Split System and Single Package	12.0 EER 12.2 IEER	12.0 EER 13.3 IEER	1	

(continued)

TABLE C403.2.3(1)—continued
MINIMUM EFFICIENCY REQUIREMENTS:
ELECTRICALLY OPERATED UNITARY AIR CONDITIONERS AND CONDENSING UNITS

EQUIPMENT TYPE	SIZE CATEGORY		SUB-CATEGORY OR	MINIMUM E	TEST	
EQUIPMENT TIPE		SECTION TYPE	RATING CONDITION	Before 1/1/2016	As of 1/1/2016	PROCEDURE
	< 65,000 Btu/h ^b	All	Split System and Single Package	12.1 EER 12.3 IEER	12.1 EER 12.3 IEER	AHRI 210/240
	≥ 65,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	12.1 EER 12.3 IEER	12.1 EER 12.3 IEER	
	and < 135,000 Btu/h	All other	Split System and Single Package	11.9 EER 12.1 IEER	11.9 EER 12.1 IEER	1
	≥ 135,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	12.0 EER 12.2 IEER	12.0 EER 12.2 IEER]
evaporatively cooled	< 240,000 Btu/h	All other	Split System and Single Package	11.8 EER 12.0 IEER	11.8 EER 12.0 IEER	AHRI
	≥ 240,000 Btu/h and < 760,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	11.9 EER 12.1 IEER	11.9 EER 12.1 IEER	340/360
		All other	Split System and Single Package	11.7 EER 11.9 IEER	11.7 EER 11.9 IEER	
		Electric Resistance (or None)	Split System and Single Package	11.7 EER 11.9 IEER	11.7 EER 11.9 IEER	
2 /60,000 £	≥ 760,000 Btu/h	All other	Split System and Single Package	11.5 EER 11.7 IEER	11.5 EER 11.7 IEER	
Condensing units, air cooled	≥ 135,000 Btu/h			10.5 EER 11.8 IEER	10.5 EER 11.8 IEER	L SCOTT
Condensing units, water cooled	≥ 135,000 Btu/h			13.5 EER 14.0 IEER	13.5 EER 14.0 IEER	AHRI 365
Condensing units, evaporatively cooled	≥ 135,000 Btu/h			13.5 EER 14.0 IEER	13.5 EER 14.0 IEER	1

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWH - xCF$$

Where:

 Δ kWH = Annual electricity savings, as calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

for Cooling

 $=0.0009106840^{257}$

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

DEEMED O&M COST ADJUSTMENT CALCULATION

For SI: 1 British thermal unit per hour = 0.2931 W.

a. Chapter 6 contains a complete specification of the referenced test procedure, including the reference year version of the test procedure. b. Single-phase, air-cooled air conditioners less than 65,000 Btu h are regulated by NAECA. SEER values are those set by NAECA.

c. Minimum efficiency as of Jamany 1, 2015.

²⁵⁷ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

Ameren	Missouri	

Appendix H - TRM - Vol. 2: C&I Measures

N/A

MEASURE CODE:

2.5.9 High Volume Low Speed Fans

DESCRIPTION

The measure applies to 2016-24 foot diameter horizontally mounted ceiling high volume low speed (HVLS) fans that are replacing multiple non HVLS fans that have reached the end of useful life.

This measure was developed to be applicable to the following program types: TOS and $RF/ \parallel f$ applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to be classified as HVLS and have a VFD. 258

DEFINITION OF BASELINE EQUIPMENT

In order for this characterization to apply, the baseline condition is assumed to be multiple non HVLS existing fans that have reached the end of useful life.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 10 years. 259174

DEEMED MEASURE COSTT

The incremental capital cost for the fans are as follows:-174

Fan Diameter Size (feet)	Incremental Cost ²⁶⁰
<u>16</u>	<u>\$4,072</u>
<u>18</u>	<u>\$4,110</u>
20	\$4150
22	\$4180
24	\$4225

LOADSHAPE HVAC BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS174

Formatted Table

Formatted: Font: 9 pt
Formatted: Font: 9 pt
Formatted: Font: 9 pt
Formatted: Font: 9 pt
Formatted: Left, Indent: Left: 0"
Formatted: Font: 9 pt
Formatted: Font: 9 pt
Formatted: Font: 9 pt
Formatted: Font: 9 pt
Formatted: Font: Old: Auto
Field Code Changed

^{258 &}quot;Illinois Statewide Technical Reference Manual for Energy Efficiency Version 8.0, Volume 2: Commercial and Industrial Measures," Section 4.1.2, High Volume Low Speed Fans

²³⁹ Michigan Energy Measures DatabaseMichigan Energy Measures Database | 2024 MEMD Master Database | High Volume Low Speed Fans | https://www.michigan.gov/mpsc/regulatory/ewr/michigan-energy-measures-databaseMichigan Energy Measures Database | 2024 MEMD Master Database | High Volume Low Speed Fans | https://www.michigan.gov/mpsc/regulatory/ewr/michigan-energy-measures-database | See "Commercial" tab rows 426:431)

240 Michigan Energy Measures Database | 2024 MEMD Master Database | High Volume Low Speed Fans | https://www.michigan.gov/mpsc/regulatory/ewr/michigan-energy-measures-databaseMichigan Energy Measures Database | 2024 MEMD Master Database | High Volume Low Speed Fans | https://www.michigan.gov/mpsc/regulatory/ewr/michigan-energy-measures-database (See "Commercial" tab rows 426:431)

Appendix H - TRM - Vol. 2: C&I Measures

The annual electric savings from this measure are deemed values depending on fan size and apply to all building types:

Fan Diameter Size (feet)	kWh Energy Savings (kWh) ²⁶¹
<u>16</u>	<u>3,218</u>
<u>18</u>	<u>4,938</u>
20	6,577
22	8,543
24	10,018

SUMMER COINCIDENT PEAK DEMAND SAVINGS²⁶²

 $\Delta kW = \Delta kWh + x CF$

Where:

 ΔkWh = Electric energy savings, as calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $=0.000443983\frac{263}{2}$

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

Formatted: Indent: Left: 0", Right: 0"

Formatted: Centered, Indent: Left: 0", Right: 0"

Formatted Table

Formatted: Indent: First line: 0", Right: 0", Space Before: 2 pt, After: 2 pt, Line spacing: single

Formatted: Indent: Left: -0.01", First line: 0", Space Before: 2 pt, After: 2 pt, Line spacing: single

Formatted: Indent: Left: -0.01", First line: 0", Space Before: 2 pt, After: 2 pt, Line spacing: single

Formatted: Indent: Left: -0.01", First line: 0", Space Before: 2 pt, After: 2 pt, Line spacing: single

Formatted: Indent: Left: -0.01", First line: 0", Space Before: 2 pt, After: 2 pt, Line spacing: single

Formatted: Indent: Left: -0.01", First line: 0", Space Before: 2 pt, After: 2 pt, Line spacing: single

Formatted: CambriaTextFormula

²⁶¹ Michigan Energy Measures Database | 2024 MEMD Master Database | High Volume Low Speed Fans | https://www.michigan.gov/mpsc/regulatory/ewr/michigan-energy-measures-database (See "Commercial" tab cells M861:M865).
²⁶² "Illinois Statewide Technical Reference Manual for Energy Efficiency Version 8.0, Volume 2: Commercial and Industrial Measures," Section 4.1.2, High Volume Low Speed Fans.
²⁶³ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors".

2.5.10 Chiller Tune Up

DESCRIPTION

This measure is the tune-up of an existing air-cooled or water-cooled electric chiller. The tune-up consists of tube cleaning, chilled and condenser water temperature adjustments, and reciprocating compressor unloading switch adjustments.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient condition is an existing chiller post tune-up.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is an existing chiller prior to receiving the tune-up.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected lifetime of the measure is 5 years.

DEEMED MEASURE COST

The incremental cost for this measure varies. Use actual cost.

DEEMED O&M COST ADJUSTMENTS

There are no expected O&M cost adjustments for this measure.

BASELINE EFFICIENCY VALUES BY CHILLER TYPE AND CAPACITY

Refer to 2012 IECC Minimum Efficiency Requirements in Reference Tables section of this measure.

LOADSHAPE

Cooling BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS²⁶⁴

 $\Delta kWh = TONS * IPLV_{Base} + x EFLH + x ESF$

Where:

TONS = Chiller nominal cooling capacity in tons (= actual; 1 ton = 12,000 Btu/hr)

IPLV_{BASE} = Efficiency of baseline equipment expressed as Integrated Part Load Value

(kW/ton). Chiller units are dependent on chiller type. See 'Chiller Units, Conversion Values' and 'Baseline Efficiency Values by Chiller Type' and Capacity in the Reference Tables section within this measure section.

EFLH = Equivalent full load hours (= dependent on location and building type,

see table 2.5 in Appendix H)

²⁶⁴ "Indiana Technical Reference Manual Version 2.2." New York TRM, Savings factor 5%, page 838 "Tune Up Chiller System" Page 217, hys-trm-v11 filing.pdf files/documents/2023/12/nys-trm-v11 filing.pdf

Formatted: Font: Cambria Math, 12 pt

Formatted: Cambria12, Indent: First line: 0"

Formatted: Font: 9 pt

Formatted: Left, Indent: Left: 0", First line: 0", No widow/orphan control, Don't keep lines together

Formatted: Font: 9 pt
Formatted: Font: 9 pt

Field Code Changed

Appendix H - TRM - Vol. 2: C&I Measures

ESF = Energy savings factor (= 0.0805)

For example, energy savings for the tune-up of a 350-ton chiller with an IPLV of .540_kW/Ton serving a Medium Office in St Louis is calculated as:

 Δ kWh = $TONS*_{IPLVBASE}*_{EFLH}*_{ESF} = 350*.540*_{1386}*_{0.08}*_{0.05} = 2013,956098$ kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS²⁶⁵

 $\Delta kW = \Delta kWh + x CF$

Where:

ΔkWh = Electric energy savings, as calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

_for Cooling (0.0009106840²⁶⁶)

For example, demand reduction for the tune-up of the above chiller resulting in 20,956 kWh of energy savings is calculated as:

 $\Delta kW = 20,956 \text{ kWh} \stackrel{*}{\underline{}_{\mathbf{X}}} 0.0009106840 = 19.08 \text{ kW}$

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

REFERENCE TABLES

Chillers Ratings - Chillers are rated with different units based on equipment type as shown below

Equipment Type	Unit
Air cooled, electrically operated	EER
Water cooled, electrically operated, positive displacement (reciprocating)	kW/ton
Water cooled, electrically operated, positive displacement (rotary screw and scroll)	kW/ton

In order to convert chiller equipment ratings to IPLV the following relationships are provided:

Formatted: Cambria12

²⁶⁵ Indiana Technical Reference Manual Version 2.2," Page 219.

²⁶⁶ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

Appendix H - TRM - Vol. 2: C&I Measures

kW/ton = 12 / EER

 kW/ton
 = 12 / (COP x 3.412)

 COP
 = EER / 3.412

 COP
 = 12 / (kW/ton) / 3.412

EER = 12 / kW/tonEER = COP x 3.412

2012 IECC Baseline Efficiency Values by Chiller Type and Capacity²⁶⁷

-

²⁶⁷ Note: Efficiency requirements depend on the path (Path A or Path B) that the building owner has chosen to meet compliance requirements. For air cooled and absorption chillers, Path A should be assumed. For water cooled chillers, the building owner should be consulted, and the relevant path used for calculations. When unknown, Path A should be used.

TABLE C403.2.3(7) MINIMUM EFFICIENCY REQUIREMENTS: WATER CHILLING PACKAGES^a

			BEFORE	1/1/2010		AS OF 1	/1/2010 ^b	Janes J	
	7.00				PAT	TH A	PAT	TH B	1
EQUIPMENT TYPE	SIZE	UNITS	FULL	IPLV	FULL	IPLV	FULL	IPLV	TEST PROCEDURES
Air-cooled chillers	< 150 tons	EER	≥ 9.562	≥10.4	≥ 9.562	≥ 12.500	NA	NA	
Air-cooled chillers	≥ 150 tons	EER	29.502	16	≥ 9.562	≥ 12.750	NA	NA	1
Air cooled without condenser, electrical operated	All capacities	EER	≥ 10.586	≥ 11.782	Air-cooled chillers without condens- ers shall be rated with matching con- densers and comply with the air-cooled chiller efficiency requirements		ng con- ir-cooled		
Water cooled, electrically operated, reciprocating	All capacities	kW/ton	≤ 0.837	≤ 0.696	Reciprocating units shall comply with water cooled positive displacement efficiency requirements				
	< 75 tons	kW/ton			≤ 0.780	≤ 0.630	≤ 0.800	≤ 0.600	1
Water cooled, electrically operated, post-	≥ 75 tons and < 150 tons	kW/ton	≤ 0.790	≤ 0.676	≤ 0.775	≤ 0.615	≤ 0.790	≤ 0.586	AHRI 550/590
tive displacement	≥ 150 tons and < 300 tons	kW/ton	≤ 0.717	≤0.627	≤ 0.680	≤ 0.580	≤ 0.718	≤ 0.540	- 550/590
	≥ 300 tons	kW/ton	≤ 0.639	≤ 0.571	≤ 0.620	≤ 0.540	≤ 0.639	≤ 0.490	
	< 150 tons	kW/ton	≤ 0.703	≤ 0.669	≤ 0.634 ≤ 0.5		≤ 0.596 ≤ 0.639	≤ 0.450	
Water cooled, electrically operated,	≥ 150 tons and < 300 tons	kW/ton	≤ 0.634	≤ 0.596		≤ 0.596			
centrifugal	≥ 300 tons and < 600 tons	kW/ton	≤ 0.576	≤ 0.549	≤ 0.576	≤ 0.549	≤ 0.600	≤ 0.400	
	≥ 600 tons	kW/ton	≤ 0.576	≤ 0.549	≤ 0.570	≤ 0.539	≤ 0.590	≤ 0.400	1
Air cooled, absorption single effect	All capacities	COP	≥ 0.600	NR	≥ 0.600	NR	NA	NA	
Water cooled, absorption single effect	All capacities	COP	≥ 0.700	NR	≥ 0.700	NR	NA	NA	AHRI 560
Absorption double effect, indirect fired	All capacities	COP	≥ 1.000	≥ 1.050	≥ 1.000	≥ 1.050	NA	NA	Ariki 500
Absorption double effect, direct fired	All capacities	COP	≥ 1.000	≥ 1.000	≥ 1.000	≥ 1.000	NA	NA]

2015 IECC Baseline Efficiency Values by Chiller Type and Capacity

capacities

For SI: 1 ton = 3517 W, 1 British thermal unit per hour = 0.2931 W, "C = [(*F) - 32]/1.8.

NA = Not applicable, not to be used for compliance; NR = No requirement.

a. The centrifugal chiller equipment requirements, after adjustment in accordance with Section C403.2.3.1 or Section C403.2.3.2, do not apply to chillers used in low-temperature applications where the design leaving fluid temperature is less than 36°F. The requirements do not apply to positive displacement chillers with leaving fluid temperatures less than or equal to 32°F. The requirements do not apply to absorption chillers with design leaving fluid temperatures less than 40°F.

b. Compliance with this standard can be obtained by meeting the minimum requirements of Path A or B. However, both the full load and IPLV shall be met to fulfill the requirements of Path A or B.

c. Chapter 6 of the referenced standard contains a complete specification of the referenced test procedure, including the referenced year version of the test procedure.

TABLE C403.2.3(7)

	SIZE CATEGORY	UNITS	BEFORE 1/1/2015		AS OF 1/1/2015		TEST
EQUIPMENT TYPE			Path A	Path B	Path A	Path B	PROCEDURE*
	< 150 Tons	EER	≥ 9.562 FL	NA°	≥ 10.100 FL	≥ 9.700 FL	
4: 1.1.12	< 150 Tons		≥ 12.500 IPLV	NA.	≥ 13.700 IPLV	≥ 15,800 IPLV	1
Air-cooled chillers	≥ 150 Tons	(Btu/W) ≥ 9.562 FL	NA°	≥ 10.100 FL	≥ 9.700 FL		
	2 150 10ns		≥ 12.500 IPLV	NA.	≥ 14.000 IPLV	≥ 16.100 IPLV	
Air cooled without condenser, electrically operated	All capacities	EER (Btu/W)		Air-cooled chillers without condenser shall be rated with matching condensers and complying with air-cooled chiller efficiency requirements.			
	< 75 Tons		≤ 0.780 FL	≤ 0.800 FL	≤ 0.750 FL	≤ 0.780 FL	
	< /3 Tolls		≤ 0.630 IPLV	≤ 0.600 IPLV	≤ 0.600 IPLV	≤ 0.500 IPLV	
	≥ 75 tons and < 150 tons		≤ 0.775 FL	≤0.790 FL	≤ 0.720 FL	≤ 0.750 FL	
	≥ 75 tons and < 150 tons		≤0.615 IPLV	≤ 0.586 IPLV	≤ 0.560 IPLV	≤ 0.490 IPLV	
Water cooled, electrically	≥ 150 tons and < 300 tons	kW/ton	≤ 0.680 FL	≤0.718 FL	≤ 0.660 FL	≤0.680 FL	AHRI 550/ 590
operated positive displacement	≥ 150 tons and < 500 tons	KW/ton	≤ 0.580 IPLV	≤ 0.540 IPLV	≤ 0.540 IPLV	≤ 0.440 IPLV	
	≥ 300 tons and < 600 tons		≤ 0.620 FL	≤0.639 FL	≤ 0.610 FL	≤ 0.625 FL	
	2 300 tons and < 600 tons		≤ 0.540 IPLV	≤ 0.490 IPLV	≤ 0.520 IPLV	≤ 0.410 IPLV	
	≥ 600 tons		≤ 0.620 FL	≤0.639 FL	≤ 0.560 FL	≤ 0.585 FL	
			≤ 0.540 IPLV	≤ 0.490 IPLV	≤ 0.500 IPLV	≤ 0.380 IPLV	
	< 150 Tons		≤ 0.634 FL	≤ 0.639 FL	≤ 0.610 FL	≤ 0.695 FL	
	< 150 Tons		≤ 0.596 IPLV	≤ 0.450 IPLV	≤ 0.550 IPLV	≤ 0.440 IPLV	
	≥ 150 tons and < 300 tons		≤ 0.634 FL	≤ 0.639 FL	≤ 0.610 FL	≤ 0.635 FL	
	≥ 150 tons and < 500 tons	kW/ton	≤ 0.596 IPLV	≤ 0.450 IPLV	≤ 0.550 IPLV	≤ 0.400 IPLV	
Water cooled, electrically	≥ 300 tons and < 400 tons		≤ 0.576 FL	≤0.600 FL	≤ 0.560 FL	≤ 0.595 FL	
operated centrifugal	2 300 ions and < 400 ions		≤ 0.549 IPLV	≤0.400 IPLV	≤ 0.520 IPLV	≤ 0.390 IPLV	
	≥ 400 tons and < 600 tons		≤ 0.576 FL	≤0.600 FL	≤ 0.560 FL	≤ 0.585 FL	
	= 400 tons and < 000 tons		≤ 0.549 IPLV	≤ 0.400 IPLV	≤ 0.500 IPLV	≤ 0.380 IPLV	
	> 600 Tons		≤ 0.570 FL	≤0.590 FL	≤ 0.560 FL	≤ 0.585 FL	
	2 000 1 ons		≤ 0.539 IPLV	≤ 0.400 IPLV	≤ 0.500 IPLV	≤ 0.380 IPLV	†
Air cooled, absorption, single effect	All capacities	COP	≥ 0.600 FL	NA°	≥ 0.600 FL	NA°	
Water cooled absorption, single effect	All capacities	COP	≥ 0.700 FL	NA°	≥ 0.700 FL	NA°	
Absorption, double effect, indirect fired	All capacities	COP	≥ 1.000 FL ≥ 1.050 IPLV	NA°	≥ 1.000 FL ≥ 1.050 IPLV	NA°	AHRI 560
Absorption double effect direct fired	All capacities	COP	≥ 1.000 FL ≥ 1.000 IPLV	NA°	≥ 1.000 FL ≥ 1.050 IPLV	NA°	

a. The requirements for centrifugal chiller shall be adjusted for nonstandard nating conditions in accordance with Section C403.2.3.1 and are only applicable for the range of conditions listed in Section C403.2.3.1. The requirements for air-cooled, water-cooled positive displacement and absorption chillers are at standard nating conditions defined in the reference test procedure.

b. Both the full-load and PLV requirements shall be met or exceeded to comply with this standard. Where there is a Path B, compliance can be with either Path A or Path B for any application.

c. NA means the requirements are not applicable for Path B and only Path A can be used for compliance.

d. FL represents the full-load performance requirements and IPLV the part-load performance requirements.

2018 IECC Baseline Efficiency Values by Chiller Type and Capacity

TABLE C403.3.2(7)
WATER CHILLING PACKAGES — EFFICIENCY REQUIREMENT St., b, d

EQUIPMENT TYPE	SIZE CATEGORY	UNITS	BEFORE	1/1/2015	AS OF	1/1/2015	TEST
EQUIPMENT TIPE	SIZE CATEGORY	OMITS	Path A	Path B	Path A	Path B	PROCEDURE
	< 150 Tons		≥ 9.562 FL	NAC	≥ 10.100 FL	≥ 9.700 FL	-
Air-cooled chillers	4 100 10113	EER	≥ 12.500 IPLV	l NA	≥ 13.700 IPLV	≥ 15,800 IPLV	
All-cooled crillers	≥ 150 Tons	(Btu/W)	≥ 9.562 FL	NAG	≥ 10.100 FL	≥ 9.700 FL	
	2 150 10115		≥ 12.500 IPLV	INA.	≥ 14.000 IPLV	≥ 16.100 IPLV	
Air cooled without condenser, electrically operated	All capacities	EER (Btu/W)	matching condensers and complying with air-				
	< 75 Tons		≤ 0.780 FL	≤ 0.800 FL	≤ 0.750 FL	≤ 0.780 FL	
	< /5 IONS		≤ 0.630 IPLV	≤ 0.600 IPLV	≤ 0.600 IPLV	≤ 0.500 IPLV	
	> 75 tons and < 150 tons	1	≤ 0.775 FL	≤ 0.790 FL	≤ 0.720 FL	≤ 0.750 FL	
	2 70 tons and < 100 tons		≤ 0.615 IPLV	≤ 0.586 IPLV	≤ 0.560 IPLV	≤ 0.490 IPLV	
Water cooled, electrically operated positive	5 450 t < 200 t	kW/ton	≥ 0.680 FL	≥ 0.718 FL	≥ 0.660 FL	≥ 0.680 FL	AHRI 550/590
operated positive displacement	≥ 150 tons and < 300 tons	KVV/ton	≥ 0.580 IPLV	≥ 0.540 IPLV	≥ 0.540 IPLV	≥ 0.440 IPLV	
displacement	≥ 300 tons and < 600 tons		≤ 0.620 FL	≤ 0.639 FL	≤ 0.610 FL	≤ 0.625 FL	
	2 300 tons and < 000 tons		≤ 0.540 IPLV	≤ 0.490 IPLV	≤ 0.520 IPLV	≤ 0.410 IPLV	
	≥ 600 tons		≤ 0.620 FL	≤ 0.639 FL	≤ 0.560 FL	≤ 0.585 FL	
			≤ 0.540 IPLV	≤ 0.490 IPLV	≤ 0.500 IPLV	≤ 0.380 IPLV	
	< 150 Tons		≤ 0.634 FL	≤ 0.639 FL	≤ 0.610 FL	≤ 0.895 FL	
	< 150 Ions		≤ 0.596 IPLV	≤ 0.450 IPLV	≤ 0.550 IPLV	≤ 0.440 IPLV	
	> 150 tons and < 300 tons	1	≤ 0.634 FL	≤ 0.639 FL	≤ 0.610 FL	≤ 0.635 FL	
	2 100 tons and < 500 tons		≤ 0.596 IPLV	≤ 0.450 IPLV	≤ 0.550 IPLV	≤ 0.400 IPLV	
Water cooled, electrically	≥ 300 tons and < 400 tons	kW/ton	≤ 0.576 FL	≤ 0.600 FL	≤ 0.560 FL	≤ 0.595 FL	
operated centrifugal	2 300 tons and < 400 tons	KVV/ton	≤ 0.549 IPLV	≤ 0.400 IPLV	≤ 0.520 IPLV	≤ 0.390 IPLV	
	≥ 400 tons and < 600 tons	1	≤ 0.576 FL	≤ 0.600 FL	≤ 0.560 FL	≤ 0.585 FL	
	2 400 tons and < 000 tons		≤ 0.549 IPLV	≤ 0.400 IPLV	≤ 0.500 IPLV	≤ 0.380 IPLV	
	> 600 Tons	1	≤ 0.570 FL	≤ 0.590 FL	≤ 0.560 FL	≤ 0.585 FL	
	2000 10115		≤ 0.539 IPLV	≤ 0.400 IPLV	≤ 0.500 IPLV	≤ 0.380 IPLV	
Air cooled, absorption, single effect	All capacities	COP	≥ 0.600 FL	NA°	≥ 0.600 FL	NA°	
Water cooled absorption, single effect	All capacities	COP	≥ 0.700 FL	NA°	≥ 0.700 FL	NA°	
Absorption, double	All capacities	COP	≥ 1.000 FL	NAC	≥ 1.000 FL	NAc	AHRI 560
effect, indirect fired	All capacities	001	≥ 1.050 IPLV	ING.	≥ 1.050 IPLV	lac.	
Absorption double effect direct fired	All capacities	COP	≥ 1.000 FL ≥ 1.000 IPLV	NAc	≥ 1.000 FL ≥ 1.050 IPLV	NA°	

a. The requirements for centrifugal civiler shall be adjusted for nonstandard rating conditions in accordance with Section C403.3.2.1 and are only applicable for the range of conditions listed in Section C403.3.2.1. The requirements for air-cooled, water-cooled positive displacement and absorption chillers are at standard rating conditions defined in the reference test procedure.

b. Both the full-load and IPLV requirements shall be made or exceeded to comply with this standard. Where there is a Path B, compliance can be with either Path A or Path B for any application.

c. NA means the requirements are not applicable for Path B and only Path C and be used for compliance.

d. FL represents the full-load performance requirements and IPLV the part-load performance requirements.

MEASURE CODE:

2.5.11 Efficient Heat RejectionCooling Towers

DESCRIPTION

This measure characterizes the replacement of cooling towers used for heat rejection with an efficient cooling tower. The measure is applicable to open circuit, closed circuit cooling towers and fluid coolers.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient condition is an existing chiller post tune up.a replacement cooling tower exceeding the 2021 IECC efficiency for heat rejection equipment, listed in the following table.

EquipmentCooling Tower	Rating Condition	<u>Minimum</u> <u>Efficiency</u>
Propeller, or axial fan open circuit	95°F entering water 85°F leaving water 85°F entering WB	<u>~40.2 gpm/hp</u>
<u>Centrifugal fan open circuit</u>	95°F entering water 85°F leaving water 85°F entering WB	<u>>20.0 gpm/hp</u>
<u>Propeller, or axial fan closed</u>	102°F entering water 90°F leaving water 75°F entering WB	<u>≥16.1 gpm/hp</u>
<u>Centrifugal fan elosed eireuit</u>	102°F entering water 90°F leaving water 75°F entering WB	<u>.≥7.0 gpm/hp</u>
<u>Propeller, or axial fan dry</u> cooler (fluid cooler)	115°F entering water 105°F leaving water 95°F entering WB	<u>>4.5 gpm/hp</u>

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is an existing chiller prior to receiving the tune-up.a cooling tower meeting the 2021 IECC efficiency for heat rejection equipment.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected lifetime of the measure is 5 years.20 years

DEEMED MEASURE COST

The incremental cost for this measure varies. Use actual cost.

Formatted: Font: 11 pt, Font color: Background 1

Appendix H - TRM - Vol. 2: C&I Measures

DEEMED O&M COST ADJUSTMENTS

There are no expected O&M cost adjustments for this measure.

BASELINE EFFICIENCY VALUES BY CHILLER TYPE AND CAPACITY
Refer to 2012 IECC Minimum Efficiency Requirements in Reference Tables section of this

Formatted: Pattern: Clear (Red)

LOADSHAPE
Cooling BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS²⁶⁸

 $\Delta kWh = Tons \ x \ 3 \ x \ \left(\frac{1}{(GPM/HP)_{buse}} - \frac{1}{(GPM/HP)_{eff}}\right) \frac{1}{\frac{gpm}{hp}} \ x \ 0.7457x \ EFLH \underline{\Delta kWh} = TONS \frac{1}{hp}$

Formatted: Font: 12 pt

Formatted: Font: 11 pt

Where:

TONS — Chiller nominal cooling capacity in tons (= actual; 1 ton = 12,000 Btu/hr)tons required on design day for HVAC space cooling

- Average chillers tons required for process heat rejection
- Assumed condenser water gpm/ton, use actual if known

IPLVBASE GPM/HP_{base}M = 2021 Efficiency of baseline equipment expressed as Integrated Part

Load Value (kW/ton). Chiller units are dependent on chiller type. See 'Chiller Units, Conversion Values' and 'Baseline Efficiency Values by Chiller Type' and Capacity in the Reference Tables section within this measure section. IECC heat

GPM/HP_{eff} = Installed cooling tower heat rejection efficiency, use weighted values for

rejection efficiency
= Installed cooling tower
multiple cooling towers

0.7457 =kW/hp; cConvert horsepower to kilowatt

EFLH — Equivalent full load hours (= dependent on location and building type, see table 2.5 in Appendix H)

ESF - Energy savings factor (-0.08)

Formatted: Indent: First line: 0"

For example, energy savings for thea three chiller plant, 200 Tons, with two required on design day for a medium office building in St Louis, when efficient axial fan open circuit cooling towers (580 gpm/hp) replace the existing towersa tune up of a 350 ton chiller with an IPLV of .540kW/Ton serving a Medium Office in St Louis is calculated as:

^{268-&}quot;Indiana Technical Reference Manual Version 2.2," Page 217.

Appendix H - TRM - Vol. 2: C&I Measures

Formatted: Body Text

Formatted: Cambria12

 $\frac{\Delta kWh = (200x2)Tons \times 3 \times \left(\frac{1}{40.2} - \frac{1}{580}\right) \times 0.7457 \times 1386 \text{ hours} \times \Delta kWh = TONS * IPLUBASE *}{EFLH * ESF} = 350 * .540 * 1386 * 0.08 = 20.956 kWh$

 $\Delta kWh = 15,348 \, kWh$

SUMMER COINCIDENT PEAK DEMAND SAVINGS²⁶⁹

 $\Delta kW = \Delta kWh * CF$

Where:

<u>∆kWh</u> = Electric energy savings, as calculated above

<u>CF</u> = <u>Summer peak coincidence demand (kW) to annual energy (kWh) factor</u>

for Cooling (0.0009106840)

For example, demand reduction for the tune-up of the above chiller resulting in the above cooling tower replacement with 15,348 20,956 kWh of energy savings is calculated as:

 $\Delta kW = 20,95615,348 \text{ kWh} * 0.0009106840 - 19.0813.98 \text{ kW}$

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

REFERENCE-TABLES

Chillers Ratings - Chillers are rated with different units based on equipment type as shown below

Equipment Type	Unit
Air cooled, electrically operated	EER
Water cooled, electrically operated, positive displacement (reciprocating)	kW/ton
Water cooled, electrically operated, positive displacement (rotary screw and scroll)	kW/ton

In order to convert chiller equipment ratings to IPLV the following relationships are provided:

 kW/ton
 = 12 / EER

 kW/ton
 = 12 / (COP x 3.412)

 COP
 = EER / 3.412

 COP
 = 12 / (kW/ton) / 3.412

²⁶⁹-Indiana Technical Reference Manual Version 2.2," Page 219.

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Page 147

2.5.11 Efficient Cooling Towers

DESCRIPTION

This measure characterizes the replacement of cooling towers used for heat rejection with an efficient cooling tower. The measure is applicable to open circuit, closed circuit cooling towers and fluid coolers.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient condition is a replacement cooling tower exceeding the 2021 IECC efficiency for heat rejection equipment, listed in the following table.

Cooling Tower Type	Rating Condition	Minimum Efficiency
Propeller, or axial fan open	95°F entering water	.>40.2 gpm/hp
circuit	85°F leaving water	
	85°F entering WB	
Centrifugal fan open circuit	95°F entering water	.>20.0 gpm/hp
	85°F leaving water	
	85°F entering WB	
Propeller, or axial fan closed	102°F entering water	.>16.1 gpm/hp
circuit	90°F leaving water	
	75°F entering WB	
Centrifugal fan closed circuit	102°F entering water	.>7.0 gpm/hp
	90°F leaving water	
	75°F entering WB	
Propeller, or axial fan dry	115°F entering water	.>4.5 gpm/hp
cooler (fluid cooler)	105°F leaving water	
	95°F entering WB	

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is a cooling tower meeting the 2021 IECC efficiency for heat rejection equipment.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected lifetime of the measure is 20 years²⁷⁰

²⁷⁰ ASHRAE, Chapter 38: Owning and Operating Costs, Table 4, "Heating, Ventilating and Air Conditioning Applications", (2023 edition) for galvanized metal cooling towers.

DEEMED MEASURE CO

The incremental cost for this measure varies. Use actual cost.

DEEMED O&M COST ADJUSTMENTS

There are no expected O&M cost adjustments for this measure.

LOADSHAPE

Cooling BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS²⁷¹

$$\Delta kWh = Tons \ x \ 3 \ x \ \left(\frac{1}{(GPM/HP)_{base}} - \frac{1}{(GPM/HP)_{eff}}\right) x \ 0.7457x \ EFLH$$

Where:

TONS	= Chiller tons required on design day for HVAC space cooling
	= Average chillers tons required for process heat rejection
3	= Assumed condenser water gpm/ton, use actual if known
GPM/HP _{base}	= 2021 IECC heat rejection efficiency
GPM/HP _{eff}	= Installed cooling tower heat rejection efficiency, use weighted values for
_	multiple cooling towers
0.7457	=kW/hp; convert horsepower to kilowatt
EFLH	= Equivalent full load hours (= dependent on location and building type, see table
	2.5 in Appendix H)

For example, energy savings for a three chiller plant, 200 Tons, with two required on design day for a medium office building in St Louis, when efficient axial fan open circuit cooling towers (80 gpm/hp) replace the existing towers is calculated as:

$$\Delta kWh = (200x2)Tons\ x\ 3\ x\ \left(\frac{1}{40.2} - \frac{1}{80}\right)\ x\ 0.7457\ x1386\ hours$$

 $\Delta kWh = 15,348 \ kWh$

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWh x CF$$

Where:

²⁷¹ Standard condenser water flow sizing of 3 gpm/ton with flow efficiency of two pumps

Appendix H - TRM - Vol. 2: C&I Measures

<u>ΔkWh</u> = Electric energy savings, as calculated above

<u>CF</u> = Summer peak coincidence demand (kW) to annual energy (kWh) factor =0.0009106840²⁷²

For example, demand reduction for the above cooling tower replacement with 15,348 kWh of energy savings is calculated as:

 $\Delta kW = 15,348 \text{ kWh x } 0.0009106840 = 13.98 \text{ kW}$

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

REFERENCE TABLES

²⁷² Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

2.5.12 Dedicated Outdoor Systems (DOAS)

Formatted: Font: (Default) Times New Roman

DESCRIPTION

This measure promotes the installation of high-efficiency dedicated outdoor systems (DOAS utilizing direct expansion (DX) cooling (DOAS) to precondition the outside air brought into a building for ventilation.

This measure was developed to be applicable to the following program types: TOS, EREP, RF and NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to be a high efficiency dedicated outdoor air system that exceeds Federal Energy Efficiency Standards. Th efficiency ratings are assumed to be based on the AHRI920-2020 testing method for ISMRE2 and ISCOP2.

ISMRE2 is the integrated seasonal moisture removal efficiency, pounds of moisture per kilowatt-hour. ISCOP2 is the integrated seasonal coefficient of performance for heating efficiency. The measure is applicable to DOAS equipment with and without ventilation recovery systems (VERS) with a capacity less than 324 lb of moisture/hour.

<u>Federal Energy Efficiency Standards</u> (effective May 2024) for direct expansion dedicated <u>outdoor air systems.</u> ²⁷³

Category	<u>Ventilation</u> <u>Recovery System</u>	<u>Efficiency</u>
Air Conditioning	<u>No</u>	3.8 ISMRE2
Air Conditioning	<u>VERS</u>	<u>5.0 ISMRE2</u>
Air source heat pump	<u>No</u>	3.8 ISMRE2 2.05 ISCOP2
Air source heat pump	<u>VERS</u>	5.0 ISMRE2 3.2 ISCOP2
Water cooled	<u>No</u>	<u>4.7 ISMRE2</u>
Water cooled	VERS	<u>5.1 ISMRE2</u>
Water source heat pump	<u>No</u>	3.8 ISMRE2 2.13 ISCOP2
Water source heat pump	<u>VERS</u>	4.6 ISMRE2 4.04 ISCOP2

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment for all program types is assumed to be a standard-efficiency DOAS without a ventilation.

Formatted: Font: 9 pt
Formatted: Footnotes
Field Code Changed

273 DOE CFR::429,431, Effective May 2024, https://www.federalregister.gov/documents/2022/11/01/2022-23185/energy-conservation-program-energy-conservation-standards-for-direct-expansion-dedicated-outdoor-air

Appendix H - TRM - Vol. 2: C&I Measures

The rating conditions for the baseline and efficient equipment efficiencies must be equivalent.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 20 years²⁷⁴

DEEMED MEASURE COST

For analysis purposes, the incremental equipment cost²⁷⁵ for this measure is assumed to \$2.00 per CFM for DOAS without VERS, and \$4.6 per CFM for DOAS with VERS.

LOADSHAPE

Cooling BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = \Delta kWh_{dehumidification,cooling} + \Delta kWh_{heating}$

For dehumidification energy savings or dehumidification with cooling:

 $\Delta kWh = MRC x (1/ISMRE2_{base} - 1/ISMRE2_{EE}) x EFLH_{DOAS}$

For units with heat pump heating:

 $\Delta kWh = KBTU/hr \times (1/(ISCOP_{base} \times 3.412) - 1/(ISCOP_{EE} \times 3.412) \times EFLH_{DOAS_{A-}}$

Where:

MRC = Moisture removal capacity, lb/hour

=AHRI rating or manufacturer specification if installed system

ISMRE2_{base} = Integrated seasonal moisture removal efficiency of the baseline equipment

=Federal code compliant system of same category, capacity without VERS

= Integrated seasonal moisture removal efficiency of the efficient equipment ISMRE2_{EE}

=Actual

EFLHDOAS = Effective full load hours for dehumidification or dehumidify with cooling

= Actual, or from table below by city, and operating schedule

Formatted: Hyperlink, Font: 9 pt, No underline, Font color: Black

Formatted: Font: Cambria Math, Italic Formatted: Font: Cambria Math. Italic

Formatted: Indent: Left: 0", Right: 0"

Formatted: Font: Cambria Math, Italic

Formatted: Font: Cambria Math, Italic

Formatted: Indent: First line: 0"

Formatted Table

Field Code Changed

²⁷⁴ REDCAR Analytics, Page 32 DOAS lifetime, "Economic Analysis of Heat Recovery Equipment in Commercial Dedicated Outside Air Systems" (2019),https://betterbricks.com/uploads/resources/NEEA-DOAS-Analysis-Report_Red-Car_Final.pdf ⁵ REDCAR Analytics, Page 19 cost per CFM for mid tier and high tier DOAS compared to low tier, "Economic Analysis of Heat Recovery Equipment in Commercial Dedicated Outside Air Systems" (2019).https://betterbricks.com/uploads/resources/NEEA-DOAS-Analysis-Report Red-Car Final.pdf

Appendix H - TRM - Vol. 2: C&I Measures

kBTU/hr =Heat pump heating capacity at 47F

=Actual installed

ISCOP2_{base} = Integrated seasonal coefficient of performance of the baseline equipment

=Federal code compliant system of same category, capacity without VERS

ISCOP2_{ee} = integrated seasonal coefficient of performance of the efficient equipment

=Actual

3.412 =Convert COP to BTU/watt

EFLHDOAS = Effective full load hours at 32F or cold climate heat pump at 17F

= Actual, or from table below by city and operating schedule

Area	Building orSchedule-	EFLH, Dehumidify,	EFLH Latent,Sensible Cooling	EFLH, Heat pump - 17F-rated,-	<u>EFLH,</u> - <u>Heat Pump,</u> - 47,F rated, -	
St Louis	24/7	1,213	1,611	1,976	1,544	Ī
St Louis	Food service	1,026	1,423	1,585	1,260	
St Louis_	Big Box	668	1,035	<u>957</u>	<u>785</u>	
St Louis	School/Office	512	<u>787</u>	<u>764</u>	633	
Kirksville	24/7	1,051	1,270	2,059	1,406	
Kirksville	Food service	912	1,132	1,656	1,129	
Kirksville	Big Box	<u>660</u>	<u>871</u>	<u>977</u>	<u>671</u>	
Kirksville	School/Office	<u>526</u>	679	<u>769</u>	<u>520</u>	
Jefferson City	24/7	1,035	<u>1,410</u>	2,026	<u>1,512</u>	
Jefferson City	Food service	<u>881</u>	1,255	<u> 1,611</u>	1,203	
Jefferson City	Big Box	<u>572</u>	<u>926</u>	948	713	
Jefferson City	School/Office	441	<u>694</u>	<u>754</u>	<u>562</u>	
Liberty,KC	24/7	1,035	1,410	<u>1,912</u>	1,427	
Liberty,KC	Food service	<u>881</u>	1,255	<u>1,521</u>	1,136	
Liberty,KC	Big Box	<u>572</u>	<u>926</u>	<u>894</u>	<u>673</u>	
Liberty,KC	School/Office	441	<u>694</u>	<u>711</u>	<u>531</u>	
Cape Girardeau	24/7	<u> 1,515</u>	<u>1,803</u>	<u> </u>	<u> </u>	
Cape Girardeau	Food service	<u> 1,279</u>	1,567	<u>1,543</u>	<u> 1,287</u>	
Cape Girardeau	Big Box	<u>837</u>	<u>1,117</u>	=== <u>922</u> ===	<u> </u>	
Cape Girardeau	School/Office	632	839	735	628	

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kW h_{cooling} x CF$

2025 MEEIA 4 Plan MEEIA 2019-21 Plan-Revision 56.0

Formatted Formatted Formatted Formatted Formatted Formatted Formatted Formatted Formatted Formatted Table Formatted **Formatted Formatted Formatted Formatted Formatted Formatted Formatted Formatted Formatted** Formatted **Formatted Formatted Formatted** Formatted **Formatted Formatted Formatted Formatted Formatted Formatted Formatted Formatted** Formatted Formatted **Formatted** Formatted **Formatted Formatted Formatted Formatted Formatted Formatted Formatted Formatted**

Page 153

Formatted

... [52] [60] ... [63] ... [66] [... [57] [... [53] [68] ... [... [54] [... [61] [... [67] ... [55] ... [56] ... [59] [58] ... [... [62] ... [65] ... [64] [... [69] [70] [... [71] ... [72] ... [73] ... [74] ... [75] [76] [77] [78] [... [80] ... [79] [... [81] ... [82] ... [83] ... [84] ... [85] [... [86] [... [87] ... [88] ... [89] ... [90] [... [91] ... [93] ... [92] [... [94] [... [95] ... [96] ... [97] Formatted ... [98] **Formatted** [... [99] **Formatted** ... [100] **Formatted** [101] Formatted ... [102] **Formatted** ... [103] Formatted ... [104]

Appendix H - TRM - Vol. 2: C&I Measures

Where:

<u>AkWh</u> = Electric energy savings from dehumidification or dehumidify with

<u>CF</u> = Summer peak coincidence demand (kW) to annual energy (kWh) factor =0.0009106840²⁷⁶

2012 IECC Baseline Efficiency Values by Chiller Type and Capacity²⁷⁷

Formatted: Footnote

²⁷⁶ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

²⁷⁷Note: Efficiency requirements depend on the path (Path A or Path B) that the building owner has chosen to meet compliance requirements. For air cooled and absorption chillers, Path A should be assumed. For water cooled chillers, the building owner should be consulted, and the relevant path used for calculations. When unknown, Path A should be used:

Appendix H - TRM - Vol. 2: C&I Measures

2.6 Lighting

C&I Lighting Deemed Hours and Waste Heat Factors by Building Type

Building Type <u>- Space Type</u>	Fixture Annual Operating Hours ²⁷⁸ (<u>Annual</u> Hours)	Waste Heat Cooling Energy Factor ²⁷⁹ (WHFe)	Waste Heat Electric Resistance Heating ²⁸⁰ (IFkWh)	Waste Heat Electric Heat Pump Heating (IFkWh)	Waste Heat Gas Heating ²⁸¹ (IFTherms)
<u>Automotive Services</u>	3,010	1.04	0.26	<u>0.11</u>	0.011
Education - Primary School	<u>2772</u>	1.08	0.28	0.12	0.012
Education - Secondary School	<u>2772</u>	<u>1.14</u>	0.30	0.13	0.013
Entertainment/Recreation	<u>3858</u>	<u>1.07</u>	0.26	0.11	0.011
Large Office - Large	3170 3220	1.06	0.32	0.14	0.014
Medium Office Office - Medium	3170 <u>3220</u>	1.14	0.19	0.08	0.008
Small Office - Small	2884 <u>3220</u>	1.11	0.21	0.09	0.009
Government - offices	<u>3788</u>	1.14	<u>0.19</u>	0.08	0.008
Grocery/Convenience Store	<u>5646</u>	<u>1.07</u>	0.26	<u>0.11</u>	0.011
<u>Hotel/Motel – Guest rooms</u> Warehouse	<u>23902827</u>	<u>1.211.04</u>	<u>0.220.26</u>	<u>0.090.11</u>	0.0090.011
Hotel/Motel – Common area	6138	1.24	0.01	0.00	0.000
Hospital/Senior Living - Corridors	<u>8608</u>	<u>1.11</u>	0.34	<u>0.15</u>	0.015
Hospital/Senior Living – Guest rooms	<u>995</u>	1.11	0.34	0.15	0.015

²⁷⁸ Fixtures hours of use are based upon schedule assumptions used in the computer models. Nonresidential Average is a weighted average of indoor spaces using the relative area of each Building Type in the region (CBECS). These values are references in cases where the project-specific hours are unknown, TRC; applicant self reported lighting hours by measure, participants from 2014 through June 2024, Local file: "2024 C&I Lighting Hours Review.xlsx"

Formatted	: Font: 11 pt
Formatted	: Font: 11 pt
Formatted	: Font: 11 pt
Formatted	: Font: 11 pt
Formatted	: Font: 11 pt
Formatted	: Font: 10 pt
Formatted	: Font: 10 pt
Formatted	: Font: 10 pt
Formatted	: Font: 10 pt
Formatted	: Font: 11 pt
Formatted	: Font: 11 pt
Formatted	Table
Formatted	: Font: 11 pt
Formatted	: Font: 11 pt
Formatted	: Font: 11 pt
Formatted	: Font: 11 pt
Formatted	: Font: 11 pt
Formatted	Table
Formatted	: Font: 11 pt
Formatted	: Font: 11 pt
Formatted	: Font: 11 pt

²⁷⁹ The Waste Heat Factor for Energy is developed using computer models for the various Building Types. Exterior and garage values are 1, unknown is a weighted average of the other Building Types. Similar building types aggregated. Indoor agriculture waste heat effects to be determined by building modeling by application.

