Exhibit No.: Issue(s): Weather Normalization Witness: Nicholas Bowden Type of Exhibit: Rebuttal Testimony Sponsoring Party: Union Electric Company File No.: ER-2024-0319 Date Testimony Prepared: January 17, 2025

MISSOURI PUBLIC SERVICE COMMISSION

FILE NO. ER-2024-0319

REBUTTAL TESTIMONY

OF

NICHOLAS BOWDEN

ON

BEHALF OF

UNION ELECTRIC COMPANY

D/B/A AMEREN MISSOURI

St. Louis, Missouri January 2025

TABLE OF CONTENTS

I.	INTRODUCTION1
II.	BILLING UNIT AND NORMAL REVENUE
1.	Staff's Weather Normalization Adjustment3
2.	Staff's MEEIA Annualization Adjustment58
3.	Staff's Solar Annualization Adjustment60
4.	Staff's Economic Development Incentive Annualization Adjustment 60
5.	Staff's Growth Adjustment 61
III.	REVENUE REQUIREMENT ALLOCATION
IV.	RATE DESIGN

REBUTTAL TESTIMONY

OF

NICHOLAS BOWDEN

FILE NO. ER-2024-0319

1		I. <u>INTRODUCTION</u>
2	Q.	Please state your name and business address.
3	А.	My name is Nicholas Bowden. My business address is One Ameren Plaza,
4	1901 Choute	au Ave., St. Louis, Missouri.
5	Q.	Are you the same Nicholas Bowden that submitted direct testimony in
6	this case?	
7	А.	Yes, I am.
8	Q.	To what testimony or issues are you responding?
9	А.	My rebuttal testimony responds to issues covered under the following topics.
10		1. Billing Units and Normalized Revenues
11		2. Revenue Requirement Allocations
12		3. Rate Design
13	Q.	What specific Billing Unit and Normalized Revenue testimony will you
14	address?	
15	А.	I will address five billing unit and normal revenue topics from Staff's testimony.
16	I will address	three subtopics under topic one and one or more issues within each subtopic.
17		1. Staff's Weather Normalization Adjustment
18		A. Residential and Small General Service("SGS") Block
19		Normalization

1		B. Residential and SGS Time-of-Use Normalization
2		C. Total Usage Weather Normalization
3		2. Staff's MEEIA Annualization Adjustment
4		3. Staff's Solar Annualization Adjustment
5		4. Staff's Economic Development Incentive Annualization Adjustment
6		5. Staff's Growth Adjustment
7	Q.	What Revenue Requirement Allocation Testimony will you address?
8	А.	I will respond to four Revenue Requirement Allocation proposals.
9		1. Staff's proposal
10		2. Consumers Council of Missouri ("CCM") position
11		3. Midwest Energy Consumers Group ("MECG") proposal
12		4. Missouri Industrial Energy Consumers ("MIEC") proposal
13	Q.	What Rate Design Testimony will you address?
14	А.	There are three parties' testimony that I will address. Party-specific issues I
15	address are no	ted below each party here:
16		1. Staff's Rate Design proposals
17		A. Residential customer charge proposal
18		B. Evening-Morning Savers on peak adjustments proposal
19		C. Monthly charges for Legacy Time-of-Day rate schedules
20		D. Rider B proposal
21		2. MECG Rate Design proposal
22		A. Non-residential rate design progress report
23		B. Demand and energy rates

1	C. Electric vehicle rate proposal
2	3. CCM Rate Design proposal
3	A. Residential customer charge proposal
4	II. BILLING UNIT AND NORMAL REVENUE
5	1. Staff's Weather Normalization Adjustment
6	Q. Can you provide a summary of the billing unit and normal revenue issues
7	you identified in Staff's proposal?
8	A. Yes. Weather normalization is the most unique and involved of the adjustments
9	made to test year billing units in the development of normal revenues. As a result, it is the most
10	likely to suffer from problems and therefore I devote a lot of time and effort to the evaluation of
11	Staff's weather normalization of billing units and revenues. Typically, I think about the weather
12	normalization in two steps. First, weather normalization of total kilowatt-hours ("kWh"), then
13	weather normalization of a few of the discrete billing unit components of total kWh. Examples
14	of discrete components of total kWh that Staff normalized in this case are Residential and SGS
15	block kWh and Residential and SGS time-of-use kWh.1 I begin with a discussion of Staff's
16	normalization of discrete components and then move to total weather normalization. I start this
17	way because several discrete component normalization results look unreasonable when
18	subjected to basic evaluations. Starting from these results, I step through Staff's workpapers to
19	reveal unreasonable choices.