²⁸⁰ Electric heat penalty assumptions are based on converting the IFTherm multiplier value into kWh and then applying relative heating system efficiencies. The gas efficiency was assumed to be 80% AFUE, electric resistance is assumed to be 100%, Heat Pump is assumed to be 2.3 COP.

²⁸¹ IFTherms value is developed using computer models consistent with methodology for Waste Heat Factor for Energy.

Appendix H - TRM - Vol. 2: C&I Measures

Building Type <u>- Space Type</u>	Fixture Annual Operating Hours ²⁷⁸ (Annual Hours)	Waste Heat Cooling Energy Factor ²⁷⁹ (WHFe)	Waste Heat Electric Resistance Heating ²⁸⁰ (IFkWh)	Waste Heat Electric Heat - Pump - Heating (IFkWh)	Waste Heat Gas Heating ²⁸¹ (IFTherms)
<u>Hospital/Outpatient – Treatment areas</u>	3189	<u>1.21</u>	0.28	0.12	0.012/
Industrial/Manufacturing	<u>3831</u>	1.04	<u>0.26</u>	0.22	<u>0.011</u>
Indoor Horticulture	4818	Custom	<u>Custom</u>	Custom	Custom/
Midrise Apartment Building - Common area	6138	1.14	0.44	0.19	0.019
eStand-alone Retail	3421	1.08	0.21	0.09	0.009
Strip Mall	3694	1.08	0.22	0.10	0.009
Parking Garage Primary School	<u>34653466</u>	1.001.08	0.000.28	0.000.12	0.0000.012
Parking Garage – 24/7 Secondary School	<u>87603466</u>	1.001.14	0.000.30	0.000.13	0.0000.013
Public Order & Safety Supermarket	<u>6812</u> 3765	<u>1.06</u> 1.07	0.320.26	0.140.11	0.0140.011
Quick Service-Restaurant - Fast Service	6443 <u>4235</u>	1.12	0.27	0.12	0.012
Full Service Restaurant Restaurant - Full Service	6443 <u>4235</u>	1.11	0.22	0.10	0.009
Retail – Big box	<u>5367</u>	1.08	0.21	0.09	0.009
Retail - Small	<u>3156</u>	1.08	0.22	0.10	0.009
Hospital	3812	1.11	0.34	0.15	0.015
Outpatient Health Care	3898	1.21	0.28	0.12	0.012
Small Hotel Building	3713	1.21	0.22	0.09	0.009
Large Hotel - Building	3713	1.24	0.01	0.00	0.000
Midrise Apartment - Building	2876	1.14	0.44	0.19	0.019
Warehouse	3127	1.04	0.26	0.11	0.011
C&I Weighted Average	3351 <u>3636</u>	1.09	0.24	0.10	0.010

C&I Lighting Effective Useful Life (EUL) by Equipment Category

Measure Category	Lighting Type [1]	Effective Useful Life (EUL) [2]
2.6.3 LED Bulbs and Fixtures	Fixture	15

2025 MEEIA 4 Plan MEEIA 2019-21 Plan-Revision 5.0

Page 156

ormatted	[[139]
ormatted	[[140]
ormatted	[144]
ormatted	[142]
ormatted	[141]
ormatted	[145]
ormatted	[[143]
ormatted	[146]
ormatted	[147]
ormatted	[148]
ormatted	[[150]
ormatted	[[151]
ormatted	[[152]
ormatted	[153]
ormatted	[154]
ormatted Table	[[149]
ormatted	[[155]
ormatted	([156]
ormatted	[157]
ormatted	[158]
ormatted	[[159]
ormatted	[[160]
ormatted	[[161]
ormatted	[[162]
ormatted	[163]
ormatted	[[164]
ormatted	[[165]
ormatted	[[166]
ormatted	[[167]
ormatted	[[168]
ormatted	[[169]
ormatted	[[170]
ormatted	[[171]
ormatted	[[172]
ormatted	[173]
ormatted	[[174]
ormatted	([175]
ormatted	[[176]
ormatted	[[177]
ormatted	[170]

Appendix H - TRM - Vol. 2: C&I Measures

Measure Category	Lighting Type [1]	Effective Useful Life (EUL) [2]
2.6.4 LED Screw Based Omnidirectional Bulb	Type A & Hybrid	10
2.6.7 LED Specialty Lamp	Type B	15
	Type C	11
	Retrofit Kit	15
	HID Replacement	15
	Lamp Replacement	10
2.6.6 LED Exit Sign	Exit Signs	7
2.6.8 Lighting Power Density	Lighting Power Density	15

Notes:

Formatted: Indent: First line: 0"

^[1] Ameren Missouri maintains a table that "maps" each lighting measure code to the appropriate Lighting Type.

^[2] These effective useful lives were researched by Opinion Dynamics as part of the PY19/PY20 Ameren Missouri Evaluation efforts. EUL values for each measure group were developed through a benchmarking review of TRMs and analysis of equipment specifications (e.g., lamp life) and annual operating hours from PY19/PY20 project tracking data. See Memorandum: Recommended EUL Values for Ameren Missouri Business Lighting Measures, January 6, 2021.

2.6.1 Fluorescent Delamping

DESCRIPTION

This measure entails the permanent removal of an existing 4 foot or 8 foot T8 lamp and the associated lamp holders and ballasts from the fixture. Customers are responsible for determining whether or not to use reflectors in combination with lamp removal in order to maintain adequate lighting levels. Lighting levels are expected to meet the Illuminating Engineering Society of North America (IESNA) recommended light levels. Unused lamps, lamp holders, and ballasts must be permanently removed from the fixture and disposed of in accordance with local regulations.

This measure was developed to be applicable to RF.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient condition will vary depending on the existing fixture and number of lamps removed, however for the purposes of this measure, savings are defined on a per removed lamp basis. The retrofit wattage (efficient condition) is therefore assumed to be zero. <u>It is assumed that this measure is completed with the installation of LED lamps or LED kits.</u>

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is a T8 lamp with default wattages provided below.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is assumed to be 11 years.²⁸²

DEEMED MEASURE COST

Actual incremental costs should be used if available. For default values, see table below.

Measure	Cost
8 Foot Lamp Removal	\$16.00
4 Foot Lamp Removal	\$12.00
8-Foot Lamp Removal with reflector	\$30.00
4 Foot Lame Removal with reflector	\$25.00

LOADSHAPE

Lighting BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS²⁸³

²⁸²² Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, Inc., June 2007 (Page C-11)KCP&L measure life assumption.

²⁸³-The savings numbers are for the straight lamp removal measures, as well as the lamp removal and install reflector measures.

$$\Delta kWh = \frac{Watts_{gase} - Watts_{EE}}{1000} * Hours * ISR * WHF_e$$

Where:

Watts_{Base} = Wattage reduction of lamp removed. Custom input; otherwise, use

values in the table below.

 $Watts_{EE} = 0$

Hours = Average annual lighting hours of use as provided by the customer.

If unknown, the default value based on Building Type may be selected from the Lighting Reference Table in Section 2.6.

WHF_e = Waste heat factor for energy to account for cooling energy savings

from light removal is selected from the Lighting Reference Table in Section 2.6 for each Building Type. If building is un cooled, the

value is 1.0 and if unknown use C&I Average value.

ISR = In Service Rate, 100% since permanent removal is assumed.

T8 Lamp Size	Wattage ²⁸⁴
8 ft T8	38.6
4 ft T8	19.4

Heating Penalty

If electrically heated building:285

$$\Delta kWh_{heatpenatty} = \frac{Watts_{base} - Watts_{be}}{1000} * Hours * ISR * (-IF_{kWH})$$

Where:

IF_{kWh}

— Lighting-HVAC Interaction Factor for electric heating impacts; this factor represents the increased electric space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Lighting Reference Table in Section 2.6. If unknown, use the C&I Average value.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWh * CF$$

Where:

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

Formatted: Cambria12, Right: 0", Space After: 0 pt, Line spacing: single

²⁸⁴-Default wattage reduction is based on averaging the savings from moving from a 2 to 1, 3 to 2 and 4 to 3 lamp fixture, as provided in the Standard Performance Contract Procedures Manual: Appendix B: Table of Standard Fixture Wattages (https://www.sdge.com/sites/default/files/SDG%2526E%2520B%2520Standard%2520Fixture%2520Watts_0.pdf
http://www.sce.com/NR/rdonlyres/7A3455F0-A337-439B-9607-10A016D32D4B/0/spe_B_Std_Fixture_Watts.pdf). An adjustment is made to the T8 delamped fixture to account for the significant increase in ballast factor that can be expected when delamping fixtures with parallel ballasts. See "Delamping calculation.xlsx" for details.
²⁸⁵Negative value because this is an increase in heating consumption due to the efficient lighting.

 $=0.0001899635^{286}$

NATURAL GAS ENERGY SAVINGS

Heating Penalty if fossil fuel heated building (or if heating fuel is unknown):287

$$\Delta Therms = \frac{Watts_{Base} - Watts_{EE}}{1000} * Hours * ISR * (-IF_{therms})$$

Where:

Herms = Lighting-HVAC Interaction Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Lighting Reference Table in Section 2.6. If unknown, use the C&I Average value.

Other factors as defined above.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

MEASURE CODE:

²⁸⁶-Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

²⁸⁷ Negative value because this is an increase in heating consumption due to the efficient lighting.

2.6.2 High Performance and Reduced Wattage T8 Fixtures and Lamps (Retired, effective)

DESCRIPTION

This measure applies to High Performance T8 (HPT8) lamp/ballast systems that have higher lumens per watt than standard T8 systems. This measure applies to the installation of new equipment with efficiencies that exceed that of the equipment that would have been installed following standard market practices and is applicable to time of sale as well as retrofit measures. Retrofit measures may include new fixtures or relamp/reballast measures. In addition, options have been provided to allow for the "Reduced Wattage T8 lamps" or RWT8 lamps that result in relamping opportunities that produce equal or greater light levels than standard T8 lamps while using fewer watts.

This measure was developed to be applicable to the following program types: TOS, RF, and DI. I applied to other program types, the measure savings should be verified.

The measure applies to all commercial HPT8 installations excluding new construction and majorenovation or change of use measures (see lighting power density measure). Lookup tables have been provided to account for the different types of installations. Whenever possible, actual cost and hours of use should be utilized for savings calculations. Default new and baseline assumption have been provided in the reference tables. Default component costs and lifetimes have been provided for O&M calculations. Please see the Definition Table to determine applicability for each program. HPT8 configurations not included in the TRM may be included in custom program design using the provided algorithms as long as energy savings is achieved.

The following table defines the applicability for different programs:

Fime of Sale (TOS)

This measure relates to the installation of new equipment with efficiency that exceeds that of equipment that would have been installed following standard market practices. In general, the measure will include qualifying highefficiency, low ballast-factor ballasts paired with high-efficiency, long-life lamps as detailed in the attached tables. High bay applications use this system paired with qualifying high ballast factor ballasts and high performance 32 w lamps. Custom lighting designs can use qualifying low, normal or high ballast factor ballasts and qualifying lamps in lumen equivalent applications where total system wattage is reduced when calculated using the calculation of savings algorithms.

Retrofit (RF) and Direct Install (DI)

This measure relates to the replacement of existing equipment with new equipment with efficiency that exceeds that of the existing equipment. In general, the retrofit will include qualifying high efficiency low-ballast factor ballasts paired with high efficiency long life lamps as detailed in the attached tables. Custom lighting designs can use qualifying low, normal or high ballast factor ballasts and qualifying lamps in lumen equivalent applications where total system wattage is reduced when calculated using the calculation of savings algorithms.

High efficiency troffers (new/or retrofit) utilizing HPT8 technology can provide even greater savings. When used in a high bay application, high performance T8 fixtures can provide equal light to HID high bay fixtures, while using fewer watts; thes systems typically utilize high ballast-factor ballasts, but qualifying low and normal ballast factor ballasts may be used when appropriate light levels are provided and overall wattage is reduced.

Formatted: Font color: Text 1, Highlight

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Appendix H - TRM - Vol. 2: C&I Measures

DEFINITION OF EFFICIENT EQUIPMENT

This characterization assumes the efficient condition for all applications are qualifying HP or RWT8 fixture and lamp/ballast combinations listed on the CEE website under qualifying HP T8 products²⁸⁸ and qualifying RWT8 products.²⁸⁹

The definition of efficient equipment varies based on the program and is defined below:

Retrofit (RF) and Direct Install (DI)
High-efficiency troffers (new or retrofit kits)
combined with high efficiency lamps and ballasts
allow for fewer lamps to be used to provide a given
lumen output. High efficiency troffers must have a
fixture efficiency of 80% or greater to qualify.
High bay fixtures will have fixture efficiencies of
85% or greater.

Formatted: Font color: Background 2

DEFINITION OF BASELINE EQUIPMENT

The definition of baseline equipment varies based on the program and is defined below:

Time of Sale (TOS)	Retrofit (RF) and Direct Install (DI)
The baseline is standard efficiency T8	The baseline is the existing system.
systems that would have been	In July 14, 2012, federal standards were enacted that were
installed. The baseline for high-bay	expected to eliminate T12s as an option for linear fluorescent
fixtures is pulse start metal halide	fixtures. However, due to significant loopholes in the
fixtures.	legislation, T12 compliant product is still freely available.

Formatted: Font color: Background 2

Formatted: Font color: Background 2

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The deemed lifetime of efficient equipment varies based on the program and is defined below:

Time of Sale (TOS)	Retrofit (RF) and Direct Install
	(DI)
Fixture lifetime is 15 years. ²⁹⁰	Fixture lifetime is 15 years.
Fixture retrofits which utilize RWT8 lamps have a lifetime	Note, since the fixture lifetime is
equivalent to the life of the lamp, capped at 15 years. There is	deemed at 15 years, the replacement
no guarantee that a reduced wattage lamp will be installed at	cost of both the lamp and ballast
time of burnout, but if one is, savings will be captured in the	should be incorporated into the O&M
RWT8 measure below.	calculation.

Formatted: Font color: Background 2

Formatted: Font color: Background 2

https://cee1.org/images/pdf/CEE_CommercialLighting_T8ReplacementLampSpecification_effective08302018.pdfhttp://library.c

https://ceel.org/images/pdf/CEE_CommercialLighting_T8ReplacementLampSpecification_effective08302018.pdfhttp://library.e ee1.org/content/reduced-wattage-t8-specification

290-15 years from GDS Measure Life Report, June 2007 (Page C-8).

Formatted: Font color: Background 1

Appendix H - TRM - Vol. 2: C&I Measures

Actual incremental costs should be used if available. For default values, see the reference table at the end of this characterization.

LOADSHAPE Lighting BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

AkWh = (Wattsbase - Wattsbee) *x Hour *x WHFe *x ISR

Where:

Time of Sale

Retrofit

Watts_{BASE} = Input wattage of the existing system which depends on the baseline

> fixture configuration (number and type of lamp) and number of fixtures. Value can be selected from the appropriate reference table as shown below, or a custom value can be entered if the configurations in the tables is not representative of the existing system.

> > A-1: HPT8 and RWT8 New and Baseline Assumptions

A-2: HPT8 and RWT8 New and Baseline Assumptions

A 3: High Bay T8 New and Baseline Assumptions

= New Input wattage of EE fixture which depends on new fixture Wattsee

configuration (number of lamps) and ballast factor and number of fixtures. Value can be selected from the appropriate reference table, or a custom value can be entered if the configurations in the tables is not

representative of the existing system.

Average hours of use per year as provided by the customer or selected Hours from the Reference Table in Section 2.8. If hours or Building Type are

unknown, use the C&I Average value.

WHF_e = Waste heat factor for energy to account for cooling energy savings from efficient lighting is selected from the Reference Table in Section 2.8 for each Building Type. If building is un-cooled, the value is 1.0.

= In Service Rate is assumed to be 100%

Formatted: Font color: Background 2

Formatted: CambriaTextFormula, Indent: Left: 0", Right: 0", Space After: 0 pt, Line spacing: single

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2 Formatted: Font color: Background 2 Formatted: Font color: Background 2

²⁹¹ 15 years from GDS Measure Life Report, June 2007 (Page C-8).

High Bay T8 Time of Sale and Retrofit

Appendix H - TRM - Vol. 2: C&I Measures

Formatted: Font color: Background 2 **Heating Penalty**

If electrically heated building: 292

$$\underline{\Delta kWh_{heatpenalty}} = \frac{Watts_{base} - Watts_{base}}{1000} * Hours * ISR * (-IF_{kWH})$$

Where:

IF_{kWh} = Lighting-HVAC Interaction Factor for electric heating impacts; this

> factor represents the increased electric space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Reference Table in Section 2.8. If unknown, use the

C&I Average value.

SUMMER COINCIDENT DEMAND SAVINGS

 $\Delta kW = \Delta kWh *x CF$

Where:

CF = Summer peak coincidence demand (kW) to annual energy (kWh)

factor

 $=0.0001899635^{293}$

NATURAL GAS SAVINGS

and Coincident Peak Factors"

Heating Penalty if fossil fuel heated building (or if heating fuel is unknown): 1922

 $\frac{Watts_{wase} - Watts_{wase}}{* Hours * ISR * (-IF_{therms})}$ <u>∆Therms</u>

Where:

H-Therms = Lighting-HVAC Interaction Factor for gas heating impacts; this factor

> represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Please select

from the Reference Table in Section 2.8 for each Building Type.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

¹² Negative value because this is an increase in heating consumption due to the efficient lighting. ²⁹³ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes

Formatted: Font color: Background 1

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

spacing: single

Formatted: CambriaTextFormula, Right: 0", Line

Appendix H - TRM - Vol. 2: C&I Measures

Actual operation and maintenance costs will vary by specific equipment installed/replaced. See Reference Tables for O&M values:

Program	Reference Table
TOS	B 1: HPT8 and RWT8 New and Baseline Assumptions
RF	B 2: HPT8 and RWT8 New and Baseline Assumptions
High Bay T8 Time of Sale and Retrofit	B 3: High Bay T8 New and Baseline Assumptions

REFERENCE TABLES

A-1: Time of Sale: HPT8 and RWT8 New and Baseline Assumptions²⁹⁴

EE Measure Description	Wattsee	Baseline Description	WattsBASE	Incremental Cost
1 Lamp 32w HPT8 (BF < 0.79)	24.0	Standard T8	29.1	\$15.00
2 Lamp 32w HPT8 (BF ≤ 0.77)	4 8.0	Standard T8	57.0	\$17.50
3 Lamp 32w HPT8 (BF ≤ 0.76)	71.0	Standard T8	84.5	\$20.00
4 Lamp 32w HPT8 (BF < 0.78)	98.0	Standard T8	112.6	\$22.50
<u>6 Lamp 32w HPT8 (BF < 0.76)</u>	142.0	Standard T8	169.0	\$40.00
1 Lamp 28w RWT8 (BF < 0.76)	21.3	Standard T8	29.1	\$15.00
2 Lamp 28w RWT8 (BF < 0.76)	42.6	Standard T8	57.0	\$17.50
3 Lamp 28w RWT8 (BF < 0.77)	63.0	Standard T8	84.5	\$20.00
4-Lamp 28w RWT8 (BF < 0.79)	88.5	Standard T8	112.6	\$22.50
6 Lamp 28w RWT8 (BF < 0.77)	126.0	Standard T8	169.0	\$40.00

A-2: Retrofit: HPT8 and RWT8 New and Baseline Assumptions

EE Measure Description	Watts	Baseline Description	Watts _{BASE}	Full Cost	Mid Life Savings Adjustmen (2020)	
A-Lamp Relamp/Reballast T12 to HPT8	24.0	1-Lamp 40w T12	<u>31.0</u>	\$50.00	N/A	
2-Lamp Relamp/Reballast T12 to HPT8	48.0	2-Lamp 40w T12	62.0	<u>\$55.00</u>	N/A	_
3-Lamp Relamp/Reballast T12 to HPT8	71.0	3-Lamp 40w T12	108.0	\$60.00	N/A	
4-Lamp Relamp/Reballast T12 to HPT8	98.0	4-Lamp 40w T12	<u>144.0</u>	\$65.00	N/A	
6-Lamp Relamp/Reballast T12 to HPT8	<u>142.0</u>	6-Lamp 40w T12	216.0	\$75.00	<u>N/A</u>	
₄ 1-Lamp Relamp/Reballast T12 to RWT8	21.3	1-Lamp 40w T12	31.0	\$50.00	N/A	
2-Lamp Relamp/Reballast T12 to RWT8	42.6	2-Lamp 40w T12	62.0	\$55.00	N/A	` `
3-Lamp Relamp/Reballast T12 to RWT8	63.0	3-Lamp 40w T12	108.0	\$60.00	N/A	` `
					-	_

²⁰⁴ Watt, lumen, lamp life, and ballast factor assumptions for efficient measures are based upon Consortium for Energy Efficiency (CEE) Commercial Lighting Qualifying Product Lists. Watt, lumen, lamp life, and ballast factor assumptions for baseline fixtures are based upon manufacturer specification sheets. Baseline and efficient measure cost data comes from lighting suppliers, past Efficiency Vermont projects, and professional judgment. See "HPT8 TRM Reference Tables.xlsx" for more information and specific product links. Currently, 25WT8 are not considered under this measure as their lower light trade off an limitations on temperature and dimming have caused most distributers/contractors to use 28W almost exclusively in other markets.

Formatted: Font color: Background 2
Formatted: Font color: Background 2
Formatted: Font color: Background 2
Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Appendix H - TRM - Vol. 2: C&I Measures

4-Lamp Relamp/Reballast T12 to RWT8	88.5	4-Lamp 40w T12	<u>144.0</u>	\$65.00	<u>N/A</u>
6-Lamp Relamp/Reballast T12 to RWT8	126.0	6-Lamp 40w T12	216.0	\$75.00	N/A
1 Lamp Relamp/Reballast T8 to HPT8	24.0	1 Lamp 32w T8	29.1	\$50.00	<u>N/A</u>
2 Lamp Relamp/Reballast T8 to HPT8	4 8.0	2 Lamp 32w T8	57.0	\$55.00	N/A
3-Lamp Relamp/Reballast T8 to HPT8	71.0	3-Lamp 32w T8	84.5	\$60.00	N/A
4 Lamp Relamp/Reballast T8 to HPT8	98.0	4 Lamp 32w T8	112.6	\$65.00	<u>N/A</u>
6 Lamp Relamp/Reballast T8 to HPT8	142.0	6 Lamp 32w T8	169.0	\$75.00	N/A
1 Lamp Relamp/Reballast T8 to RWT8	21.3	1 Lamp 32w T8	29.1	\$50.00	N/A
2 Lamp Relamp/Reballast T8 to RWT8	42.6	2 Lamp 32w T8	<u>57.0</u>	\$55.00	<u>N/A</u>
3 Lamp Relamp/Reballast T8 to RWT8	63.0	3 Lamp 32w T8	<u>84.5</u>	\$60.00	N/A
4-Lamp Relamp/Reballast T8 to RWT8	88.5	4-Lamp 32w T8	112.6	\$65.00	<u>N/A</u> _``
6 Lamp Relamp/Reballast T8 to RWT8	126.0	6 Lamp 32w T8	169.0	\$75.00	<u>N/A</u> _`\
*v New T12s that meeting EISA efficacy stands	arde change	1 from 34w to 40w to	meet the lume	/ner watt	

*x New T12s that meeting EISA efficacy standards changed from 34w to 40w to meet the lumen/per watt requirement.

A 3: Time of Sale/Retrofit: High Bay T8 New and Baseline Assumptions

EE Measure Description	Wattsee	Baseline Description	Watts _{BASE}	Incremental Cost	Full Cost
4 Lamp HPT8 w/ High BF Ballast High-Bay	218.5	200 Watt Pulse Start Metal-Halide	-232.0	\$75	- -\$200
4 Lamp HPT8 w/ High BF Ballast High Bay	218.5	-250 Watt Metal Halide	-295.0	\$75	- -\$200 -
& Lamp HPT8 w/ High- BF Ballast High Bay	330.1	220 Watt Pulse Start Metal Halide	348.8	\$75	- -\$225
& Lamp HPT8 w/ High BF Ballast High Bay	- 330.1	400 Watt Pulse Start Metal Halide	-455.0	\$75	-\$225 -
<u>& Lamp HPT8 w/ High</u> BF Ballast High Bay	- 418.6	Proportionally Adjusted according to 6 Lamp HPT8 Equivalent to 320 PSMH	-476.0	\$75	- -\$250 -
8-Lamp HPT8 w/ High- BF Ballast High Bay	- 418.6	Proportionally Adjusted according to 6-Lamp HPT8 Equivalent to 400 W Metal Halide	-618.0	\$75	- -\$250 -

Formatted: Font color: Background 2
Formatted: Font color: Background 2
Formatted: Font color: Background 2
Formatted: Font color: Background 2
Formatted: Font color: Background 2
Formatted: Font color: Background 2
Formatted: Font color: Background 2
Formatted: Font color: Background 2
Formatted: Font color: Background 2
Formatted: Font color: Background 2
Formatted: Font color: Background 2
Formatted: Font color: Background 2
Formatted: Font color: Background 2
Formatted: Font color: Background 2
Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

B-1: Time of Sale: HPT8 and RWT8 Component Costs and Lifetime

			EE N	leasure						
	Lomn	Lamp	Total Lamp	Ballast	Total Ballast	Lamp	Total Lamp	Ballast	Total	Ballast
EE Measure Description	Lamp Ownfity	_ Life _	Replacement	Life	Replacement	Life	Replacement	Life	Repla	cement
	Anamuri	(hrs)	Cost	(hrs)	Cost	(hrs)	Cost	(hrs)	C	ost
1 Lamp 32w HPT8 (BF < 0.79)	4	24,000	<u>\$8.17</u>	70,000	<u>\$52.50</u>	_ 20,000	\$ 5.67	70,000	<u>\$3</u>	5.<u>00</u>
2-Lamp 32w HPT8 (BF < 0.77)	2	24,000	\$16.34	70,000	\$52.50	20,000	\$11.34	70,000	\$3.	5.00
3 Lamp 32w HPT8 (BF < 0.76)	3	24,000	<u>\$24.51</u>	70,000	<u>\$52.50</u>	20,000	\$ 17.01	70,000	<u>\$3</u>	5. <u>00</u>
4-Lamp 32w HPT8 (BF < 0.78)	4	24,000	\$32.68	70,000	<u>\$52.50</u>	20,000	\$22.68	70,000	<u>\$3</u> ;	5. <u>00</u>
6-Lamp 32w HPT8 (BF < 0.76)	6	24,000	\$49.02	70,000	\$105.00	20,000	\$34.02	70,000	\$3 :	5.00
1 Lamp 28w RWT8 (BF < 0.76)	4	<u>18,000</u>	\$8.17	70,000	<u>\$52.50</u>	20,000	\$ 5.67	70,000	\$3	5.00
2 Lamp 28w RWT8 (BF < 0.76)	2	<u>18,000</u>	\$16.34	70,000	<u>\$52.50</u>	20,000	\$11.34	70,000	\$3:	5.00 ~ ~
3 Lamp 28w RWT8 (BF < 0.77)	3	<u>18,000</u>	<u>\$24.51</u>	70,000	\$52.50	20,000	\$17.01	70,000	<u>\$3</u>	<u>5.00</u> ~ ~ {
4-Lamp 28w RWT8 (BF < 0.79)	4	18,000	\$32.68	70,000	\$52.50	20,000	\$22.68	70,000	\$3:	5 <u>.00</u> `\\
6 Lamp 28w RWT8 (BF < 0.77)	6	18,000	\$49.02	70,000	\$105.00	20,000	\$34.02	70,000	\$3:	5 <u>.00</u> \ \ \

B-2: Retrofit: HPT8 and RWT8 Component Costs and Lifetime

Ī		EE Me	asure			Ba	seline			Formatted: Font color: Background 2
Lamp	Lamp	Total Lamp	Ballast	Total Ballast	Lamp	Total Lamp	Ballast	Total	Ballast	Formatted: Font color: Background 2
uantity	Liie (hrs)	Cost	_ Lire (hrs)	Cost	Line (hrs)	Cost	Lite (hrs)	- Kepin C		Formatted: Font color: Background 2
	24,000	<u>\$8.17</u>	70,000	<u>\$52.50</u>	20,000	\$ 5.87	40,000	\$35	.00 ′_/′	Formatted: Font color: Background 2
_ 2	24,000	<u>\$16.34</u>	_ 70,000 _	<u>\$52.50</u>	20,000	<u>\$11.74</u>	40,000	<u>\$35</u>	.00 /^_/	Formatted: Font color: Background 2
_3	24,000	<u>\$24.51</u>	_ 70,000 _	\$52.50	20,000	\$17.61	<u>40,000</u>			Formatted: Font color: Background 2
4	24,000	<u>\$32.68</u>								Formatted: Font color: Background 2
<u> </u>									_	Formatted: Font color: Background 2
_ 1										<u> </u>
									.00	Formatted: Font color: Background 2
_ 3	<u>18,000</u>	<u>\$24.51</u>	_ 70,000 _	<u>\$52.50</u>		\$17.61			<u>.00</u>	Formatted: Font color: Background 2
_ 4	<u>18,000</u>	<u>\$32.68</u>	_ 70,000 _	\$52.50		<u>\$23.48</u>				Formatted: Font color: Background 2
<u>6</u>										Formatted: Font color: Background 2
_ +	_ 24,000	\$8.17	_ /0,000 _	\$32.50	20,000	\$3.67	_ 70,000 _	\$35	.00	Formatted: Font color: Background 2
	1 2 3 4 6 1 2 3 4 4 6 4 2 3 4 4 6 4 4 6 4 4 6 4 6 6 4 6 6 6 6 6 6	1 24,000 2 24,000 3 24,000 4 24,000 6 24,000 1 18,000 2 18,000 4 18,000	Lamp Life (hrs) Replacement Cost 1 24,000 \$8.17 2 24,000 \$16.34 3 24,000 \$24.51 4 24,000 \$32.68 6 24,000 \$49.02 1 18,000 \$8.17 2 18,000 \$24.51 4 18,000 \$32.68 6 18,000 \$32.68 6 18,000 \$32.68	Life (hrs) 1 24,000 \$8.17 70,000 2 24,000 \$16.34 70,000 4 24,000 \$32.68 70,000 4 24,000 \$8.17 70,000 4 18,000 \$8.17 70,000 2 18,000 \$24.51 70,000 4 18,000 \$32.68 70,000 4 18,000 \$32.68 70,000 6 24,000 \$49.02 70,000 70,000 \$40,000 \$40,000 1 18,000 \$16.34 70,000 1 18,000 \$24.51 70,000 1 18,000 \$24.51 70,000 4 18,000 \$32.68 70,000 6 18,000 \$49.02 70,000	Lamp lantity Life (hrs) Total Lamp Replacement (hrs) Ballast Life (hrs) Total Ballast Replacement (hrs) Cost (hrs) Cost 1 24,000 \$8.17 70,000 \$52.50 2 24,000 \$16.34 70,000 \$52.50 3 24,000 \$24.51 70,000 \$52.50 4 24,000 \$32.68 70,000 \$52.50 6 24,000 \$49.02 70,000 \$105.00 1 18,000 \$8.17 70,000 \$52.50 2 18,000 \$24.51 70,000 \$52.50 3 18,000 \$24.51 70,000 \$52.50 4 18,000 \$32.68 70,000 \$52.50 6 18,000 \$49.02 70,000 \$105.00	Lamp lantity Lamp lantity Total Lamp lantity Ballast lantity Total Ballast lantity Lamp Replacement lantity 1 24,000 \$8.17 70,000 \$52.50 20,000 2 24,000 \$16.34 70,000 \$52.50 20,000 3 24,000 \$24.51 70,000 \$52.50 20,000 4 24,000 \$32.68 70,000 \$52.50 20,000 6 24,000 \$49.02 70,000 \$105.00 20,000 1 18,000 \$8.17 70,000 \$52.50 20,000 2 18,000 \$16.34 70,000 \$52.50 20,000 3 18,000 \$24.51 70,000 \$52.50 20,000 4 18,000 \$32.68 70,000 \$52.50 20,000 4 18,000 \$32.68 70,000 \$52.50 20,000 6 18,000 \$49.02 70,000 \$50.00 20,000	Lamp latity Total Lamp latity Ballast latify Total Ballast latify Lamp latify Total Lamp latify Cost Total Lamp latify Cost Life (hrs) (hrs) Cost Total Lamp latify Total Lamp	Lamp lantity Total Lamp (hrs) Ballast Life (hrs) Total Lamp (hrs) Ballast Life (hrs) Total Lamp (hrs) Ballast Replacement (hrs) Life (hrs) Total Lamp (hrs) Ballast Life (hrs) Cost (hrs) Life (hrs) Cost (hrs) Life (hrs) Cost (hrs) Life (hrs) Cost (hrs) Life (hrs) Cost (hrs) Life (hrs) Cost (hrs) Life (hrs) Cost (hrs) Life (hrs) Cost (hrs) Life (hrs) Cost (hrs) Life (hrs) Cost (hrs) Life (hrs) Cost (hrs) Life (hrs) <t< th=""><th> Lamp Life Replacement Replacement Life Replacement Life Replacement Life Replacement Life Replacement Life Replacement Life Replacement Life Replacement Life Replacement Life Replacement Life Replacement Life Replacement Life </th><th>Lamp lantity Total Lamp lantity Ballast lantity Total Lamp lantity Total Lamp lantity Total Lamp lantity Total Lamp lantity Total Lamp lantity Total Lamp lantity Ballast lantity Total Ballast lantity Total Lamp lantity Replacement lantity Life lantity Replacement lantity Life lantity Replacement lantity Life lantity Replacement lantity Life lantity Replacement lantity Life lantity Replacement lantity Life lantity Replacement lantity Life lantity Replacement lantity Life lantity Replacement lantity Life lantity Replacement lantity Life lantity Replacement lantity Life lantity Replacement lantity Life lantity Replacement lantity Life lantity Life lantity Replacement lantity Life lantity Li</th></t<>	Lamp Life Replacement Replacement Life Replacement Life Replacement Life Replacement Life Replacement Life Replacement Life Replacement Life Replacement Life Replacement Life Replacement Life Replacement Life Replacement Life	Lamp lantity Total Lamp lantity Ballast lantity Total Lamp lantity Total Lamp lantity Total Lamp lantity Total Lamp lantity Total Lamp lantity Total Lamp lantity Ballast lantity Total Ballast lantity Total Lamp lantity Replacement lantity Life lantity Replacement lantity Life lantity Replacement lantity Life lantity Replacement lantity Life lantity Replacement lantity Life lantity Replacement lantity Life lantity Replacement lantity Life lantity Replacement lantity Life lantity Replacement lantity Life lantity Replacement lantity Life lantity Replacement lantity Life lantity Replacement lantity Life lantity Replacement lantity Life lantity Life lantity Replacement lantity Life lantity Li

Formatted: Font color: Background 2

Formatted: Font color: Background 2
Formatted: Font color: Background 2
Formatted: Font color: Background 2
Formatted: Font color: Background 2
Formatted: Font color: Background 2
Formatted: Font color: Background 2
Formatted: Font color: Background 2
Formatted: Font color: Background 2
Formatted: Font color: Background 2

Appendix H - TRM - Vol. 2: C&I Measures

Ameren Missouri		Appendix i	1 - 1 KIVI —	VOI. 2. C	a measures					
_										Formatted: Font color: Background 2
			EE M	easure			Bas	seline		
	Lamp	Lamp T	otal Lamp	Ballast	Total Ballast	Lamp	Total Lamp	Ballast	Total Ballast	
EE Measure Description	Lamp Quantity	Life Ro	eplacement	Life _	Replacement	Life	Replacement	Life_		Formatted: Font color: Background 2
	Quantity	(hrs)	Cost	(hrs)	Cost	(hrs)	Cost	(hrs)	Cost	
2 Lamp Relamp/Reballast T8 to HPT8	2	<u>24,000</u>	\$16.34	70,000	<u>\$52.50</u>	20,000	<u>\$11.34</u>	70,000	\$35.00	Formatted: Font color: Background 2
3-Lamp Relamp/Reballast T8 to HPT8	_	24,000	\$24.51	70,000	\$52.50	20,000	\$17.01	_ 70,000 _	\$35.00	Formatted: Font color: Background 2
4 Lamp Relamp/Reballast T8 to HPT8	4	<u>24,000</u>	\$32.68	70,000	<u>\$52.50</u>	20,000	<u>\$22.68</u>	70,000	\$35.00	Formatted: Font color: Background 2
6-Lamp Relamp/Reballast T8 to HPT8	<u> </u>	<u>24,000</u>	\$49.02	70,000	<u>\$105.00</u>	20,000	\$34.02	_ 70,000 _	\$35.00	
ALLamp Relamp/Reballast T8 to RWT8		<u> 18,000</u>	<u>\$8.17</u>	70,000	<u>\$52.50</u>	20,000	\$5.67	_ 70,000 _	<u>\$35.00</u>	Formatted: Font color: Background 2
2 Lamp Relamp/Reballast T8 to RWT8	2	<u>18,000</u>	\$16.34	70,000	<u>\$52.50</u>	20,000	<u>\$11.34</u>	70,000	\$35.00	Formatted: Font color: Background 2
3 Lamp Relamp/Reballast T8 to RWT8	3	<u> 18,000</u>	<u>\$24.51</u>	70,000	<u>\$52.50</u>	20,000	\$17.01	_ 70,000 _	<u>\$35.00</u>	Formatted: Font color: Background 2
4 Lamp Relamp/Reballast T8 to RWT8	4	18,000	\$32.68	70,000	<u>\$52.50</u>	20,000	<u>\$22.68</u>	70,000	\$35.00 ```	Formatted: Font color: Background 2
6-Lamp Relamp/Reballast T8 to RWT8	<u> </u>	<u>18,000</u>	\$49.02	70,000	<u>\$105.00</u>	20,000	\$34.02	_ 70,000 _	\$35.00 ``\	Formatted: Font color: Background 2
B 3: High Bay HPT8 Component Co	sts and Lifet								\	Formatted: Font color: Background 2
									``\	Formatted: Font color: Background 2
EE Measur	e					Base	line		ı	- Buckground 2
Lamp Total La	mn Rallast	Total				Lamp	Total Lamp	Rallast	Total Ballast	
EE Measure	ent - Life	Ballast _	Ba			- Life -	Replacement	Life -	- Replacement	Formatted: Font color: Background 2
Description (hrs) Cost	(hrs)	Replacement Cost				(hrs)	Cost	(hrs)	Cost	
4-Lamp HPT8 w/			200 Watt	Pulse Sta	rt Metal-Halide	12000	\$35.67	40000	\$110.2 <u>5</u>	Formatted: Font color: Background 2
High-BF Ballast 24000 \$46.68	70000	\$47.50	250 Watt	Metal Ha	lide	10000	\$27.67	40000	\$114.50	
High Bay										
6 Lamp HPT8 w/			320_Watt	Pulse Sta	rt Metal-Halide	20000	\$78.67	40000	<u>\$131.85</u>	Formatted: Font color: Background 2
High BF Ballast 24000 \$70.02	70000	\$47.50	400 Watt	Metal-Ha	rlide	20000	\$23.67	40000	\$136.50	
High-Bay										

20000

\$23.67

40000

\$131.85

Formatted: Font color: Background 2

Formatted: Font color: Background 2

MEASURE CODE:

24000

8-Lamp HPT8 w/

High BF Ballast

High Bay

\$93.36

Proportionally Adjusted according to 6-Lamp HPT8 Equivalent to

320 PSMH

\$47.50

70000

2.6.3 LED Bulbs and Fixtures (Available for Income Eligible and BSS programs)

DESCRIPTION

The installation of Light Emitting Diode (LED) lighting systems have comparable luminosity to incandescent bulbs and equivalent fluorescent lamps at significantly less wattage, lower heat, an with significantly longer lifetimes.