¹ Recall that several of the Company's rates are structured in "blocks", where different kWh of usage are subject to different prices. The easiest example to think about is the residential rate, where customers are subject to one rate for the first 750 kWh of monthly usage in non-summer months, and a different rate for all usage above that threshold. Even with accurate weather normalization of total kWh, making sure that the weather adjustment occurs in the proper usage block is critical to accurately determining normalized revenues.

In the first example, Residential block normalization, I trace the mechanics and discuss
 the issues of one result in great detail. I do this to show that the results aren't the result of data
 entry error or some other trivial mistake, but rather they are the result of deliberate choices Staff
 made in how it conducted its analysis. Then, I will discuss a few other issues with block
 normalization more briefly.

In a second example, SGS time-of-use normalization, I will explain how Staff undertakes a somewhat complicated and tedious set of calculations but misses the fact the result was never going to be applicable. Staff's inappropriate application of the time-of-use normalization leads to results which are clearly unreasonable. I will then examine a few other odd results of Staff's time-of-use weather normalization and draw some attention to Staff's choice to use time-of-use normalization results to develop the monthly normalization factors for the Residential and SGS classes' total usage.

13 Finally, I will address total weather normalization. I will outline two general problems 14 with Staff's statistical methods. I discussed these two issues in ER-2022-0337, but hope a 15 refined discussion based on clearer understanding and simpler presentation will help Staff and 16 the Commission understand the issues. In addition to the two methodological issues, Staff also 17 made an unreasonable decision to choose 'alternative' monthly weather normalization factors 18 for the Residential and SGS classes. In this case, Staff produced total weather normalization 19 factors for all classes using their traditional modeling approach, but also produced monthly 20 weather normalization factors from their time-of-use results for Residential and SGS classes. 21 Staff chooses to apply monthly factors based on the time-of-use results, and I will discuss why 22 that is unreasonable.

1 A. Residential and Small General Service "SGS" Block Normalization

2 Q. Can you describe an unreasonable result found in Staff's Residential block 3 normalization?

4 A. Yes. Generally speaking, when total kWh usage decreases as a result of the 5 weather-normalization, we expect both block 1 and block 2 kWh usage to decrease. Similarly, 6 if total kWh usage increases, then we expect both block 1 and block 2 kWh usage to increase. 7 We do not expect block 1 kWh usage and block 2 kWh usage to move in opposite directions. 8 There is an intuition to the logic. For example, if it is colder than normal in the winter and 9 therefore usage is higher than normal, there is no reason whatsoever to expect either block of 10 residential usage to be *lower* than normal. If the total usage reduction, associated with 11 normalizing the abnormally high usage down, is accomplished by decreasing usage in one block 12 and increasing usage in the other block, then this implies usage was somehow lower than normal 13 in the block that increased.

Staff explicitly acknowledges this logical principle in testimony. "It is expected that a
general increase in usage would increase the usage in both rate blocks ... ".²

16 Staff produces results where block 1 and block 2 usage move in opposite directions 17 which defies logic, contradicts Staff's own statement, and renders Staff's adjustment facially 18 unreasonable.

19

Q. Can you provide an example of this type of result?

A. Yes. Table 1 shows Staff's weather normalization of winter total and block
usage for the Anytime Users and Evening-Morning Savers residential rate plans for the month
of November.

² File No. ER-2024-0319, Michael L. Stahlman Direct Testimony, p. 6, ll. 11-12.

Nov-2023	Billing Unit	Pre Weather Normalization	Post Weather Normalization	Change
Anytimo	Winter Total kWh	325,731,262	320,891,636	-4,839,626
Anytime	Block 1 kWh	233,886,856	249,564,853	15,677,997
Users	Block 2 kWh	91,844,406	71,326,783	-20,517,623
Evening	Winter Total kWh	408,648,977	402,577,382	-6,071,595
Morning	Block 1 kWh	317,088,645	347,492,703	30,404,058
Savers	Block 2 kWh	91,560,332	55,084,679	-36,475,653

Table 1. November Residential Block Normalization Results

3

1 2

4 The kWh in the Pre and Post column are taken from Staff's billing unit and normal 5 revenue workpaper. The change column is the 'basic evaluation' step that I perform. The 6 Company performs this evaluation to ensure its results are logical. Here the change column 7 shows illogical results which are large in magnitude. For example, Staff's total weather 8 normalization results dictated a 6 million kWh decrease in winter usage for Evening-Morning 9 Savers customers in November. Staff's block normalization results indicate that the 6 million 10 kWh decrease be achieved by decreasing block 2 usage by 36 million kWh, so that block 1 11 usage increases by 30 million kWh to achieve the total 6 million kWh adjustment.

In order for this result to occur, one of two things would need to happen. One, individual customers consuming more than 750 kWh would need to increase their block 1 usage above 750. This is impossible by the definition of the Anytime Users and Evening-Morning Savers rate plans. To make it more concrete, we can imagine 1 million customers consuming 786 kWh. By definition, each customer's block 1 usage would be 750 and block 2 usage would be 36. If each customer decreases their block 2 usage by 36 and increases their block 1 usage by 30, then the result would be a total decrease of 6 million kWh, a

block 1 increase of 30 million kWh, and a block 2 decrease of 36 million kWh. The only
problem is that, after this adjustment, each customer has 780 block 1 kWh, yet we know
from the tariff definition of block 1 that block 1 kWh are limited to the first 750 kWh.

Two, only customers consuming less than 750 kWh would increase their usage, while only customers consuming more than 750 kWh would decrease their usage. While mathematically possible, it is hard to imagine the conditions under which this outcome is reasonable, since as I mentioned earlier, there is no reason to expect normal weather that was milder than actual weather to increase usage for any customers in any usage range.

9

Q. What causes Staff to produce this unreasonable result?

A. There is a general cause and a specific cause of this result. Staff's general block normalization modeling approach is very vulnerable to a basic and well-known statistical problem. The problem of small sample sizes. It appears to me that, in an attempt to remedy this problem, Staff made a bad choice. They choose to include some obviously inappropriate data in their model.

15

Q. Can you explain why Staff's general approach is vulnerable?

A. Yes, but first let's talk about what the Company does as a contrast. The Company uses monthly block normalization models with 17 years of historical weather and block usage data for each month. Either the sample size is 17 observations per month or 136 observations for the 8 winter months in total. The Company estimates the relationship between weather and block usage for each month and then uses that estimated relationship and the difference between actual and normal weather to normalize block kWh.

1 In contrast, Staff only uses test-year data to estimate the relationship between actual 2 usage-per-customer and actual block usage. Staff then uses normal usage-per-customer 3 from the total weather normalization result to normalize block usage. In the past, the 4 Company has criticized Staff for choosing a block normalization model that does not 5 incorporate weather directly. I still think this fact makes Staff's modeling approach inferior 6 to the Company's, but it is not the primary identifiable source of the unreasonable results 7 here, so I will not belabor the point here. Staff's choice to use only the test-year data to 8 estimate the relationship between actual usage-per-customer and actual block usage is the 9 general source of the problem.

10 The Company's tariff defines eight winter months and four summer months.³ The 11 residential rate plans only have block usage in the winter months.⁴ Staff chooses to only 12 use test-year data, so Staff only has one residential class-level block usage observation per 13 month. This means Staff cannot estimate a relationship between usage-per-customer and 14 block-usage on a monthly basis by regression methods since at least two observations are 15 required to define a line. This forces Staff to group the months together to increase their 16 sample size. In the past, Staff had grouped all months together, so they would have 8 observations (as compared to 136 for the Company). In the past, we criticized this choice 17 18 of general approach because it assumes a single relationship between usage-per-customer 19 and block-usage exists across all months, despite seasonal variation in weather patterns 20 that impacts the distribution of customer usage. The Company showed in the past how this

³ Seasonal proration of summer and winter kWh for billing periods complicates the exposition, but not the basic facts. Generally, customers will have two billing months that cross the summer-winter seasonal boundaries, June 1 and October 1, so customers will have two bills with both summer and winter kWh on them. This will leave them with 3 pure summer kWh bills and 7 pure winter bills. Across 12 bills there are 4 months' worth of summer kWh and 8 worth of winter kWh.