This measure provides savings assumptions for a variety of <u>light emitting diode (LED)</u> -efficient lighting <u>fixtures</u> including <u>lamps</u>, <u>bulbs</u>, <u>fixtures</u>, <u>and retrofit kits</u> internal and <u>ext</u>. The effective <u>useful life varies dependent on the lighting category ernal LED fixtures</u>, <u>recess (troffer)</u>, <u>eanopy</u>, and <u>pole fixtures as well as refrigerator and display case lighting</u>.

This measure was developed to be applicable to the following program types: TOS, <u>EREP</u>, and RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, all LED <u>bulbs</u>, <u>lamps</u>, <u>fixtures</u>, <u>retrofit kits</u> <u>-fixtures</u> are <u>assumed</u> to be certified or registered with <u>a_at least one</u> recognized <u>independent</u> agency. The following tables lists the requirements for <u>two-three of those</u> agencies.

Agency	Requirement	Version	Lighting Types	4
Design Lights Consortium designlights Designlights.org	DLC Listed	Technical requirement versions: 4.0 to current Premium or Standard classification	Lampslamps, fixtures, retrofit kits, LLLC	4
Design Lights Consortium designlights Designlights.org	DLC Hort	Technical requirement versions: 1.0 to current	Agricultural horticulturallighting	•
ENERGYSTAR <u>Energystar Energystar</u> .gov	Certified	Version 2.1 to current	Lampslamps, fixtures	•
UL Solutions Ul.com	Certified	<u>UL Mark</u>	lamps, fixtures, retrofit kits, horticultural, LLLC	•

ENERGY STAR® labeled or on the Design Light Consortium qualifying fixture list.295

LED Fixtures and Retrofit Kits with Network Controls achieve additional savings similar to the savings described in the Occupancy Controls section.

DEFINITION OF BASELINE EQUIPMENT

For TOS and RF and EREP installations, the baselines efficiency case is project specific and indetermined using actual fixture types and counts from the existing space-baseline is the lamp of fixture being replaced. The existing For linear fluorescent fixtures, the end connectors and ballast

Formatted: Font: Bold, Font color: Background 1

Formatted: Font: Bold, Font color: Background 1

Formatted: Centered

Formatted Table

Formatted: Centered, Space After: 2 pt

Formatted: Space After: 2 pt

Formatted: Space After: 2 pt

²⁰⁵ Design Lights Consortium Qualified Products Lis https://www.designlights.org/qpl thttp://www.designlights.org/qpl

must be completely removed to qualify when retrofitting. A midlife baseline adjustment occurs at the end of the remaining useful life, approximated at 1/3 of the EUL. For

Where the installation technology is not known, the assumed baselines condition for an outdoor pole/arm, wall-mounted, garage/canopy fixture and high bay luminaire with a high intensity discharge light source is a metal halide fixture. Deemed fixture wattages are provided in-<u>Table 2</u> LED New and Baseline Assumptions Table 2 LED New and Baseline Assumptions:reference tables at the end of this characterization.

For TOS installations, the baseline is determined by the Federal Energy-Conservation Efficiency Standards, expressed in minimum lumens per watt.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

See Lighting EUL Reference Table for EUL values by Lighting Measure Group.

DEEMED MEASURE COST

Actual incremental costs should be used if available. For default values, refer to the reference tables below.

LOADSHAPE

Lighting BUS Ext Lighting BUS Miscellaneous BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

$$\Delta kWh = \frac{Watts_{Base} - Watts_{EE}}{1000} * x Hours * x WHF_e * x ISR$$

Where:

WattsBase = Actual wattage of the existing or baseline system. Reference the "LED New and Baseline Assumptions" table for default values.

WattsEE = Actual wattage of LED fixture purchased / installed. If unknown, use default provided in "LED New and Baseline Assumptions."

= Average annual lighting hours of use as provided by the customer or selected from the Lighting Reference Table in Section 2.6 by

Building Type. If hours or Building Type are unknown, use the C&I

Average value.

WHFe = Waste heat factor for energy to account for cooling energy savings

from efficient lighting is selected from the Lighting Reference Table

Formatted: Font color: Text 1
Formatted: Font color: Text 1

in Section 2.6 for each Building Type. If building is un-cooled, the

value is 1.0.

ISR = In Service Rate represents the percentage of reported lamps or

fixtures that is installed and operating and varies with the program delivery approach. Use 100% for programs with direct installation and/or installation verification procedures (e.g., verification inspections for a sample of projects); use 98.7% for program delivery without installation verification. The ISR may also be set to 100% if the installation verification is embedded in other evaluation adjustments.

seeNote that LED Fixtures and Retrofit Kits with Network Controls achieve additional savings similar to the savings described in the Occupancy Controls section.

Heating Penalty:

If electrically heated building:297

$$\Delta kWh_{heatpenalty} = \frac{Watts_{Base} - Watts_{EE}}{1000} *x Hours *x ISR * (-IF_{kWH})$$

Where:

IF_{kWh} = Lighting-HVAC Interaction Factor for electric heating impacts; this

factor represents the increased electric space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Lighting Reference Table in Section 2.6.

If unknown, use the C&I Average value.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWh * CF$$

Where:

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001899635^{298}$ for indoor lighting

= 0.0000056160 for exterior lighting

= 0.0001379439 for exterior 24/7 lighting

NATURAL GAS ENERGY SAVINGS

Heating penalty if fossil fuel heated building (or if heating fuel is unknown):

Formatted: Left, Indent: Left: 0", Don't keep lines together

²⁹⁶ ISR is based on results presented in Ameren Missouri Lighting Impact and Process Evaluation: Program Year 2015 and consistent with other program ISR in neighboring states (Illinois and Iowa). These evaluation results are from a retail-based lighting program with multiple delivery channels including point-of-sale markdown, online website, coupons, and social marketing distribution.

²⁹⁷ Negative value because this is an increase in heating consumption due to the efficient lighting.

²⁹⁸ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

$$\Delta Therms = \frac{Watts_{Base} - Watts_{EE}}{1000} * Hours * ISR * (-IF_{therms})$$

Where:

IF_{Therms} = Lighting-HVAC Interaction Factor for gas heating impacts.²⁹⁹ This factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Lighting Reference Table in Section 2.6. If unknown, use the C&I Average value.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

See Reference Tables below for default assumptions.

²⁹⁹ Negative value because this is an increase in heating consumption due to the efficient lighting.

Appendix H - TRM - Vol. 2: C&I Measures

REFERENCE TABLES 300 301

<u>Table 222</u> LED New and Baseline Assumptions:

LED Category	EE Measure		Baseline		Incrementa
LED Category	Description	Wattsee	Description	Wattsbase	Cost
LED Downlight Fixtures	LED Recessed, Surface, Pendant Downlights	17.6	40% CFL 26W Pin Based & 60% PAR30/38	54.3	\$27
LED Interior	LED Track Lighting	12.2	10% CMH PAR38 & 90% Halogen PAR38	60.4	\$59
Directional	LED Wall-Wash Fixtures	8.3	40% CFL 42W Pin Base & 60% Halogen PAR38	17.7	\$59
	LED Display Case Light Fixture	7.1 4.0 / ft	50% 2'T5 Linear & 50% 50W Halogen	36.2 / ft	\$11/ft
LED Display Case	LED Undercabinet Shelf-Mounted Task Light Fixtures	7.1 4.0 / ft	50% 2'T5 Linear & 50% 50W Halogen	36.2 / ft	\$11/ft
LED Display Case	LED Refrigerated Case Light, Horizontal or Vertical	7.6 <u>4.0</u> / ft	5'T8	15.2 / ft	\$11/ft
	LED Freezer Case Light, Horizontal or Vertical	7.7 <u>4.0</u> / ft	6'T12HO	18.7 / ft	\$11/ft
LED Linear	LED 4' Linear Replacement Lamp, <2400 lumens	18.7 <u>13.7</u>	Lamp Only-32w T8	32.0 28.0	\$ 2 4 <u>15</u>
Replacement	LED 2' Linear Replacement Lamp	9.7 <u>8.6</u>	Lamp Only 17w T8	17 15.0	\$13
Lamps	LED 4' Linear Replacement Lamp, ≥2400 lumens	<u>24.7</u>	<u>40WT8HO</u>	<u>41.8</u>	<u>\$13</u>
	LED 2x2 Recessed Light Fixture, 2000-3500 lumens	34.1 22.4	2-Lamp 32w T8 (BF < 0.89)	57.0	\$ <u>53</u> 48
	LED 2x2 Recessed Light Fixture, 3501-5000 lumens	<u>42.834.2</u>	3-Lamp 32w T8 (BF < 0.88)	84.5	\$ 91 69
	LED 2x4 Recessed Light Fixture, 3000-4500 lumens	37.9 29.9	2-Lamp 32w T8 (BF < 0.89)	57.0	\$ 62 55
LED Troffers	LED 2x4 Recessed Light Fixture, 4501-6000 lumens	54.3 42.1	3-Lamp 32w T8 (BF < 0.88)	84.5	\$ 99 76
LED Hollers	LED 2x4 Recessed Light Fixture, 6001-7500 lumens	72.7 <u>51.5</u>	4-Lamp 32w T8 (BF < 0.88)	112.6	\$ 150 104
	LED 1x4 Recessed Light Fixture, 1500-3000 lumens	18.1 19.2	1-Lamp 32w T8 (BF <0.91)	29.1	\$ 36 22
	LED 1x4 Recessed Light Fixture, 3001-4500 lumens	3 <u>0.8</u> 9.6	2-Lamp 32w T8 (BF < 0.89)	57.0	\$ 76 <u>75</u>
	LED 1x4 Recessed Light Fixture, 4501-6000 lumens	53.1 40.2	3-Lamp 32w T8 (BF < 0.88)	84.5	\$ 130 83
LED Linear	LED Surface & Suspended Linear Fixture, ≤ 3000 lumens	19.7 <u>17.6</u>	1-Lamp 32w T8 (BF <0.91)	29.1	\$ <u>10</u> 54
Ambient Fixtures	LED Surface & Suspended Linear Fixture, 3001-4500 lumens	37.8 <u>28.0</u>	2-Lamp 32w T8 (BF < 0.89)	57.0	\$104 <u>52</u>

Formatted: Font: 12 pt, Font color: Text 1

Formatted: Font color: Text 1

Formatted: Caption

Formatted Table

Formatted Table

Formatted Table

³⁰⁰ Watt, lumen, lamp life, and ballast factor assumptions for efficient measures are based upon Consortium for Energy Efficiency (CEE) Commercial Lighting Qualifying Product Lists alongside past Efficiency Vermont projects and PGE refrigerated case study. Watt, lumen, lamp life, and ballast factor assumptions for baseline fixtures are based upon manufacturer specification sheets.

Baseline cost data comes from lighting suppliers, past Efficiency Vermont projects, and professional judgment. Efficient cost data comes from 2012 DOE "Energy Savings Potential of Solid-State Lighting in General Illumination Applications," Table A.1. See "LED Lighting Systems TRM Reference Tables.xlsx" for more information and specific product links.

³⁰¹ IL TRM V13, Measure 4.5.4 LED Fixture Wattage, TOS Baseline and Incremental Cost Assumptions", which aggregated data from CLEAResults, DLC, VEIC and others

Appendix H - TRM - Vol. 2: C&I Measures

LED Cotonomic	EE Measure		Baseline		Incremental
LED Category	Description	Wattsee	Description	Wattsbase	Cost
	LED Surface & Suspended Linear Fixture, 4501-6000 lumens	55.9 39.2	3-Lamp 32w T8 (BF < 0.88)	84.5	\$ 158 <u>78</u>
	LED Surface & Suspended Linear Fixture, 6001-7500 lumens	62.6 49.9	T5HO 2L-F54T5HO - 4'	120.0	\$ 215 131
	LED Surface & Suspended Linear Fixture, > 7500 lumens	95.4 <u>90.6</u>	T5HO 3L-F54T5HO - 4'	180.0	\$ 374 <u>173</u>
	LED Low-Bay Fixtures, ≤ 10,000 lumens	90.3 <u>51.8</u>	3-Lamp T8HO Low-Bay	157.0	\$ 191 43
	LED High-Bay Fixtures, 10,001-15,000 lumens	127.5 89.2	4-Lamp T8HO High-Bay	196.0	\$ 331 <u>32</u>
LED High & Low	LED High-Bay Fixtures, 15,001-20,000 lumens	191.0 118.5	6-Lamp T8HO High-Bay	294.0	\$4 82 62
Bay Fixtures	LED High-Bay Fixtures, > 20,000 lumens	249.7 171.4	8-Lamp T8HO High-Bay	392.0	\$ 818 <u>51</u>
	LED High-Bay Fixtures, 20,001-30,000 lumens	<u>230.5</u>	750 Watt Metal Halide	<u>850</u>	<u>\$114</u>
	LED High-Bay Fixtures, 40,001-50,000 lumens	306.2	1000 Watt Metal Halide	<u>1080</u>	<u>\$166</u>
	LED High-Bay Fixtures, >50,000 lumens	443.7	1500 Watt Metal Halide	<u>1610</u>	<u>\$284</u>
	LED Ag Interior Fixtures, ≤ 2,000 lumens	17.0 12.9	25% 73 Watt EISA Inc, 75% 1L T8	42.0 29.1	\$ 33 18
	LED Ag Interior Fixtures, 2,001-4,000 lumens	27.8 <u>45.1</u> 29.7	25% 146 Watt EISA Inc, 75% 2L T8	81.0 <u>57.0</u>	\$ 54<u>5748</u>
	LED Ag Interior Fixtures, 4,001-6,000 lumens	51.2 45.1	25% 217 Watt EISA Inc, 75% 3L T8	121.0	\$ <u>88</u> 125 <u>57</u>
LED Agricultural	LED Ag Interior Fixtures, 6,001-8,000 lumens	71.7 59.7	25% 292 Watt EISA Inc, 75% 4L T8	159.0	\$ <u>88</u> 190
Interior Fixtures	LED Ag Interior Fixtures, 8,001-12,000 lumens	103.5 84.9	200W Pulse Start Metal Halide	227.3	\$ <u>168</u> 298
	LED Ag Interior Fixtures, 12,001-16,000 lumens	143.8 113.9	320W Pulse Start Metal Halide	363.6	\$ <u>151</u> 4 50
	LED Ag Interior Fixtures, 16,001-20,000 lumens	183.3 <u>143.7</u>	350W Pulse Start Metal Halide	397.7	\$ <u>205</u> 595
	LED Ag Interior Fixtures, > 20,000 lumens	305.0 193.8	(2) 320W Pulse Start Metal Halide	727.3	\$ <u>356</u> 998
	LED Exterior Fixtures, ≤ 5,000 lumens	42.6 <u>27.5</u> 31.0	100W Metal Halide	113.6	\$ 190 <u>68</u>
LED Exterior	LED Exterior Fixtures, 5,001-10,000 lumens	68.2<u>57.6</u>64.0	175W Pulse Start Metal Halide	198.9	\$ 287 <u>60</u>
Fixtures	LED Exterior Fixtures, 10,001-15,000 lumens	122.5 94.9101.0	250W Pulse Start Metal Halide	284.1	\$ 391 129
	LED Exterior Fixtures, ≥15,00 <u>1-30,000</u> 0 lumens	215.0 141.0	400W Pulse Start Metal Halide	454.5	\$ 793 156
	LED Exterior Fixtures, 30,001-40,000 lumens	236.0	750W Metal Halide	<u>850</u>	<u>\$446</u>
	LED Exterior Fixtures, >40,000 lumens	295.0	1000W Metal Halide	<u>1080</u>	<u>\$629</u>

Formatted Table

Formatted Table

Ameren Missouri LED Component Costs and Lifetimes:³⁰² Appendix H - TRM - Vol. 2: C&I Measures

A		EE Measure			Baseline				
LED Category	EE Measure Description	Lamp Life (hrs)	Total Lamp Replace Cost	LED Driver Life (hrs)	Total LED Driver Replace Cost	Lamp Life (hrs)	Total Lamp Replace Cost	Ballast Life (hrs)	Total Ballast Replace Cost
LED Downlight	LED Recessed, Surface, Pendant	<u>50,000</u> \$62.50	\$30.75 <u>15,000</u>	70,000\$58.00	\$47.50 <u>40,000</u>	<u>2,500\$102.50</u>	\$8.86	40,00015,000	\$14.40
Fixtures	Downlights						\$62.50		\$58.00
LED Laterian	LED Track Lighting	<u>50,000</u> \$62.50	\$39.00 <u>15,000</u>	<u>70,000\$58.00</u>	\$47.50 <u>40,000</u>	<u>2,500\$102.50</u>	\$12.71	40,00015,000	\$11.00 \$58.00
LED Interior Directional	LED Wall-Wash Fixtures	<u>50,000</u> \$62.50	<u>\$30.75</u> <u>15,000</u>	<u>70,000\$58.00</u>	<u>\$47.50</u> <u>40,000</u>	<u>2,500\$102.50</u>	\$62.50 \$8.86 \$62.50	40,00015,000	\$14.40 \$58.00
LED Display	LED Display Case Light Fixture	<u>50,000</u> \$62.50	\$9.75/ft15,000	<u>.70,000\$58.00</u>	\$11.88/ft40,000	<u>2,500\$102.50</u>	\$6.70 \$62.50	40,00015,000	\$5.63 \$58.00
Case	LED Undercabinet Shelf- Mounted Task Light Fixtures	<u>50,000\$62.50</u>	\$9.75/ft15,000	<u>70,000\$58.00</u>	\$11.88/ft40,000	<u>2,500\$102.50</u>	\$6.70 \$62.50	40,00015,000	\$5.63 \$58.00
LED Display	LED Refrigerated Case Light, Horizontal or Vertical	<u>50,000\$62.50</u>	\$8.63/ft15,000	<u>70,000\$58.00</u>	<u>\$9.50/ft40,000</u>	<u>15,000</u> \$102.50	\$1.13 \$62.50	<u>40,00015,000</u>	\$8.00 \$58.00
Case	LED Freezer Case Light, Horizontal or Vertical	<u>50,000</u> \$ 62.50	\$7.88/ft15,000	<u>70,000\$58.00</u>	\$7.92/ft40,000	<u>12,000\$102.50</u>	\$0.94 \$62.50	40,00015,000	\$6.67 \$58.00
LED Linear Replacement	LED 4'-2' Linear Replacement Lamp	<u>50,000</u> \$62.50	<u>\$5.76</u> <u>15,000</u>	<u>70,000\$58.00</u>	\$13.67 40,000	30,000\$102.50	\$6.17 \$62.50	40,00015,000	\$11.96 \$58.00

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted	[194]
Formatted	[192]
Formatted Table	[193]
Formatted	([195]
Formatted	[196]
Formatted	([197]
Formatted	[198]
Formatted	[199]
Formatted	[200]
Formatted	[[201]
Formatted	[202]
Formatted	[203]
Formatted	[204]
Formatted	[205]
Formatted	[206]
Formatted	[207]
Formatted	[208]
Formatted	[[209]
Formatted	[210]
Formatted	[211]
Formatted	[212]
Formatted	[213]
Formatted	[214]
Formatted	[215]
Formatted	[216]
Formatted	[217]
Formatted	[218]
Formatted	[219]
Formatted	[220]
Formatted	[221]
Formatted	[222]
Formatted	[223]
Formatted	[224]
Formatted	[225]
Formatted	[[226]
Formatted	[[227]
Formatted	[[228]
Formatted	[[229]
Formatted	[230]
Formatted	[231]

³⁰² Costs are based on actual costs, and measure lives are based on analysis of actual lamp life and hours of use. Costs for baseline and LED lamps sourced from Illinois TRM V13, which aggregated data from the Design Light Consortium (DLC) Qualifying Product Lists, Efficiency Vermont projects, PGE refrigerated case study. Ists

Appendix H - TRM - Vol. 2: C&I Measures

A		EE Measure				Baseline				
LED Category	EE Measure Description	Lamp Life (hrs)	Total Lamp Replace Cost	LED Driver Life (hrs)	Total LED Driver Replace Cost	Lamp Life (hrs)	Total Lamp Replace Cost	Ballast Life (hrs)	Total Ballast Replace Cost	-
Lamps	LED 2' 4' Linear Replacement	<u>50,000</u> \$62.50	<u>\$8.57_15,000</u>	70,000\$58.00	<u>\$13.67_40,000</u>	24,000\$102.50	\$6.17	40,00015,000	\$11.96	4
Replacement	Lamp,<2400 lumens						\$62.50		\$58.00	,
	LED 4' Linear Replacement	50,000	\$8.57	70,000	\$13.67	18,000	\$6.17	40,000	\$11.96	_
	Lamp, ≥2400 lumens LED 4'									P
	Linear Replacement Lamp,>2400									. 1
	<u>lumens</u>									i
	LED 2x2 Recessed Light Fixture,	50,000 \$62.50	<u>\$78.07</u> <u>15,000</u>	70,000\$58.00	\$40.00 40,000	<u>24,000</u> \$102.50	\$26.33	40,00015,000	\$35.00	П
	2000-3500 lumens						\$62.50		\$58.00	1
	LED 2x2 Recessed Light Fixture,	<u>50,000</u> <u>\$62.50</u>	<u>\$89.23</u> <u>15,000</u>	<u>70,000\$58.00</u>	\$40.00 4 0,000	<u>24,000\$102.50</u>	\$39.50	40,00015,000	\$35.00	٦
	3501-5000 lumens						\$62.50		\$58.00	. \
	LED 2x4 Recessed Light Fixture,	<u>50,000</u> \$62.50	<u>\$96.10 15,000</u>	<u>70,000\$58.00</u>	\$40.00 40,000	<u>24,000\$102.50</u>	\$12.33	<u>40,00015,000</u>	\$35.00	7
	3000-4500 lumens						\$62.50		\$58.00	1
	LED 2x4 Recessed Light Fixture,	<u>50,000</u> \$62.50	\$114.37	<u>70,000\$58.00</u>	\$40.00 40,000	24,000\$102.50	\$18.50	40,00015,000	\$35.00	-\
LED Troffers	4501-6000 lumens		15,000				\$62.50		\$58.00	N
	LED 2x4 Recessed Light Fixture,	50,000 <u>\$62.50</u>	\$137.43	70,000\$58.00	\$40.00 40,000	24,000\$102.50	\$24.67	40,00015,000	\$35.00	-1
	6001-7500 lumens		15,000				\$62.50		\$58.00	
	LED 1x4 Recessed Light Fixture,	<u>50,000</u> \$62.50	<u>\$65.43 15,000</u>	70,000\$58.00	\$40.00 40,000	<u>24,000\$102.50</u>	\$6.17	40,00015,000	\$35.00	-1
	1500-3000 lumens						\$62.50		\$58.00	ı
	LED 1x4 Recessed Light Fixture,	<u>50,000</u> <u>\$62.50</u>	\$100.44	<u>70,000\$58.00</u>	\$40.00 <u>40,000</u>	<u>24,000</u> \$102.50	\$12.33	<u>40,000</u> 15,000	\$35.00	-1
	3001-4500 lumens		15,000				\$62.50		\$58.00	
	LED 1x4 Recessed Light Fixture,	<u>50,000</u> \$62.50	\$108.28	70,000\$58.00	\$40.00 40,000	<u>24,000\$102.50</u>	\$18.50	40,00015,000	\$35.00	4
	4501-6000 lumens		15,000				\$62.50		\$58.00	
	LED Surface & Suspended Linear	<u>50,000</u> \$62.50	<u>\$62.21</u> <u>15,000</u>	<u>70,000\$58.00</u>	\$40.00 40,000	<u>24,000\$102.50</u>	\$6.17	40,00015,000	\$35.00	-1
	Fixture, ≤ 3000 lumens	***********	000 00 45 000	# 0.000##0.00			\$62.50	40.0004.7.000	\$58.00	
LED Linear	LED Surface & Suspended Linear	<u>50,000</u> <u>\$62.50</u>	<u>\$93.22</u> <u>15,000</u>	<u>70,000\$58.00</u>	\$40.00 40,000	<u>24,000</u> \$102.50	\$12.33	40,00015,000	\$35.00	-1
Ambient	Fixture, 3001-4500 lumens						\$62.50		\$58.00	
Fixtures	LED Surface & Suspended Linear	<u>50,000</u> \$62.50	\$114.06	<u>70,000\$58.00</u>	\$40.00 40,000	<u>24,000\$102.50</u>	\$18.50	40,00015,000	\$35.00	-1
	Fixture, 4501-6000 lumens	#0.000### ==	15,000	= 0.000 = 0	#40.00.40.5	20.0000102	\$62.50	40.0004.5.0	\$58.00	
	LED Surface & Suspended Linear	<u>50,000</u> \$62.50	\$152.32	<u>70,000\$58.00</u>	\$40.00 40,000	<u>30,000</u> \$102.50	\$26.33	<u>40,000</u> 15,000	\$60.00	-1
	Fixture, 6001-7500 lumens		15,000				\$62.50		\$58.00	

Formatted	[262]
Formatted	[[260]
Formatted Table	[261]
Formatted	[263]
Formatted	[264]
Formatted	[265]
Formatted	[266]
Formatted	[[267]
Formatted	[268]
Formatted	[269]
Formatted	[270]
Formatted	[271]
Formatted	[272]
Formatted	[273]
Formatted	[274]
Formatted	[275]
Formatted	[[276]
Formatted	[277]
Formatted	[278]
Formatted	[279]
Formatted	[280]
Formatted	[281]
Formatted	[282]
Formatted	[283]
Formatted	[284]
Formatted	[285]
Formatted	[286]
Formatted	[287]
Formatted	[288]
Formatted	[289]
Formatted	[290]
Formatted	[291]
Formatted	[292]
Formatted	[293]
Formatted	[294]
Formatted	[295]

Formatted

Formatted

Formatted

Formatted

... [296]

... [297]

... [298]

... [299]

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 5.0

Appendix H - TRM - Vol. 2: C&I Measures

LED Category EE Measure Description Lamp Life Lamp Life Lamp Life (hrs) Driver Replace Cost (hrs) Life (hrs) Lamp Life (hrs)	A		EE Measure				Baseline				4//
Fixtures Fixtures	LED Category	EE Measure Description	Life	Lamp	Driver Life	Driver	Life	Lamp Replace	Life	Ballast Replace	4
LED Low-Bay Fixtures, \(\leq \) 1,000 \(\leq		LED Surface & Suspended Linear	<u>50,000</u> \$62.50	\$183.78	70,000\$58.00	\$40.00 40,000	30,000\$102.50	\$39.50	40,00015,000	\$60.00	لم
LED High & Low Bay Fixtures, 10,001-15,000 lumens LED High Bay Fixtures, 10,001-15,000 lumens LED High Bay Fixtures, 10,001-15,000 lumens LED High Bay Fixtures, 10,001-15,000 lumens LED High Bay Fixtures, 10,001-15,000 lumens LED High Bay Fixtures, 10,001-15,000 lumens LED High Bay Fixtures, 10,001-15,000 lumens LED High Bay Fixtures, 10,001-15,000 lumens LED High Bay Fixtures, 10,001-15,000 lumens LED High Bay Fixtures, 10,001-15,000 lumens LED High Bay Fixtures, 10,001-15,000 lumens LED High Bay Fixtures, 10,001-15,000 lumens LED High Bay Fixtures, 10,001-15,000 lumens LED High Bay Fixtures, 10,001-15,000 lumens LED High Bay Fixtures, 10,001-15,000 lumens LED High Bay Fixtures, 10,001-15,000 lumens LED High Bay Fixtures, 10,001-15,000 lumens LED High Bay Fixtures, 10,001-15,000 lumens LED High-Bay Fixtures, 10,001-15,000 lumens LED High-Bay Fixtures, 10,001-15,000 lumens LED High-Bay Fixtures, 10,001-15,000 lumens LED High-Bay Fixtures, 10,001-15,000 lumens LED High-Bay Fixtures, 10,001-15,000 lumens LED High-Bay Fixtures, 10,001-15,000 lumens LED High-Bay Fixtures, 10,001-15,000 lumens LED High-Bay Fixtures, 10,001-15,000 lumens LED High-Bay Fixtures, 10,001-15,000 lumens LED High-Bay Fixtures, 10,001-15,000 lumens LED High-Bay Fixtures, 10,001-15,000 lumens LED High-Bay Fixtures, 10,001-15,000 lumens LED Ag Interior Fixtures, 10,001-15,000 lumens LED Ag Interior Fixtures, 10,001-15,000 lumens LED Ag Interior Fixtures, 10,001-15,000 lumens LED Ag Interior Fixtures, 10,001-15,000 lumens LED Ag Interior Fixtures, 10,001-15,000 lumens LED Ag Interior Fixtures, 10,001-15,000 lumens LED Ag Interior Fixtures, 10,001-15,000 lumens LED Ag Interior Fixtures, 10,001-15,000 lumens LED Ag Interior Fixtures, 10,001-15,000 lumens LED Ag Interior Fixtures, 10,001-15,000 lumens LED Ag Interior Fixtures, 10,001-15,000 lumens LED Ag Interior Fixtures, 10,001-15,000 lumens LED Ag Interior Fixtures, 10,001-15,000 lumens LED Ag Interior Fixtu		Fixture, > 7500 lumens		15,000				\$62.50		\$58.00	1
10,000 lumens 10,000 lumens 10,000 lumens 15,000 lumen		LED Low-Bay Fixtures, ≤ 10,000	<u>50,000</u> \$62.50	\$90.03 <u>15,000</u>	70,000\$58.00	\$62.50 4 0,000	18,000\$102.50	\$64.50	40,00015,000	\$92.50	Ļ
LED High-Bay Fixtures, 10,001 50,000\$62-50 \$122.59 70,000\$88-00 \$62.50 40,000 \$80,00\$102-50 \$86.00 40,00015,000 \$83.00 \$83.00								\$62.50		\$58.00	
LED High & Low Bay Fixtures, 15,001 5,000 lumens 15,000 15		- 171 11									¹ ا∟
EED High & LeD High & Low Bay Extures, 10,001-15,000 lumens EED High Bay Fixtures, 15,001-20,000 lumens EED High Bay Fixtures, 15,001-20,000 lumens EED High Bay Fixtures, 20,000 S0,000\$62-50 S228.52 70,000\$58.00 \$62.50 40.000 18,000\$102-50 \$172.00 40,00015,000 \$142.50 \$180.000 lumens EED High Bay Fixtures, 20,000 lumens EED High Bay Fixtures, 20,000 lumens EED High Bay Fixtures, 20,000 lumens EED High Bay Fixtures, 20,000 lumens EED High Bay Fixtures, 20,000 lumens EED High Bay Fixtures, 20,000 lumens EED High Bay Fixtures, 20,000 lumens EED High Bay Fixtures, 20,000 \$0,000 \$294.00 70,000 \$62.50 15,000 \$82.00 40,000 \$143.00 \$0,000 lumens EED High Bay Fixtures, 20,000 \$324.00 70,000 \$62.50 15,000 \$88.00 40,000 \$149.00 \$0,000 lumens EED High Bay Fixtures, 20,000 \$382.00 70,000 \$62.50 15,000 \$88.00 40,000 \$200.00 \$149.00 \$0,000 lumens EED Ag Interior Fixtures, 20,001 \$0,000\$62.50 \$41.20 15,000 70,000\$58.00 \$40.00 40.000 1,000\$102.50 \$1.23 40,00015,000 \$26.25 \$26.			<u>50,000</u> <u>\$62.50</u>		70,000\$58.00	\$62.50_4 0,000	18,000 <u>\$102.50</u>		<u>40,00015,000</u>		4
LED High & Low Bay Fixtures, 15,001-20,000 lumens LED High-Bay Fixtures, 15,001-20,000 lumens LED High-Bay Fixtures, 15,001-20,000 lumens LED High-Bay Fixtures, 15,001-20,000 lumens LED High-Bay Fixtures, 15,001-20,000 lumens LED High-Bay Fixtures, 15,001-20,000 lumens LED High-Bay Fixtures, 15,001-20,000 lumens LED High-Bay Fixtures, 15,000 LED High-Bay Fixture				15,000				\$62.50		\$58.00	١Ц
LED High & Low Bay Fixtures 15,001 20,000 lumens 15,001 20,000 lumens 15,000 20,000\$62.50 228.52 70,000\$58.00 362.50 15,000 362.50											┧╽
EDHigh & Low Bay Fixtures 15,001 20,000 lumens 15,000 15,000 15,000 16,000 18,000\$102.50 172.00 40,00015,000 142.50 15,000 18,000\$102.50 15,000 18,000\$102.50 172.00 40,00015,000 182.00 18,000\$102.50 172.00 40,00015,000 182.00 18,000\$102.50			<u>50,000</u> \$ 62.50		<u>70,000\$58.00</u>	\$62.50 4 0,000	<u>18,000\$102.50</u>		<u>40,00015,000</u>		ıЩ
Low Bay Fixtures	LED High &			15,000				\$62.50		\$58.00	иΝ
Fixtures Fixtures			***********	****	# 0.000##0.00		40.0000400 #0	#4 = #	40.0004.5.000		$H \setminus$
Description Color			<u>50,000</u> \$62.50		<u>70,000\$58.00</u>	\$62.50 40,000	18,000 <u>\$102.50</u>		40,00015,000		
LED High-Bay Fixtures, 20,001 50,000 \$294.00 70,000 \$62.50 15,000 \$82.00 40,000 \$143.00				15,000				\$62.50		\$58.00	ш
Agricultural Interior Fixtures LED Ag Interior Fixtures, 4,001- 50,000 \$62.50 \$24.00 \$70,000 \$62.50 \$15.000 \$88.00 \$40,000 \$149.00		-	50,000	£204.00	70.000	0.62.50	15 000	#02 AA	40.000	¢1.42.00	H
LED High-Bay Fixtures, 40,001 50,000 \$324.00 70,000 \$62.50 15,000 \$88.00 40,000 \$149.00			<u>50,000</u>	\$294.00	<u>*/0,000</u>	302.30	15,000	\$82.00	40,000	\$143.00	Н
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			50.000	\$224.00	70.000	\$62.50	15 000	\$99 AA	40.000	\$140.00	гΝ
			<u>20,000</u>	<u>\$324.00</u>			13,000	\$00.00		3149.00	i 🚽
			50,000	\$382.00	70.000	\$62.50	15,000	\$96.00	40.000	\$200.00	ЫЫ
			20,000	3382.00		<u> </u>	13,000	\$90.00	40,000	\$200.00	iH
LED LED Agricultural Interior Fixtures LED Ag Interior Fixtures, 4,001 50,000 \$62.50 \$65.97 \$15,000 70,000 \$58.00 \$40.00 \$40.000 1,000 \$102.50 \$1.43 40,000 \$15,000 \$26.25 \$88.00 \$26.25 \$88.00 \$1.40 \$1.000 \$102.50 \$1.40 \$1.000 \$102.50 \$1.40 \$1.000 \$102.50 \$1.40 \$1.000 \$102.50 \$1.40 \$1.000 \$102.50 \$1.40 \$1.000 \$102.50 \$1.40 \$1.000 \$102.50 \$1.40 \$1.000 \$102.50 \$1.40 \$1.000 \$102.50 \$1.40 \$1.000 \$102.50 \$1.40 \$1.000 \$102.50 \$1.40 \$1.000 \$102.50 \$1.40 \$1.000 \$102.50 \$1.40 \$1.000 \$102.50 \$1.40 \$1.000 \$102.50 \$1.40 \$1.000 \$102.50 \$1.40 \$1.000 \$102.50 \$1.40 \$1.			50 000\$62-50	\$41.20.15.000	70.000\$58.00	\$40.00.40-000	1 000\$102.50	\$1.23	40 00015 000	\$26.25	dЦ
			20,000,002.50	<u># 11.20 13,000</u>	<u>70,000</u>	<u>p10.00</u> 10,000	1,000,0102.50		10,000		iH
LED Agricultural Interior Fixtures A 000 lumens			50.000 \$62.50	\$65.97 15.000	70.000\$58.00	\$40.00 40.000	1.000 \$102.50	*	40.00015.000		ī N
LED Agricultural Interior Fixtures LED Ag Interior Fixtures, 4,001-6,000 lumens 50,000\$62.50 \$80.08 15,000 70,000\$58.00 \$40.00 40,000 1.000\$102.50 \$1.62 40,00015,000 \$26.25 LED Ag Interior Fixtures LED Ag Interior Fixtures, 6,001-8,000 \$1000\$102.50 \$1.81 \$40,00015,000 \$26.25 8,000 lumens \$15,000 \$15,000 \$15,000\$102.50 \$63.00 \$40,00015,000 \$112.50				2001.	. 2000						iΠ
Agricultural Interior Fixtures 6,000 lumens		LED Ag Interior Fixtures, 4,001-	50,000 \$62.50	\$80.08 15,000	,70,000 \$58.00	\$40.00 40,000	1,000 \$102.50	\$1.62	40,000 15,000		ī I
LED Ag Interior Fixtures, 6,001- 8,000 lumens LED Ag Interior Fixtures, 6,001- 15,000 \$\frac{50,000\\$62.50}{15,000} \] LED Ag Interior Fixtures, 8,001- LED Ag Interior Fixtures, 8,001- LED Ag Interior Fixtures, 8,001- LED Ag Interior Fixtures, 8,001- Solution \$\frac{50,000\\$62.50}{50,000\\$62.50} \] Solution \$\frac{\$105.54}{15,000} \] Solution \$\frac{50,000\\$58.00}{50,000\\$58.00} \] Solution \$\frac{50,000\\$62.50}{50,000\\$58.00} \] Solution \$\frac{50,000\\$62.50}{50,000\\$58.00} \] Solution \$\frac{50,000\\$62.50}{50,000\\$58.00} \] Solution \$\frac{50,000\\$58.00}{50,000\\$58.00} \] Solution \$\frac{50,000\\$59.00}{50,000\\$59.00} \] Solution \$\frac{50,000\\$59.00}											П
8,000 lumens	Interior Fixtures	LED Ag Interior Fixtures, 6,001-	50,000\$62.50	\$105.54	70,000\$58.00	\$40.00 40,000	1,000\$102.50	\$1.81	40,00015,000	\$26.25	il I
				15,000		. 		\$62.50			П
		LED Ag Interior Fixtures, 8,001-	<u>50,000</u> <u>\$62.50</u>	\$179.81	70,000\$58.00	\$62.50 <u>40,000</u>	15,000\$102.50	\$63.00	40,00015,000	\$112.50	لل
12,000		12,000 lumens		15,000				\$62.50		\$58.00	П

2025 MEEIA 4 Plan MEEIA 2019 21 Plan Revision 56.0

Formatted	[378]
Formatted	[[376]
Formatted Table	[377]
Formatted	[379]
Formatted	[380]
Formatted	[381]
Formatted	[382]
Formatted	[383]
Formatted	[384]
Formatted	[385]
Formatted	[386]
Formatted	[387]
Formatted	[388]
Formatted	[[389]
Formatted	[390]
Formatted	[391]
Formatted	[[392]
Formatted	[393]
Formatted	[394]
Formatted	[395]
Formatted	[396]
Formatted	[397]
Formatted	[398]
Formatted	[399]
Formatted	[400]
Formatted	[401]
Formatted	[[402]
Formatted	[403]
Formatted	[[404]
Formatted	[405]
Formatted	[406]
Formatted	[407]
Formatted	[408]
Formatted	[409]
Formatted	[410]
Formatted	[411]
Formatted	[412]
Formatted	[413]
Formatted	[[414]
Formatted	[415]
=	([5]

Appendix H - TRM - Vol. 2: C&I Measures

A	A/	EE Measure			Baseline				
LED Category	EE Measure Description	Lamp Life (hrs)	Total Lamp Replace Cost	LED Driver Life (hrs)	Total LED Driver Replace Cost	Lamp Life (hrs)	Total Lamp Replace Cost	Ballast Life (hrs)	Total Ballast Replace Cost
	LED Ag Interior Fixtures, 12,001-	<u>50,000</u> \$62.50	<u>\$190.86</u>	<u>70,000\$58.00</u>	<u>\$62.50</u> 40,000	<u>15,000</u> \$102.50	\$68.00	<u>40,000</u> 15,000	\$122.50
	16,000 lumens	<u> </u>	15,000	<u> </u>			\$62.50	<u> </u>	\$58.00
	LED Ag Interior Fixtures, 16,001-	<u>50,000</u> <u>\$62.50</u>	\$237.71	<u>70,000\$58.00</u>	\$62.50 <u>40,000</u>	<u>15,000</u> \$102.50	\$73.00	40,00015,000	\$132.50
I	20,000 lumens	<u> </u>	15,000				\$62.50	<u> </u>	\$58.00
I	LED Ag Interior Fixtures, >	<u>50,000</u> \$62.50	\$331.73	70,000 <u>\$58.00</u>	\$62.50 4 0,000	15,000\\$102.50	\$136.00	40,00015,000	\$202.50
	20,000 lumens	<u> </u>	15,000	<u> </u>			\$62.50	<u> </u>	\$58.00
	LED Exterior Fixtures, ≤ 5,000	<u>50,000</u> <u>\$62.50</u>	<u>\$73.80 15,000</u>	<u>70,000\$58.00</u>	\$62.50 <u>40,000</u>	<u>15,000</u> \$102.50	\$58.00	40,00015,000	\$102.50
	<u>lumens</u> <u>LED Exterior Fixtures</u> , ≤	1	'	'			\$62.50	'	\$58.00
	5,000 lumens	<u> </u>	<u> </u>				'		
	LED Exterior Fixtures, 5,001-	50,000 \$62.50	\$124.89	70,000 <u>\$58.00</u>	\$62.50 <u>40,000</u>	15,000 \$102.50	\$63.00	40,00015,000	\$112.50
	10,000 lumens LED Exterior	1	15,000	'	1		\$62.50	1	\$58.00
LED Exterior	Fixtures, 5,001-10,000 lumens	<u> </u>	<u> </u> '	<u> </u>	<u> </u>	<u> </u>	<u> </u> '	<u> </u> '	
Fixtures	LED Exterior Fixtures, 10,001-	<u>50,000</u> <u>\$62.50</u>	\$214.95	<u>70,000\$58.00</u>	<u>\$62.50 40,000</u>	<u>15,000\$102.50</u>	\$68.00	40,00015,000	\$122.50
	15,000 lumens LED Exterior	1	15,000	1	1		\$62.50	'	\$58.00
	Fixtures, 10,001-15,000 lumens	<u> </u>	<u> </u> '	<u> </u>	<u> </u>	<u> </u>	<u> </u> '	<u> </u> '	
	LED Exterior Fixtures, 15,001-	<u>50,000</u> <u>\$62.50</u>	\$321.06	<u>70,000\$58.00</u>	\$62.50 <u>40,000</u>	<u>15,000\$102.50</u>	\$73.00	40,00015,000	\$132.50
	30,000 lumens LED Exterior	1	15,000	'	1		\$62.50	1	\$58.00
	Fixtures, > 15,000 lumens	 '	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u> '	
	LED Exterior Fixtures, 30,001-	50,000	\$546.00	70,000	\$62.50	15,000	\$82.00	40,000	\$143.00
	40,000 lumens	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	
	LED Exterior Fixtures, >40,000	<u>50,000</u>	\$722.00	70,000	\$62.50	15,000	\$88.00	40,000	\$149.00
	lumens	 '	<u> </u>	<u> </u>	 '		<u> </u>	 '	
	LED Exterior Fixtures, ≤ 5,000	50,000	\$870.00	70,000	\$62.50	15,000	\$96.00	40,000	\$200.00
	lumens	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	
	LED Exterior Fixtures, 5,001-	50,000	\$73.80	70,000	\$62.50	15,000	\$58.00	40,000	\$102.50
	<u>10,000 lumens</u>	<u> </u>		<u> </u>	<u> </u>		'	'	

MEASURE CODE:

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 5.0

Formatted	[493]
Formatted	[491]
Formatted Table	[492]
Formatted	[494]
Formatted	[495]
Formatted	[496]
Formatted	[497]
Formatted	[498]
Formatted	[499]
Formatted	[500]
Formatted	[501]
Formatted	[502]
Formatted	[503]
Formatted	[504]
Formatted	[505]
Formatted	[506]
Formatted	[507]
Formatted	[508]
Formatted	[509]
Formatted	[[510]
Formatted	[511]
Formatted	[512]
Formatted	[513]
Formatted	[514]
Formatted	[515]
Formatted	[516]
Formatted	[517]
Formatted	[518]
Formatted	[519]
Formatted	[520]
Formatted	[521]
Formatted	[522]
Formatted	[523]
Formatted	[524]
Formatted	[525]
Formatted	[526]
Formatted	[527]
Formatted	[528]
Formatted	[[529]
Formatted	[530]

2.6.4 LED Screw Based Omnidirectional Bulb (Retired Available for Income Eligible and BSS programs, effective 8/1/2023) 303

Formatted: Not Highlight

DESCRIPTION

LEDs lighting systems convert electricity to light and emit more lumens per watt when compared to baseline EISA incandescent, halogen, or compact fluorescent lamps.