⁴ Other classes, LGS and SPS in particular, have block usage in summer and winter.

1 assumption is contrary to the facts since different winter months have different 2 distributions of customer usage. It is the distribution of customer usage that will determine 3 the relationship between any specific average usage-per-customer and the proportion of 4 usage in each block. While this criticism still stands, it too is not the primary source of the 5 problem I observe here, so I will say no more about it.

6 Now, let's get to the point where Staff's general problem of small sample size leads 7 to a bad decision. In this case, Staff did not combine all monthly usage-per-customer and 8 block usage observations into a single model. Instead, Staff grouped observations into 9 'shoulder' and 'winter' months. This change could be viewed as an improvement, as it would at least partially group months seasonally where we might expect more similar 10 11 distributions of underlying customer usage. It moves in the direction of addressing the 12 Company's criticism above about the distributional differences in usage across months. 13 However, it appears to be the first of two choices which directly lead to the unreasonable 14 result shown above.

15

Q.

What is the second choice?

A. Staff's choice to separate the eight winter months into two groups, 'shoulder' and 'winter', would reduce the already small sample size of eight to something smaller in each model. In order to compensate for the decreased sample size, Staff generated additional usage-per-customer and block-usage observations, by using residential billing units at the rate plan level. Specifically, Staff chooses to calculate usage-per-customer and block-usage observations for the Anytime Users, Evening-Morning Savers, and Legacy Time-of-Day rate plans. Staff then chooses to use these rate plan level observations to

estimate the usage-per-customer and block-usage models. This is the critical choice that is
 ultimately unreasonable.

3

Q. Can you explain why this second choice is unreasonable?

4 Yes. Staff estimates the relationship between usage-per-customer and block A. 5 usage for 'shoulder' months using eight 'shoulder' month observations. Three observations 6 come from Anytime Users data, three come from Evening-Morning Savers, and two come 7 from the Legacy Time-of-Day rate schedule. What is the problem with that choice? The 8 Legacy Time-of-Day observations are *obvious* outliers, but Staff includes them. 9 Furthermore, Staff gives the outliers as much weight as the Anytime Users and Evening-10 Morning Savers observations when the number of customers on the Legacy Time-of-Day 11 rate is nearly zero. The outliers have a significant impact of the estimated relationship and 12 on the normalization of block usage, especially in November.

13

Q. Why do you call the Legacy Time-of-Day observations outliers?

14 A. It is a textbook example. "Outliers can also arise when sampling from a 15 small population when one or several of the members of the population are very different in some relevant aspect from the rest of the population."⁵ The population of interest for 16 17 block normalization is the rate plan level usage-per-customer and block-usage observations 18 from the test-year. The Legacy Time-of-Day rate plan data is very different from the 19 population in one obvious and relevant aspect. The obvious relevant aspect is the number 20 of customers on the Legacy Time-of-Day rate plan relative to the Anytime Users and 21 Evening-Morning Savers rate plans.

⁵ Wooldridge, Jeffrey, *Introductory Econometrics*, 3rd Edition, p. 328.

1 Q. Can you illustrate why it was unreasonable for Staff to include the

- 2 Time-of-Day usage-per-customer and block-usage observations in the model used to
- 3 normalized block usage?
- 4 A. Yes. Figure 1 shows the eight observations Staff used in their 'shoulder'
- 5 month block normalization model by Residential rate plan.
- 6

Figure 1. Staff Shoulder Month Block Normalization Data

1	and 7% below the next smallest respectively. It is theoretically possible that these values are
2	still relevant, but the relevant aspect mentioned above will clearly illustrate why they are not.
3	Table 2 shows the 8 observations Staff uses to estimate their model including the rate
4	plan and month the observations come from, and the number of customers associated with the
5	observation. The number of customers is the relevant aspect which makes the Legacy Time-
6	of-Day observation very different from the Anytime Users and Evening-Morning Savers
7	observations. Remember, it's the application of this model to usage from the Anytime Users
8	and Evening-Morning Savers that produced the unreasonable results.

⁹

 Table 2. Staff Shoulder Month Block Normalization Data

Observation	Usage Per Customer	Block 1 Percentage	Number of Customer
Anytime Oct	858	73%	453,618
Anytime Nov	772	72%	437,058
Anytime June	920	67%	284,302
TOD Nov	940	60%	8
TOD June	671	94%	4
Even-Morn Oct	809	76%	632,387
Even-Morn Nov	659	78%	649,786
Even-Morn June	909	67%	804,661

10

11 The two observations for the Legacy Time-of-Day rate (in **bold** font) represent usage 12 associated with 8 and 4 customers for November and June respectively. These 2 observations 13 are given equal weight in determining the relationship between usage-per-customer and block-14 usage as the other 6 observations which are associated with between 284,302 and 804,661 15 customers. This is patently unreasonable on its face. 16 If Staff wanted to include these observations, then they should have given the 17 observations something like one one-hundred-thousandth of the weight as the Evening-18 Morning Savers and Anytime Users observations. Weighting observations is technically

- 1 possible, but practically speaking a weight of one one-hundred-thousandth is zero, and zero
- 2 weight is mathematically equivalent to excluding the observation. So practically speaking,
- 3 Staff should have excluded these observations.
- 4

5

6

Q. Can you provide an intuitive explanation of the technical impact these outlier observations have on Staff's model and the result?

- A. In Figure 2, the impact these observations have on the model is illustrated
- 7 graphically. The relationship Staff estimates, inclusive of these two outlier data points, is
- 8 illustrated by the black line. If the two outlier data points are removed, and the relationship is
- 9 estimated again, then the result is the green line. The difference between the black and
- 10 green lines is the impact the outliers have on the model.
- 11 Figure 2. The Outliers' Impact on Staff's Shoulder Block Normalization Model

12

13 The influence of the June Legacy Time-of-Day, the 94%, observation is perhaps the 14 most striking. It is easy to see, both in Table 2 and Figure 1, that this point is extreme.

15 However, the same is true, although it is less extreme, about the November Legacy Time-of-

- 16 Day observation. They are extreme on opposite ends, but they have the same directional
- 17 effect on the estimated relationship, i.e. the black line. The June Legacy Time-of-Day
- 18 observation 'pulls' the black line up on the left and the November Legacy Time-of-Day

1 observation 'pulls' the black line down on the right, both making the estimate of the

2 relationship 'steeper'.

3 The impact that the outliers have on the result is measured by the vertical 4 distance between the two lines for a given usage-per-customer value on the horizontal 5 **axis.** The greater the distance the greater the ultimate impact of the outliers on the block 6 normalization result. Here is how it happens: Staff determines the normal usage-per-7 customer using the results of their total weather normalization model. Then Staff takes the 8 normal usage-per-customer results and uses this model (the black line) to calculate the normal 9 block 1 percentage. If normal usage-per-customer is near the intersection of the two lines 10 (approximately 850 kWh), then there is no difference in the result, i.e. the black and green 11 lines yield the same block 1 percentage. However, if the normalized usage-per-customer is 12 far from that intersection, then the impact of the outliers on the result is great, i.e. the block 1 13 percentage associated with the black line is much different from the block 1 percentage 14 associated with the green line. This is exactly what happens in November. Staff's normalized 15 usage for Anytime Users and Evening Morning Savers for November is 760 and 649 kWh 16 respectively. This is towards the left end of the graph in Figure 2, where the difference 17 between the two lines is greatest. This means that the block usage for approximately one 18 million Anytime User and Evening-Morning Savers customers is primarily determined by the 19 kWh usage of 4 and 8 Legacy Time-of-Day customers. That's unreasonable. 20 Q. Can you provide an estimate of the impact this decision has on Staff's 21 calculation of the Company's normal revenue? 22 A. Yes, I've calculated the impact of including the two outliers on the usage and

23 revenue associated with Anytime Users and Evening-Morning Savers for the month of