This specific characterization provides savings assumptions for LED lamps that replace standard screw-in connections (e.g., A-Type lamp) such as interior/exterior omnidirectional bulb options.

This characterization assumes that the LED is installed in a commercial location. This is, therefore, appropriate for commercially targeted programs, or, if the implementation strategy does not allow for the installation location to be known (e.g., an upstream retail program), utilities should develop an assumption of the residential versus nonresidential split and apply the relevant assumptions to each portion.

Federal legislation stemming from the Energy Independence and Security Act of 2007 (EISA) requires all general-purpose light bulbs between 40W and 100W to be approximately 30% more energy efficient than standard incandescent bulbs. Production of 100W, standard efficacy incandescent lamps ended in 2012, followed by restrictions on 75W in 2013 and 60W and 40W in 2014. The baseline for this measure has therefore become bulbs (improved incandescent or halogen) that meet the new standard.

This measure was developed to be applicable to the following program types: TOS and RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, new LED screw-based lamps must be ENERGY STAR® qualified based upon the ENERGY STAR® specification v2.0 which will become effective on 1/2/2017 (https://www.energystar.gov/sites/default/files/Luminaires%20V2%200%20Final.pdf).

Qualification could also be based or on the Design Light Consortium's qualified product list.304

DEFINITION OF BASELINE EQUIPMENT

The baseline condition for this measure is assumed to be an EISA-qualified halogen or incandescent.³⁰⁵ A midlife adjustment example is provided but not applied to measures installed prior to 2022.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

See Lighting EUL Reference Table for EUL values by Lighting Measure Group.

Formatted: Font color: Background 2

²⁰³ "Retire" indicates that the measure is not anticipated to be offered through an Ameren Missouri-administered demand-side program during the period of TRM effectiveness:

304 https://www.designlights.org/QPL

Formatted: Font color: Blue

³⁰⁵ A provision in the EISA regulations requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the baseline equivalent to a current day CFL. However, in 2019, the Department of Energy issued two final rules and clarified that a) the EISA backstop provision had not been triggered and therefore b) the efficiency standard would not change in 2020. As of 10/15/2020, the 45 lumen per watt EISA standard is not effective.

Appendix H - TRM - Vol. 2: C&I Measures

DEEMED MEASURE COST

Actual incremental costs should be used if available. If unavailable, assume \$3.26 (baseline cost of \$1.80 and efficient cost of \$5.06).³⁰⁶,

LOADSHAPE

Lighting BUS Ext Lighting BUS Miscellaneous BUS

Algorithm

Formatted: Font color: Auto

Formatted: Font color: Auto

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

$$\Delta kWh = \frac{Watts_{Base} - Watts_{EE}}{1000} * Hours * WHF_e * ISR$$

Where:

Watts_{Base} = Based on lumens of LED bulb installed

Wattsee = Actual wattage of LED purchased/installed. If unknown, use

default provided below.³⁰⁷

Hours = Average hours of use per year as provided by the customer or

selected from the Lighting Reference Table in Section 2.6 and based upon Building Type. If unknown, use the C&I Average value.

WHFe = Waste heat factors for energy to account for cooling energy savings

from efficient lighting are provided for each Building Type in the Lighting Reference Table in Section 2.6. If unknown, use the C&I

Average value.

ISR = In-Service Rate represents the percentage of reported lamps or

fixtures that is installed and operating and varies with the program delivery approach. Use 100% for programs with direct installation and/or installation verification procedures (e.g., verification

inspections for a sample of projects); use 98.7% for program delivery

Formatted: Underline, Font color: Blue
Formatted: Underline, Font color: Blue
Formatted: Underline, Font color: Blue

Formatted: Underline, Font color: Blue

Formatted: Underline, Font color: Blue

Formatted: Underline, Font color: Blue

Formatted: Underline, Font color: Blue

Formatted: Underline, Font color: Blue

Formatted: Underline, Font color: Blue

Formatted: Underline, Font color: Blue

Formatted: Underline, Font color: Blue

Formatted: Underline, Font color: Blue

Formatted: Underline, Font color: Blue

Formatted: Underline, Font color: Blue

Formatted: Underline, Font color: Blue

Formatted: Underline, Font color: Blue

Formatted: Underline, Font color: Blue

³⁰⁶ Incandescent/halogen and LED cost assumptions based on Cadmus "LED Incremental Cost Study: Overall Final Report," February 2016

⁽http://ma.eeac.org/wordpress/wp.content/uploads/MA_Task_5b_LED_Incremental_Cost_Study_FINAL_01FEB2016.pdf), p.19. 307 Watts_{EE} defaults are based upon the average available ENERGY STAR® product, accessed 06/18/2015. For any lumen range where there is no ENERGY STAR® product currently available, Watts_{EE} is based upon the ENERGY STAR® minimum luminous efficacy (55Lm/W for lamps with rated wattages less than 15W and 65 Lm/W for lamps with rated wattages ≥ 15 watts) for the mid-point of the lumen range. See calculation at "cerified-light-bulbs-2015-06-18.xlsx." These assumptions should be reviewed regularly to ensure they represent the available product.

without installation verification. 308 The ISR may also be set to 100% if the installation verification is embedded in other evaluation adjustments.

Lower Lumen Range	Upper Lumen Range	Watts _{Base}	Watts _{EE} LED	- Delta Watts
250	309	25	4.0	21
310	749	29	6.7	22.3
750	1,049	43	10.1	32.9
1,050	1,489	53	12.8	40.2
1,490	2,600	72	17.4	54.6
2,601	3,000	150	43.1	106.9
3,001	3,999	200	53.8	146.2
4,000	6,000	300	76.9	223.1

Mid-Life Baseline Adjustment Example

During the lifetime of a standard omnidirectional LED, the baseline incandescent/halogen bulb would need to be replaced multiple times. Since the baseline bulb changes to a CFL equivalent in 2020 due to the EISA backstop provision (except for <310 and 2600+ lumen lamps), the annual savings claim must be reduced within the life of the measure to account for this baseline shift. This reduced annual savings will need to be incorporated in to cost effectiveness screening calculations. The baseline adjustment also impacts the O&M schedule. However, in 2019, the Department of Energy issued two final rules and clarified that a) the EISA backstop provision had not been triggered and therefore b) the efficiency standard would not change in 2020. As of 10/15/2020, the 45 lumen per watt EISA standard is not effective.

For example, for 43W equivalent LED lamp installed in 2016, the full savings (as calculated above in the Algorithm) should be claimed for the first four years, but a reduced annual savings (calculated energy savings above multiplied by the adjustment factor in the table below) should be claimed for the remainder of the measure life. 309&310

Formatted: Font color: Auto

³⁰⁸ ISR is based on results presented in Ameren Missouri Lighting Impact and Process Evaluation: Program Year 2015. This value takes into account the time-delay of when bulbs are installed over subsequent program years. The reported ISR is based on the net present value (NPV) of the savings over 4 year installation period from the PY15 bulbs, discounted back to Year 1 at 6.95% (utility discount rate). These evaluation results are from a retail-based lighting program with multiple delivery channels including point-of-sale markdown, online website, coupons, and social marketing distribution. ³⁰⁹ These adjustments should be applied to kW and gas impacts as well.

³¹⁰ Calculated with EISA requirement of 45lumens/watt.

Lower Lumen Range	Upper Lumen Range	Mid Lumen Range	Watts	WattsBase - before	Delta - Watts - before - EISA 2020	WattsBase - after - EISA 2020 ²⁰⁸	Delta Watts after - EISA 2020	Mid Life adjustment (in 2020) to first year savings
250	309	280	4.0	25	21	25	21	100.0%
310	749	530	6.7	29	22.3	9.4	2.7	12.1%
750	1049	900	10.1	43	32.9	13.4	3.3	10.0%
1050	1489	1270	12.8	53	40.2	18.9	6.1	15.2%
1490	2600	2045	17.4	72	54.6	24.8	7.4	13.6%
2,550	3,000	2,775	43.1	150	106.9	150	106.9	100.0%
3,001	3,999	3,500	53.8	200	146.2	200	146.2	100.0%
4,000	6,000	5,000	76.9	300	223.1	300	223.1	100.0%

Heating Penalty:

If electrically heated building:311

$$\Delta kWh_{heatpenalty} = \frac{Watts_{Base} - Watts_{EE}}{1000} * Hours*ISR*(-IF_{kWH})$$

Where:

 IF_{kWh}

= Lighting-HVAC Interaction Factor for electric heating impacts; this factor represents the increased electric space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Lighting Reference Table in Section 2.6 and based upon Building Type. If unknown, use the C&I Average value.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

CF

Where:

= Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001899635^{312}$ for indoor lighting

= 0.0000056160 for exterior lighting

= 0.0001379439 for exterior 24/7 lighting

NATURAL GAS ENERGY SAVINGS

Heating penalty if fossil fuel heated building (or if heating fuel is unknown): 311311207

$$\Delta Therms = \frac{Watts_{Base} - Watts_{EE}}{1000} * Hours * ISR * (-IF_{therms})$$

Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: CambriaTextFormula, Indent: Left: 0", Right: 0", Space After: 0 pt, Line spacing: single

Formatted: Font color: Auto

Formatted: Left, Indent: Left: 0", Don't keep lines together

³¹¹ Results in a negative value because this is an increase in heating consumption due to the efficient lighting.

³¹² Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

Appendix H - TRM - Vol. 2: C&I Measures

Where:

 $IF_{Therms} \\$

= Lighting-HVAC Interaction Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Lighting Reference Table in Section 2.6 and based upon Building Type. If unknown, use the C&I Average value.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

In order to account for the falling EISA-Qualified backdrop provision, an equivalent annual levelized baseline replacement cost over the lifetime of the LED bulb is calculated. The key assumptions used in this calculation are documented below;³¹³

Incandescent / Halogen	<u>CFL</u>	LED ALamp
\$1.80	\$2.20	\$5.06

The present value of replacement lamps and annual levelized replacement costs using utilities' average real discount rate of 6.91% are presented below:

Location	PV of repl	acement costs	for period	Levelized annual replacement cost savings			
Location	2016 - 2017	2017 - 2018	2018 - 2019	-2016 - 2017 -	-2017 - 2018 -	-2018 - 2019 -	
C&I Average	\$18.66	\$14.70	\$10.46	\$2.04	\$1.60	\$1.14	

Note: incandescent lamps in lumen range <310 and >2600 are exempt from EISA. For these bulb types, an O&M cost should be applied as follows. If unknown Building Type, assume C&I Average:

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font: 9 pt Field Code Changed **Field Code Changed Field Code Changed Field Code Changed** Field Code Changed **Field Code Changed** Field Code Changed Field Code Changed Field Code Changed **Field Code Changed** Field Code Changed **Field Code Changed**

³¹³ All cost assumptions based on Cadmus "LED Incremental Cost Study: Overall Final Report," February 2016 page 19, https://ma-eeac.org/wordpress/wp-content/uploads/MA-Task-5b-LED-Incremental-Cost-Study FINAL 01FEB2016.pdf (http://ma)ttps://ma-eeac.org/wordpress/wp-content/uploads/MA-Task-5b-LED-Incremental-Cost-Study-FINAL 01FEB2016.pdf/eeac.org/wordpress/wp-content/uploads/MA-Task-5b-LED-Incremental-Cost-Study-FINAL 01FEB2016.pdf/eeac.org/wordpress/wp-content/uploads/MA-Task-5b-LED-Incremental-Cost-Study-FINAL-01FEB2016.pdf/eeac.org/wordpress/wp-content/uploads/MA-Task-5b-LED-Incremental-Cost-Study-FINAL-01FEB2016.pdf/eeac.org/wordpress/wp-content/uploads/MA-Task-5b-LED-Incremental-Cost-Study-FINAL-01FEB2016.pdf/eeac.org/wordpress/wp-content/uploads/MA-Task-5b-LED-Incremental-Cost-Study-FINAL-01FEB2016.pdf/eeac.org/wordpress/wp-content/uploads/MA-Task-5b-LED-Incremental-Cost-Study-FINAL-01FEB2016.pdf/eeac.org/wordpress/wp-content/uploads/MA-Task-5b-LED-Incremental-Cost-Study-FINAL-01FEB2016.pdf/eeac.org/wordpress/wp-content/uploads/MA-Task-5b-LED-Incremental-Cost-Study-FINAL-01FEB2016.pdf/eeac.org/wordpress/wp-content/uploads/MA-Task-5b-LED-Incremental-Cost-Study-FINAL-01FEB2016.pdf/eeac.org/wordpress/wp-content/uploads/MA-Task-5b-LED-Incremental-Cost-Study-FINAL-01FEB2016.pdf/eeac.org/wordpress/wp-content/uploads/MA-Task-5b-LED-Incremental-Cost-Study-FINAL-01FEB2016.pdf/eeac.org/wordpress/wp-content/uploads/MA-Task-5b-LED-Incremental-Cost-Study-FINAL-01FEB2016.pdf/eeac.org/wordpress/wp-content/uploads/MA-Task-5b-LED-Incremental-Cost-Study-FINAL-01FEB2016.pdf/eeac.org/wordpress/wp-content/uploads/MA-Task-5b-LED-Incremental-Cost-Study-FINAL-01FEB2016.pdf/eeac.org/wordpress/wp-content/uploads/MA-Task-5b-LED-Incremental-Cost-Study-FINAL-01FEB2016.pdf/eeac.org/wordpress/wp-content/uploads/MA-Task-5b-LED-Incremental-Cost-Study-FINAL-01FEB2016.pdf/eeac.org/wordpress/wp-content/uploads/MA-Task-5b-LED-Incremental-Cost-Study-FINAL-01FEB2016.pdf/eeac.org/wordpress/wp-content/uploads/MA-Task-5b-LED-Incremental-Cost-Stud

Building Type	Replacement Period (years) ³¹⁴	Replacement Cost
Large Office	0.32	
Medium Office	0.32	
Small Office	0.35	
Warehouse	0.35	
Stand-alone Retail	0.29	
Strip Mall	0.27	
Primary School	0.29	
Secondary School	0.29	
Supermarket	0.27	$$1.80^{315}$
Quick Service Restaurant	0.16	
Full Service Restaurant	0.16	
Hospital	0.26	
Outpatient Health Care	0.26	
Small Hotel - Building	0.27	
Large Hotel - Building	0.27	
Midrise Apartment - Building	0.35	
C&I Average	0.30	

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

MEASURE CODE:

³¹⁴ Calculated by dividing assumed rated life of baseline bulb by hours of use. Assumed lifetime of EISA-qualified halogen/incandescent is 1000 hours (manufacturers are simply using a regular incandescent lamp with halogen fill gas rather Halogen Infrared to meet the standard (as provided by G. Arnold, NEEP and confirmed by N. Horowitz at NRDC)).
³¹⁵ Incandescent/halogen cost assumptions based on Cadmus "LED Incremental Cost Study: Overall Final Report," February 2016 (http://ma-eeac.org/wordpress/wp-content/uploads/MA-Task-5b-LED-Incremental-Cost-Study_FINAL_01FEB2016.pdf), p.19.

2.6.5 T5 Fixtures and Lamps (Retired, effective xxx) 316

DESCRIPTION

T5 HO lamp/ballast systems have greater lumens per watt than a typical T8 system. The smalls lamp diameter of the T5HO also increases optical control efficiency and allows for more precis control and directional distribution of lighting. These characteristics make it easier to design ligh fixtures that can produce equal or greater light than standard T8 or T12 systems, while using few watts. In addition, when lighting designers specify T5 HO lamps/ballasts, they can use few luminaries per project, especially for large commercial projects, thus increasing energy saving further.317

The main markets served by T5 HO fixtures and lamps include retrofit in the commercial and nonresidential sector, specifically industrial, warehouse, and grocery facilities with higher ceilin heights that require maximum light output.

This measure was developed to be applicable to the following program types: TOS and RF. I applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The definition of the efficient equipment is T5 HO high-bay (>15ft mounting height) fixtures with 3, 4, 6, or 8-lamp configurations.

DEFINITION OF BASELINE EQUIPMENT

The definition of baseline equipment varies based on number of lamps in a fixture and is defined in the baseline reference table at the end of this characterization. The default baseline is assumed to be a PulseStart Metal Halide fixture.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The deemed lifetime of the efficient equipment fixture is 15 years. 318

DEEMED MEASURE COST

Actual costs should be used if available. If not available, \$10/lamp and \$37.50/ballast can be use to account for installation labor costs.

LOADSHAPE

Lighting BUS Ext Lighting BUS Miscellaneous BUS

16 "Retire" indicates that the measure is not anticipated to be offered through an Ameren Missouri administered demand-side program during the period of TRM effectiveness:

117 Lighting Research Center. T5 Fluorescent Systems. (See page 16 of 28 bottom of third paragraph)

Formatted: Font color: Background 2

Formatted: Font color: Background 1

Formatted: Font color: Background 1

Formatted: Left

https://www.lrc.rpi.edu/programs/NLPIP/lightingAnswers/pdf/print/LAT5.pdfhttp://www.lrc.rpi.edu/programs/nlpip/lightingAnswers/pdf/print/LAT5.pdfhttp://www.lrc.rpi.edu/programs/nlpip/lightingAnswers/pdf/print/LAT5.pdfhttp://www.lrc.rpi.edu/programs/nlpip/lightingAnswers/pdf/print/LAT5.pdfhttp://www.lrc.rpi.edu/programs/nlpip/lightingAnswers/pdf/print/LAT5.pdfhttp://www.lrc.rpi.edu/programs/nlpip/lightingAnswers/pdf/print/LAT5.pdfhttp://www.lrc.rpi.edu/programs/nlpip/lightingAnswers/pdf/print/LAT5.pdfhttp://www.lrc.rpi.edu/programs/nlpip/lightingAnswers/pdf/print/LAT5.pdfhttp://www.lrc.rpi.edu/programs/nlpip/lightingAnswers/pdf/print/LAT5.pdfhttp://www.lrc.rpi.edu/programs/nlpip/lightingAnswers/pdf/print/LAT5.pdfhttp://www.lrc.rpi.edu/programs/nlpip/lightingAnswers/pdf/print/LAT5.pdfhttp://www.lrc.rpi.edu/programs/nlpip/lightingAnswers/pdf/print/LAT5.pdfhttp://www.lrc.rpi.edu/programs/nlpip/lightingAnswers/pdf/print/LAT5.pdfhttp://www.lrc.rpi.edu/programs/nlpip/lightingAnswers/pdf/print/LAT5.pdfhttp://www.lrc.rpi.edu/programs/nlpip/lightingAnswers/pdf/print/LAT5.pdfhttp://www.lrc.rpi.edu/programs/nlpip/lightingAnswers/pdf/print/LAT5.pdfhttp://www.lrc.rpi.edu/programs/nlpip/lightingAnswers/pdf/print/LAT5.pdfhttp://www.lrc.rpi.edu/programs/nlpip/lightingAnswers/pdf/print/LAT5.pdfhttp://www.lrc.rpi.edu/programs/nlpip/lightingAnswers/pdf/print/LAT5.pdfhttp://www.lrc.rpi.edu/programs/nlpip/lightingAnswers/pdf/print/LAT5.pdfhttp://www.lrc.rpi.edu/programs/nlpip/lightingAnswers/pdf/print/LAT5.pdfhttp://www.lrc.rpi.edu/programs/nlpip/lightingAnswers/pdf/print/LAT5.pdfhttp://www.lrc.rpi.edu/programs/nlpip/lightingAnswers/pdf/print/LAT5.pdfhttp://www.lrc.rpi.edu/programs/nlpip/lightingAnswers/pdf/print/LAT5.pdfhttp://www.lrc.rpi.edu/programs/nlpip/lightingAnswers/pdf/print/LAT5.pdf/print/LAT5.pdf/print/LAT5.pdf/print/LAT5.pdf/print/LAT5.pdf/print/LAT5.pdf/print/LAT5.pdf/print/LAT5.pdf/print/LAT5.pdf/print/LAT5.pdf/print/LAT5.pdf/print/LAT5.pdf/print/LAT5.pdf/print/LAT5.pdf/print/LAT5.pdf/print/LAT5.pdf/print/LAT5.pdf/prin wers/lat5/abstract.asp

Focus on Energy Evaluation "Business Programs: Measure Life Study" Final Report, August 9, 2009, prepared by PA Consultin Group.

Algorithm **CALCULATION OF SAVINGS** ELECTRIC ENERGY SAVINGS Watts<u>ee</u> * Hours * WHF_e * ISR Where: -Watts_{Base} = Custom input. If unknown, input wattage of the baseline system is dependent on new fixture configuration and found in the 'T5HO Efficient and Baseline Wattage and Cost Assumptions' reference table below. = Custom Input. If unknown, input wattage depends on new fixture configuration Watts_{EE} Formatted: Font color: Background 2 (number of lamps) and ballast factor and number of fixtures. Value can be selected from the 'T5HO Efficient and Baseline Wattage and Cost Assumptions' reference table below. = Average annual lighting hours of use as provided by the customer or selected from Hours Formatted: Font color: Background 2 the Lighting Reference Table in Section 2.6 as annual operating hours, by Building Type. If hours or Building Type are unknown, use the C&I Average value. WHF_e = Waste heat factor for energy to account for cooling energy savings from efficient -Formatted: Font color: Background 2 lighting is selected from the Lighting Reference Table in Section 2.6 for each Building Type. If building is un-cooled, the value is 1.0. = In Service Rate represents the percentage of reported lamps or fixtures that is Formatted: Font color: Background 2 installed and operating and varies with the program delivery approach. Use 100% for programs with direct installation and/or installation verification procedures (e.g., verification inspections for a sample of projects); use 98% for program delivery without installation verification.²¹⁹ The ISR may also be set to 100% if the installation verification is embedded in other evaluation adjustments. Formatted: Font color: Background 2 Heating Penalty: If electrically heated building:320 $\frac{Watts_{\underline{\textit{wase}}} - Watts_{\underline{\textit{EE}}}}{* Hours * ISR * (-IF_{\underline{\textit{kWH}}})}$ $\Delta kWh_{heatpenalty}$ Where: IF_{kWh} = Lighting-HVAC Interaction Factor for electric heating impacts; this factor represents the increased electric space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Lighting Reference Table in Section 2.6. If unknown, use the C&I Average value. Formatted: Font color: Background 2 Based upon review of PY5-6 evaluations from ComEd, IL commercial lighting program (BILD). Formatted: Font color: Background 1 Negative value because this is an increase in heating consumption due to the efficient lighting

Appendix H - TRM - Vol. 2: C&I Measures

SUMMER COINCIDENT DEMAND SAVINGS

 $\Delta k = \Delta kWh * CF$

Where:

= Summer peak coincidence demand (kW) to annual energy (kWh) factor

= 0.0001899635³²¹ for indoor lighting

= 0.0000056160 for exterior lighting

= 0.0001379439 for exterior 24/7 lighting

NATURAL GAS ENERGY SAVINGS

Heating penalty if fossil fuel heated building (or if heating fuel is unknown): 322

$$\Delta Therms = \frac{Watts_{Base} - Watts_{EE}}{1000} * Hours * ISR * (-IF_{therms})$$

Where:

H-Therms

- Lighting-HVAC Interaction Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste her rejected by the efficient lighting. Values are provided in the Lighting Reference Table in Section 2.6. If unknown, use the C&I Average value.

DEEMED O&M COST ADJUSTMENT CALCULATION

See reference tables for different cost assumptions for lamps and ballasts. When available, actual costs and hours of use should be used.

REFERENCE TABLES

T5HO Efficient and Baseline Wattage and Cost Assumptions 323&324

EE Measure Description	Wattsee	Baseline Description	WattsBASE	Incremental Cost
3 Lamp T5 High Bay	176	200 Watt Pulse Start Metal Halide	227	\$100.00
4 Lamp T5 High Bay	235	320 Watt Pulse Start Metal Halide	<u>364</u>	\$100.00
6 Lamp T5 High Bay	352	400 Watt Pulse Start Metal Halide	455	\$100.00
& Lamp T5 High Bay	470	750 Watt Pulse Start Metal Halide	<u>825</u>	<u>\$100.00</u>

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2 Formatted: Font color: Background 2

Formatted: Font color: Background 2 Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 1

Formatted: Left, Indent: Left: 0", First line: 0", Don't keep lines together

³²¹ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

222 Negative value because this is an increase in heating consumption due to the efficient lighting.

³²³ Reference Table adapted from Efficiency Vermont TRM, T5 Measure Savings Algorithms and Cost Assumptions, October 2014. Refer to "T5HO-adjusted deemed costs.baselines.xlsx" for more information.

Refer to "T5HO-adjusted deemed costs.baselines.xlsx" for more information.

T5 HO Component Costs and Lifetimes³²⁵

		EE M	leasure			Bas	eline		
EE Measure Description	Lamp - Life (hrs)	Total Lamp -Replacement Cost	Ballast Life (hrs)	Total Ballast -Replacement Cost	Lamp - Life - (hrs)	Total Lamp Replacement Cost	Ballast - Life - (hrs)	Total Ballast Replacement Cost	Formatted: Font color: Background 2
3 Lamp T5 High-Bay	30,000	\$63.00	- 70,000 -	\$87.50	- 15,000	\$63:00	-4 0,000 -	\$107.50	Formatted: Font color: Background 2
4 Lamp T5 High Bay	30,000	\$84.00	- 70,000 -	\$87.50	- 20,000	\$68:00	-40,000	\$117.50	Formatted: Font color: Background 2
6 Lamp T5 High Bay	30,000	\$126:00	- 70,000 -	\$112.50	- 20,000	\$73:00	-40,000	\$127.50	Formatted: Font color: Background 2
& Lamp T5 High Bay	30,000	\$ 168:00	- 70,000 -	\$137.50	- 20,000	\$78:00	-40,000	\$137.50	Formatted: Font color: Background 2
A									Formatted: Font color: Background 2

MEASURE CODE:

³²⁵Costs include labor cost—see "T5HO-adjusted deemed costs.baselines.xlsx" for more information.

2.6.6 LED Exit Sign (Available for Income Eligible and BSS programs)

This measure characterizes the savings associated with installing a new LED exit sign (or retrofit kit) in place of a CFL or incandescent exit sign in a commercial building. LED exit signs use less power (≤ 5 watts), have a significantly longer lifetime, and have less maintenance costs compared to incandescent or CFL exit signs. ³²⁶

This measure applies to the following program types: RF and DI.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is an LED exit sign with an input power demand of 5 watts or less.³²⁷

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is the existing exit sign (either a CFL or incandescent unit).

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

See Lighting EUL Reference Table for EUL values by Lighting Measure Group.

DEEMED MEASURE COST

Actual program delivery costs should be used if available. If not, use the full cost of \$39³²⁸ for a new LED exit sign and \$25 for a retrofit kit, plus \$6.25 in labor,³²⁹ for a total measure cost of \$45.25 and \$31.25, respectively.

LOADSHAPE

Lighting BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS330

$$\Delta kWh = \frac{Watts_{Base} - Watts_{EE}}{1000} * Hours * WHF_e$$

Where:

326 ENERGY STAR® "Save Energy, Money and Prevent Pollution with LED Exit Signs."

³²⁸ Cost of new LED exit sign from ENERGY STAR® Exit Signs Calculator.xlsx.

Formatted: Font: 9 pt

Formatted: Normal

³²⁷ ENERGY STAR® "Program Requirements for Exit Signs Version 3.0." While the EPA suspended the ENERGY STAR® Exit Sign specification effective May 1, 2008, Federal requirements specify minimum efficiency standards for electrically-powered, single-faced exit signs with integral lighting sources that are equivalent to ENERGY STAR® levels for input power demand of b watts or less per face.

³²⁹ Assumption based on 15 minutes (including portion of travel time) and \$25 per hour, which is in line with the typical prevailing wage of a General Laborer, as per the Annual Wage Order No. 23 published by the Missouri Department of Labor.

³³⁰ There is no ISR calculation. Exit signs and emergency lighting are required by federal regulations to be installed and functional in all public buildings as outlined by the U.S. Occupational Safety and Health Standards (USOSHA 1993).

Appendix H - TRM - Vol. 2: C&I Measures

WattsBase

= Actual wattage if known, if unknown assume the following:

Baseline Type	Watts _{BASE}
Incandescent (dual sided)	50 W ³³¹
Incandescent (single sided)	25 W
CFL (dual sided)	14 W ³³²
CFL (single sided)	7 W

Wattsee

= Actual wattage if known; if unknown assume 2W for singled sided and 4W for

dual sided.333

Hours

= Annual operating hours = 8,766

WHFe

= Waste heat factor for energy to account for cooling energy savings from efficient lighting is selected from the Lighting Reference Table in Section 2.6 for each

Building Type. If building is un-cooled, the value is 1.0.

HEATING PENALTY

If electrically heated building:334

$$\Delta kWh_{heatpenalty} = \frac{Watts_{Base} - Watts_{EE}}{1000} * Hours*ISR*(-IF_{kWH})$$

Where:

 IF_{kWh}

= Lighting-HVAC Interaction Factor for electric heating impacts; this factor represents the increased electric space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Reference Table in Section 2.8. If unknown, use the C&I Average value.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Formatted Table

331 Average incandescent single sided (5W, 10W, 15W, 20W, 25W, 34W, 40W, 50W) from Appendix B 2013-14 Table of Standard Fixture Wattages. Available at: https://www.aesc-inc.com/download/spc/2013SPCDocs/PGE/App%20B%20Standard%20Fixture%20Watts.pdf (See rows 9-22 middle)

of page# B-26)

https://www.aescine.com/download/spe/2013SPCDoes/PGE/App%20B%20Standard%20Fixture%20Watts.pdf

332 Average CFL single sided (5W, 7W, 9W) from Appendix B 2013-14 Table of Standard Fixture Wattages. Available at:
https://www.aesc-inc.com/download/spe/2013SPCDoes/PGE/App%20B%20Standard%20Fixture%20Watts.pdf (See rows 1-4.7.8)
top of page# B-26)http://www.aescine.com/download/spe/2013SPCDoes/PGE/App%20B%20Standard%20Fixture%20Watts.pdf

333 Average Exit LED watts are assumed as a 2W as listed in Appendix B 2013-14 Table of Standard Fixture Wattages. Available

at: http://www.aesc-

inc.com/download/spc/2013SPCDocs/PGE/App%20B%20Standard%20Fixture%20Watts.pdfhttps://www.aesc-

inc.com/download/spc/2013SPCDocs/PGE/App%20B%20Standard%20Fixture%20Watts.pdf (See last two rows on page# B-26) 334 Negative value because this is an increase in heating consumption due to the efficient lighting.

Formatted: Font color: Auto

Formatted: Font color: Auto

Font color: Auto

Formatted: Font: (Default) Times New Roman, 9 pt,

Formatted: Font color: Auto

Where:

 ΔkWh = Electric energy savings, including cooling savings, as calculated above.

= Summer peak coincidence demand (kW) to annual energy (kWh) factor

CF = 0.0001899635

NATURAL GAS ENERGY SAVINGS

Heating penalty if fossil fuel heated building (or if heating is unknown):335

$$\Delta Therms = \frac{Watts_{Base} - Watts_{EE}}{1000} * Hours * ISR * (-IF_{therms})$$

Where:

IFTherms

= Lighting-HVAC Integration Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Please select from the Reference Table in Section 2.6 for each Building Type.

Other factors as defined above.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

The annual O&M cost adjustment savings should be calculated using the following component costs and lifetimes.

Commonant	Baseline Measure			
Component	Cost ³³⁶	Life (yrs) 337		
CFL lamp	\$8.91	0.63 years		
Incandescent lamp	\$7.39	0.14 years		

MEASURE CODE:

Formatted Table

³³⁵ Negative value because this is an increase in heating consumption due to the efficient lighting.

³³⁶ Includes cost of labor and new replacement bulb. Labor cost of \$6.25 based on 15 minutes (including portion of travel time) and \$25 per hour, which is in line with the typical prevailing wage of a General Laborer, as per the Annual Wage Order No. 23 published by the Missouri Department of Labor. Cost of new 7W CFL bulb is \$2.66, from Itron "2010-2012 WO017 Ex Ante Measure Cost Study Final Report." Prepared for California Public Utilities Commission, May 27, 2014.

³³⁷ ENERGY STAR® "Save Energy, Money and Prevent Pollution with LED Exit Signs" states that CFL bulbs for exit signs typically have an average rated life of 5,000-6,000 hours. Given 24/7 run time, assume a CFL in an exit sign will require replacement every 0.63 years (5,500 hours/8,766 hours).

2.6.7 LED Specialty Lamp (Retired Available for Income Eligible and BSS programs, effective 8/1/2023) 338

DESCRIPTION

This characterization provides savings assumptions for LED directional, decorative, and globe lamps. This characterization assumes that the LED is installed in a commercial location. This is therefore appropriate for commercially targeted programs, or, if the implementation strategy does not allow for the installation location to be known (e.g., an upstream retail program), utilities should develop an assumption of the Residential v Nonresidential split and apply the relevant assumptions to each portion.

Federal legislation stemming from the EISA requires all general-purpose light bulbs between 40W and 100W to be approximately 30% more energy efficient than standard incandescent bulbs. Production of 100W, standard efficacy incandescent lamps ended in 2012, followed by restrictions on 75W lamps in 2013 and 60W and 40W lamps in 2014. The baseline for this measure has therefore become bulbs (improved incandescent or halogen) that meet the new standard.

A provision in the EISA regulations requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the baseline equivalent to a current day CFL. However, in 2019, the Department of Energy issued two final rules and clarified that a) the EISA backstop provision had not been triggered and therefore b) the efficiency standard would not change in 2020. As of 10/15/2020, the 45 lumen per watt EISA standard is not effective.

This measure was developed to be applicable to the following program types: TOS and RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, new lamps must be ENERGY STAR® labeled based upon the ENERGY STAR® specification v2.0 which will become effective on 1/2/2017. https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Lamps%20V2_0%20 Revised%20AUG

2016.pdf(https://www.energystar.gov/ia/partners/prod_development/revisions/downloads/eps_spec_v2.pdf). Qualification could also be based on the Design Light Consortium's qualified product list.³³⁹

DEFINITION OF BASELINE EQUIPMENT

The baseline condition for this measure is assumed to be an EISA-qualified halogen or incandescent.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

See Lighting EUL Reference Table for EUL values by Lighting Measure Group.

DEEMED MEASURE COST

*** "Retire" indicates that the measure is not anticipated to be offered through an Ameren Missouri administered demand side program during the period of TRM effectiveness.

https://www.designlights.org/QPL

Formatted: Font color: Auto

Formatted: Font color: Background 1

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

Appendix H - TRM - Vol. 2: C&I Measures

Wherever possible, actual incremental costs should be used. If unavailable, assume the following incremental costs:³⁴⁰

Bulb Type	LED Wattage	LED	Incandescent	Incremental Cost
Directional	< 20W	\$14.52	¢6.21	\$8.21
Directional	≥20W	\$45.85	\$6.31	\$39.54
	<15W	\$8.09		\$4.17
Decorative	15 to <25W	\$15.86	\$3.92	\$11.94
	≥25W	\$15.86		\$11.94

Formatted: Font color: Auto
Formatted: Font color: Auto
Formatted: Font color: Auto
Formatted: Font color: Auto
Formatted: Font color: Auto

LOADSHAPE

Lighting BUS Ext Lighting BUS Miscellaneous BUS

Algorithm

Formatted: Font color: Auto

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

$$\Delta kWh = \frac{Watts_{Base} - Watts_{EE}}{1000} * Hours * WHF_e * ISR$$

Where:

Watts_{Base} = Based on bulb type and lumens of LED bulb installed. See table

below.

Wattsee = Actual wattage of LED purchased / installed - If unknown, use default

provided below:341

Hours = Average hours of use per year as provided by the customer or selected

from the Lighting Reference Table in Section 2.6 and based upon

Building Type. If unknown, use the C&I Average value.

WHFe = Waste heat factors for energy to account for cooling energy savings

from efficient lighting are provided for each Building Type in the

³⁴⁰ Incandescent based on "2010-2012 WA017 Ex Ante Measure Cost Study Draft Report," Itron, February 28, 2014. LED lamp costs are based on a 2014/2015 VEIC review of a year's worth of LED sales through VEIC implemented programs. The retail c was averaged and then DOE price projection trends (from Department of Energy, 2012; "Energy Savings Potential of Solid-Stat Lighting in General Illumination Applications," Table A.1) used to decrease the cost for a 2017 TRM assumption (see 2015 LE Sales Review.xls). LED costs are falling rapidly and should be reviewed in each update cycle.

MI WattsEr defaults are based upon the average available ENERGY STAR® product, accessed 06/18/2015. For any lumen rang where there is no ENERGY STAR® product currently available, WattsEr is based upon the ENERGY STAR® minimum luminou efficacy (55Lm/W for lamps with rated wattages less than 15W and 65 Lm/W for lamps with rated wattages ≥ 15 watts) for the mid-point of the lumen range. See calculation at "certified-light-bulbs-2015-06-18.xlsx." These assumptions should be reviewe regularly to ensure they represent the available **product**.

Lighting Reference Table in Section 2.6. If unknown, use the C&I Average value.

ISR

= In Service Rate represents the percentage of reported lamps or fixtures that is installed and operating and varies with the program delivery approach. Use 100% for programs with direct installation and/or installation verification procedures (e.g., verification inspections for a sample of projects); use 98.7% for program delivery without installation verification.³⁴² The ISR may also be set to 100% if the installation verification is embedded in other evaluation adjustments.

Bulb Type	Lower Lumen Range	Upper Lumen Range	Watts _{Base}	Wattsee	Delta Watts
	250	349	25	5.6	19.4
	350	399	35	6.3	28.7
Dinastianal	400	599	40	7.5	32.5
Directional	600	749	60	9.7	50.3
	750	999	75	12.7	62.3
	1000	1250	100	16.2	83.8
	70	89	10	1.8	8.2
Decorative	90	149	15	2.7	12.3
	150	299	25	3.2	21.8
	300	499	40	4.7	35.3
	500	699	60	6.9	53.1
	250	349	25	4.1	20.9
	350	499	40	5.9	34.1
CL 1	500	574	60	7.6	52.4
Globe	575	649	75	13.6	61.4
	650	1099	100	17.5	82.5
	1100	1300	150	13.0	137.0

Formatted: Font color: Auto
Formatted: Font color: Auto
Formatted: Font color: Auto
Formatted: Font color: Auto
Formatted: Font color: Auto
Formatted: Font color: Auto

Heating Penalty:

If electrically heated building:343

$$\Delta kWh_{heatpenalty} = \frac{Watts_{Base} - Watts_{EE}}{1000} * Hours*ISR*(-IF_{kWH})$$

Results in a negative value because this is an increase in heating consumption due to the efficient lighting

A Based on results presented in Ameren Missouri Lighting Impact and Process Evaluation: Program Year 2015. This value take into account the time-delay of when bulbs are installed over subsequent program years. The reported ISR is based on the net present value (NPV) of the savings over 4 year installation period from the PY15 bulbs, discounted back to Year 1 at 6.95% (utility discount rate). These evaluation results are from a retail-based lighting program with multiple delivery channels includin point-of-sale markdown, online website, coupons, and social marketing distribution.

Where:

IF_{kWh}

= Lighting-HVAC Interaction Factor for electric heating impacts; this factor represents the increased electric space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Lighting Reference Table in Section 2.6 and based upon Building Type. If unknown, use the C&I Average value.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWh * CF$$

Where:

CF

= Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001899635^{344}$ for indoor lighting

= 0.0000056160 for exterior lighting

= 0.0001379439 for exterior 24/7 lighting

Other factors as defined above.

NATURAL GAS SAVINGS

Heating penalty if fossil fuel heated building (or if heating fuel is unknown):345

$$\Delta Therms = \frac{Watts_{Base} - Watts_{EE}}{1000} * Hours * ISR * (-IF_{therms})$$

Where:

IF_{Therms} = Lighting-HVAC Interaction Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Lighting Reference Table in Section 2.6 and based upon Building Type. If unknown, use the C&I Average value.

DEEMED O&M COST ADJUSTMENT CALCULATION

O&M cost should be applied as follows:

344 Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

Formatted: Font color: Background 1

Formatted: Left, Indent: Left: 0"

Appendix H - TRM - Vol. 2: C&I Measures

Installation Location	Replacement Period (years) ³⁴⁶	Replacement Cost ³⁴⁷
Large Office	0.32	
Medium Office	0.32	
Small Office	0.35	
Warehouse	0.35	
Stand-alone Retail	0.29	
Strip Mall	0.27	
Primary School	0.29	Decorative:
Secondary School	0.29	\$6.31
Supermarket	0.27	
Quick Service Restaurant	0.16	Directional:
Full Service Restaurant	0.16	\$3.92
Hospital	0.26	
Outpatient Health Care	0.26	
Small Hotel - Building	0.27	
Large Hotel - Building	0.27	
Midrise Apartment - Building	0.35	
C&I Average	0.30	

Formatted: Font color: Auto
Formatted: Font color: Auto
Formatted: Font color: Auto
Formatted: Font color: Auto
Formatted: Font color: Auto
Formatted: Font color: Auto

MEASURE CODE:

Formatted: Font color: Auto
Formatted: Font color: Auto
Formatted: Font color: Auto
Formatted: Font color: Auto

Ale Calculated by dividing assumed rated life of baseline bulb by hours of use. Assumed lifetime of EISA qualified Halogen/Incandescent is 1000 hours. The manufacturers are simply using a regular incandescent lamp with halogen fill gas rather than Halogen Infrared to meet the standard (as provided by G. Arnold, NEEP and confirmed by N. Horowitz at NRDC).
 Incandescent costs based on "2010-2012 WA017 Ex Ante Measure Cost Study Draft Report," Itron, February 28, 2014.

2.6.8 Lighting Power Density (Available for Income Eligible and BSS programs)

DESCRIPTION

This measure entails the installation of efficient lighting systems in either new construction or during substantial renovation of commercial buildings that triggers compliance with code. This methodology applies to situations where code specifies maximum lighting power density allowances (W/ft²). Either the Building Area Method or Space-by-Space (not recognized by IEC¢ 2009) method as defined in IECC 2009, 2012, 2015, 2018, 2021, or 2024 can be used for calculating the Interior Lighting Power Density (LPD). The measure consists of a design that has a lower LPD than code requires.

This measure was developed to be applicable to the following program types: NC and TOS. The measure is application for any project for which the project requires compliance with building code. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the lighting system must be more efficient than the baseline energy code maximum lighting power density in watts/square foot for either the interior space or exterior space. the interior space.

DEFINITION OF BASELINE EQUIPMENT

The baseline is assumed to be the maximum lighting power density that meets the building code recognized by the local jurisdiction. In the absence of local energy building codes, and for areas with an IECC code version prior to 2018, the IECC 2018 is the baseline. For illustrative purposes in this characterization, IECC 2009, 2012, 2015, and 20182018, 2021 and 2024, are highlighted to demonstrate the methodology.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

See Lighting EUL Reference Table for EUL values by Lighting Measure Group.

DEEMED MEASURE COST

The actual incremental cost over a baseline system should be collected from the customer if possible or quantified using an alternative suitable source.

LOADSHAPE

Lighting BUS Ext Lighting BUS Miscellaneous BUS

Algorithm

³⁴⁸Refer to the referenced code documents for specifies on calculating lighting power density using either the whole building method (IECC) or the Space by Space method (ASHRAE 90.1).

CALCULATION OF SAVINGS

ENERGY SAVINGS

$$\Delta kWh = \frac{WSF_{Base} - WSF_{EE}}{1000} * SF * Hours * WHF_{e}$$

Where:

WSF_{base} = Baseline lighting watts per square foot or linear foot as determined by

building or space type. IECC example whole building analysis values are

presented in the Reference Tables below.³⁴⁹

 WSF_{EE} = The actual installed lighting watts per square foot or linear foot.

SF = Provided by customer based on square footage of the building area

applicable to the lighting design for new building.

Hours = Annual site-specific hours of operation of the lighting equipment

collected from the customer or selected from the Reference Table in

Section 2.8 if unavailable.

WHF_e = Waste Heat Factor for Energy to account for cooling savings from

efficient lighting is as provided in the Reference Table in Section 2.8 for

each Building Type. If building is not cooled, the value is 1.0.

Heating Penalty

If electrically heated building: 350

$$\Delta kWh_{heatpenalty} = \frac{WSF_{Base} - WSF_{EE}}{1000} * SF * Hours * (-IF_{kWH})$$

Where:

IF_{kWh}

= Lighting-HVAC Interaction Factor for electric heating impacts; this factor represents the increased electric space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Reference Table in Section 2.8. If unknown, use the C&I Average value.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWh *_{\underline{\mathbf{x}}} CF$$

Where:

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor = 0.0001899635³⁵¹ for indoor lighting

Formatted: Left, Indent: Left: 0", Don't keep lines together

³⁴⁹ See IECC 20092015, 2012 2018 and 2015 2021 - Reference Code documentation for additional information.

³⁵⁰ Negative value because this is an increase in heating consumption due to the efficient lighting.

³⁵⁴-Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

- = 0.0000056160 for exterior lighting
- = 0.0001379439 for exterior 24/7 lighting

Other factors as defined above.

NATURAL GAS ENERGY SAVINGS

Heating interactive loss is calculated as:

$$\Delta Therms = \frac{WSF_{Base} - WSF_{EE}}{1000} * x SF * x Hours * x (-IF_{therms})$$

Where:

IF_{Therms} = Lighting-HVAC Integration Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Please select from the Reference Table in Section 2.8 for each Building Type.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

REFERENCE TABLES

Lighting Power Density Values from IECC 2009, 2012 and 2015<u>2015</u>, <u>2018</u>, <u>2021</u> for Interior Commercial New Construction and Substantial Renovation Building Area Method. <u>The IECC 2024 has not been published as of June 2024. The IECC 2015 values are provided for comparison, as the base models for developing the LPD standard did not include LED lighting.</u>

Building Area Type ³⁵²	IECC 2009 <u>2015</u> Lighting Power Density (w/ft²)	IECC 2012 <u>2018</u> Lighting Power Density (w/ft²)	IECC 2015 2021 Lighting Power Density (w/ft²)
<u>Automotive</u>	<u>0.80.80.8</u> 0.9	<u>0.710.710.71</u> 0.9	<u>0.750.75</u> 0.80
<u>facility</u> Automotive Facility			
Convention	<u>1.011.011.01</u> 1.2	<u>0.760.760.76</u> 1.2	<u>0.640.640.64</u> 1.01
<u>center</u> Convention Center			
Courthouse Court House	<u>1.011.011.01</u> 1.2	<u>0.90.90.9</u> 1.2	<u>0.790.790.79</u> 1.01
Dining: bar	<u>1.011.011.01</u> 1.3	<u>0.90.90.9</u> 1.3	<u>0.80.80.8</u> 1.01
lounge/leisureDining: Bar			
Lounge/Leisure			
Dining: cafeteria/fast	<u>0.90.90.9</u> 1.4	<u>0.790.790.79</u> 1.4	<u>0.760.760.76</u> 0.9
tood Dining: Cafeteria/Fast Food			
Dining: familyDining:	<u>0.950.950.95</u> 1.6	<u>0.780.780.78</u> 1.6	<u>0.710.710.71</u> 0.95
Family	0.570.570.571.0	0.610.610.611.0	0.520.520.520.53
Dormitory Dormitory	0.570.570.571.0	0.610.610.61	0.530.530.53
Exercise center Exercise Center	<u>0.840.840.84</u> 1.0	<u>0.650.650.65</u> 1.0	<u>0.720.720.72</u> 0.84
Fire station Fire station	<u>0.670.670.67</u> 1.0	0.530.530.530.8	<u>0.560.560.56</u> 0.67
GymnasiumGymnasium	0.940.940.941.1	0.680.680.681.1	0.760.760.760.94
Health care clinic Healthcare	<u>0.90.90.9</u> 1.0	0.820.820.821.0	0.810.810.81
- clinic			
<u>Hospital</u> Hospital	<u>1.051.051.05</u> 1.2	<u>1.051.051.05</u> 1.2	<u>0.960.960.96</u> 1.05
Hotel/Motel Hotel	<u>0.870.870.87</u> 1.0	<u>0.750.750.75</u> 1.0	<u>0.560.560.56</u> 0.87
<u>Library</u> Library	<u>1.191.191.19</u> 1.3	<u>0.780.780.78</u> 1.3	<u>0.830.830.83</u> 1.19
Manufacturing	<u>1.171.171.17</u> 1.3	<u>0.90.90.9</u> 1.3	<u>0.820.820.82</u> 1.17
facility Manufacturing Facility			
Motion picture theater Motel	<u>0.760.760.76</u> 1.0	<u>0.830.830.83</u> 1.0	<u>0.440.440.44</u> 0.87
Multiple FamilyMotion	<u>0.510.510.51</u> 1.2	<u>0.680.680.68</u> 1.2	<u>0.450.450.45</u> 0.76
Picture Theater			
<u>Museum</u> Multifamily	<u>1.021.021.02</u> 0.7	<u>1.061.061.06</u> 0.7	<u>0.550.550.55</u> 0.51
<u>Office</u> Museum	<u>0.820.820.82</u> 1.1	<u>0.790.790.79</u> 1.1	<u>0.640.640.64</u> 1.02
Parking garageOffice	<u>0.210.210.21</u> 1.0	<u>0.150.150.15</u> 0.9	<u>0.180.180.18</u> 0.82

³⁵² In cases where both a general building area type and a more specific building area type are listed, the more specific building area type shall apply.

Appendix H - TRM - Vol. 2: C&I Measures

Penitentiary Parking Garage	<u>0.810.810.81</u> 0.3	<u>0.750.750.75</u> 0.3	0.690.690.690.21
Performing arts	<u>1.391.391.39</u> 1.0	<u>1.181.181.18</u> 1.0	<u>0.840.840.84</u> 0.81
<u>theater</u> Penitentiary			
Police stationPerforming Arts	<u>0.870.870.87</u> 1.6	<u>0.80.80.8</u> 1.6	<u>0.660.660.66</u> 1.39
Theater			
Post office Police Station	<u>0.870.870.87</u> 1.0	<u>0.670.670.67</u> 1.0	<u>0.650.650.65</u> 0.87
Religious buildingPost	<u>111</u> 1.1	<u>0.940.940.94</u> 1.1	<u>0.670.670.67</u> 0.87
Office			
Retail Religious Building	<u>1.261.261.26</u> 1.3	<u>1.061.061.06</u> 1.3	<u>0.840.840.84</u> 1.0
School/universityRetail ³⁵³	<u>0.870.870.87</u> 1.5	<u>0.810.810.81</u> 1.4	<u>0.720.720.72</u> 1.26
<u>Sports</u>	<u>0.910.910.91</u> 1.2	<u>0.870.870.87</u> 1.2	<u>0.760.760.76</u> 0.87
arena School/University			
Town hall Sports Arena	<u>0.890.80.89</u> 1.1	<u>0.80.710.8</u> 1.1	<u>0.690.750.69</u> 0.91
Transportation Town Hall	<u>0.70.7</u> 1.1	<u>0.610.61</u> 1.1	<u>0.50.5</u> 0.89
<u>Warehouse</u> Transportation	<u>0.660.66</u> 1.0	<u>0.480.48</u> 1.0	<u>0.450.45</u> 0.70
<u>Workshop</u> Warehouse	<u>1.191.19</u> 0.8	<u>0.90.9</u> 0.6	0.910.910.66
	<u>0.8</u> 1.4	<u>0.71</u> 1.4	<u>0.75</u> 1.19

Lighting Power Density Values from IECC 2012 for Interior Commercial New Construction and Substantial Renovation Space by Space Method

Formatted: Font color: Background 1

³⁵³_Where lighting equipment is specified to be installed to highlight specific merchandise in addition to lighting equipment _ specified for general lighting and is switched or dimmed on circuits different from the circuits for general lighting, the small of the actual wattage of the lighting equipment installed specifically for merchandise, or additional lighting power as determined below shall be added to the interior lighting power determined in accordance with this line item.

COMMON SPACE-BY-SPACE TYPES	LPD (w/ft²)
Atrium - First 40 feet in height	0.03 per ft. ht
Atrium - Above 40 feet in height	0.02 per ft. ht
Audience/seating area - permanent	
For auditorium	0.9
For performing arts theater	2.6
For motion picture theater Classroom/lecture/training	1.2
Conference/meeting/multipurpose	1.2
Corridor/transition	0.7
Dining area	
Bar/lounge/leisure dining	1.40
Family dining area	1.40
Dressing/fitting room performing arts theater	1.1
Electrical/mechanical	1.10
Food preparation	1.20
Laboratory for classrooms	1.3
Laboratory for medical/industrial/research	1.8
Lobby	1.10
Lobby for performing arts theater	3.3
Lobby for motion picture theater	1.0
Locker room	0.80
Lounge recreation	0.8
Office – enclosed	1.1
Office – open plan	1.0
Restroom	1.0
Sales area	1.6ª
Stairway	0.70
Storage	0.8
Workshop	1.60
Courthouse/police station/penetentiary	
Courtroom Confinement cells	1.90
Judge chambers	1.30
Penitentiary audience seating	0.5
Penitentiary classroom	1.3
Penitentiary dining	1.1
BUILDING SPECIFIC SPACE-BY-SP	ACE TYPES
Automotive - service/repair	0.70
Bank/office - banking activity area	1.5
Dormitory living quarters	1.10
Gymnasium/fitness center	
Fitness area Gymnasium audience/seating	0.9
Ovinnastuni audience/scaune	0.40

(continued)

COMMON SPACE-BY-SPACE TYPES	LPD (w/ft²)
Healthcare clinic/hospital	
Corridors/transition	1.00
Exam/treatment	1.70
Emergency	2.70
Public and staff lounge	0.80
Medical supplies	1.40
Nursery	0.9
Nurse station	1.00
Physical therapy	0.90
Patient room	0.70
Pharmacy	1.20
Radiology/imaging	1.3
Operating room	2.20
Recovery	1.2
Lounge/recreation	0.8
Laundry – washing	0.60
Hotel	
Dining area	1.30
Guest rooms	1.10
Hotel lobby	2.10
Highway lodging dining	1.20
Highway lodging guest rooms	1.10
Library	
Stacks	1.70
Card file and cataloguing	1.10
Reading area	1.20
Manufacturing	20.000
Corridors/transition	0.40
Detailed manufacturing	1.3
Equipment room	1.0
Extra high bay (> 50-foot floor-ceiling height)	1.1
High bay (25 50-foot floor-ceiling height)	1.20
Low bay (< 25-foot floor-ceiling height)	1.2
Museum	
General exhibition	1.00
Restoration	1.70
Parking garage – garage areas	0.2
Convention center	
Exhibit space	1.50
Audience/seating area	0.90
Fire stations	
Engine room	0.80
Sleeping quarters	0.30
Post office	0.9
Sorting area	0.9
Religious building	
Fellowship hall	0.60
Audience seating	2.40
Worship pulpit/choir	2.40
Retail	
Dressing/fitting area	0.9
Mall concourse	1.6
Sales area	1.6°

(continued)

Appendix H - TRM - Vol. 2: C&I Measures

TABLE C405.5.2(2)—continued INTERIOR LIGHTING POWER ALLOWANCES: SPACE-BY-SPACE METHOD

BUILDING SPECIFIC SPACE-BY-SPACE TYPES	LPD (w/ft ²)
Sports arena	
Audience seating	0.4
Court sports area - Class 4	0.7
Court sports area – Class 3	1.2
Court sports area - Class 2	1.9
Court sports area - Class I	3.0
Ring sports area	2.7
Transportation	1 1 1 1 1 1 1 1 1 1
Air/train/bus baggage area	1.00
Airport concourse	0.60
Terminal - ticket counter	1.50
Warehouse	
Fine material storage	1.40
Medium/bulky material	0.60

Formatted: Right: 0", Space After: 0 pt

Formatted: Right

Lighting Power Density Values from IECC 2015 for Interior Commercial New Construction and Substantial Renovation Space by Space Method:

TABLE C405.4.2(2)
INTERIOR LIGHTING POWER ALLOWANCES:
SPACE-BY-SPACE METHOD

TABLE C405.4.2(2)—continued INTERIOR LIGHTING POWER ALLOWANCES: SPACE-BY-SPACE METHOD

SPACE-BY-SPACE METH	OD	SPACE-BY-SPACE METHOD		
COMMON SPACE TYPES*	LPD (watts/sq.ft)	COMMON SPACE TYPES*	LPD (watts/sq.ft)	
Atrium	100	Food preparation area	1.21	
T 4 40.0 (1.1.1)	0.03 per foot	Guest room	0.47	
Less than 40 feet in height	in total height	Laboratory	100000	
	0.40 + 0.02 per foot	In or as a classroom	1.43	
Greater than 40 feet in height	in total height	Otherwise	1.81	
Audience seating area	1 (000-1/200900 -7 000-9	Laundry/washing area	0.6	
In an auditorium	0.63	Loading dock, interior	0.47	
In a convention center	0.82	Lobby	50000	
·		In a facility for the visually impaired (and not used primarily by the staff) ^b	1.8	
In a gymnasium	0.65	For an elevator	0.64	
In a motion picture theater	1.14	In a hotel	1.06	
In a penitentiary	0.28	In a motion picture theater	0.59	
In a performing arts theater	2.43	In a performing arts theater	2.0	
In a religious building	1.53	Otherwise	0.9	
In a sports arena	0.43	Locker room	0.75	
Otherwise	0.43	Lounge/breakroom		
	1.01	In a healthcare facility	0.92	
Banking activity area	1.01	Otherwise	0.73	
Breakroom (See Lounge/Breakroom)		Office		
Classroom/lecture hall/training room		Enclosed	1.11	
In a penitentiary	1.34	Open plan	0.98	
Otherwise	1.24	Parking area, interior	0.19	
Conference/meeting/multipurpose room	1.23	Pharmacy area	1.68	
	0.72	Restroom		
Copy/print room	0.72	In a facility for the visually impaired (and not used primarily by the staff ^b	1.21	
Corridor		Otherwise	0.98	
In a facility for the visually impaired (and	0.92	Sales area	1.59	
not used primarily by the staff) ^b		Seating area, general	0.54	
In a hospital	0.79	Stairway (See space containing stairway)		
In a manufacturing facility	0.41	Stairwell	0.69	
Otherwise	0.66	Storage room	0.63	
Courtroom	1.72	Vehicular maintenance area	0.67	
Computer room	1.71	Workshop	1.59	
		BUILDING TYPE SPECIFIC SPACE TYPES*	LPD (watts/sq.ft)	
Dining area		Facility for the visually impaired ^b		
In a penitentiary	0.96	In a chapel (and not used primarily by the staff)	2.21	
In a facility for the visually impaired (and not used primarily by the staff) ^b	1.9	In a recreation room (and not used primarily by the staff)	2.41	
In bar/lounge or leisure dining	1.07	Automotive (See Vehicular Maintenance Area	above)	
In cafeteria or fast food dining	0.65	Convention Center—exhibit space	1.45	
In family dining	0.89	Dormitory—living quarters	0.38	
Otherwise	0.65	Fire Station—sleeping quarters	0.22	
N 10 (10 10 10 10 10 10 10 10 10 10 10 10 10 1	100000000000000000000000000000000000000	Gymnasium/fitness center		
Electrical/mechanical room	0.95	In an exercise area	0.72	
Emergency vehicle garage	0.56	In a playing area	1.2	

(continued)

TABLE C405.4.2(2)—continued INTERIOR LIGHTING POWER ALLOWANCES: SPACE-BY-SPACE METHOD

BUILDING TYPE SPECIFIC SPACE TYPES*	LPD (watts/sq.ft)
healthcare facility	
In an exam/treatment room	1.66
In an imaging room	1.51
In a medical supply room	0.74
In a nursery	0.88
In a nurse's station	0.71
In an operating room	2.48
In a patient room	0.62
In a physical therapy room	0.91
In a recovery room	1.15
Library	·
In a reading area	1.06
In the stacks	1.71
Manufacturing facility	V.7
In a detailed manufacturing area	1.29
In an equipment room	0.74
In an extra high bay area (greater than 50' floor-to-ceiling height)	1.05
In a high bay area (25-50' floor-to-ceiling height)	1.23
In a low bay area (less than 25' floor-to- ceiling height)	1.19
Museum	103
In a general exhibition area	1.05
In a restoration room	1.02
Performing arts theater—dressing room	0.61
Post Office—Sorting Area	0.94
Religious buildings	
In a fellowship hall	0.64
In a worship/pulpit/choir area	1.53
Retail facilities	
In a dressing/fitting room	0.71
In a mall concourse	1.1
Sports arena—playing area	
For a Class I facility	3.68
For a Class II facility	2.4
For a Class III facility	1.8
For a Class IV facility	1.2
Transportation facility	277.64
In a baggage/carousel area	0.53
In an airport concourse	0.36
At a terminal ticket counter	0.8
Warehouse—storage area	
For medium to bulky, palletized items	0.58
For smaller, hand-carried items	0.95

a. In cases where both a common space type and a building area specific space type are listed, the building area specific space type shall apply b. A Facility for the Visually Impaired' is a facility that is licensed or will be licensed by local or state authorities for seuior long-term care, adult daycare, senior support or people with special visual needs.

The exterior lighting design will be based on the building location and the applicable "Lighting Zone" as defined in IECC 2015 Table C405.5.2(1) which follows. This table is identical to IECC 2012 Table C405.6.2(1) and IECC 2009 Table 505.6.2(1).

TABLE C405.5.2(1) EXTERIOR LIGHTING ZONES

LIGHTING ZONE	DESCRIPTION				
1	Developed areas of national parks, state parks, forest land, and rural areas				
2	Areas predominantly consisting of residential zoning, neighborhood business districts, light industrial with limited nighttime use and residential mixed-use areas				
3	All other areas not classified as lighting zone 1, 2 or 4				
4	High-activity commercial districts in major metropoli- tan areas as designated by the local land use planning authority				

The lighting power density savings will be based on reductions below the allowable design levels as specified in IECC 2009 Table 505.6.2(2), IECC 2012 Table C405.6.2(2) or IECC 2015 Table C405.5.2(2).

Allowable Design Levels from IECC 2009

TABLE 505.6.2(2)
INDIVIDUAL LIGHTING POWER ALLOWANCES FOR BUILDING EXTERIORS

		Zone 1	Zone 2	Zone 3	Zone 4				
Base Site Allowance (Base allowance may be used in tradable or nontradable surfaces.)		500W	600W	750W	1300W				
	Uncovered Parking Areas								
	Parking areas and drives	0.04 W/ft ²	0.06 W/ft ²	0.10 W/ft ²	0.13 W/ft ²				
	Building Grounds								
	Walkways less than 10 feet wide	0.7 W/linear foot	0.7 W/linear foot	0.8 W/linear foot	1.0 W/linear foot				
	Walkways 10 feet wide or greater, plaza areas special feature areas	$0.14~\mathrm{W/ft^2}$	0.14 W/ft ²	0.16 W/ft ²	0.2 W/ft ²				
	Stairways	0.75 W/ft ²	1.0 W/ft ²	1.0 W/ft ²	1.0 W/ft ²				
Tradable Surfaces	Pedestrian tunnels	0.15 W/ft ²	0.15 W/ft ²	0.2 W/ft ²	0.3 W/ft ²				
(Lighting power		В	uliding Entrances and Exi	ts					
densities for uncovered parking areas, building grounds, building	Main entries	20 W/linear foot of door width	20 W/linear foot of door width	30 W/linear foot of door width	30 W/linear foot of door width				
entrances and exits, canopies and overhangs and outdoor sales areas	Other doors	20 W/linear foot of door width	20 W/linear foot of door width	20 W/linear foot of door width	20 W/linear foot of door width				
may be traded.)	Entry canopies 0.25 W/ft ²		0.25 W/ft ²	0.4 W/ft ²	0.4 W/n ²				
	Sales Canopies								
	Free-standing and attached	0.6 W/ft ²	0.6 W/ft ²	0.8 W/ft ²	1.0 W/ft ²				
	Outdoor Sales								
	Open areas (including vehicle sales lots)	0.25 W/ft ²	0.25 W/ft ²	0.5 W/ft ²	0.7 W/ft ²				
	Street frontage for vehicle sales lots in addition to "open area" allowance	No allowance	lOW/linear foot	10W/linear foot	30 W/linear foot				
Nontradable Surfaces (Lighting power density calculations for the following applications can be used only for the specific application and cannot be traded between surfaces or with other exterior lighting. The following allowances are in addition to any allowance otherwise permitted in the "Tradable Surfaces"	Building facades	No allowance	0.1 W/ft ² for each illuminated wall or surface or 2.5 W/linear foot for each illuminated wall or surface length	0.15 W/ft ² for each illuminated wall or surface or 3.75 W/linear foot for each illuminated wall or surface length	0.2 W/ft ² for each illuminated wall or surface or 5.0 W/linear foot for each illuminated wall or surface length				
	Automated teller machines and night depositories	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location				
	Entrances and gatehouse inspection stations at guarded facilities	0.75 W/ft ² of covered and uncovered area	0.75 W/ft ² of covered and uncovered area	0.75 W/ft ² of covered and uncovered area	0.75 W/ft² of covered and uncovered area				
	Loading areas for law enforcement, fire, ambulance and other emergency service vehicles	0.5 W/ft ² of covered and uncovered area	0.5 W/ft ² of covered and uncovered area	0.5 W/ft ² of covered and uncovered area	0.5 W/ft ² of covered and uncovered area				
section of this table.)	Drive-up windows/doors	400 W per drive-through	400 W per drive-through	400 W per drive-through	400 W per drive-through				
	Parking near 24-hour retail entrances	800 W per main entry	800 W per main entry	800 W per main entry	800 W per main entry				

For SI: 1 foot = 304.8 mm, 1 watt per square foot = $W/0.0929 \text{ m}^2$.

Allowable Design Levels from IECC 2012

Formatted: Normal, Line spacing: Multiple 1.08 li, Don't keep with next TABLE C405.6.2(2)
INDIVIDUAL LIGHTING POWER ALLOWANCES FOR BUILDING EXTERIORS

	LIGHTING ZONES							
		Zone 1	Zone 2	Zone 3	Zone 4			
Base Site Allowance (Base allowance is usable in tradable or nontradable surfaces.)		500 W	600 W	750 W	1300 W			
			Uncovered Parking Areas					
	Parking areas and drives	0.04 W/ft ²	0.06 W/ft ²	0.10 W/ft ²	0.13 W/ft ²			
	Building Grounds							
	Walkways less than 10 feet wide	0.7 W/linear foot	0.7 W/linear foot	0.8 W/linear foot	1.0 W/linear foot			
	Walkways 10 feet wide or greater, plaza areas special feature areas	0.14 W/ft ²	0.14 W/ft ²	0.16 W/ft ²	0.2 W/n ²			
	Stairways	0.75 W/ft ²	1.0 W/ft ²	1.0 W/ft ²	1.0 W/ft ²			
Tradable Surfaces	Pedestrian tunnels	0.15 W/ft ²	0.15 W/ft ²	0.2 W/ft ²	0.3 W/ft ²			
(Lighting power		E	Building Entrances and Ex	its				
densities for uncovered parking areas, building grounds, building	Main entries	20 W/linear foot of door width	20 W/linear foot of door width	30 W/linear foot of door width	30 W/linear foot of door width			
entrances and exits, canopies and overhangs	Other doors	20 W/linear foot of door width	20 W/linear foot of door width	20 W/linear foot of door width	20 W/linear foot of door width			
and outdoor sales areas are tradable.)	Entry canopies	0.25 W/ft ²	0.25 W/ft ²	0.4 W/ft ²	0.4 W/ft ²			
are tradable.)	Sales Canopies							
	Free-standing and attached	0.6 W/ft²	0.6 W/ft ²	0.8 W/ft ²	1.0 W/ft ²			
	Outdoor Sales							
	Open areas (including vehicle sales lots)	0.25 W/ft²	0.25 W/ft ²	0.5 W/ft ²	0.7 W/ft ²			
	Street frontage for vehicle sales lots in addition to "open area" allowance	No allowance	10 W/linear foot	10 W/linear foot	30 W/linear foot			
Nontradable Surfaces (Lighting power density calculations for the following applications can be used only for the specific application and cannot be traded between surfaces or with other exterior lighting. The following allowances are in addition to and allowance otherwise permitted in the "Tradable Surfaces"	Building facades	No allowance	0.1 W/ft² for each illuminated wall or surface or 2.5 W/linear foot for each illuminated wall or surface length	0.15 W/ft² for each illuminated wall or surface or 3.75 W/linear foot for each illuminated wall or surface length	0.2 W/ft ² for each illuminated wall or surface or 5.0 W/linear foot for each illuminated wall or surface length			
	Automated teller machines and night depositories	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location			
	Entrances and gatehouse inspection stations at guarded facilities	0.75 W/ft ² of covered and uncovered area	0.75 W/ft ² of covered and uncovered area	0.75 W/ft ² of covered and uncovered area	0.75 W/ft ² of covered and uncovered area			
	Loading areas for law enforcement, fire, ambulance and other emergency service vehicles	0.5 W/ft ² of covered and uncovered area	0.5 W/ft ² of covered and uncovered area	0.5 W/ft² of covered and uncovered area	0.5 W/ft ² of covered and uncovered area			
section of this table.)	Drive-up windows/doors	400 W per drive-through	400 W per drive-through	400 W per drive-through	400 W per drive-through			
	Parking near 24-hour retail entrances	800 W per main entry	800 W per main entry	800 W per main entry	800 W per main entry			

For SI: 1 foot = 304.8 mm, 1 watt per square foot = W/0.0929 m².

Formatted: Right: 0", Space After: 0 pt

Allowable Design Levels from IECC 2015

TABLE C405.5.2(2) INDIVIDUAL LIGHTING POWER ALLOWANCES FOR BUILDING EXTERIORS

			LIGHTII	NG ZONES			
		Zone 1	Zone 2	Zone 3	Zone 4		
Base Site Allowance (Base allowance is usable in tradable or nontradable surfaces.)		500 W	600 W	750 W	1300 W		
			Uncovered Parking Area	S	100 to 10		
Ī	Parking areas and drives	0.04 W/ft ²	0.06 W/ft ²	0.10 W/ft ²	0.13 W/ft ²		
			Building Grounds				
,	Walkways less than 10 feet wide	0.7 W/linear foot	0.7 W/linear foot	0.8 W/linear foot	1.0 W/linear foot		
	Walkways 10 feet wide or greater, plaza areas special feature areas	0.14 W/ ft²	0.14 W/ ft²	0.16 W/ ft²	0.2 W/ft²		
	Stairways	0.75 W/ft ²	1.0 W/ft ²	1.0 W/ft ²	1.0 W/ft ²		
Fradable Surfaces	Pedestrian tunnels	0.15 W/ft ²	0.15 W/ft ²	0.2 W/ft ²	0.3 W/ft ²		
(Lighting power		E	Building Entrances and Ex	rits	No.		
densities for uncovered parking areas, building grounds, building	Main entries	20 W/linear foot of door width	20 W/linear foot of door width	30 W/linear foot of door width	30 W/linear foot of door width		
entrances and exits, canopies and overhangs and outdoor sales areas are tradable.)	Other doors	20 W/linear foot of door width					
	Entry canopies	0.25 W/ft ²	0.25 W/ft ²	0.4 W/ft ²	0.4 W/ft ²		
	Sales Canopies						
•	Free-standing and attached	0.6 W/ft²	0.6 W/ft²	0.8 W/ft ²	1.0 W/ft²		
	Outdoor Sales						
	Open areas (including vehicle sales lots)	0.25 W/ft ²	0.25 W/ft ²	0.5 W/ft ²	0.7 W/ft ²		
•	Street frontage for vehicle sales lots in addition to "open area" allowance	No allowance	10 W/linear foot	10 W/linear foot	30 W/linear foot		
Nontradable Surfaces	Building facades	No allowance	0.075 W/ft² of gross above-grade wall area	0.113 W/ft² of gross above-grade wall area	0.15 W/ft² of gross above-grade wall area		
(Lighting power density calculations for the following applications can be used only for the specific application and cannot be traded between surfaces or with other exterior lighting. The following allowances are in addition to any allowance otherwise	Automated teller machines (ATM) and night depositories	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location		
	Entrances and gatehouse inspection stations at guarded facilities	0.75 W/ft² of covered and uncovered area	0.75 W/ft² of covered and uncovered area	0.75 W/ft² of covered and uncovered area	0.75 W/ft² of covered and uncovered area		
	Loading areas for law enforcement, fire, ambulance and other emergency service vehicles	0.5 W/ft² of covered and uncovered area	0.5 W/ft² of covered and uncovered area	0.5 W/ft² of covered and uncovered area	0.5 W/ft² of covered and uncovered area		
permitted in the "Tradable Surfaces"	Drive-up windows/doors	400 W per drive-through					
section of this table.)	Parking near 24-hour retail entrances	800 W per main entry					

For SI: 1 foot = 304.8 mm, 1 watt per square foot = $W/0.0929 \text{ m}^2$. W = watts.

MEASURE CODE

Formatted: Line spacing: single

2.6.9 Metal Halide Fixtures and Lamps (Retired, effective)

Formatted: Font color: Auto, Highlight

DESCRIPTION

Formatted: Font color: Background 2

This measure involves the installation of high efficiency pulse start metal halide fixtures and lamps in place of a standard metal halide. Pulse start metal halide luminaires produce more lumens per watt and have an improved lumen maintenance compared to standard probe start technology. Similarly, the high efficiency pulse start metal halide ballast lasts longer than a standard system due to their cooler operating temperatures; 354

This measure was developed to be applicable for the following program type: RF.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient condition is an EISA compliant pulse start metal halide lamp and ballasts for luminaires. Under 2009 federal rulings metal halide ballasts in low-watt options (150W-500W fixtures) must be pulse start and have a minimum ballast efficiency of 88%. 355 Amendments made in 2014 require more stringent energy conservations efficiency standards with compliance required by February 10, 2017. 356

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is the existing bulb and fixture. If unknown assume, High Intensity Discharge (HID) Metal Halide lighting with probe start fixture and a standard ≤ 400 Watt lamp.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is assumed to be 15 years.357

DEEMED MEASURE COST

Actual costs should be used when available. If unknown, cost is assumed to be \$267.358

LOADSHAPE

Lighting BUS

Formatted: Font color: Background 1

³⁵⁴ Building a Brighter Future: Your Guide to EISA Compliant Ballast and Lamp Solutions from Philips Lighting: http://1000bulbs.com/pdf/advance%20eisa%20brochure.pdf

³⁵⁵ Under EISA rulings, metal halide ballasts in low-watt options must be pulse start and have a minimum ballast efficiency of 88%. This ruling virtually eliminates the manufacture of probe start (ceramic) fixtures but some exemptions exist including significantly the 150w wet location fixtures (as rated per NEC 2002, section 410.4 (A)). These will be replaced by 150W. Department of Energy —10 CFR Part 431 — Energy Conservation Program: Energy Conservation Standards for Metal Halide Lamp Fixtures; Final Rule 7746 Federal Register / Vol. 79, No. 27 / Monday, February 10, 2014 / Rules and Regulations https://www.federalregister.gov/articles/2014/02/10/2014-02356/energy-conservation-program-energy-conservation-standardsfor-metal-halide-lamp-fixtures/th-9

metal-halide-lamp-fixtures#h-9

356-The revised 2014 efficiency standards for metal halides require that luminaires produced on or after February 10, 2017, must
not contain a probe-start metal halide ballast. Exceptions to this ruling include, metal halide luminaires with a regulated-lag ballast
that utilize an electronic ballasts which operates at 480V and those which utilize a high-frequency (21000Hz) electronic ballast.
Department of Energy — 10 CFR Part 431 — Energy Conservation Program: Energy Conservation Standards for Metal Halide
Lamp Fixtures; Final Rule 7746 Federal Register / Vol. 79, No. 27 / Monday, February 10, 2014 / Rules and Regulations
https://www.federalregister.gov/articles/2014/02/10/2014-02356/energy-conservation-program-energy-conservation-standardsformetal-halide-lamp fixtures#h-9

metal-halide-lamp fixtures#h-9

342 GDS Associates, Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, June 2007, http://library.coel.org/sites/default/files/library/8842/CEE_Eval_MeasureLifeStudyLights&HVACGDS_IJun2007.pdf

358 Assuming_cost of lamp_and_fixture_combined_per_ltron, Inc. 2010-2012_WO017_Ex_Ante_Measure_Cost_Study_Final_Report_(Deemed_Measures), May 27, 2014.

Ext Lighting BUS
Miscellaneous BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

$$\Delta kWh = \frac{Watts_{Base} - Watts_{EE}}{1000} * Hours * WHF_e * ISR$$

Where:

Watts_{Base} = Input wattage of the existing system which depends on the baseline

fixture configuration (number and type of lamp). Value can be selected from the reference table at the end of the characterization or a custom

value can be used.

Watts_{EE} = New Input wattage of EE fixture, which depends on new fixture configuration. Value can be selected from the appropriate reference

table at the end of the characterization, or a custom value can be used.

Hours _ _ _ = Average annual lighting hours of use as provided by the customer or selected from the Lighting Reference Table in Section 2.6. If hours or

Building Type are unknown, use the C&I Average value.

WHF_e = Waste heat factor for energy to account for cooling energy savings

from efficient lighting is selected from the Reference Table in Section

2.8 for each Building Type.

If building is un-cooled, the value is 1.0.

ISR = In Service Rate is assumed to be 100%

Heating Penalty:

If electrically heated building: 359

$$\Delta kWh_{heatpenalty} = \frac{Watts_{Base} - Watts_{EE}}{1000} * Hours * ISR * (-IF_{kWH})$$

Where:

IF_{kWh} = Lighting-HVAC Interaction Factor for electric heating impacts; this

factor represents the increased electric space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Reference Table in Section 2.8. If

unknown, use the C&I Average value.

SUMMER COINCIDENT DEMAND SAVINGS

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

²⁵⁹ Negative value because this is an increase in heating consumption due to the efficient lighting.

Appendix H - TRM - Vol. 2: C&I Measures

 $\Delta kW = \Delta kWh *_{\underline{X}} CF$

Where:

<u>AkWh</u> = as calculated above.

= Summer peak coincidence demand (kW) to annual energy (kWh) factor CF

 $= 0.0001899635^{360}$ for indoor lighting

= 0.0000056160 for exterior lighting

= 0.0001379439 for exterior 24/7 lighting

NATURAL GAS SAVINGS 361

Watts_{EE} * Hours * ISR * (IF_{therms}) **ATherms** 1000

Where:

 $\frac{\text{HF}}{\text{Therms}}$ = Lighting-HVAC Interaction Factor for gas heating impacts; this factor

represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Please select from the Reference Table in Section 2.8 for each Building Type.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

No O&M adjustments apply to this measure.362

REFERENCE TABLES³⁶³

Lamp Watter	Efficient Fixture Ballast	Efficient System Lumen	System Watter	Lamp Watt_{Base}	Baselines Ballast ³⁶⁴	System Watts _{Base}	Baseline System Lumen
Pulse Start MH 150W	Pulse Start- CWA Ballast	10500 -	185	- Probe Start MH 175W	_ standard C&C	210	9100
Pulse Start MH 175W	Pulse Start CWA Ballast	11200 -	208	_ Probe Start _ MH 175W	_ standard	210	9100
Pulse_Start MH-200W	Pulse Start CWA Ballast	16800 -	232	_ Probe Start _ MH250W	_ standard C&C	295	13500
Pulse Start MH 250W	Pulse Start CWA Ballast	16625 -	290	Probe Start MH250W	_ standard _ C&C	295	13500

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

2025 MEEIA 4 Plan MEEIA 2019 21 Plan Revision 56.0

Page 212

Formatted: Font color: Background 1

Formatted: Left, Indent: Left: 0", Don't keep lines together

³⁶⁰ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

⁶⁴⁻Negative value because this is an increase in heating consumption due to the efficient lighting

³⁶²Given that probe start MH technology is becoming a technology of the past, it is assumed that upon failure they would have been replaced with pulse start technology. ³⁶³ Per lamp/ballast.

³⁶⁴ Standard Magnetic Core and Coil ballast systems are common for Metal Halide lamp wattages 175-400. See Panasonic "Metal Halide: Probe Start vs. Pulse Start."

Appendix H - TRM - Vol. 2: C&I Measures

Pulse Start MH 320W	Pulse Start CWA Ballast	21000 -	368	Probe Start MH400W	_ standard _ C&C	4 58	24000 -	<u> </u>	 Formatted: Font color: Background 2
Pulse Start MH350W	Pulse Start- CWA Ballast	25200 -	400	Probe Start	_ standard C&C	4 58	24000 -	-	 Formatted: Font color: Background 2
Pulse Start _ MH 400W	Pulse Start- CWA Ballast	29820 -	452	_ <u>Probe Start</u> _ MH400W	_ <u>standard</u> _ C&C	458	24000 -	-	 Formatted: Font color: Background 2
							•	Ī	 Formatted: Font color: Background 2

MEASURE CODE:

2.6.10 Occupancy Lighting Sensor Controls Lighting Controls

DESCRIPTION

The lighting controls measure is applicable to the installation of occupancy sensors, daylighting sensors, networked lighting controls (NLC) and luminaire level lighting controls (LLLC). Occupancy sensors are devices that reduce lighting levels by turning lights on or off in response to the presence (or absence) of people in a defined area. Associated energy savings depends on the Building Typetype, location area covered, type of lighting and, activity, and occupancy pattern and control strategies. 365

This measure relates to the installation of interior occupancy sensors on new fixtures in an existing lighting system. lighting controls with a new or existing interior lighting system, that are not required by local building energy codes. Lighting control types covered by this measure include remote mounted and fixture mounted. It does not cover automatic photo sensors, time clocks, and energy management systems. All sensors must be hard wired and control interior lighting.

This measure was developed to be applicable to the following program types: TOS and RF—_If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

It is assumed that this The measure characterization applies to only fixture-mounted occupancy sensors, and remote mounted occupancy sensors, networked lighting controls (NLC) and LED fixtures equipped with light level luminaire control (LLLC). For LLLC fixtures, this measure applies to the control strategies (trimming the base wattage, dimming, occupancy, daylighting). The base watt reduction for LLLC fixtures over the existing or code based fixture is not characterized by this measure, but by measure 2.6.31 LED Bulbs and Fixtures. Also, not characterized for LLLC fixtures are HVAC temperature and humidity setback sensing.

DEFINITION OF BASELINE EQUIPMENT

The baseline efficiency case assumes lighting fixtures with with no occupancy controls. only manual controls or no controls. When controls are installed with new fixtures, replacing existing fixtures, the controlled wattage is based on the new system.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life for <u>all lighting controls occupancy sensors and daylight sensor</u> is assumed to be 10 years.³⁶⁶

The expected measure life for NLC and LLLC controls is assumed to align with the fixture life, at 15 years.

DEEMED MEASURE COST

Formatted: Normal, Left, Indent: Left: -0", Right: 3.12", Space After: 5 pt, Line spacing: Multiple 1.08 li

³⁶⁵ United States Department of the Interior. Greening the Department of Interior. http://www.doi.gov/archive/greening/energy/occupy.html

³⁶⁶ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007 (See page 1-3).

Appendix H - TRM - Vol. 2: C&I Measures

When available, the actual cost of the measure shall be used. When not available, the following default values are provided:

Lighting control type	Cost ³⁶⁷
Full cost of fixture mounted occupancy sensor, <200W	\$4565 per sensor ³⁶⁸
Full cost of fixture mounted occupancy sensor, >200W	\$138 per sensor
Full cost of remote (ceiling) mounted occupancy sensor	\$105_105 per sensor
Luminaire lighting level controls with fixture	\$53 per fixture ³⁶⁹
Network lighting controls, less than 10,000 SF	\$0.86 per SF ³⁷⁰
Network lighting controls, 10,000 SF to 100,000 SF	\$0.59 per SF
Network lighting controls, more than 100,000 SF	<u>\$0.44 per SF</u>

Formatted: Font: 11 pt
Formatted: Font: 11 pt

LOADSHAPE

Lighting BUS Miscellaneous BUS Ext Lighting BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

$$\Delta kWh = \sum (kW_{Controlled} *-x Hours --x (ESF_{Occ} + ESF_{Trim} + ESF_{Other}) \underbrace{ESF *-x}_{ESF} (WHF_e - IF_{heat}))$$

Where:

<u>∆kWh</u>

= Summation of controlled watts, hours of use, savings factors, waste heater factor for each unique usage area

kWControlled

= Total lighting load Lighting load connected to the control in kilowatts.controlled, kilowatts. Savings is per control. The total connected load per control should be collected from the customer, or use the default values presented below.

=Actual, default from table below may be used for fixture or remote occupancy sensing. NLC and LLC to use actual only.

³⁶⁷-Based on averaging typical prices quoted by online vendors. <u>Ameren DSM participant reported costs</u>, 266 participants, 1/1/201 through 7/1/2024, weighted average of 14,228 sensor cost with installation.

368 Ameren DSM participant reported costs, 266 participants, 1/1/2019 through 7/1/2024, weighted average of 14,228 sensor cost with installation.
369 NEE A. Northwest Energy Alliance. Table 11 page 11. Average of three systems "2022 Luminaire Level Lighting Controls."

369NEEA, Northwest Energy Alliance, Table 11 page 11, Average of three systems, "2022 Luminaire Level Lighting Controls Incremental Cost Study", (March 2023), https://neea.org/img/documents/2022-Luminaire-Level-Lighting-Controls-Incremental-Cost-Study.pdf

³⁷⁰ Lawrence Berkeley National Laboratory, Energy Solutions, for the California Energy Commission (April 2019), Average incremental cost of three building types by area, Page 62-63 Table 18 to 20, https://www.energy.ca.gov/sites/default/files/2021-06/CEC-500-2019-041.pdf

2025 MEEIA 4 Plan MEEIA 2019 21 Plan Revision 56.0

Formatted: Indent: Left: 0", First line: 0"

Formatted: Footnotes

Formatted: Underline, Font color: Blue

Field Code Changed

Formatted: Font: 9 pt, Underline, Font color: Blue

Field Code Changed

Page 215

Appendix H - TRM - Vol. 2: C&I Measures

	Lighting Control Type	Default kW controlled 371	<u></u>	Formatted: Font: Not Bold, Font color: Background 1
	<u>Fixture-mounted occupancy sensor</u>	0.138 (per fixture)	111	Formatted: Font color: Background 1
	Remote (ceiling) mounted occupancy sensor	0.338 (per control)	111	Formatted: Font: Not Bold, Font color: Background 1
A	Network, Luminaire level control	<u>Custom</u>	'\	Formatted: Font: Not Bold, Font color: Background 1
Hours	= The total annual operating hours	of lighting for each type of	1	<u> </u>
	building before occupancy sensors.	Annual operating hours per		Formatted: Font color: Background 1
	unique usage area.			Formatted: Font: 11 pt, Font color: Background 1
	=Actual, if unknown the hours by F	Building Type may be applied.		
	This number should be collected from	om the customer. If no data is		
	available, the deemed average num	ber of operating hours by Building		
	Type should be used as provided by	Lighting Reference Table in		
	Section 2.6. If Building Type is unl			
	value.			
ESF _{Occ}	= Energy Savings factor Factor (rep	presents the percentage reduction		
	to the operating Hours hours for oc	cupancy sensing from the non-		
	controlled baseline lighting system).		
	=Actual, if unknown, the Determin	red on a site-specific basis or		
	using the default values below.	-		
ESF _{Trim}	=Energy Savings Factor for high er	nd trim adjustment or tuning with		Formatted: Subscript
	Network Lighting Controls with or	without Luminaire Lighting Level		
	Controls (represents percentage red	uction to the base fixture wattage)		
	=(Fixture full wattage – Trimmed v	vattage)/Full wattage		Formatted: Font: Italic
ESF _{Other}	=Energy Savings Factor for NLC w	rith additional strategies beyond		Formatted: Subscript
	occupancy sensing or scheduling. In	ncludes daylight harvesting,		Tomatou Susscript
	dimming, luminaire level lighting of	ontrol, personal control.		
	=Actual, if unknown the default va	ues below may be used.		

Lighting Strategy by Equipment Type	Energy Savings Factor 372
Occupancy Sensing - Fixture, Remote, NLC, LLC	0.24
High End Trim - NLC	0.11 ³⁷³
High End Trim – NLC + LLLC	0.28
Other strategies – NLC + LLLC	<u>0.10</u>

Formatted Table

³⁷¹Efficiency Vermont Technical Reference Manual 12.31.2018, Page 47;

https://puc.vermont.gov/sites/psbnew/files/doc_library/Vermont%20TRM%20Savings%20Verification%202018%20Version_FIN_ AL.pdf

372 Lawrence Berkeley National Laboratory. A Meta-Analysis of Energy Savings from Lighting Controls in Commercial Buildings.

Page & Associates Inc. 2011 (Page 1).

 $\underline{https://eta.lbl.gov/publications/meta-analysis-energy-savings-lighting.}$

LBNL's meta study of energy savings from lighting controls in commercial buildings bases its savings analysis on over 240 actual field installations. The report found that savings are over-represented and do not filter for external factors such as building orientation,

location, use, weather, blinds, commissioning, changes in behavior after controls are set, etc. As such, their value of 24% represented the best conservative estimate of occupancy controls energy savings achievable in the field today.

373NEEA, Northwest Energy Efficiency Alliance, Table 10 page 56, "Energy Savings from Networked Lighting Control Systems With and Without Luminaire Level Lighting Controls", https://neea.org/img/documents/Energy-Savings-from-Networked-Lighting-Control-Systems-With-and-Without-LLLC.pdf, The Table 10 Control Factor values for NLC and NLC + LLLC, were set as incremental values from a typical occupancy sensor savings factor of 0.24. The sum of all ESF total the reported values of 0.63 for NLC + LLLC and 0.35 for NLC

Page 216

Formatted: Font: 9 pt, Underline, Font color: Blue

Formatted: Footnotes

Formatted: Font: 9 pt, Underline, Font color: Blue

Formatted: Underline, Font color: Blue

Appendix H - TRM - Vol. 2: C&I Measures

WHFe = Waste heat factor for energy to account for cooling energy savings from more efficient lighting is provided in the table, "C&I

Lighting Deemed Hours and Waste Heat Factors by Building

Type". Lighting Reference Table in Section 2.6.

= Lighting-HVAC Interaction Factor for electric heating impacts; this IF_{heat} factor represents the increased electric space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the table, "C&I Lighting Deemed Hours and

Waste Heat Factors by Building Type".

Lighting Control Type Interior	Default kW controlled 374
Fixture mounted occupancy sensor	0.138 (per fixture)
Remote (ceiling) mounted occupancy sensor	0.338 (per control)

Lighting Control Type	Energy Savings Factor 135
Fixture mounted sensor	24%
Remote (ceiling) mounted occupancy sensor	24%
Network Connected controls	24%

Heating Penalty:

If electrically heated building:376

 $\Delta kWh_{heatpenalty} = kW_{controlled} * Hours * ESF * (-IF_{kWH})$

Where:

 $\frac{\mathbf{F}_{kWh}}{\mathbf{F}_{kWh}}$ = Lighting-HVAC Interaction Factor for electric heating impacts; this

factor represents the increased electric space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Lighting Reference Table 2.6.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh \stackrel{*}{=}_{X} CF$

Where:

374Efficiency Vermont Technical Reference Manual 12.31.2018, Page 47;

https://pue.vermont.gov/sites/psbnew/files/doe_library/Vermont%20TRM%20Savings%20Verification%202018%20Version_FINAL CONTRACT CON AL.pdf

375 Lawrence Berkeley National Laboratory. A Meta-Analysis of Energy Savings from Lighting Controls in Commercial Building

376 Negative value because this is an increase in heating consumption due to the efficient lighting.

Formatted Table

Formatted: Subscript

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: No widow/orphan control, Keep lines together

Formatted: No widow/orphan control, Keep lines together

Formatted: No widow/orphan control, Keep lines

Formatted: No widow/orphan control, Keep lines together

Page & Associates Inc. 2011 (Page 1).

https://eta.lbl.gov/publications/meta-analysis-energy-savings-lightinghttp://eetd.lbl.gov/publications/meta-analysis-energy-saving lighting-controls-commercial-buildings.

LBNL's meta study of energy savings from lighting controls in commercial buildings bases its savings analysis on over 240 actu field installations. The report found that savings are over-represented and do not filter for external factors such as building orientation location, use, weather, blinds, commissioning, changes in behavior after controls are set, etc. As such, their value of 24% representations the best conservative estimate of occupancy controls energy savings achievable in the field today.

Appendix H - TRM - Vol. 2: C&I Measures

⊿kWh = As calculated above

CF

= Summer peak coincidence demand (kW) to annual energy (kWh) factor.

 $= 0.0001899635^{377}$ for indoor lighting = 0.0001379439 for Miscellaneous

= 0.0000056160 for exterior lighting

Natural Gas Energy Savings

If gas heated building (or unknown), the heating penalty is:

$$\Delta Therms = kW_{controlled} * Hours * ESF * (-IF_{therms})$$

$$\Delta Therms = \sum (kW_{controlled} * Hours * (ESF_{occ} + ESF_{Trim} + ESF_{Other}) * (-IF_{heat}))$$

Where:

 $IF_{Therms} \\$

= Lighting-HVAC Integration Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting and is provided in the table, "C&I Lighting Deemed Hours and Waste Heat Factors by Building Type". Lighting Reference Table in Section 2.6 by Building

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

Formatted: Font: 9 pt

Formatted: Left, Indent: Left: 0", Don't keep lines together

³⁷⁷ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes

2.6.11 Street Lighting (Retired 8/1/2024)

DESCRIPTION

This measure characterizes the savings associated with LED street lighting conversions where a LED fixture replaces a high-intensity discharge (HID) outdoor lighting system, including metal halide, high pressure sodium, and mercury vapor. LED street lights provide considerable benefits compared to HID lights, including:

- Improved nighttime visibility and safety through better color rendering, more uniform light distribution and elimination of dark areas between poles.
- Reduced direct and reflected uplight which are the primary causes of urban sky glow.
- 40-80% energy savings (dependent on incumbent lighting source).
- 50-75% street lighting maintenance savings. 378

This measure includes LED fixture housings including cobrahead and post top and is applicable only where utility tariffs support LED street lighting conversions.

This measure was developed to be applicable for a one-to-one RF opportunity only. 279

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment must be an LED fixture that meets the United Illuminating Rate Schedule, alongside all other luminary performance requirements, based on site characteristics and all local, state and federal codes.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is the existing lighting system—a metal halide, high pressure sodium, or mercury vapor outdoor lamp, ballast, and fixture.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is assumed to be 12.5 years. 381

DEEMED MEASURE COST

Formatted: Font color: Background 2

³⁷⁸ See NEEP "LED Street Lighting Assessment and Strategies for the Northeast and Mid-Atlantic," January 2015, and the Municipal Solid State Street Lighting Consortium for more information http://www.leers.epsray.gov/buildings/scl/consortium.html

http://www1.eere.energy.gov/buildings/ssl/consortium.html
³⁷⁹ Many light fixtures were placed in service 20-50 years ago and may no longer service their intended purpose. It is important to
conduct a comprehensive assessment of lighting needs with a lighting professional when considering a LED street lighting project
LED street lighting can result in removal of lighting altogether as LED lights provide better CRI and lighting levels than existing
HID lighting types. While this measure only characterizes a one-to-one replacement value, it is recommended that this measure be
updated following a Missouri assessment to see where LED street lighting has resulted in the removal of street lighting to ensure
additional savings calculations are captured. Recommend using Street and Parking Facility Lighting Retrofit Financial Analysis
Tool developed by DOE Municipal Solid-State Street Lighting Consortium and the Federal Energy Management Program.

³⁸⁰ See DOE Municipal Solid-State Street Lighting Consortium "Model Specifications for LED Roadway Luminaires v.2.0," July
2014.

³⁸¹ The measure lifetime is calculated using 4,000 annual hours of use from Ameren Missouri "Light Emitting Diode (LED) Street and Area Lighting Report," July 2013 (page 10) and a typical LED streetlight lifetime of 50,000 hours from Massachusetts Department of Energy Resources "LED Streetlights: What is Your Plan? (page 28 webinar)," September 11, 2013.

Appendix H - TRM – Vol. 2: C&I Measures

Actual measure installation cost should be used, including material and labor.³⁶² If the actual cost of the LED unit is unknown, use the default values for typical LED streetlight retrofits provided below.³⁸³

Light output							
A	Low (< <u>50₩)</u>	Med (50)	W 100W) High (>100W)			
Fixture Type	min	max	min	max	min	max	
Decorative/Post Top	\$350.00	\$ 615.00	\$550.00	\$950.00	\$750.00	\$1,450.00	
Cobrahead	\$99.00	\$225.00	\$179.00	<u>\$451.00</u>	\$310.00	\$720.00	

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

LOADSHAPE

Ext Lighting BUS

Algorithm

Formatted: Font color: Background 2

Formatted: Font color: Background 2

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS384

$$\Delta kWh = \frac{Watts_{base} - Watts_{bb}}{1000} * Hours$$

Where:

Watts_{Base} = Actual wattage if known, if unknown assume the following

nominal wattage based on technology³⁸⁵

— Metal Halide = 554W

- High Pressure Sodium = 157W

— Mercury Vapor = 228W

Watts_{EE} = Actual wattage³⁸⁶

Hours = Annual operating hours

 $=4,000 \text{ hours}^{387}$

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

SUMMER COINCIDENT PEAK DEMAND SAVINGS

No summer peak savings should be claimed for street lighting, as street lights are not expected to be operational during system peak loads.

NATURAL GAS ENERGY SAVINGS

³⁸² Labor should include the removal of the old fixture and installation of the new fixture. Assume the typical prevailing wage as per the Annual Wage Order No. 23 published by the Missouri Department of Labor.

³⁸³ LED unit costs from New York State Energy Research and Development Authority "Street Lighting in New York State: Opportunities and Challenges," Revised January 2015 (Page 12, Table 2-3).
384 There is no ISR input. Savings are per unit.

³⁸⁵ Baseline wattages are a weighted average of products evaluated in Ameren Missouri "Light Emitting Diode (LED) Street and Area Lighting Report," July 2013. See "Street Lighting Baseline Wattages.xlsx."

³⁸⁶ It is important to ensure that retrofit opportunities base efficient wattage on a lumen per watt equivalence.

Ameren Missouri "Light Emitting Diode (LED) Street and Area Lighting Report," July 2013.

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

Annual O&M savings are estimated at \$50/LED streetlight.388

MEASURE CODE:

³⁸⁸ New York State Energy Research and Development Authority "Street Lighting in New York State: Opportunities and Challenges," Revised January 2015 (page 7, section 1.5).

ſ

Appendix H - TRM - Vol. 2: C&I Measures

2.7 Miscellaneous

2.7.1 Laptop Computer (Retired, effective 1/1/2025)

DESCRIPTION

This measure estimates savings for a laptop (or notebook) computer with that has been certified by ENERGY STAR® (ES) Version 6.08.0.

This measure was developed to be applicable to the following program type: TOS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient product is laptop meeting the requirements set forth by ENERGY STAR® Version 68.0. 389

DEFINITION OF BASELINE EQUIPMENT

Non ENERGY STAR® qualified laptop.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The life of this measure is 4 years.³⁹⁰

DEEMED MEASURE COST³⁹¹

The incremental cost is \$5.

LOADSHAPE

Miscellaneous BUS

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS 392

<u> 4kWh = Hoursidle *<u>x</u> (Pidle_base = Pidle_eff) + Hourssleep *<u>x</u> (Psleep_base = Psleep_eff) + Hoursoff *<u>x</u> (Poff_base = Poff_eff)</u>

Where:

389 ENERGY STAR, Effective July 2022,

https://www.energystar.gov/sites/defaull/files/asset/document/ENERGY%20STAR%20Computers%20Version%208.0%20Final%20Specification%20Rev.%20July%202022.pdf

https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fdnr.mo.gov%2Fsites%2Fdnr%2Ffiles%2Fmedia%2Ffiles F2021%2F01%2Foffice-equipment-calculator.xlsx&wdOrigin_BROWSELINKBased on the algorithms used by the Energy Star Office Equipment Calculator. See "Office Equipment Calculator.xlsx."

2025 MEEIA 4 Plan MEEIA 2019 21 Plan Revision 56.0

Formatted: Font color: Background 1

Formatted: Font color: Background 1

Formatted: Footnotes, No widow/orphan control

Formatted: Footnotes, Space After: 0 pt

Page 223

Based on Energy Star® Office Equipment Calculator. See "Office Equipment Calculator.xlsx."

³⁹⁴ Computer CASE Report, CA IOUs. <a href="http://www.energy.ea.gov/appliances/2013rulemaking/documents/proposals/12-AAER-2A_Consumer_Electronics/California_IOUs_Standards_Proposal_Computers_UPDATED_2013-08-06_TN-71813. The small incremental cost is in alignment with Energy Star® reporting, which lists an incremental cost of \$0.280 Based on the algorithms used by the Energy Star® Office Equipment Calculator.slsx."

ENERGY STAR®, Office Equipment Calculator, Laptop Calcs worksheet, Equipment Life field,

Appendix H - TRM - Vol. 2: C&I Measures

Hoursidle	= Annual hours the computer is on and idling. Custom input or based on		
	usage pattern (see table below).		
P _{idle_base}	= Power draw (kW) of baseline unit while idling. Based on computer		Formatted: Font color: Background 1
	performance level (see table below).		
P _{idle_eff}	= Power draw (kW) of efficient unit while idling. Based on computer		Formatted: Font color: Background 1
	performance level (see table below).		
Hourssleep	= Annual hours the computer is in sleep mode. Custom input or based on		Formatted: Font color: Background 1
	usage pattern (see table below).		
P _{sleep_base}	= Power draw (kW) of baseline unit while in sleep mode. Based on	*	Formatted: Font color: Background 1
	computer performance level (see table below).		3
P _{sleep_eff}	= Power draw (kW) of efficient unit while in sleep mode. Based on	*	Formatted: Font color: Background 1
	computer performance level (see table below).		
Hoursoff	= Annual hours the computer is off. Custom input or based on usage		Formatted: Font color: Background 1
	pattern (see table below).		3
Poff_base	= Power draw (kW) of baseline unit while off. Based on computer	*	Formatted: Font color: Background 1
	performance level (see table below).		3
Poff_eff	= Power draw (kW) of efficient unit while off. Based on computer		Formatted: Font color: Background 1
	performance level (see table below).		3
		•	Formatted: Font color: Background 1
Default Ho	urs of Use³⁹³		3

Table

Use Pattern	Hours_idle	Hours_sleep	Hours_off
Turned off at night, sleep enabled	<u>803</u>	1104	6854
Turned off at night, sleep disabled	<u> 1906</u>	<u> </u>	<u>6854</u>
Left on at night, sleep enabled	<u>803</u>	7957	0
Left on at night, sleep disabled	<u>8760</u>	0	θ
<u>Unknown</u>	5853	4 39	2467

Table: Power Requirements 394&395

Performance Level ²⁸³	Baseline			Efficient			
	Pidle_base	Psleep_base	Poff_base	Pidle_eff	Psleep_eff	Poff_eff	
Low	<u>0.01104</u>	_ 0.00104	<u>0.000563</u>	0.0064	<u> 0.000787</u> _	0.000382	
<u>Medium</u>	0.01482	0.00121	<u>0.000606</u>	<u> 0.00861</u> _	0.000889	0.000457	
<u>High</u>	<u>0.01724</u>	0.00134	<u>0.000619</u>	<u> 0.01024</u> _	<u>0.00122</u>	0.000522	

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh + CF$

Where:

393 Based on Energy Star® Office Equipment Calculator. See "Office Equipment Calculator xlsx." "Unknown" based on data Formatted: Font color: Background 1

2025 MEEIA 4 Plan MEEIA 2019 21 Plan Revision 56.0

Page 224

Background 1 Background 1 Background 1 Background 1 Background 1

Formatted: Font color: Background 1

Formatted: Font color: Background 1 Formatted: Font color: Background 1 Formatted: Font color: Background 1 Formatted: Font color: Background 1

suggesting 36% of computers are shut off at night and 8% have sleep mode enabled.

²⁴⁴ Based on Energy Star® Office Equipment Calculator. See "Office Equipment Calculator.xlsx."

³⁹⁵ "Low" refers to budget or low-end models, "Medium" refers to mid-grade models and "High" refers to high-end models. For more specific performance definitions, refer to Energy Star® 6.0 Requirements.

Appendix H - TRM - Vol. 2: C&I Measures

AkWh = Energy Savings as calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

Formatted: Font color: Background 1

 $=0.0001379439^{\frac{3}{296}}$

Formatted: Font color: Background 1

NATURAL GAS SAVINGS

N/A

WATER AND OTHER NON-ENERGY IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

Formatted: Font color: Background 1

Formatted: Left, Indent: Left: 0", Don't keep lines together

2.7.2 Computer Power Management Software (Retired, effective 1/1/2025)

DESCRIPTION

Computer power management software is installed on a network of computers. This is software which monitors and records computer and monitor usage, as well as allows centralized control of computer power management settings.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is defined by the requirements listed below:

- Allow centralized control and override of computer power management settings of workstations which include both a computer monitor and CPU (i.e. a desktop or laptop computer on a distributed network).
- Be able to control on/off/sleep states on both the CPU and monitor according to the network administrator-defined schedules and apply power management policies to network groups.
- · Have capability to allow networked workstations to be remotely wakened from powersaving mode (e.g. for system maintenance or power/setting adjustments).
- Have capability to detect and monitor power management performance and generate energy savings reports.
- · Have capability to produce system reports to confirm the inventory and performance of equipment on which the software is installed.

This measure was developed to be applicable to the following program type: RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF BASELINE EQUIPMENT

Baseline is defined as a computer network without software enforcing the power management capabilities in existing computers and monitors.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is 4 years. 397

DEEMED MEASURE COST

The deemed measure cost is \$29 per networked computer, including labor. 398

LOADSHAPE

Miscellaneous BUS

Formatted: Font color: Background 1

Formatted: Font color: Background 1

⁷-Consistent with the expected lifetimes of Energy Star® Office Equipment.

Consistent with the expected lifetimes of Energy Star Office Equipment.

338 Work Paper WPSCNROE0003 Revision 1, Power Management Software for Networked Computers. Southern California Edison https://www.calmac.org/publications/13-14_PCPMS_Report_FINAL_20160329.pdf (table 3-1, pg 17)

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

$$\Delta kWh = kWh_{savings} *_{\underline{X}} N$$

Where:

kWh_{savings} = Annual energy savings per workstation

= 200 kWh³⁹⁹ for desktops, 50 kWh for laptops⁴⁰⁰

= If unknown, assume 161 kWh (based on 74% desktop and 26% laptop)⁴⁰¹

N = Number of desktop or laptop workstations controlled by the power

management software

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

<u> ΔkWh</u> = <u>Energy Savings as calculated above</u>

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

=0.0001379439

NATURAL GAS SAVINGS

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

Assumed to be \$2/unit annually.402

MEASURE CODE:

Regional Technical Forum

http://rtf.nwcouncil.org/measures/measure.asp?id=95https://rtf.nwcouncil.org/measure.asp?id=95 (200 kWh)

EnergySTAR* Computer Power Management Savings Calculator (-190 kWh for a mix of laptop/desktop and assuming 30% are already turned off at night)

http://www.energystar.gov/ia/products/power_mgt/LowCarbonITSavingsCale.xlsx?78e1https://www.energystar.gov/ia/products/ ower_mgt/LowCarbonITSavingsCale.xlsx?78e1-120e&78e1-120e Power Management for Networked Computers: A Review of Utility Incentive Programs J. Michael Walker, Beacon Consultants Network Inc., 2009 ACEEE Summer Study on Energy Efficiency in Industry (330 kWh).

2025 MEEIA 4 Plan MEEIA 2019 21 Plan Revision 56.0

Formatted: Font color: Background 1

Formatted: Font color: Background 1

Formatted: Font color: Background 1

Formatted: Font color: Background 1

Field Code Changed

Field Code Changed

Page 227

³⁹⁹ Based on average energy savings/computer from the following sources:

South California Edison, Work Paper WPSCNROE0003 (200k Wh)

Surveyor Network Energy Manager Evaluation Report, NEEA (68, 100, and 128kWh)

⁴⁰⁰ Power Management for Networked Computers: A Review of Utility Incentive Programs J. Michael Walker, Beacon Consultan Network Inc., 2009 ACEEE Summer Study on Energy Efficiency in Industry.

Hased on PY6 ComEd Computer Software Program data showing a split of 74% desktop to 26% laptop.

⁴⁰² Based on Dimetrosky, S., Luedtke, J. S., & Seiden, K. (2005). Surveyor Network Energy Manager: Market Progress Evaluatic Report, No. 2 (Northwest Energy Efficiency Alliance report #E05-136). Portland, OR: Quantee LLC and review of CLEARResu document providing Qualifying Software Providers for ComEd program and their licensing fees; "Qualifying Vendor Software Comparison.pdf."

2.7.3 Heat Pump Pool Heater

DESCRIPTION

This measure applies to the installation of a heat pump pool heater in place of a standard electric pool heater on an outdoor pool at a commercial location.

This measure was developed to be applicable to the following program type: TOS and RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be a new heat pump pool heater meeting program requirements.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new, standard efficiency electric resistance pool heater.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 15 years. 403

DEEMED MEASURE COST

The incremental equipment cost difference between an electric resistance pool heater and a heat pump pool heater is \$1,000 per unit.⁴⁰⁴

LOADSHAPE

Miscellaneous BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = Q_{PoolHeating}^* (1/Eff_{Base} - 1/Eff_{EE})$

Where:

 $Q_{PoolHeating} \\$

= Required annual heat transfer to pool water (kWh), calculated as

follows:405

For an uncovered pool: $[53.075 \times \underline{x} (SQFT)] + 1631.1$

For a pool that is regularly covered when not in use: $[8.079 \times \underline{x}]$ (SQFT)

+ 1295.4

Formatted: Footnotes, Left, Line spacing: single

Formatted: Font color: Blue

Formatted: Font color: Blue

⁴⁰³ Measure life is for a high-efficiency pool heater, from 2017 Michigan Energy Measures Database (row 246).

⁴⁰⁴ Measure cost based on "The Definitive Guide to Heating Your Swimming Pool," page 7, AquaCal, July 2013. https://www.thepoolworks.com/pdfs/The-Definitive-Guide-To-Heating-Your-Swimming-Pool.pdf Electric resistance pool heaters can be purchased for less than \$2,000, and heat pump pool heaters cost between \$2,000 and \$4,000 (page 7).

⁴⁰⁵ Based on the results of a swimming pool energy calculation tool found at http://noanderson.com/services/swimming-pool-energy-temperature-calculator/. Results use St. Louis weather-related assumptions and assume a pool season of May through October (per Energy Star® guidelines), with a water temperature of 80 degrees Fahrenheit.

Appendix H - TRM - Vol. 2: C&I Measures

Where SQFT is the total surface area of the pool.

Eff_{Base} = Efficiency of electric resistance pool heater

= 100%

Eff_{EE} = Efficiency (COP) of heat pump pool heater

= Actual

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWh \stackrel{*}{\underline{}\underline{}\underline{}\underline{}\underline{}\underline{}\underline{}$$
 CF

Where:

 Δ kWh = Calculated value above.

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $=0.0001379439^{\underline{406}}$

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

⁴⁰⁶ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

Formatted: Footnotes

2.7.4 Computer Server

DESCRIPTION

This measure estimates savings for an energy efficient computer server with that has been certified by to ENERGY STAR® (ES) Version 24.0.

This measure was developed to be applicable to the following program type: TOS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient product is computer server meeting the requirements set forth by ENERGY STAR® Version 24.0. The measure characterization includes computer server, blade systems (one or more blade servers), resilient server, and multi-node server. Power supply efficiency must meet the PSU criteria for 10%,20%, 50% and 100% load. The power supply must also meet the power factor criteria for ENERGY STAR® Version 4.0. The server must also meet the active state efficiency score requirements, which include the CPU efficiency, memory efficiency and storage efficiency. The table lists the minimum active efficiency by server type and installed processors.

DEFINITION OF BASELINE EQUIPMENT

Non ENERGY STAR® qualified computer server.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The life of this measure is 4 years.⁴⁰⁷

DEEMED MEASURE COST⁴⁰⁸

The incremental cost is \$9.80. The actual incremental cost of the equipment should be used, if unknown, the following estimates may be used.

Number Installed Processors	<u>Equipment</u>	Incremental cost ⁴⁰⁹		
	Rack	<u>\$331</u>		
<u>1</u>	Tower	<u>\$323</u>		
	Resilient	<u>\$5000</u>		
<u>2</u>	<u>Rack</u>	<u>\$452</u>		

⁴⁰⁷ Consistent with Energy Star[®] computing equipment. It is important to note that lifetime doesn't necessarily reflect the expected functional lifetime of mechanical components, but rather the lifetime of operating system technology, which is generally assumed to become ρbsolete after a period of four years.

<u>2025 MEEIA 4 Plan MEEIA 2019 21 Plan Revision 56.0</u>

Page 230

Formatted: Font color: Auto
Formatted: Font color: Auto

Formatted: Indent: Left: 0", First line: 0"

⁴⁰⁸ Computer CASE Report, CA IOUs. California Energy Commission Docketed 12 AAER 2a TN 71813 Aug 06 2013 (page 41) http://www.energy.ca.gov/appliances/2013rulemaking/documents/proposals/12-AAER 2A Computer Flactronics/2015/fishiia IOUs Standards Proposal Computers LIDDATED 2013 08 06 TN 71813 The small

²A Consumer Electronics/California IOUs Standards Proposal Computers UPDATED 2013-08-06 TN-71813. The small incremental cost is in alignment with Energy Star® reporting, which lists an incremental cost of \$0 for all office

equipment. Online manufacturer website product directory, Base and efficient are same manufacturer, processor quantity

409 Internet online manufacturer product pricing difference for rack and tower, resilient and blade servers estimated with

20% incremental cost for ENERGY STAR certified equipment. Local file: "Server incremental cost.xlsx"

Appendix H - TRM - Vol. 2: C&I Measures

	Tower	<u>\$668</u>
	Blade or Multi-Node	<u>\$1225</u>
	<u>Resilient</u>	<u>\$5000</u>
<u>≥3</u>	Rack	<u>\$452</u>
	Blade or Multi-Node	<u>\$1225</u>

LOADSHAPE

Miscellaneous BUS

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS410

Annual energy savings are based on the rated output of the server's power supplynumber of installed processor and equip-ment type, as estimated by the ENERGY STAR® Computer Server Analysis calculator, with the results summarized according to in the following table 411:

Equipment SizeNumber Installed Processors	<u>Equipment</u>	Minimum Score Eff _{Active}	Electric Savings <u>kWh</u>	 -
One Installed				 ₫
Processor				
1Rack	Rack	<u>26.4</u>	1,459	
Tower	<u>Tower</u>	<u>24.4</u>	723	 ŀ
Resilient	Resilient	<u>6.6</u>	1,474	
Two Installed				 4
Processors				
2Rack	Rack	<u>30.4</u>	2,542	 4
Tower	Tower	26.5	2,028	4

Formatted: Font: 11 pt Formatted: Centered, Space Before: 2 pt, After: 2 pt Formatted: Centered, Space Before: 2 pt, After: 2 pt Formatted: Font: 11 pt Formatted: Centered, Space Before: 2 pt, After: 2 pt Formatted: Font: 11 pt Formatted: Font: 11 pt Formatted: Centered, Space Before: 2 pt, After: 2 pt **Formatted Table** Formatted: Font: 11 pt Formatted: Centered, Space Before: 2 pt, After: 2 pt Formatted: Font: 11 pt Formatted: Font: 11 pt Formatted: Centered, Space Before: 2 pt, After: 2 pt Formatted: Font color: Auto Formatted: Font color: Auto

Formatted: Underline, Underline color: Blue, Font

Formatted: Subscript

Formatted: Font: 11 pt

Formatted: Footnotes

Formatted: Font color: Blue

color: Blue

411 ENERGY STAR®, "Computer Servers Final Data and Analysis Package", Energy and Cost Savings worksheet, <a href="https://view.officeapps.live.com/op/view.aspx?src=https://s2Fwww.energystar.gov%2Fsites%2Fdefault%2Ffiles%2Fasss%2Fdocument%2FENERGY%2520STAR%2520Version%25204.0%2520Computer%2520Servers%2520Final%2520Data%252and%2520Analysis%2520Package.xlsx&wdOrigin=BROWSELINK

2025 MEEIA 4 Plan MEEIA 2019 21 Plan Revision 56.0

Page 231

Appendix H - TRM - Vol. 2: C&I Measures

Blade or	Blade or Multi-Node	<u> </u>	1,574	
Multi Node	Resilient	6.0	<u>0</u>	
Resilient	<u> </u>			-
Greater Than				
Two Installed				
Processors				7
≥3Rack	Rack	<u>31.9</u>	10,218	
Blade or	- Blade or Multi-Node	<u>26.8</u>	3,903	1
Multi Node			<u></u>	T

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

 Δ kWh = Energy Savings as calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001379439 \frac{412}{2}$

NATURAL GAS SAVINGS

N/A

WATER AND OTHER NON-ENERGY IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

Formatted: Font: 11 pt

Formatted: Centered, Space Before: 2 pt, After: 2 pt

Formatted: Font: 11 pt

Formatted: Centered, Space Before: 2 pt, After: 2 pt

Formatted: Font: 11 pt

Formatted: Centered, Space Before: 2 pt, After: 2 pt

Formatted Table

Formatted: Font: 11 pt

Formatted: Centered, Space Before: 2 pt, After: 2 pt

Formatted: Font: 11 pt

Formatted: Centered, Space Before: 2 pt, After: 2 pt

Formatted: Font: 11 pt

Formatted: Centered, Space Before: 2 pt, After: 2 pt

Formatted: Font: 11 pt

Formatted: Centered, Space Before: 2 pt, After: 2 pt

⁴¹² Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

2.8 Motors and Pumps

2.8.1 Motors

DESCRIPTION

This measure applies to the one-for-one replacement of an old, working or failed/near failure 1-350 horsepower, constant speed, uniformly loaded HVAC fan or pumping motor with a new motor of the same rated horsepower that meets or exceeds National Electrical Manufacturers Association (NEMA) Premium efficiency levels. The measure includes general purpose motors, induction induction, -and-reluctance, electronically commutated, and permanent magnet motors. Fire pump motors are excluded.

This measure was developed to be applicable to the following program type: RF. NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be a new motor that meets or exceeds NEMA Premium efficiency levels.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment efficiency is the efficiency of the existing motor <u>for early replacements</u>, or <u>if unknown</u>, the <u>federal minimum required efficiency is assumed</u>, the <u>Federal Energy Standards for normal replacements</u>. 413

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 15-18 years. 414

DEEMED MEASURE COST

Actual incremental costs should be used if available. If actual costs are unknown, use default installed cost from table below. 415

Motor Size (HP)	Installed Cost
1	\$730
1.5	\$725
2	\$800
3	\$840
5	\$860
7.5	\$1,165
10	\$1,298
15	\$2,242
20	\$2,522

413 DOE Motors https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431

Formatted: Font: 9 pt

Formatted: Font: 9 pt

Formatted: Font: 9 pt

Formatted: Font: 9 pt

Formatted: Indent: Left: 0.01"

Formatted: Default Paragraph Font, Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

⁴¹⁴ ASHRAE, Chapter 38: Owning and Operating Costs, Table 4, "Heating, Ventilating and Air Conditioning Applications", (2023 edition) for electric motors. California Database for Energy Efficiency Resources (DEER) 2014 Estimated Useful Life (EUL) Table Update_("Updated 2014 EUL table" rows 40,52,131,134,627)

⁴¹⁵ Installed costs from 2015-2016 Demand-Side Management Plan, Xcel Energ https://www.xcelenergy.com/staticfiles/xe/PDF/Regulatory/CO-DSM-2015-16-DSM-Plan.pdf (page 440).

Appendix H - TRM - Vol. 2: C&I Measures

Motor Size (HP)	Installed Cost
25	\$2,873
30	\$3,095
40	\$3,716
50	\$4,073
60	\$5,128
75	\$5,888
100	\$7,392
125	\$9,076
150	\$9,401
200	\$11,250
250	\$13,958
300	\$17,744
350	\$25,653

LOADSHAPE

Motors BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = HP*LF*0.746*(1/\eta_{Bmotor} - 1/\eta_{EEmotor})*$ Hours

Where:

HP = Nominal horsepower (HP) of new motor

= Actual

LF = Load Factor; Motor Load at Fan/Pump Design CFM

 $=75\%^{416}$

0.746 = Conversion factor from HP to kWh

η_{Bmotor} = Actual efficiency of existing motor, or if unknown, use federal baseline

nominal/nameplate motor efficiency as shown in table below. for early

replacement

=Federal Energy Standards for normal replacement

 η_{EEmotor} = Efficient motor nominal/nameplate motor efficiency

- Actual

Hours = Annual hours of operation for motor; see table below for HVAC

motors

⁴¹⁶ Motor efficiency curves typically result in motors being most efficient at approximately 75% of the rated load. *Determining Electric Motor Load and Efficiency*, US DOE Motor Challenge, a program of the US Department of Energy, https://energy.gov/sites/prod/files/2014/04/f15/10097517.pdf. (see page 1)

Open Drip Proof (ODP) and Totally Enclosed Fan Cooled (TEFC)⁴¹⁷

		D: D 6/0	DD) //	70 (II D	1 15 6	I LÆFFØ)
	Open Drip Proof (ODP) # of Poles			Totally Enclosed Fan-Cooled (TEFC) # of Poles		
Motor Size	6	4	2	6	4	2
(HP)		Speed (RPM)	_		Speed (RPM)	_
-	1200	1800	3600	1200	1800	3600
1	82.50%	85.50%	77.00%	82.50%	85.50%	77.00%
1.5	86.50%	86.50%	84.00%	87.50%	86.50%	84.00%
2	87.50%	86.50%	85.50%	88.50%	86.50%	85.50%
3	88.50%	89.50%	85.50%	89.50%	89.50%	86.50%
5	89.50%	89.50%	86.50%	89.50%	89.50%	88.50%
7.5	90.20%	91.00%	88.50%	91.00%	91.70%	89.50%
10	91.70%	91.70%	89.50%	91.00%	91.70%	90.20%
15	91.70%	93.00%	90.20%	91.70%	92.40%	91.00%
20	92.40%	93.00%	91.00%	91.70%	93.00%	91.00%
25	93.00%	93.60%	91.70%	93.00%	93.60%	91.70%
30	93.60%	94.10%	91.70%	93.00%	93.60%	91.70%
40	94.10%	94.10%	92.40%	94.10%	94.10%	92.40%
50	94.10%	94.50%	93.00%	94.10%	94.50%	93.00%
60	94.50%	95.00%	93.60%	94.50%	95.00%	93.60%
75	94.50%	95.00%	93.60%	94.50%	95.40%	93.60%
100	95.00%	95.40%	93.60%	95.00%	95.40%	94.10%
125	95.00%	95.40%	94.10%	95.00%	95.40%	95.00%
150	95.40%	95.80%	94.10%	95.80%	95.80%	95.00%
200	95.40%	95.80%	95.00%	95.80%	96.20%	95.40%
250	95.40%	95.80%	95.00%	95.80%	96.20%	95.80%
300	95.40%	95.80%	95.40%	95.80%	96.20%	95.80%
350	95.40%	95.80%	95.40%	95.80%	96.20%	95.80%

 $^{^{417}}$ For 1-200 HP motors, baseline efficiency is from NEMA MG 1 Table 12-12. For motors over 200 hp, baseline efficiency is from NEMA MG 1 Table 12-11.

Annual Hours of Use for HVAC Motors⁴¹⁸

Building Type	Hot Water Pump Hours	Chilled Water Pump Hours	Fan Motor Run Hours
Large Office	5,233	6,385	6,753
Medium Office	3,437	5,921	6,968
Small Office	3,715	3,774	6,626
Warehouse	4,587	1,292	6,263
Stand-alone Retail	4,040	2,713	6,679
Strip Mall	3,908	2,548	6,687
Primary School	4,754	5,160	5,906
Secondary School	5,594	5,279	6,702
Supermarket	4,868	4,255	6,900
Quick Service Restaurant	4,231	3,378	7,679
Full Service Restaurant	4,595	4,897	7,664
Hospital	8,760	8,717	8,760
Outpatient Health Care	8,760	8,689	8,760
Small Hotel - Building	3,533	7,976	8,760
Large Hotel - Building	5,538	8,308	8,760
Midrise Apartment - Building	5,197	4,347	8,728
Nonresidential Average	4,411	3,539	6,773

SUMMER COINCIDENT PEAK DEMAND SAVINGS⁴¹⁹

 $\Delta kW = \Delta kWh * CF$

Where:

 ΔkWh = Energy Savings as calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $=0.0001379439^{420}$

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

Formatted: Footnotes

⁴¹⁸ Hours per year are estimated using the eQuest models as the total number of hours the heating or cooling system is operating for each Building Type. "Heating and Cooling Run Hours" are estimated as the total number of hours fans are operating for heating, cooling and ventilation for each Building Type. This may over claim certain applications (e.g. pumps) and so where possible actual hours should be used for these applications.

419 Since savings will be constant and without fluctuation over the period of operation, demand savings are simply the energy

savings divided by the hours of operation. Demand savings are expected to coincide with peak demand period definitions, consistent with assumptions in VFD measures on HVAC pumps and fans.

⁴²⁰ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors" 2025 MEEIA 4 Plan MEEIA 2019 21 Plan Revision 56.0

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

2.8.2 Pool Pump

DESCRIPTION

This measure applies to the installation of a variable frequency drive (VFD) on an existing single-speed pool pump at a commercial location. VFDs save energy by reducing the speed of the pool pump motor to match the pool's required flow rate. Additionally, VFD's soft-starting extends motor life by reducing wear.

This measure was developed to be applicable to the following program type: RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be a new VFD meeting program requirements. The hydraulic horsepower must exceed 2.5 hhpHHP, which is approximately equal to a 5 hp motor, as their minimum efficiency is regulated by the dedicated pool pump (DPPP) standard.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is an existing, single-speed pool pump without a VFD or other motor control device.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 10 years.⁴²¹

DEEMED MEASURE COST

Actual costs (equipment and labor) should be used if available. If actual costs are unknown, assume equipment costs of \$200/motor horsepower and labor cost of \$46.422

LOADSHAPE

Motors BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = 1,747 * HP$

422 Costs from 2017 Michigan Energy Measures Database ("Commercial" tab row 356).

Formatted: Default Paragraph Font, Font color: Auto

Formatted: Font color: Auto

⁴²¹ EUL set to 10 years based on 2021 comparison with other TRM values; Database for Energy Efficient Resources (2014).

http://www.decresources.com/_trup.//www.decresources.com/_("Updated 2014 EUL table, row 592)

422 Coate from 2017 Michigan Energy Management Database ("Comparation" table and 256)

Appendix H - TRM - Vol. 2: C&I Measures

Where:

1,747 = Average annual energy savings per pool pump motor horsepower

(kWh/HP)423

HP = Pool pump motor horsepower

= Custom input, actual horsepower rating of the pump motor.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

kWh = Electric energy savings, as calculated above.

= Summer peak coincidence demand (kW) to annual energy (kWh) factor CF

 $= 0.0001379439^{424}$

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

⁴²³ Energy savings based on monitoring performed at commercial pool facilities, from "Commercial Variable Speed Pool Pump Market Characterization and Metering Study," Southern California Edison, February 2015 page "i" and 22 https://www.etce- $\underline{ca.com/sites/default/files/reports/et13sce1170_comm_vfd_pool_pumps_final.pdf)}.$

<u>424</u> Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes

Ameren	N/licco	ıırı
	IVIISSU	un

Appendix H - TRM - Vol. 2: C&I Measures

2.8.3 Pool Pump Timer

DESCRIPTION

This measure applies to the installation of a pump timer on an existing single-speed pool pump at a commercial location. Many times, it is not necessary to run a pool's circulation pump 24 hours a day.

This measure was developed to be applicable to the following program type: RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be a new pump timer meeting program requirements.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is an existing, single-speed pool pump without a VFD or other motor control device.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 10 years.

DEEMED MEASURE COST

Actual costs (equipment and labor) should be used if available. If actual costs are unknown, assume equipment costs of \$100.

LOADSHAPE

Motors BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = HRS * HP * .746$

Where:

HRS = Hours Timer will shut off pump annually

= Actual.

HP = Pool pump motor horsepower

= Custom input, actual horsepower rating of the pump motor.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

⁴²⁵ https://pooltimerdoor.com/how-much-does-it-cost-to-replace-a-pool-timer/ Costs from Ameren Missouri MEEIA 2016-18 TRM.

Appendix H - TRM - Vol. 2: C&I Measures

 $\Delta kW = \Delta kWh * CF$

Where:

kWh = Electric energy savings, as calculated above.

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001379439^{426}$

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

⁴²⁶ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

Formatted: Footnotes

2.8.4 Pump Optimization

DESCRIPTION

Pump improvements can be done to optimize the design and control of centrifugal water pumping systems, including water solutions with freeze protection up to 15% concentration by volume. Other fluid and gas pumps cannot use this measure calculation. The measurement of energy and demand savings for commercial and industrial applications will vary with the type of pumping technology, operating hours, efficiency, and existing and proposed controls. Depending on the specific application slowing the pump, trimming or replacing the impeller may be suitable options for improving pumping efficiency. Pumps up to 40 HP are allowed to use this energy savings calculation. Larger motors should use a custom calculation (which may result in larger savings than this measure would claim).

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is proven to be an optimized centrifugal pumping system meeting the applicable program efficiency requirements:

- Pump balancing valves no more than 15% throttled; and
- Balancing valves on at least one load 100% open.

DEFINITION OF BASELINE EQUIPMENT

In order for this characterization to apply, the baseline equipment is assumed to be the existing pumping system including existing controls and sequence of operations.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 10 years.⁴²⁷

DEEMED MEASURE COST

The incremental capital cost for this measure can vary considerably depending upon the strategy employed to achieve the required efficiency levels and should be determined on a site-specific basis.

LOADSHAPE

Process BUS

Algorithm

CALCULATION OF SAVINGS

⁴²⁷ Martin, N. et al., Emerging Energy-Efficient Industrial Technologies: New York State Edition, American Council for an Energy Efficient Economy (ACEEE) <u>Page 126</u>, March 2001 (as stated in the OH State TRM, page 269).

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = (HP_{motor} *\underline{x} 0.746 *\underline{x} LF / \eta_{motor}) *\underline{x} HOURS *\underline{x}$

ESF

Where:

HP_{motor} = Installed nameplate motor horsepower

= Actual

0.746 = Conversion factor from horsepower to kW (kW/hp)

LF / η_{motor} = Combined as a single factor since efficiency is a function of load

 $=0.65^{428}$

LF = Load Factor; Ratio of the peak running load to the nameplate rating of

the motor

 η_{motor} = Motor efficiency at pump operating conditions

HOURS = Annual operating hours of the pump

=Actual

ESF = Energy Savings Factor; assume a value of 15%.⁴²⁹

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh \stackrel{*}{\underline{}_{X}} CF$

Where:

CF = Summer Coincident Peak Factor for measure

 $=0.0001379439^{430}$

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

Formatted: Underline, Font color: Blue

Formatted: Footnotes, Space After: 0 pt, Line spacing:

⁴²⁸ "Measured Loading of Energy Efficient Motors - the Missing Link in Engineering Estimates of Savings," ACEEE 1994 Summer Study Conference, Asilomar, CA (page 3.95 Table 3).

⁴²⁹ Published estimates of typical pumping efficiency improvements range from 5 to 40%. For analysis purposes, assume 15%. United States Industrial Electric Motor Systems Market Opportunities Assessment December 2002, Table E-7, Page 18, https://www1.eere.energy.gov/manufacturing/tech-assistance/pdfs/mtrmkt.pdf.

https://www1.eere.energy.gov/manufacturing/tech_assistance/pdfs/mtrmkt.pdf.

430 Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"Based on Ameren Missouri 2016 Process Loadshape.

2.8.5 Variable Frequency Drives for Pumps and Fans on Hydronic HVAC Systems

DESCRIPTION

This measure applies to VFDs installed on HVAC chilled water distribution pumps, hot water distribution pumps, condenser water pumps and cooling tower fans. Back-up pumps/fans do not qualify for this measure. There is a separate measure for HVAC supply and return fans. The VFD will modulate the speed of the motor when it does not need to run at full load. Since the power of the motor is proportional to the cube of the speed for these types of applications, significant energy savings will result.

This measure was developed to be applicable to the following program types: TOS and RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The VFD is applied to a pump or fan motor that does not have a VFD. The hydronic system that the VFD is applied to must have a variable or reduced load. Installation is to include the necessary control points and parameters (example: differential pressure, differential temperature, return water temperature) as determined by a qualified engineer.

DEFINITION OF BASELINE EQUIPMENT

The time of sale baseline is a new motor installed without a VFD or other methods of control. Retrofit baseline is an existing motor operating as is.

Installations of new equipment with VFDs which are required by regional code adoption should not claim savings.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life for HVAC application is 15 15 years. 431

DEEMED MEASURE COST

Customer provided costs will be used when available. Default measure costs are listed below for up to 100 hp motors.⁴³² The tables values can also be extrapolated with:

Incremental cost = $300 \times Hp + $1,500$.

⁴³¹ ASHRAE, Chapter 38: Owning and Operating Costs, Table 4, "Heating, Ventilating and Air Conditioning Applications", (2023 edition) for electronic building controls. Consistent with Ameren Missouri program assumptions.—California Database for Energy Efficiency Resources (DEER) 2014 Estimated Useful Life (EUL) Table Update. ("Updated 2014 EUL table" row 108) Consistent with Ameren Missouri program assumptions.

⁴³² TRC, Ameren MO C&I participant self reported cost data for completed projects (2019 to 2024).

Appendix H - TRM - Vol. 2: C&I Measures

<u>HP</u>	Cost
1-2.5 HP	<u>1,593</u>
2.6-5 HP	<u>2,383</u>
<u>6-10 HP</u>	<u>3,610</u>
11-20 HP	<u>8,786</u>
21-50 HP	13,082
51-75 HP	18,867
75-100 HP	21,760
>100 HP	23,116

Customer-provided costs will be used when available. Default measure costs are listed below for to 75 HP motors. 433 The average of the values below is \$179/HP.

₩₽	Cost
1-9 HP	\$1,874
10 19 HP	\$2,967
20 29 HP	\$4,060
30-39 HP	\$5,154
40-49 HP	\$6,247
50-59 HP	\$7,340
60-69 HP	\$8,433
70-75 HP	\$9,526
>75 HP	\$179/HP

LOADSHAPE

Cooling BUS Heating BUS HVAC BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = BHP / EFFi *_{\underline{x}} Hours *_{\underline{x}} ESF$

Where:

BHP = System Brake Horsepower

= Nominal motor HP *x Motor load factor)

2025 MEEIA 4 Plan MEEIA 2019 21 Plan Revision 56.0

Page 245

Formatted: Keep with next
Formatted: Keep with next
Formatted: Keep with next
Formatted: Keep with next
Formatted: Keep with next
Formatted: Keep with next
Formatted: Keep with next
Formatted: Keep with next
Formatted: Keep with next

⁴³³-Average costs observed by other Midwestern states energy efficiency programs—specific data reflects results from Iowa program costs.

EFFi

Appendix H - TRM - Vol. 2: C&I Measures

Motors are assumed to have a load factor of 65% for calculating kW if actual values cannot be determined.⁴³⁴ Custom load factor may be applied if known.

= Motor efficiency, installed. Actual motor efficiency shall be used to

calculate kW. If not known, a default value of 93% is an appropriate $\,$

assumption.

Hours = Default hours are provided for HVAC applications which vary by

HVAC application and Building Type. 435 When available, actual hours

should be used.

ESF = Energy savings factor varies by VFD application. Units are kW/HP.

Annual Hours of Use for VFD Pumps and Fans

Building Type	Heating Run Hours	Cooling Run Hours
Large Office	5233	6385
Medium Office	3437	5921
Small Office	3715	3774
Warehouse	4587	1292
Stand-alone Retail	4040	2713
Strip Mall	3908	2548
Primary School	4754	5160
Secondary School	5594	5279
Supermarket	4868	4255
Quick Service Restaurant	4231	3378
Full Service Restaurant	4595	4897
Hospital	8760	8717
Outpatient Health Care	8760	8689
Small Hotel - Building	3533	7976
Large Hotel - Building	5538	8308
Midrise Apartment - Building	5197	4347
Nonresidential Average	4411	3539

ESF for VFD Pumps and Fans

Application	ESF ⁴³⁶
Hot Water Pump	$0.\overline{3577}.\underline{249}^{437}$

⁴³⁴ Del Balso, Ryan J. "Investigation into the Reliability of Energy Efficiency/Demand Side Management Savings Estimates for Variable Frequency Drives in Commercial Applications," University of Colorado, Department of Civil, Environmental and Architectural Engineering, 2013 (page 24).

2025 MEEIA 4 Plan MEEIA 2019 21 Plan Revision 56.0

Formatted Table

Formatted: Footnotes

Page 246

⁴³⁵ Hours per year are estimated using the eQuest models as the total number of hours the heating or cooling system is operating for each Building Type. "Heating and Cooling Run Hours" are estimated as the total number of hours fans are operating for heating, cooling and ventilation for each Building Type. This may over claim certain applications (e.g. pumps) and so where possible actual hours should be used for these applications.

⁴³⁶ Developed from datasets produced from the Northeast Energy Efficiency Partnerships Variable Speed Drive Loadshape Project.

See supporting workbook "VSD HVAC Pump Savings.xlsx" for derivation.

437 VEIC, workpaper to support VFD savings,Local file: "VSD ESF Calculation.xlsx"

Appendix H - TRM - Vol. 2: C&I Measures

Cooling Water Pump	0. 3389 <u>358⁴³⁸</u>
Cooling Tower Fan	0. 126 <u>502</u> ⁴³⁹

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

 $\Delta kWh \\$ = Energy Savings as calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.000910684^{440}$ Cooling Water Pumps = 0.000443983 Hot Water Pumps

= 0.000443983 Cooling Tower Fans

FOSSIL FUEL IMPACT DESCRIPTIONS AND CALCULATION

If fossil fuel impacts are expected, a custom analysis should be used to support them.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

Formatted: Footnotes, Space After: 0 pt

Formatted: Footnotes

⁴³⁸ VEIC, workpaper to support VFD savings,Local file: "VSD HVAC Pump Savings.xlsx"
439 Based on the methodology described in the Illinois Statewide TRM for Energy Efficiency, 7th Edition (2019). VEIC, workpaper to support VFD savings.Local file: "VSD ESF Calculation.xlsx"

440 Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes

and Coincident Peak Factors" 2025 MEEIA 4 Plan MEEIA 2019 21 Plan Revision 56.0

2.8.6 Variable Frequency Drives for HVAC Supply and Return Fans

DESCRIPTION

This measure applies to VFDs installed on HVAC supply fans and return fan. Back-up fans do not qualify for this measure. There is a separate measure for HVAC Pumps. The VFD will modulate the speed of the motor when it does not need to run at full load. Since the power of the motor is proportional to the cube of the speed for these types of applications, significant energy savings will result.

This measure is applicable to the following program types: TOS and RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The VFD is applied to an HVAC fan motor that does not have a VFD. The air distribution system must have a variable or reduced load, and installation is to include the necessary control point as determined by a qualified engineer (example: differential pressure, temperature, or volume). Savings are based on the application of VFDs to a range of baseline system conditions, including no control, inlet guide vanes, outlet guide vanes, relief dampers, and throttling valves.

DEFINITION OF BASELINE EQUIPMENT

The TOS baseline is a new motor installed without a VFD or other methods of control. The RF baseline is an existing motor operating as is. RF baselines may or may not include guide vanes, throttling valves, or other methods of control.

Installations of new equipment with VFDs which are required by regional code adoption should not claim savings.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life for HVAC application is 15-15 years.441

DEEMED MEASURE COST

Customer provided costs will be used when available. Default measure costs are listed below for up to 100 hp motors.⁴⁴² The average of the values below is \$168/HP.tables values can also be extrapolated with:

Incremental cost = $300 \times Hp + $1,500$.

⁴⁴¹ ASHRAE, Chapter 38: Owning and Operating Costs, Table 4, "Heating, Ventilating and Air Conditioning Applications", (2023) edition) for electronic building controls (page 38.3). Consistent with Ameren Missouri program assumptions.

442 Average costs observed by energy efficiency programs in Iowa. TRC, Ameren MO C&I participant self reported cost data for

completed projects (2019 to 2024).

Appendix H - TRM - Vol. 2: C&I Measures

HP	Cost
1- 9- 2.5_HP	<u>1,593 \$1,874</u>
10-19 2.6-5 HP	2,383 \$2,967
20 6-10-29 HP	3,610 \$4,060
30-39 11-20 HP	<u>8,786</u> \$5,154
4 0-49 21-50 HP	<u>13,082</u> \$6,247
50 59 <u>51-75</u> HP	18,867 <u>\$7,340</u>
60-69 <u>75-100</u> HP	21,760 <u>\$8,433</u>
70 79 HP	\$9,526
80-89 HP	\$10,620
90-100 HP	\$11,713
>100 HP	\$168/HP23,116

LOADSHAPE

HVAC BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS443

 $\Delta kWh_{fan} = kWh_{Base} - kWh_{Retrofit}$

 $\Delta kWh_{total} = \Delta kWh_{fan} * (1 + IE_{energy})$

kWh_{Base} =
$$0.746 * HP * \frac{LF}{n_{moto}}$$
) * $RHRS_{base} \sum_{i=0}^{100\%} (\%FF * PLR_{Retrofit})$

$$\begin{aligned} & \text{kWh}_{\text{Base}} = 0.746*HP*\frac{LF}{\eta_{\text{moto}}})*RHRS_{base} \sum\nolimits_{0.0\%}^{100\%} \left(\%FF*PLR_{Retrofit}\right) \\ & \text{kWh}_{\text{Retrofit}} = 0.746*HP*\frac{LF}{\eta_{\text{moto}}})*RHRS_{base} \sum\nolimits_{30\%}^{100\%} \left(\%FF*PLR_{Retrofit}\right) \end{aligned}$$

Where:

 ΔkWh_{fan} = Fan-only annual energy savings ΔkWh_{total} = Total project annual energy savings

= Baseline annual energy consumption (kWh/yr) kWh_{Base} kWh_{Retrofit} = Retrofit annual energy consumption (kWh/yr)

0.746 = Conversion factor for HP to kWh HP = Nominal horsepower of controlled motor

LF = Load Factor; Motor Load at Fan Design CFM (Default = 65%)⁴⁴⁴

⁴⁴³ Methodology developed and tested in Del Balso, Ryan Joseph. "Investigation into the Reliability of Energy Efficiency/Demand Side Management Savings Estimates for Variable Frequency Drives in Commercial Applications." A project report submitted to the Faculty of the Graduate School of the University of Colorado, 2013.

444 Lawrence Berkeley National Laboratory, and Resource Dynamics Corporation. (2008). "Improving Motor and Drive System

Formatted: Keep with next
Formatted Table
Formatted: Font: 11 pt
Formatted: Keep with next
Formatted: Font: 11 pt
Formatted: Keep with next
Formatted: Font: 11 pt
Formatted: Keep with next
Formatted: Font: 11 pt
Formatted: Keep with next
Formatted: Font: 11 pt
Formatted: Keep with next
Formatted: Font: 11 pt
Formatted: Keep with next
Formatted: Keep with next
Formatted: Font: 11 pt
Formatted: Keep with next
Formatted: Keep with next
Formatted: Keep with next
Formatted: Keep with next

Appendix H - TRM - Vol. 2: C&I Measures

ηmotor = Installed nominal/nameplate motor efficiency

= Actual. If unknown, default can be assumed as a NEMA Premium Efficiency, ODP, 4-pole/1800 RPM fan motor, with efficiency indicated in

the table below.

 $RHRS_{Base}$ = Annual operating hours for fan motor based on Building Type.

%FF = Percent of time at flow fraction

PLR_{Base} = Part load ratio for a given flow fraction range based on the baseline flow

control type (see table below)

PLR_{Retrofit} = Part load ratio for a given flow fraction range based on the retrofit flow

control type (see table below)

 E_{energy} = HVAC interactive effects factor for energy (default = 15.7%)⁴⁴⁵

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

 ΔkWh = Energy Savings as calculated above

= Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $=0.004439830^{446}$

Performance; A Sourcebook for Industry," U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Golden, CO: National Renewable Energy Laboratory (page 42).

⁴⁴⁵ Del Balso, Ryan Joseph. "Investigation into the Reliability of Energy Efficiency/Demand Side Management Savings Estimates for Variable Frequency Drives in Commercial Applications." (page 123) A project report submitted to the Faculty of the Graduate School of the University of Colorado, 2013.

⁴⁴⁶ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

2.8.7 4 Pump Optimization Efficient Pumps

DESCRIPTION

Pump improvements can be done to optimize the design and control of centrifugal water pumpir systems, including water solutions with freeze protection up to 15% concentration by volume. Other fluid and gas pumps cannot use this measure calculation. The measurement of energy and demar savings for commercial and industrial applications will vary with the type of pumping technolog operating hours, efficiency, and existing and proposed controls. Depending on the specif application slowing the pump, trimming or replacing the impeller may be suitable options f improving pumping efficiency. Pumps up to 40 HP are allowed to use this energy saving calculation. Larger motors should use a custom calculation (which may result in larger savings the this measure would claim). rThe Federal Energy Conservation Efficiency Standards set minimum energy ratings for clean water pumps. The types of pumps characterized in this measure include clean water commercial & industrial pumps, circulator pumps and dedicated purpose pool pump The Federal Energy Conservation Efficiency Standards for C&I clean water pumps was effective April 24, 2023 January 27, 2020. The standards for circulator pumps are effective May 2028, b are included in the measure characterization. The Federal Energy Conservation Efficience Standards for dedicated purpose pool pump with VFD motors, setting a minimum weighted energy factor (WEF) effective date was July 19, 2021. The measure requires exceeding the minimum standard by 10% or more of the rated efficiency. The measure does not include fire pumps., magnetic ma driven pumps The standards for other clean water pumps was effective April 24, 2023.s

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the C&I pump is the efficient equipment is proven to be an optimized centrifugal pumping system meeting the applicable program efficiency requirements

- Pump balancing valves no more than 15% throttled; and Clean water pump
- Balancing valves on at least one load 100% open. Flow rate of ≥25 gpm (BEP, full impelle diameter); 1 to 200 hp
- Electric motor driven, (may be included in energy rating)
- Variable load pump energy index (PEI_{VL}) or constant load pump energy index (PEI_{CL} rated.exceed the minimum standard<1.000.90 with varying C-values.

The motor and motor controls may be included in the system energy rating.

The <u>PEI is equal to 1—1/Energy Rating (ER)</u> following formula may be used to convert the <u>PEI to</u> the Energy Rating, ER. to the pump energy index, <u>PEI</u>

PEIEnergy Rating = (1 - PEI) x 100

For circulator pumps

- Hydraulic horsepower ≤2.5 HHP.
- Flow rate of ≥25 gpm (BEP, full impeller diameter)
- Circulator Energy Index, CEI <0.90.

For dedicated dedicated purpose pool pumps

Formatted: Normal, Left, Indent: Left: 0"

Formatted: Indent: Left: 0.5", No bullets or numbering

Appendix H - TRM - Vol. 2: C&I Measures

• Clean water pumpHydraulic horsepower ≤2.5 HHP., (HHP is approximately ½ of total motor hp, THP)

- Flow rate of ≥25 gpm (BEP, full impeller diameter)
- Weighted energy factor (WEF) exceeds the minimum standard by 10% or more

ElectricFor circulator pumps

- Hydraulic horsepower ≤2.5 HHP.
- Flow rate of ≥25 gpm (BEP, full impeller diameter)
- Circulator Energy Index, CEI < 1.000.90.

Weighted

DEFINITION OF BASELINE EQUIPMENT

In order for this characterization to apply, the baseline equipment pump is assumed to be the existing pumping system including existing controls and sequence of operations, be a minimally an efficient pump meeting Federal Energy Conservation Efficiency Standards for pumps. for a clean water pump listed in the following table.

Pump Type	Efficiency Units	Efficiency Value	<u>Requirements</u> Applicability _	4
A				4
C&I variable load	PEI _{VI}	1.0	By C-value	*
C&I constant load	PEI _{CL}	1.0	By C-value	*
Self prime pool pumps _	WEF, kgal/kWh	-2.3 *x, hhp + 6.59	0.711 ≤ hhp<2.5	<u> </u>
Self prime pool pumpsCirculator pump	WEF, kgal/kWhCEI	1.05.5	≥25 gpm hhp≤0.711	4

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to 20 years. 447 be 105 years. 448

DEEMED MEASURE COST

The incremental capital cost for this measure can vary considerably depending upon the strategy employed to achieve the required efficiency levels and should be determined on a site-specific basis.

LOADSHAPE

Process BUS

Cooling BUS

HVAC BUS

447 ASHRAE, Chapter 38: Owning and Operating Costs, Table 4, "Heating, Ventilating and Air Conditioning Applications", (2023*

edition) for base mounted pumps.

448 Martin, N. et al., Emerging Energy Efficient Industrial Technologies: New York State Edition, American Council for an Energy Efficient Economy (ACEEE), March 2001 (as stated in the OH State TRM, page 269).

2025 MEEIA 4 Plan MEEIA 2019 21 Plan Revision 56.0

Formatted: Font: (Default) Times New Roman

Formatted: Font: (Default) Times New Roman

Formatted: Font: (Default) Times New Roman

Formatted: No bullets or numbering

Formatted: Font: 11 pt, Font color: Background 1

Formatted: Centered, Keep with next

Formatted: Font: 11 pt

Formatted: Keep with next **Formatted Table**

Formatted: Font: 11 pt

Formatted: Font: 11 pt, Subscript

Formatted: Font: 11 pt Formatted: Keep with next

Formatted: Font: 11 pt

Formatted: Font: 11 pt, Subscript

Formatted: Keep with next

Formatted: Font: 11 pt Formatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted: Keep with next

Formatted: Font: 11 pt

Formatted: Keep with next

Formatted: Footnotes Char, Font: 10 pt

Formatted: Footnotes Char

Formatted: Footnotes Char. Font: 10 pt

Formatted: Footnotes Char

Formatted: Footnotes Char, Font: 10 pt

Formatted: Footnotes Char

Formatted: Footnotes Char, Font: 10 pt

Formatted: Indent: Left: 0"

Formatted: Footnotes Char

Formatted: Font: 10 pt, Font color: Text 1 Formatted: Footnotes, Right: 0", Space After: 0 pt,

Line spacing: single

Page 252

Algorithm

CALCULATION OF SAVINGS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Pumps with efficiency expressed in ER units.

 $\Delta kWh = \frac{EREnergy\ Rating}{100}\ x\ Pump\ Motor\ (hp)x\ 0.746\ \frac{kW}{hp}\ x\ Annual\ Hours \underline{AkWh = HP}$

*LF * $0.746 * (1/\eta_{\text{Bmotor}} - 1/\eta_{\text{EEmotor}})_*$ Hours

Where:

LF

<u>HPER</u> = Nominal horsepower (HP) of new motor Energy rating of pump (may

include motor and controls)

= Actual, as listed by the Hydraulic Institute⁴⁴⁹ⁱ

= Load Factor; Motor Load at Fan/Pump Design CFM

 $=75\%^{450}$

<u>0.746</u> = Conversion factor from HP to kWh

<u>η_{Bmotor}</u> = Actual efficiency of existing motor, or if unknown, use federal baseline

nominal/nameplate motor efficiency as shown in table below.

<u>nemotor</u> = Efficient motor nominal/nameplate motor efficiency

= Actual

<u>Hours</u> = Annual hours of operation for motor

=Actual, or if unknown,; see table below for HVAC motors in 2.8.1 for

Annual Hours of Use for HVAC motors

ELECTRIC ENERGY SAVINGS

Pumps with efficiency expressed in WEF units.

Formatted: Indent: Left: 0", Right: 0", Space After: 0 pt, Line spacing: single

Formatted: Left

Formatted: Font: Not Bold

Formatted: Font color: Text 1

Formatted: Footnotes

Field Code Changed

Formatted: Underline, Font color: Blue

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Field Code Changed

Hydraulic Institute, Hydraulic Institute|https://er.pumps.org/ratings/searchhttps://er.pumps.org/ratings/search
 Motor efficiency curves typically result in motors being most efficient at approximately 75% of the rated load. Determining Electric Motor Load and Efficiency, US DOE Motor Challenge, a program of the US Department of Energy, https://energy.gov/sites/prod/files/2014/04/f15/10097517.pdf, (page # 1)

Appendix H - TRM - Vol. 2: C&I Measures

 ΔkWh

$$= \left(\frac{1}{WEF_{base}} - \frac{1}{WEF_{eff}} - \frac{1}{WEF_{eff}} - \frac{1}{100} x \text{ Volume } x \text{ Turnover } x \text{ OpenHoursDays } \frac{Pump Motor (hp)x }{hp} \times \frac{kW}{hp} x \text{ Annual Hours}$$

Where:

WEF_{base} =Federal Energy Efficiency Standard

= -2.3 x hydraulic horsepower + 6.59, = Energy rating of pump (may include motor and controls)Weighted Formatted: Subscript Formatted: Subscript

energy factor, kgal/kWh

Formatted Table

LF-Volume

= Actual, as listed by the Hydraulic Institute⁴⁵¹ = Load Factor; Motor Load at Fan/Pump Design CFM

 $=75\%^{452}$ Pool volume, 1,000 gallons

<u>0.746</u>Turnover = Conversion factor from HP to kWhWater turnovers per house, Pool

water turnover per day, actual

 $= 2.54.0 \text{ if unknown}^{453}$

1Bmotor

= Actual efficiency of existing motor, or if unknown, use federal

baseline nominal/nameplate motor efficiency as shown in table below.

1EEmotor

= Efficient motor nominal/nameplate motor efficiency

= Actual

Hours Open

= Annual hours of operation for motor; see table below for HVAC

Hours Days

motorshours days pool is open requiring filtration

451-Hydraulic Institute|https://er.pumps.org/ratings/search

452 Motor efficiency curves typically result in motors being most efficient at approximately 75% of the rated load. Determining Electric Motor Load and Efficiency, US DOE Motor Challenge, a program of the US Department of Energy, https://energy.gov/sites/prod/files/2014/04/f15/10097517.pdf.

⁴⁵³CA eTRM, Six hour or less complete pool water turnover for public pools, "VSD for Pool & Spa Pump", VSD%20for%20Pool%20&%20Spa%20Pump%20|%20ETRM%20(caetrm.com)VSD%20for%20Pool%20&%20Spa%20Pump% 20|%20ETRM%20(caetrm.com)VSDforPool&SpaPump|ETRM(caetrm.com) https://clearcomfort.com/why-is-swimming-poolcirculation-important/#:~:text=Circulating%20your%20pool%20disperses%20any.to%20disinfect%20your%20entire%20pool

2025 MEEIA 4 Plan MEEIA 2019 21 Plan Revision 56.0

Page 254

Formatted: Font: 10 pt, Font color: Text 1

Formatted: Font color: Text 1

Formatted: Footnotes

Appendix H - TRM - Vol. 2: C&I Measures

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = (HP_{motor} * 0.746 * LF / \eta_{motor}) * HOURS * ESF$

Where:

HP_{motor} = Installed nameplate motor horsepower

— Actual

0.746 Conversion factor from horsepower to kW (kW/hp)

LF/nmotor = Combined as a single factor since efficiency is a function of load

 $=0.65^{454}$

- Load Factor; Ratio of the peak running load to the nameplate rating of LF

the motor

= Motor efficiency at pump operating conditions

HOURS Annual operating hours of the pump

=Actual

= Energy Savings Factor; assume a value of 15%.455 **ESF**

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh *x CF$

Where:

= Summer Coincident Peak Factor for measure CF

= Summer peak coincidence demand (kW) to annual energy (kWh)

<u>factor</u>

= 0.000910684⁴⁵⁶ Cooling Water Pumps

= 0.000443983 Hot Water Pumps

= 0.0001379439 Process Pumps 0.0001379439^{457}

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

454 "Measured Loading of Energy Efficient Motors - the Missing Link in Engineering Estimates of Savings," ACEEE 1994 Summer Study Conference, Asilomar, CA.

Formatted: Indent: Left: 0"

Formatted: Footnotes, Space After: 0 pt, Line spacing: single

Formatted: Footnotes

Fig. 4.55 Published estimates of typical pumping efficiency improvements range from 5 to 40%. For analysis purposes, assume 15%. United States Industrial Electric Motor Systems Market Opportunities Assessment December 2002, Table E-7, Page 18, https://www1.eere.energy.gov/manufacturing/tech_assistance/pdfs/mtrmkt.pdf.

¹⁵⁶ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

457-Based on Ameren Missouri 2016 Process Loadshape.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M-COST ADJUSTMENT CALCULATION

V/A

MEASURE CODE:

Formatted: Indent: Left: -0", Right: 3.12", Space After: 5 pt, Line spacing: Multiple 1.08 li

Formatted: Space After: 8 pt, Line spacing: Multiple 1.08 li, Tab stops: Not at 3.03" + 4.91" + 6.01"

NEMA Premium Efficiency Motors Default Efficiencies 458

	Open Drip Proof (ODP)			Totally Enclosed Fan Cooled (TEFC)				
		# of Poles		# of Poles				
Size HP	6	4	2	6	4	2		
SIZC III		Speed (RPM)		Speed (RPM)				
	1200	1800 Default	3600	1200	1800	3600		
1	0.825	0.855	0.770	0.825	0.855	0.770		
1.5	0.865	0.865	0.840	0.875	0.865	0.840		
2	0.875	0.865	0.855	0.885	0.865	0.855		
3	0.885	0.895	0.855	0.895	0.895	0.865		
5	0.895	0.895	0.865	0.895	0.895	0.885		
7.5	0.902	0.910	0.885	0.910	0.917	0.895		
10	0.917	0.917	0.895	0.910	0.917	0.902		
15	0.917	0.930	0.902	0.917	0.924	0.910		
20	0.924	0.930	0.910	0.917	0.930	0.910		
25	0.930	0.936	0.917	0.930	0.936	0.917		
30	0.936	0.941	0.917	0.930	0.936	0.917		
40	0.941	0.941	0.924	0.941	0.941	0.924		
50	0.941	0.945	0.930	0.941	0.945	0.930		
60	0.945	0.950	0.936	0.945	0.950	0.936		
75	0.945	0.950	0.936	0.945	0.954	0.936		
100	0.950	0.954	0.936	0.950	0.954	0.941		
125	0.950	0.954	0.941	0.950	0.954	0.950		
150	0.954	0.958	0.941	0.958	0.958	0.950		
200	0.954	0.958	0.950	0.958	0.962	0.954		
250	0.954	0.958	0.950	0.958	0.962	0.958		
300	0.954	0.958	0.954	0.958	0.962	0.958		
350	0.954	0.958	0.954	0.958	0.962	0.958		
400	0.958	0.958	0.958	0.958	0.962	0.958		
4 50	0.962	0.962	0.958	0.958	0.962	0.958		
500	0.962	0.962	0.958	0.958	0.962	0.958		

⁴⁵⁸ Douglass, J. (2005). Induction Motor Efficiency Standards. Washington State University and the Northwest Energy Efficiency Alliance, Extension Energy Program, Olympia, WA. Retrieved October 17, 2013, from http://www.leon.org/articles/page/ficiency/articles/art

Appendix H - TRM - Vol. 2: C&I Measures

Default hours are provided for HVAC applications which vary by Building Type. 459 When available, actual hours should be used.

Building Type	Total Fan Run Hours
Large Office	6753
Medium Office	6968
Small Office	6626
Warehouse	6263
Stand alone Retail	6679
Strip Mall	6687
Primary School	5906
Secondary School	6702
Supermarket	6900
Quick Service Restaurant	7679
Full Service Restaurant	7664
Hospital	8760
Outpatient Health Care	8760
Small Hotel Building	8760
Large Hotel - Building	8760
Midrise Apartment Building	8728
Nonresidential Average	6773

Flow Fraction (% of design cfm)	Percent of Time at Flow Fraction
0% to 10%	0.0%
10% to 20%	1.0%
20% to 30%	5.5%
30% to 40%	15.5%
40% to 50%	22.0%
50% to 60%	25.0%
60% to 70%	19.0%

⁴⁵⁹ Hours per year are estimated using the modeling results and represent the total number of hours the fans are operating for heating, cooling and ventilation for each Building Type.

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Page 258

į	Formatted	([591]
1,	Formatted	([592]
J_{ij}	Formatted	([593]
4;	Formatted	[594]
55	Formatted	[595]
47	Formatted	[596]
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Formatted	[597]
11	Formatted	[598]
17	Formatted	[599]
<i>!/</i> ;	Formatted	[[600]
1/2	Formatted	[601]
1/2	Formatted	[602]
//	Formatted	[603]
1	Formatted	[604]
<u>/</u> -	Formatted	[605]
	Formatted	[606]
	Formatted	[607]
	Formatted	
``,	Formatted	[608]
	Formatted	[609]
Ù,	Formatted	[610]
Ċ,	Formatted	[611]
ή,	Formatted	[612]
	Formatted	[613]
, , ,	Formatted	[614]
1	Formatted	[615]
11.	Formatted	[616]
	Formatted	[617]
		[618]
	Formatted	[619]
	Formatted	[620]
	Formatted	[621]
	Formatted	[[622]
	Formatted	[623]
	Formatted	[[624]
	Formatted	[625]
	Formatted	[626]
	Formatted	[627]
	Formatted	[628]
	Formatted	[[629]
	Formatted	[[630]
	Formatted	[[631]
111	Formatted	[632]
1,	Formatted	[633]
1	Formatted	[634]
	Formatted	([635]

Appendix H - TRM - Vol. 2: C&I Measures

70% to 80%	8.5%
80% to 90%	3.0%
90% to 100%	0.5%

Control Type	Flow Fraction										
Controlling	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	ŀ
No Control or Bypass Damper	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	ŀ
Discharge Dampers	0.46	0.55	0.63	0.70	0.77	0.83	0.88	0.93	0.97	1.00	Ī
Outlet Damper, BI & Airfoil Fans	0.53	0.53	0.57	0.64	0.72	0.80	0.89	0.96	1.02	1.05	Ī
Inlet Damper Box	0.56	0.60	0.62	0.64	0.66	0.69	0.74	0.81	0.92	1.07	•
Inlet Guide Vane, BI & Airfoil Fans	0.53	0.56	0.57	0.59	0.60	0.62	0.67	0.74	0.85	1.00	
Inlet Vane Dampers	0.38	0.40	0.42	0.44	0.48	0.53	0.60	0.70	0.83	0.99	Ī
Outlet Damper, FC Fans	0.22	0.26	0.30	0.37	0.45	0.54	0.65	0.77	0.91	1.06	Ī
Eddy Current Drives	0.17	0.20	0.25	0.32	0.41	0.51	0.63	0.76	0.90	1.04	ŀ
Inlet Guide Vane, FC Fans	0.21	0.22	0.23	0.26	0.31	0.39	0.49	0.63	0.81	1.04	•
VFD with duct static pressure controls	0.09	0.10	0.11	0.15	0.20	0.29	0.41	0.57	0.76	1.01	
VFD with low/no duct static pressure	0.05	0.06	0.09	0.12	0.18	0.27	0.39	0.55	0.75	1.00	

Provided below are the resultant values based upon the defaults provided above:

Control Type	2100%(0/FF PLR _{Base})
No Control or Bypass Damper	1.00
Discharge Dampers	0.80
Outlet Damper, BI & Airfoil Fans	0.78
Inlet Damper Box	0.69
Inlet Guide Vane, BI & Airfoil Fans	0.63
Inlet Vane Dampers	0.53
Outlet Damper, FC Fans	0.53
Eddy Current Drives	0.49
Inlet Guide Vane, FC Fans	0.39
VFD with duct static pressure controls	0.30
VFD with low/no duct static pressure	0.27

2025 MEEIA 4 Plan MEEIA 2019 21 Plan Revision 56.0

Page 25\$

Formatted

Formatted	[636]
Formatted	[637]
Formatted	[638]
Formatted	[639]
Formatted	[640]
Formatted	[641]
Formatted	[642]
Formatted	[643]
Formatted	[644]
Formatted	[645]
Formatted	[646]
Formatted	[647]
Formatted	[648]
Formatted	[649]
Formatted	[650]
Formatted	[651]
Formatted	[652]
Formatted	[653]
Formatted	[654]
Formatted	[655]
Formatted	[656]
Formatted	[657]
Formatted	[658]
Formatted	[659]
Formatted	[660]
Formatted	[661]
Formatted	[662]
Formatted	[663]
Formatted	[664]
Formatted	[665]
Formatted	[666]
Formatted	[667]
Formatted	[668]
Formatted	[669]
Formatted	[670]
Formatted	[671]
Formatted	[672]
Formatted	[673]
Formatted	[674]
Formatted	[675]
Formatted	[676]
Formatted	[677]
Formatted	[678]
Formatted	[679]
Formatted	[680]
Formatted	[681]
Formatted	[682]
Formatted	[683]
Formatted	[[684]
Formatted	[685]
Formatted	[[686]
Formatted	[[687]

... [688]

Formatted: Body Text

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kW h_{total} *CF$

Where:

 $\begin{array}{ll} \Delta kWh_{\text{total}} & = As \ calculated \ above. \\ CF & = 0.000443983^{460} \end{array}$

NATURAL GAS ENERGY SAVINGS

If fossil fuel impacts are expected, a custom analysis should be used to support them.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

	Missou	

Appendix H - TRM – Vol. 2: C&I Measures

2.9 Refrigeration

2.9.1 Commercial Solid and Glass Door Refrigerators & Freezers

DESCRIPTION

This measure applies to ENERGY STAR® vertical closed and horizontal closed refrigerators or freezers installed in a commercial kitchen. ENERGY STAR® commercial refrigerators and freezers are more energy efficient because they are designed with components such as ECM evaporator and condenser fan motors, hot gas anti-sweat heaters, or high-efficiency compressors, which will significantly reduce energy consumption.

This measure was developed to be applicable to the following program type: TOS.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be a new ENERGY STAR® certified vertical closed or horizontal closed, solid or glass door refrigerator or freezer meeting energy consumptions requirements as determined by door type (solid or glass) and refrigerated volume (V).

ENERGY STAR® Requirements (Version 35.0, Effective October 1, 2014 December 22, 2022) 461

Volume (ft³)	Maximum Daily Energy Consumption (kWh/day)					
volume (it)	Refrigerator	Freezer				
Vertical Closed						
Solid Door						
0 < V < 15	$\leq 0.02\underline{6}V + \underline{0.8}\underline{1.60}$	≤ 0. 25V - <u>21V</u> + <u>1.55</u> 0.9				
$15 \le V < 30$	$\leq 0.09V - 05V + 0.5545$	$\leq 0.20V - 12V + 2.30248$				
$30 \le V < 50$	$\leq 0.01V - 05V + 2.950.45$	$\leq 0.25 \frac{78}{1.8864} + 0.80$				
V ≥ 50	≤ 0. 06V - <u>025V</u> +	$\leq 0.14V + 4.06.30$				
	0.45 <u>1.6991</u>					
Glass Door						
0 < V < 15	$\leq 0.09510V + .4451.07$	$\leq \frac{0.56 \text{V}}{0.232 \text{V}} + \frac{2.36}{0.232 \text{V}}$				
		1.61				
$15 \le V < 30$	$\leq 0.0515V + 1.120.32$	$\leq 0.232V + 2.36 \leq 0.30V +$				
		5.50				
$30 \le V < 50$	$\leq 0.076V + \frac{3.020.34}{}$	$\leq 0.232V + 2.36 \leq 0.55V$				
		2.00				
V ≥ 50	≤ 0.10508 V $-1.111+2.02$	$\leq 0.232V + 2.36 \leq 0.32V +$				
		9.49				
Horizontal Closed	Horizontal Closed					
Solid or Glass Doors	,					
All Volumes	$\leq 0.056V + 0.2860$	≤ 0.05710 V + 0.5520				

⁴⁶¹ ENERGY STAR® | Commercial Refrigerators & Freezers

https://www.energystar.gov/products/commercial food service equipment/commercial refrigerators freezers/key product criteri

2025 MEEIA 4 Plan MEEIA 2019 21 Plan Revision 56.0

Formatted: Footnote Char, Font: 10 pt, Font color: Black

Formatted: Left, Indent: Left: 0"

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new vertical closed or horizontal closed, solid or glass door refrigerator or freezer that is not ENERGY STAR® certified—and meets the Federal Energy Efficiency Standards for units built as of March 2017 for TOS. Existing, working equipment may use the value in the baseline table determined by the manufacturing date.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years.⁴⁶²

DEEMED MEASURE COST

The incremental capital cost for this measure varies by size as shown in the table below:

Measure	Incremental Cost 463
Commercial Glass Door Freezers less than 15 ft ³	\$ 220 - <u>50</u>
Commercial Glass Door Freezers 15 to 30 ft ³	\$ 950 - <u>100</u>
Commercial Glass Door Freezers 30 to 50 ft ³	\$ 1,307 <u>300</u>
Commercial Glass Door Freezers more than 50 ft ³	\$ 2,300 500
Commercial Glass Door Refrigerators less than 15 ft ³	\$ 250 - <u>50</u>
Commercial Glass Door Refrigerators 15 to 30 ft ³	\$ 500 - <u>200</u>
Commercial Glass Door Refrigerators 30 to 50 ft ³	\$ 1,307 450
Commercial Glass Door Refrigerators more than 50 ft ³	\$ 2,300 700
Commercial Solid Door Freezers/Refrigerators less than 15 ft ³	\$ 150 _ <u>100</u>
Commercial Solid Door Freezers/Refrigerators 15 to 30 ft ³	\$ 400 - <u>350</u>
Commercial Solid Door Freezers/Refrigerators 30 to 50 ft ³	\$ 550 - <u>500</u>
Commercial Solid Door Freezers/Refrigerators more than 50 ft ³	\$ 700 - <u>600</u>
Commercial Solid Door Refrigerators less than 15 ft3	<u>\$150</u>
Commercial Solid Door Refrigerators 15 to 30 ft3	\$200
Commercial Solid Door Refrigerators 30 to 50 ft3	<u>\$250</u>
Commercial Solid Door Refrigerators more than 50 ft3	\$350
Horizontal Closed - Solid or Glass Door Refrigerator (all volumes)	\$ 525 <u>0</u>
Horizontal Closed - Solid or Glass Door Freezer (all volumes	\$ 595 <u>0</u>

LOADSHAPE

Refrigeration BUS

Formatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted: Font: 11 pt

2025 MEEIA 4 Plan MEEIA 2019 21 Plan Revision 56.0

Formatted: Footnote Char, Font: 9 pt, Font color: Black
Field Code Changed

Formatted: Indent: Left: 0"

Field Code Changed

Page 263

^{###} Accommercial Food Service Calculator | Freezer Calculator | Freezer Calculator | Freezer Calculator | STAR | Effective useful life table | https://www.eaetrm.com/cpuc/table/effusefullife/ENERGY STARENERGY STAR® | Commercial Food Service Calculator | Freezer Calcs, Refrigerator Calcs worksheets | https://www.energystar.gov/cs/calculatorCalifornia eTRM | Effective useful life table | Reach in refrigerator, freezer | https://www.energystar.gov/cs/calculatorCalifornia eTRM | Effective useful life table | Reach in refrigerator, freezer | https://www.energystar.gov/cs/calculator which cites reference as "FSTC research on available models, 2009." https://www.energystar.gov/sites/default/files/asset/document/commercial kitchen equipment calculator/%2003-15-2016.xlsx.

ENERGY STAR | Commercial Food Service Calculator | Freezer Calcs, Refrigerator Cacs worksheets | https://www.energystar.gov/cfs/ealculator.tltps://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Custom calculation below.464

 $\Delta kWh = (kWh_{Base} - kWh_{ESTAR}) * Days$

Where:

 $kWh_{Base} \qquad = Maximum \ daily \ energy \ consumption \ (kWh/day) \ of \ baseline$

refrigerator or freezer

= Calculated as shown in the table below using the actual refrigerated volume (V)

	Daily End	nergy, kWh ⁴⁶⁵		
	Manufactured 1/1/2010-3/27/2017	Manufactured 3/28/2017 to Current or TOS		
Solid Door Refrigerator	0.10V + 2.04	0.05V + 1.36		
Glass Door Refrigerator	0.12V + 3.34	0.1V + 0.86		
Solid Door Freezer	0.40V + 1.38	0.22V + 1.38		
Glass Door Freezer	0.75V + 4.10	0.29V + 2.95		

kWh_{ESTAR} = Maximum daily energy consumption (kWh/day) of ENERGY STAR®

= <u>Custom or if unknown, Actual, if unknown</u> calculated as shown in the <u>Efficient Equipment</u> table below using the actual refrigerated volume (V)

= Refrigerated volume (ft³) calculated in accordance with the Department

of Energy test procedure in 10 CFR §431.64

= Actual installed

Days = Days of refrigerator or freezer operation per year

= Custom, or if unknown assume 365.25 days per year

kWhBase ⁴⁶⁶	
0.10V + 2.04	
0.12V + 3.34	
0.40V + 1.38	
0.75V + 4.10	
	0.10V + 2.04 0.12V + 3.34 0.40V + 1.38

Formatted: Left, Indent: Left: 0"

Formatted: Centered

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $^{^{464}}$ Algorithms and assumptions from ENERGY STAR® Commercial Kitchen Equipment Savings Calculator.

 $[\]frac{465}{Federal\ Energy\ Efficiency\ Standards\ |\ Commercial\ Refrigerators\ and\ Freezers\ |\ https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431/subpart-C}$

¹⁶⁶⁻³²⁵¹⁰ CFR §431.66 - Energy Conservation Standards for Commercial Refrigerators, Freezers and Refrigerator-Freezers.

Appendix H - TRM - Vol. 2: C&I Measures

 $\Delta kW = \Delta kWh * CF$

Where:

 ΔkWh = Electric energy savings, calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001357383^{467}$

NATURAL GAS ENERGY SAVINGS

N/A

PEAK GAS SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

⁴⁶⁷ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors" 2016 Ameren Missouri Coincident Peak Demand Factor for Commercial Refrigeration See reference "Ameren Missouri 2016 Appendix E - End Use Shapes and Coincident Factors.pdf."

2.9.2 Refrigerated Beverage Vending Machine

DESCRIPTION

This measure applies to new ENERGY STAR®, Class A or Class B refrigerated vending machines. ENERGY STAR® vending machines incorporate more efficient compressors, fan motors, and lighting systems as well as a low power mode option that allows the machine to be placed in low-energy lighting and/or low-energy refrigeration states during times of inactivity.

This measure was developed to be applicable to the following program type: TOS.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be a new or rebuilt ENERGY $STAR^{\$}$, Class A or Class B^{468} refrigerated vending machine meeting energy consumptions requirements as determined by equipment type (Class A or Class B).

ENERGY STAR® -Requirements (Version 3.14.0, Effective March 1, 2013 April 2020) 469

Equipment Type	Maximum Daily Energy Consumption (kWh/day)
Class A	$\leq 0.0523V + 2.432$
Class B	$\leq 0.0657V + 2.844$

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new or rebuilt, Class A or Class B refrigerated vending machine that is not ENERGY STAR® certified.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years.⁴⁷⁰

DEEMED MEASURE COST

The incremental cost of this measure is \$140125.471

LOADSHAPE

Refrigeration BUS

Formatted: Footnotes

Formatted: Underline, Font color: Blue

Formatted: Hyperlink

⁴⁶⁸ Class A means a refrigerated bottled or canned beverage vending machine that is fully cooled, and is not a combination vending machine. Class B means any refrigerated bottled or canned beverage vending machine not considered to be Class A, and is not a combination vending machine. See 10 CFR §431.292 "Definitions concerning refrigerated bottled or canned beverage vending machines."

⁴⁶⁹ ENERGY STAR® | Refrigerated Vending Machines Key Product Criteria,

https://www.energystar.gov/products/vending machines/key product criteria

⁴⁷⁰ Average of measure lives recognized by Ameren Missouri (10 years) and KCPL (14 years). Also consistent with Energy StarENERGY STAR® * commercial refrigerator lifetime ("Refrigerator Cales" tab row 42).

⁴⁷¹ Serving Up Savings: The New Value Equation for Energy Efficient Vending Machines (Average of \$100 for Tier II on pag 4-211 and \$150 for a kit to refurbish an old machine on page 4-216.

https://www.accee.org/files/proceedings/2006/data/papers/SS06_Panel4_Paper18.pdf Consistent with Ameren Missouri MEEIA 2016-18 and KCPL TRM assumptions.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Custom calculation below.

 $\Delta kWh = (kWh_{Base} - kWh_{ESTAR}) * Days$

Where:

 kWh_{Base} = Maximum daily energy consumption (kWh/day) of baseline

vending machine

= Calculated as shown in the table below using the actual refrigerated

volume (V)

Equipment Type	kWhBase 472	
Class A	0.055V + 2.56	
<u>Class B</u>	0.073V + 3.16	

kWhestar = Maximum daily energy consumption (kWh/day) of ENERGY

STAR® vending machine

= Custom or if unknown, Actual, if unknown calculated as shown in

the table below using the actual refrigerated volume (V)

Equipment Type	kWhEE ⁴⁷³	
Class A	\leq 0.0523V + 2.432	
Class B	\leq 0.0657V + 2.844	

= Refrigerated volume⁴⁷⁴ (ft³) V

= Actual installed

Days = Days of vending machine operation per year

= 365.25 days per year

-Equipment Type	kWhBase 475
Class A	0.055V + 2.56
Class-B	0.073V + 3.16

Equipment Type	kWhEE ⁴⁷⁶
Class A	$\leq 0.0523V + 2.432$
Class B	< 0.0657V + 2.844

472 33010 CFR §431.296 - Energy Conservation Standards for Refrigerated Bottled or Canned Beverage Vending Machines 473 ENERGY STAR® | Refrigerated Vending Machines Key Product Criteria,

476 ENERGY STAR® Version 3.1 requirements for maximum daily energy consumption (page 5).

2025 MEEIA 4 Plan MEEIA 2019 21 Plan Revision 56.0

Formatted Table

Formatted Table

Formatted: Footnotes, Indent: Left: 0"

Formatted: Underline

Page 267

https://www.energystar.gov/products/vending machines/key product criteria
474 V is measured by the American National Standards Institute (ANSI)/Association of Home Appliance Manufacturers (AHAM) HRF-1-2004, "Energy, Performance and Capacity of Household Refrigerators, Refrigerator-Freezers and Freezers." Measurement of refrigerated volume must be in accordance with the methodology specified in Section 5.2, Total Refrigerated Volume (excluding subsections 5.2.2.2 through 5.2.2.4), of ANSI/AHAM HRF-1-2004.

⁴⁷⁵-33010 CFR §431.296 - Energy Conservation Standards for Refrigerated Bottled or Canned Beverage Vending Machines

Appendix H - TRM - Vol. 2: C&I Measures

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

 Δ kWh = Electric energy savings, calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001357383^{477}$

MEASURE CODE:

⁴⁷⁷ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors" 2016 Ameren Missouri Coincident Peak Demand Factor for Commercial Refrigeration. See reference "Ameren Missouri 2016 Appendix E - End Use Shapes and Coincident Factors.pdf."

Formatted: Footnotes, Indent: Left: 0", Space After: 0

2.9.3 Door Heater Controls for Cooler or Freezer

DESCRIPTION

This measure applies to door heater controls installed on commercial coolers or freezers. There are two main categories of commercially available control strategies that achieve "on-off" control of door heaters based on either (1) the relative humidity of the air in the store or (2) the "conductivity" of the door (which drops when condensation appears). In the first strategy, the system activates door heaters when the relative humidity in a store rises above a specific set point and turns them off when the relative humidity falls below that set point. In the second strategy, the sensor activates the door heaters when the door conductivity falls below a certain set point and turns them off when the conductivity rises above that set point. Savings result from a reduction in electric energy use due to heaters not running continuously and from reduced cooling loads when heaters are off. The assumptions included within this measure assume that door heater controls which are properly designed and commissioned will achieve approximately equivalent savings, regardless of control strategy.

This measure applies to the following program type: RF.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be a door heater control installed on a commercial glass door cooler or freezer.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a door heater without controls, installed on a commercial glass door cooler or freezer.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years.⁴⁷⁸

DEEMED MEASURE COST

Actual incremental costs should be used if available. The incremental capital cost \$151_150 per door.⁴⁷⁹

LOADSHAPE

Refrigeration BUS

Algorithm

CALCULATION OF SAVINGS

⁴⁷⁸ Database for Energy Efficient Resources (2014). http://www.deeresources.com/. ("Updated 2014 EUL table, cell D35)200 Database for Energy Efficiency Resources (DEER), Version 2008.2.05, "Effective/Remaining Useful Life Values," Californi Public Utilities Commission, December 16, 2008.

⁴⁷⁹ Ameren Missouri Technical Resource Manual — Effective January 1, 2018-TRC, Ameren DSM participants for anti-sweat heate controls, 2014 to 2024. Loca file: "Door heat controls cost 2014 to 2024.xlsx"

Appendix H - TRM - Vol. 2: C&I Measures

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = kW_{Base} \stackrel{*}{=} DOORS \stackrel{*}{=} (\%ON_{Base} - \%ON_{Control}) \stackrel{*}{=} Hours$

Where:

 kW_{Base} = Per door electric energy consumption of door heater without

= Assume 0.130 kW per door⁴⁸⁰

DOORS = Number of doors controlled with door heater controls

= Actual or if unknown, use 1 (a per door savings)

 $\%ON_{Base}$ = Effective run time of uncontrolled door heater

= Actual or if unknown, use 90.7%⁴⁸¹

%ON_{Control} = Effective run time with anti-sweat door heater controls

= Actual or if unknown, use 45.6% 481481334820

Hours = Annual hours of cooler or freezer operation

= Assume 8,766 hours per year

BF = Cooling Bonus factor for reduction in waste heat inside of the

refrigerated space.

= 1.3 for a refrigerator (medium/high temp), 1.5 for freezers (low

temp)483

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $-\Delta kW = \Delta kWh * CF$

Where:

 ΔkWh = Electric energy savings, calculated above

= Summer peak coincidence demand (kW) to annual energy (kWh) CF

factor.

= 0.0001357383484

Savings calculated with default values as defined above.

Door Heater Control Application	AkWh/door	∆kW/door_
Refrigerator	668.1	0.0907

Formatted: Font: 11 pt

single

Formatted: Footnotes, Space After: 0 pt, Line spacing:

Formatted: Superscript

⁴⁸⁰ The Cadmus Group, Commercial Refrigeration Loadshape Project Final Report, Northeast Energy Efficiency Partnerships, Regional Evaluation, Measurement, and Verification Forum, Lexington, MA 2015. Page 75, Table 42.

⁴⁸¹ The Cadmus Group, Commercial Refrigeration Loadshape Project Final Report, Northeast Energy Efficiency Partnerships, Regional Evaluation, Measurement, and Verification Forum, Lexington, MA 2015. Page 6769, Table 37.

The Cadmus Group, Commercial Refrigeration Loadshape Project Final Report, Northeast Energy Efficiency Partnerships, Regional Evaluation, Measurement, and Verification Forum, Lexington, MA 2015, Page 69, Table 37.

483 The Cadmus Group, Commercial Refrigeration Loadshape Project Final Report, Northeast Energy Efficiency Partnerships,

Regional Evaluation, Measurement, and Verification Forum, Lexington, MA 2015. Page 78, Figure 54.

⁴⁸⁴ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors" Ameren Missouri Coincident Peak Demand Factor for Commercial Refrigeration. See reference "Ameren Missouri 2016 Appendix E - End Use Shapes and Coincident Factors.pdf"

Freezer	770.9	0.1046
---------	-------	--------

NATURAL GAS ENERGY SAVINGS

N/A

MEASURE CODE:

2.9.4 Electronically Commutated Motors (ECM) for Walk-in and Reach-in Coolers/Freezers

DESCRIPTION

This measure consists of replacement of an existing, uncontrolled, and continuously operating standard efficiency shaded-pole evaporator fan motor in refrigerated display cases or fan coil in walk-ins.

This measure achieves savings by installing a more efficient motor, thereby moving the same amount of air with less energy requirements. Additionally, less waste heat is produced, resulting in a decreased refrigeration load.

This measure was developed to be applicable to the following program type: RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

This measure applies to the replacement of an existing standard-efficiency shaded-pole evaporator fan motor in refrigerated display cases or fan coil in walk-ins. The replacement unit must be an electronically commutated motor (ECM). Savings assume that efficient motors operate continuously.

DEFINITION OF BASELINE EQUIPMENT

The baseline is the existing shaded-pole motor(s) with no fan control operating 8760 hours continuously in a refrigerated display case or fan coil unit of a walk-in cooling unit.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 15 years.⁴⁸⁵

DEEMED MEASURE COST

The measure cost is assumed to be \$177-\$358 per motor for a walk in cooler and \$208 walk in freezer, labor cost was assumed equal for a code compliant motor and ECM motor, including the cost of the motor plus installation. 486

LOADSHAPE

Miscellaneous BUS

Algorithm

CALCULATION OF SAVINGS

Savings are based on a measure created by Energy & Resource Solutions for the California Municipal Utilities Association and supported by PGE workpaper PGE3PREF126. Note that

Formatted: Default Paragraph Font

⁴⁸⁵ <u>Database for Energy Efficient Resources (2014)</u>, https://www.deeresources.com/("Updated 2014 EUL table, cell D52)DEER database.

⁴⁸⁶ CA eTRM, "High Efficiency Fan ", Southern California Edison, "SWCROO4-02Cost analysis.xlsx" (2022),Equipment cost for ECM motor Difference in the fully installed cost (\$468) for ECM motor and controller, listed in Work Paper PGE3PREF126, "ECM for Walk In Evaporator with Fan Controller," June 20, 2012, and the measure cost specified in the DEER database for controller (\$291).

Appendix H - TRM - Vol. 2: C&I Measures

climate differences across all California climate zones resulted in negligible savings differences, which indicates that the average savings for the California study should apply equally as well to Missouri. Savings found in the aforementioned source are presented in combination with savings from controllers, however for the purposes of this measure only those associated with the ECM upgrade are considered.

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = Savings per motor *_{\underline{x}} motors$

Where:

Savings per motor⁴⁸⁷ = based on the motor rating of the ECM motor – see table below.

Motors = number of fan motors replaced

Evaporator Fan Motor Rating (of ECM)	Annual kWh Savings/motor
16W	408
1/15 - 1/20HP	1,064
1/5HP	1,409
1/3HP	1,994
1/2HP	2,558
3/4HP	2,782

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

 ΔkWh = Electric energy savings, as calculated above.

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001379439^{488}$

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

2025 MEEIA 4 Plan MEEIA 2019 21 Plan Revision 56.0

Page 273

Formatted: Footnotes

Formatted: CambriaTextFormula, Indent: First line: 0"

⁴⁸⁷ See reference workbook "ECM Savings.xlsx" for derivation.

⁴⁸⁸ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

Ameren Missouri	Appendix H - TRM – Vol. 2: C&I Measures

2.9.5 Strip Curtain for Walk-in Coolers and Freezers

DESCRIPTION

This commercial measure pertains to the installation of infiltration barriers (strip curtains) on walkin coolers or freezers. Strip curtains impede heat transfer from adjacent warm and humid spaces into walk-ins when the main door is opened, thereby reducing the cooling load. As a result, compressor run time and energy consumption are reduced. The engineering assumption is that the walk-in door is open for varying durations per day based on facility type, and the strip curtain covers the entire door frame. All assumptions are based on values that were determined by direct measurement and monitoring of over 100 walk-in units in the 2006-2008 evaluation for the CA Public Utility Commission.⁴⁸⁹

This measure was developed to be applicable to the following program type: RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is a strip curtain added to a walk-in cooler or freezer. The new strip curtain must cover the entire area of the doorway when the door is opened.

DEFINITION OF BASELINE EQUIPMENT

The baseline assumption is a walk-in cooler or freezer that previously had either no strip curtain installed or an old, ineffective strip curtain installed.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 4 years. 490

DEEMED MEASURE COST

The incremental capital cost for this measure is \$10.22/sq ft of door opening.⁴⁹¹

LOADSHAPE

Refrigeration BUS

Algorithm

CALCULATION OF SAVINGS

Formatted: Font color: Blue

Formatted: Font color: Blue

⁴⁸⁹ The scale factors have been determined with tracer gas measurements on over 100 walk-in refrigeration units during the California Public Utility Commission's evaluation of the 2006-2008 CA investor owned utility energy efficiency programs. The door-open and close times, and temperatures of the infiltrating and refrigerated airs are taken from short term monitoring of over 100 walk-in units. https://www.calmac.org/publications/ComFac_Evaluation_V1_Final_Report_02-18-2010.pdf.
⁴⁹⁰ Database for Energy Efficient Resources (2014). https://www.deeresources.com/. ("Updated 2014 EUL table, cell D50)
DEER 2014 Effective Useful Life.

⁴⁹¹ The reference for incremental cost is \$10.22 per square foot of door opening (includes material and labor). 2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05 "NR - Commercial Refrigeration" tab cells E18 & G18, "Cost Values and Summary Documentation," California Public Utilities Commission, December 16, 2008.

ELECTRIC ENERGY SAVINGS492

 $\Delta kWh = \Delta kWh/SQFT \stackrel{*}{\simeq} A$

Where:

 $\Delta kWh/SQFT$ = Average annual kWh savings per square foot of infiltration barrier.

Based on application type, as indicated by the table below.⁴⁹³

A = Doorway area. Use actual measurements, if unknown use the values in the table below.

Туре	Pre-Existing Curtains	Energy Savings ΔkWh/sq ft
Supermarket - Cooler	Yes	37 <u>40</u>
Supermarket - Cooler	No	108 - <u>120</u>
Supermarket - Freezer	Yes	119 <u>170</u>
Supermarket - Freezer	No	349 <u>490</u>
Convenience Store - Cooler	Yes	5 - <u>10</u>
Convenience Store - Cooler	No	20
Convenience Store - Freezer	Yes	<u>8-10</u>
Convenience Store - Freezer	No	27 - <u>30</u>
Restaurant - Cooler	Yes	<u>8-10</u>
Restaurant - Cooler	No	30 - <u>20</u>
Restaurant - Freezer	Yes	34 - <u>30</u>
Restaurant - Freezer	No	119- 110
Refrigerated Warehouse	Yes	254 - <u>50</u>
Refrigerated Warehouse	No	729 - <u>150</u>

Facility Type	Doorway Area (sq ft)
Supermarket - Cooler	35
Supermarket - Freezer	35
Convenience Store - Cooler	21
Convenience Store - Freezer	21
Restaurant - Cooler	21
Restaurant - Freezer	21
Refrigerated Warehouse	80

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Formatted: Font: 9 pt, Font color: Blue

Formatted: CambriaTextFormula, Indent: First line: 0"

⁴⁹² The source algorithm from which the savings per square foot values are determined is based on Tamm's equation (an application of Bernoulli's equation) [Kalterveluste durch kuhlraumoffnungen. Tamm W, Kaltetechnik-Klimatisierung 1966;18;142-144;] and the ASHRAE handbook [American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE). 2010. ASHRAE Handbook, Refrigeration: 13.4, 13.6].

⁴⁹³ See reference file "Strip Curtain Savings Cales.doex" for details on derivation.NW Council, https://rtf.nwcouncil.org/measure/strip-curtains/, "ComGroceryStripCurtain_v3_1.xlsm" savings_calculator, Local_files: Revised_effectiveness against infiltration value to 0.58 for existing curtains.

Appendix H - TRM - Vol. 2: C&I Measures

Where:

 ΔkWh = Electric energy savings, calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001357383^{494}$

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

Formatted: Footnotes, Indent: Left: 0", Space After: 0

⁴⁹⁴ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors" 2016 Ameren Missouri Coincident Peak Demand Factor for Commercial Refrigeration. See referer "Ameren Missouri 2016 Appendix E - End Use Shapes and Coincident Factors.pdf."

2.10 Shell

2.10.1 Windows

DESCRIPTION

Energy and demand saving are realized through the installation of windows that offer performance improvements over baseline windows. Savings may be realized from reducing air infiltration, improved insulating properties, and changes to solar heat gain through the glazed surfaces of the building.

This measure was developed to be applicable to the following program types: RF and NC.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to exceed the efficiency requirements defined by the program.

DEFINITION OF BASELINE EQUIPMENT

In order for this characterization to apply, the baseline is assumed to meet the efficiency requirements set forth by local jurisdictions. In most cases, this will be some version of the IECC. For retrofit applications, the baseline condition is the existing condition and requires assessment of the existing window assemblies.

Local code shall be referenced to define baseline where applicable. As an example, the following is set forth by IECC 20122015. An efficient window would have specifications not exceeding these values.

<u>Characteristic</u>	Climate Zones 4 & 5
U-Factor	
Fixed Windows	0.38 Btu/ft ² .°F.h
Operable Windows	0.45 Btu/ft ² .°F.h
SHGC	0.40

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 20 years. 495

DEEMED MEASURE COST

For retrofit projects, full installation costs should be used, including both material and labor costs to install the windows.

In all other scenarios, the incremental cost for this measure is assumed to be \$1.50 per square foot of window area. 496

Formatted: Font: Bold

Formatted Table

Formatted: Font: Not Bold, Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font: Bold, Font color: Background 1

Formatted: Font: Not Bold, Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font: Not Bold, Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font: Not Bold, Font color: Text 1

Formatted: Font color: Text 1

⁴⁹⁵ Database for Energy Efficient Resources (2014). http://www.deeresources.com/. ("Updated 2014 EUL table, cell D21)Consistent with window measure lives specified by Ameren Missouri and KCP&L.

⁴⁹⁶ Alliance to Save Energy Efficiency Windows Collaborative Report, December 2007. Consistent with other market reports (Page C-5-2).

LOADSHAPE

Cooling BUS **HVAC BUS**

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

Electric energy savings is calculated as the sum of energy saved when cooling the building and energy saved when heating the building.

 $\Delta kWh = \Delta kWh_{cooling} + \Delta kWh_{heating}$ Heating and cooling savings are composed of three components: infiltration, conduction and solar gains. In instances where infiltration savings do not apply or are not eligible, it may be disregarded. If central cooling, the electric energy saved in annual cooling due to the added insulation is:

```
\Delta kWh_{cooling} = Infiltration_{cooling} + Conduction_{cooling} + Solar_{cooling}
Infiltration_{Cooling} = (CFM_{PRE} - CFM_{POST}) \stackrel{*}{\underline{}^{\underline{X}}} 60 \stackrel{*}{\underline{}^{\underline{X}}} EFLH_{cooling} \stackrel{*}{\underline{}^{\underline{X}}} \Delta T_{AVG,cooling} \stackrel{*}{\underline{}^{\underline{X}}} 0.018 \stackrel{*}{\underline{}^{\underline{X}}} LM
(1000 \stackrel{*}{\underline{\phantom{X}}}_{\underline{X}} \eta_{cooling})
```

Where:

CFM_{PRE} = Infiltration at natural conditions as estimated by blower door testing

before window upgrade

= Actual

= Infiltration at natural conditions as estimated by blower door testing after **CFMPOST**

window upgrade

= Actual

60 = Converts Cubic Feet per Minute to Cubic Feet per Hour

EFLHcooling = Equivalent Full Load Hours for Cooling [hr] are provided in Table

1Section 2.7, HVAC End Use

= Average temperature difference [⁰F] during cooling season between $\Delta T_{AVG,cooling}$

outdoor air temperature and assumed 75°F indoor air temperature – see

table below

0.018 = Specific Heat Capacity of Air (Btu/ft³ °F)

= Latent Multiplier to account for latent cooling demand 497 LM

= 3.0 for St. Louis, MO

1,000 = Conversion from Btu to kBtu

= Seasonal energy efficiency ratio (SEER) of cooling system (kBtu/kWh)

ηcooling

Formatted: Subscript

Formatted: Subscript

Formatted: CambriaTextFormula, Indent: First line: 0"

Formatted: Cambria12, Right: 0", Space After: 0 pt, Line spacing: single

⁴⁹⁷ The Latent Multiplier is used to convert the sensible cooling savings calculated to a value representing sensible and latent cooling loads. The values are derived from the methodology outlined in Infiltration Factor Calculation Methodology by Bruce Harley, Senior Manager, Applied Building Science, CLEAResult 11/18/2015 and is based upon an 8760 analysis of sensible and total heat loads using hourly climate data

Appendix H - TRM - Vol. 2: C&I Measures

Weather Basis (City based upon)	OA _{AVG,cooling} [°F] ⁴⁹⁸	ΔT _{AVG,cooling} [°F]	
St Louis, MO	80.8 <u>82.8</u> 3.0	<u>57.8</u> 8.0	
Conduction _{Cooling} = (U _{BASE} - U _{EFF}) *X A _{win}	dow *X EFLHcooling *X	ΔT AVG,cooling $/$ (100	0 <u>*</u> χ η _{cooling})

U_{BASE} = U-factor value of baseline window assembly (Btu/ft².°F.h)

= Dependent on Weather Basis and window type. See table below for IECC

2012 requirements. baseline description for values.

U_{EFF} = U-factor value of the efficient window assembly (Btu/ft².°F.h)

= Actual.

Awindow = Area of insulated window (including visible frame and glass) (ft²)

Other variables as defined above.

```
Solar<sub>Cooling</sub> = (SHGC_{BASE} - SHGC_{EFF}) \stackrel{*}{=} X A_{window} \stackrel{*}{=} X \Psi_{cooling} / (1000 \stackrel{*}{=} X \eta_{cooling}) Where:
```

SHGCBASE = Solar Heat Gain Coefficient of the baseline window assembly

fractional)

SHGC_{EFF} = Solar Heat Gain Coefficient of the efficient window assembly

(fractional)

= Incident solar radiation during the cooling season (Btu/ft²):⁴⁹⁹

 $\Psi_{\text{cooling}} = 40,996 \text{ for St. Louis, MO}$

Other variables as defined above.

If the building is heated with electric heat (resistance or heat pump), the electric energy saved in annual heating due to the window upgrade is:

```
\Delta kWh_{heating} = Infltration_{heating} + Conduction_{heating} - Solar_{heating}
Infiltration_{heating} = (CFM_{PRE} - CFM_{POST}) \stackrel{*}{\underline{\times}} 60 \stackrel{*}{\underline{\times}} EFLH_{heating} \stackrel{*}{\underline{\times}} \Delta T_{AVG,heating} \stackrel{*}{\underline{\times}} 0.018 / (3,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,412 \stackrel{*}{\underline{\times}} 1,4
```

Where:

EFLH_{heating} = Equivalent Full Load Hours for Heating [hr] are provided in <u>Table</u>

<u>1Section 2.7</u>, HVAC end use

498 National Solar Radiation Data Base -- 1991-2005 Update: Typical Meteorological Year 3

Onebuilding.org|MO TMYx weather

data|https://climate.onebuilding.org/WMO_Region_4_North_and_Central_America/USA_United_States_of_America/index.html# IDMO_Missouri-http://trede.nrel.gov/solar/old_data/nsrdb/1991_2005/tmv3/by_state_and_city.html._CoolingHeating_Season_ defined as September 17th through April 13th, ecoling season defined as May 20 through August 15th. For cooling season, temperatures from 8AM to 8PM were used to establish average temperatures as this is when cooling systems are expected to be loaded.

⁴⁹⁹ See "Windows SHG.xlsx" for derivation ("Summary" tab cell E3).

2025 MEEIA 4 Plan MEEIA 2019 21 Plan Revision 56.0

Formatted: CambriaTextFormula

Formatted: CambriaTextFormula

Formatted: Cambria12

Formatted: Font: 9 pt, Font color: Text 1

Formatted: Line spacing: Multiple 1.08 li

Formatted: Font: 9 pt

Appendix H - TRM - Vol. 2: C&I Measures

 $\Delta T_{AVG,heating} = Average temperature difference [^0F] during heating season between$

outdoor air temperature and assumed 55°F heating base temperature

3,412 = Conversion from Btu to kWh.

 η_{heating} = Efficiency of heating system

= Actual. Note: electric resistance heating and heat pumps will have an efficiency greater than or equal to 100% Other variables as defined above.

Weather Basis (City based upon)	OAAVG,heating [°F] ⁵⁰⁰	ΔTAVG,heating [°F]
St Louis, MO	43.244.346.4	11.8 10.78.6

 $Conduction_{heating} = (U_{BASE} - U_{EFF}) \stackrel{*}{=} \underbrace{X} A_{window} \stackrel{*}{=} \underbrace{X} EFLH_{heating} \stackrel{*}{=} \underbrace{X} \Delta T_{AVG,heating} / (3,412 \stackrel{*}{=} \underbrace{X} \eta_{heating})$ Where:

Variables as defined above.

Solar_{Heating} = $(SHGC_{BASE} - SHGC_{EFF}) \stackrel{*}{=}_{\underline{X}} A_{window} \stackrel{*}{=}_{\underline{X}} \Psi_{Heating} / (3,412 \stackrel{*}{=}_{\underline{X}} \eta_{Heating})$ Where:

 Ψ_{heating} = Incident solar radiation during the heading season (Btu/ft²)

= 66,592 for St. Louis, MO

Other variables as defined above.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWH_{cooling} * CF$

Where:

ΔkWH_{cooling} = Annual electricity savings for cooling, as calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

for Cooling

 $= 0.000910684^{501}$ Cooling

=0.000443983 HVAC (heating and cooling combined)

500 Onebuilding.org|MO TMYx weather National Solar Radiation Data Base — 1991—2005 Update: Typical Meteorological Year (Actimatewebsite\WMO Region 4 North and Central America\USA United States of America (Onebuilding.org)https://climate.onebuilding.org/WMO Region 4 North and Central America\USA United States of America (Index.html#IDMO Missourix_http://rrede.nrel.gov/solar/old_data/nsrdb/1991_2005/tmy3/by_state_and_eity.html. Heating Season defined as September 17th through April 13th_-eooling season defined as May 20 through August 15th. For cooling season, temperatures from 8AM to 8PM were used to establish average temperatures as this is when cooling systems are expected to be loaded.

501 Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

2025 MEEIA 4 Plan MEEIA 2019 21 Plan Revision 56.0

Page 281

ormatted: CambriaTextFormula

Formatted: CambriaTextFormula

Formatted: Font: 9 pt, Font color: Text 1

Field Code Changed

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Footnotes

NATURAL GAS SAVINGS

If building uses a gas heating system, the savings resulting from the window assembly is calculated with the following formula.

```
ATherms = Infiltration<sub>gasheat</sub> + Conduction<sub>gasheat</sub> - Solar<sub>gasheat</sub>
Infiltration<sub>gasheat</sub> = (CFM<sub>PRE</sub> - CFM<sub>POST</sub>) * 60 * EFLH<sub>heating</sub> * ΔT<sub>AVG,heating</sub> * 0.018 / (100,000 * η<sub>heat</sub>)
Conduction<sub>gasheat</sub> = (U<sub>BASE</sub> - U<sub>EFF</sub>) * Λ<sub>Window</sub> * EFLH<sub>heating</sub> * ΔT<sub>AVG,heating</sub> / (100,000 * η<sub>heat</sub>)
Solar<sub>gasheat</sub> = (SHGC<sub>BASE</sub> - SHGC<sub>EFF</sub>) * Λ<sub>Window</sub> * Ψ<sub>Heating</sub> / (100,000 * η<sub>heat</sub>)
re:
```

Where:

 $\begin{array}{ll} 100,\!000 & = Conversion \ from \ BTUs \ to \ Therms \\ \eta_{heat} & = Efficiency \ of \ heating \ system \\ & = Actual \end{array}$

Other variables as defined above.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

Formatted: Font: 12 pt
Formatted: Font: 12 pt
Formatted: Font: 12 pt

Formatted: Font: 12 pt
Formatted: Cambria12, Right: 0", Space After: 0 pt,

Formatted: Cambria12
Formatted: Subscript

2.10.2 Ceiling and Wall Insulation

DESCRIPTION

Energy and demand saving are realized through reductions in the building cooling and heating loads.

This measure was developed to be applicable to the following program types: RF and NC.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to exceed the efficiency requirements defined by the program.

DEFINITION OF BASELINE EQUIPMENT

In order for this characterization to apply, the baseline is assumed to meet the efficiency requirements set forth by local jurisdictions. In most cases, this will be some version of IECC. For retrofit applications, the baseline condition is the existing condition and requires assessment of the existing insulation. It should be based on the entire wall assembly.

Local code shall be referenced to define baseline where applicable. As an example, the following is set forth by IECC 20122015:

•	ASHRAE/IECC Climate Zone 5 (A, B, C) Nonresidential		
	Assembly Maximum Insulation Min. R-Value		
Mass	U-0.078	R-11.4 ci	
Metal Building	U-0.052	R-13 + R-13 ci	
Metal Framed	U-0.064	R-13 + R-7.5 ci	
Wood Framed and Other	U-0.064	R-13 + R-3.8 ci or R-20	

	ASHRAE/IECC Climate Zone 6 (A, B, C) Nonresidential		
	Assembly Maximum Insulation Min. R-Value		
Mass	U-0.078	R-13.1 ci	
Metal Building	U-0.052	R-13 + R-13 ci	
Metal Framed	U-0.064	R-13 + R-7.5 ci	
Wood Framed and Other	U-0.051	R-13 + R-7.5 ci or R-20 + R-3.8 ci	

Note: ci = continuous insulation

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure expected useful life (EUL) is assumed to be 20 years per DEER 2008. This is consistent with SDG&E's 9th Year Measure Retrofit Study (1996 & 1997 Residential Weatherization Programs), CPUC's Energy Efficiency Policy Manual v.2, and GDS's Measure Life Report Residential and Commercial/Industrial Lighting and HVAC Measures (June 2007).

DEEMED MEASURE COST

For retrofit projects, full installation costs should be used.

For new construction projects, costs should be limited to incremental material and labor costs associated with the portion of insulation that exceeds code requirements.

LOADSHAPE

COOLING BUS

HVAC BUS

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

Electric energy savings is calculated as the sum of energy saved when cooling the building and energy saved when heating the building:

$$\Delta kWh = \Delta kWh_{cooling} + \Delta kWh_{heating}$$

If central cooling, the electric energy saved in annual cooling due to the added insulation is

$$\Delta kWh cooling = \frac{\left(\frac{1}{R_{existing}} - \frac{1}{R_{new}}\right) * Area * CRF * EFLH_{cooling} * \Delta T_{AVG,cooling}}{\left(1,000 * n_{cooling}\right)}$$

If the building is heated with electric heat (resistance or heat pump), the electric energy saved in annual heating due to the added insulation is:

$$\Delta kWhheating = \left(\frac{1}{R_{existing}} - \frac{1}{R_{new}}\right) * Area * CRF * EFLH_{heating} * \Delta T_{AVG,heating}$$
(3.412 * No. - 10.7)

Where:

 $\begin{array}{ll} R_{\text{existing}} & = \text{Assembly heat loss coefficient with existing insulation [(hr-{}^{0}F-ft^{2})/Btu]} \\ R_{\text{new}} & = \text{Assembly heat loss coefficient with new insulation [(hr-{}^{0}F-ft^{2})/Btu]} \end{array}$

Area = Area of the surface in square feet.

CRF = Correction Factor. Adjustment to account for the effects the framing has

on the overall assembly R-value, when cavity insulation is used.

= 100% if Spray Foam or External Rigid Foam

= 50% if studs and cavity insulation⁵⁰²

 $EFLH_{cooling} \ = Equivalent \ Full \ Load \ Hours \ for \ Cooling \ [hr] \ are \ provided \ in \ \underline{Table}$

<u>1</u>Section 2.7, HVAC End Use

 $\Delta T_{AVG,cooling} \ = Average \ temperature \ difference \ [^0F] \ during \ cooling \ season \ between$

outdoor air temperature and assumed 75°F indoor air temperature

1,000 = Conversion from Btu to kBtu

η_{cooling} = Seasonal energy efficiency ratio (SEER) of cooling system (kBtu/kWh)

= Actual

EFLH_{heating} = Equivalent Full Load Hours for Heating [hr] are provided in <u>Table</u>

1 Section 2.7, HVAC end use

1 Section 2.7, HVAC end use

1 Section 2.7, HVAC end use

1 Section 2.7, HVAC end use

1 Section 2.7, HVAC end use

1 Section 2.7, HVAC end use

1 Section 2.7, HVAC end use

1 Section 2.7, HVAC end use

1 Section 2.7, HVAC end use

1 Section 3 Wall Sections with Steel Studs Parallel Path Correction Factors and experimental findings by the Oak Ridge National Laboratory, "Couple Secrets about How Framing is Effecting the Thermal Performance of Wood and Steel-Framed Walls."

2 2025 MEEIA 4 Plan MEEIA 2019 21 Plan Revision 5 6.0 Page 284

Formatted	[689]
Formatted	[690]
Formatted	[[691]
Formatted	[692]
Formatted	[[693]
Formatted	[694]
Formatted	[[695]
Formatted	[696]
Formatted	[697]
Formatted	[698]
Formatted	[699]
Formatted	[700]
Formatted	[701]
Formatted	[702]
Formatted	[703]
Formatted	[704]
Formatted	[705]
Formatted	[706]
Formatted	[707]
Formatted	[708]
Formatted	[709]
Formatted	[710]
Formatted	[711]
Formatted	[712]
Formatted	[713]
Formatted	[714]
Formatted	[715]
Formatted	[716]
Formatted	[717]
Formatted	[718]
Formatted	[719]
Formatted	[720]
Formatted	[721]
Formatted	[722]
Formatted	[723]
Formatted	[724]
Formatted	[725]
Formatted	[726]
Formatted	[727]
Formatted	[728]
Formatted	[729]
Formatted	[730]
Formatted	[731]
Formatted	[732]

Appendix H - TRM - Vol. 2: C&I Measures

 $\Delta T_{AVG,heating}$ = Average temperature difference [0 F] during heating season between

outdoor air temperature and assumed 55°F heating base temperature

3,412 = Conversion from Btu to kWh.

η_{heating} = <u>Actual Efficiency COP efficiency</u> of heating system

= Actual. Note: electric resistance heating and heat pumps will have an

efficiency greater than or equal to 100%

Weather Basiss (City based	OA _{AVG} ,cooling	ΔT _{AVG} ,cooling	OA _{AVG} ,heating	ΔT _{AVG} ,heating
	[°F] ⁵⁰³	[°F]	[°F] ⁵⁰⁴	[°F]
upon) St Louis, MO	80.8 83.0	<u>5.8</u> 8.0	4 <u>3.2</u> 46.4	11.8 8.6

If the building is heated with a gas furnace, there will be some electric savings in heating the building attributed to extra insulation since the furnace fans will run less.

 $\Delta kWh_{heating} = \Delta Therms *_{\underline{X}} Fe *_{\underline{X}} 29.3$

Where:

 Δ Therms = Gas savings calculated with equation below.

Fe = Percentage of heating energy consumed by fans, assume 3.14%⁵⁰⁵

29.3 = Conversion from therms to kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWH_{cooling} * CF$

Where:

 $\Delta kWH_{cooling}$ = Annual electricity savings for cooling, as calculated above.

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

for Cooling

503 Onebuilding.org|MO TMYx weather National Solar Radiation Data Base — 1991—2005 Update: Typical Meteorological
Year-3

https://climate.onebuilding.org/WMO Region 4 North and Central America/USA United States of America/index.html#IDN O Missouri-http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/by_state_and_city.html_Cooling Heating Season defined as September 17th through April 13th, cooling season defined as May 20 through August 15th. For cooling season, temperatures from 8AM to 8PM were used to establish average temperatures as this is when cooling systems are expected to be loaded.

504 Onebuilding.org|MO TMYx weather

https://climate.onebuilding.org/IMO TMYx weather

https://climate.onebuilding.org/WMO Region 4 North and Central America/USA United States of America/index.html#IDN

O Missouria, Heating Season defined as September 17th through April 13th. National Solar Radiation Data Base 1991 2005

Update: Typical Meteorological Year 3

http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/by_state_and_city.html. Heating Season defined as September 17th through April 13th, cooling season defined as May 20 through August 15th. For cooling season, temperatures from 8AM to 8PM were used to establish average temperatures as this is when cooling systems are expected to be loaded.

 505 F_e is not one of the AHRI certified ratings provided for furnaces, but can be reasonably estimated from a calculation based on the certified values for fuel energy (Ef in MMBtu/yr) and Eae (kWh/yr). An average of a 300 record sample (non-random) out of 1495 was 3.14% for residential units. This is, appropriately, \sim 50% greater than the Energy Star® version 3 criteria for 2% F_e. See "Programmable Thermostats Furnace Fan Analysis.xlsx" for reference. Assumed to be consistent with C&I applications.

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Page 285

Formatted: Space After: 0 pt, Line spacing: Multiple 1.08 li

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted Table

Formatted: Subscript

Formatted: Font: 9 pt, Underline, Font color: Blue

Field Code Changed

Formatted: No underline, Underline color: Auto, Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font: 9 pt, Underline, Font color: Blue

Formatted: Font: 9 pt

Formatted: Font: 9 pt

Formatted: Font color: Text 1

= 0.0004439830⁵⁰⁶ Cooling =0.000443983 HVAC

NATURAL GAS SAVINGS

If building uses a gas heating system, the savings resulting from the insulation is calculated with the following formula.

 $\Delta \text{Therms} = \left(\frac{1}{R_{existing}} - \frac{1}{R_{new}}\right) * Area * CRF * EFLH_{heating} * \Delta T_{AVG,heating}$ (100,000 * Hheat)

Where:

 $\begin{array}{ll} R_{existing} &= Assembly \ heat \ loss \ coefficient \ with \ existing \ insulation \ [(hr^0F-ft^2)/Btu] \\ R_{new} &= Assembly \ heat \ loss \ coefficient \ with \ new \ insulation \ [(hr^0F-ft^2)/Btu] \\ Area &= Area \ of \ the \ surface \ in \ square \ feet. \ Assume \ 1000 \ sq \ ft \ for \ planning. \\ EFLH_{heating} &= Equivalent \ Full \ Load \ Hours \ for \ Heating \ are \ provided \ in \ \underline{Table \ 1Section} \\ \underline{2.7}, \ HVAC \ end \ use \\ &= Average \ difference \ [^0F] \ during \ heating \ season \ (see \ above) \\ \end{array}$

100,000 = Conversion from BTUs to Therms η_{heat} = Efficiency of heating system

= Actual

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

Formatted: Font: 12 pt Formatted: Font: 12 pt Formatted: Font: 12 pt Formatted: Font: 12 pt Formatted: Font: 12 pt Formatted: Font: 12 pt Formatted: Font: 12 pt Formatted: Font: 12 pt Formatted: Font: 12 pt Formatted: Font: 12 pt Formatted: Font: 12 pt Formatted: Font: 12 pt Formatted: Font: 12 pt Formatted: Font: 12 pt Formatted: Font: 12 pt Formatted: Font: 12 pt Formatted: Font: 12 pt Formatted: Font: 12 pt Formatted: Font: 12 pt

* Hydraulic Institute|https://er.pumps.org/ratings/search

Formatted: Normal

506 Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

Page 286

Formatted: Footnotes