- 1 November. Removing the two outliers completely resolves the illogical result (i.e., the
- 2 normalization of the blocks moving in opposite directions) for Evening-Morning Savers, but
- 3 not for Anytime Users. The change reverses the illogical flow of all 30 million kWh for
- 4 Evening Morning Savers, but only reverses the illogical flow of approximately 10 million
- 5 kWh of the 15 million kWh for Anytime Users. Table 3 shows the usage results produced by
- 6 Staff's model when the outliers are excluded (results associated with the green line).
- 7

Table 3. Block Usage Results After Removing Outliers

Nov-2023	Billing Unit	Pre-Weather Normalization	Post Weather Normalization Outlier Removed	Change Outlier Removed
	Winter Total kWh	325,731,262	320,891,636	-4,839,626
Anytime Users	Block 1 kWh	233,886,856	238,972,690	5,085,834
	Block 2 kWh	91,844,406	81,918,946	-9,925,460
Evening	Winter Total kWh	408,648,977	402,577,382	-6,071,595
Morning	Block 1 kWh	317,088,645	316,981,260	-107,385
Savers	Block 2 kWh	91,560,332	85,596,123	-5,964,209

8

9 In order to determine the revenue impact of including outliers, I determine the revenue

10 impact of Staff's model with outliers and the revenue impact of Staff's model without outliers

separately, and then take the difference. The results of this analysis are shown in Table 4.

1

	Datas	kWh	Revenue	kWh Change	Revenue Change
	Kales	Change	Change Staff	Outlier Correct	Outlier Correct
Anytime	0.0934	15,677,997	1,464,325	5,085,834	475,017
Users	0.0627	-20,517,623	-1,286,455	-9,925,460	-622,326
			177,870		-147,309
		Total Anyt	ime Revenue Ch	ange	-325,179
	Datas	kWh	Revenue	kWh Change	Revenue Change
г ·	Rates	kWh Change	Revenue Change Staff	kWh Change Outlier Correct	Revenue Change Outlier Correct
Evening	Rates 0.0919	kWh Change 30,404,058	Revenue Change Staff 2,794,133	kWh Change Outlier Correct -107,385	Revenue Change Outlier Correct -9,869
Evening Morning	Rates 0.0919 0.0616	kWh Change 30,404,058 -36,475,653	Revenue Change Staff 2,794,133 -2,246,900	kWh Change Outlier Correct -107,385 -5,964,209	Revenue Change Outlier Correct -9,869 -367,395
Evening Morning Savers	Rates 0.0919 0.0616	kWh Change 30,404,058 -36,475,653	Revenue Change Staff 2,794,133 -2,246,900 547,233	kWh Change Outlier Correct -107,385 -5,964,209	Revenue Change Outlier Correct -9,869 -367,395 -377,264
Evening Morning Savers	Rates 0.0919 0.0616	kWh Change 30,404,058 -36,475,653 Total Evening I	Revenue Change Staff 2,794,133 -2,246,900 547,233 Morning Revenu	kWh Change Outlier Correct -107,385 -5,964,209 e Change	Revenue Change Outlier Correct -9,869 -367,395 -377,264 -924,497

Table 4. Analysis of Outlier Impact on Revenue

3	The analysis is conducted in terms of the impact of removing the outliers. Therefore,
4	removing the outliers reduces Staff's calculation of the Company's normal revenue by \$1.25
5	million. Conversely, Staff's inclusion of the outliers increased their calculation of the
6	Company's normal revenue by \$1.25 million.
7	Table 4 also provides another illustration of the unreasonableness of Staff's block
8	normalization. In Staff's model of weather normalization, a 4.8 million decrease in Anytime
9	Users usage actually increased revenue by \$177 thousand and a 6.1 million decrease in
10	Evening-Morning Savers kWh actually increased revenue by \$547 thousand. These results
11	are counter intuitive because they are illogical. Counter intuitive directional changes in block
12	1 kWh or total dollars would be identified by basic evaluation techniques.
13	Q. If you went a step further and constrained Staff's model so that it did not
14	produce any illogical kWh changes, what would the revenue impact be?
15	A. If we simply constrained the change in Anytime Users block 1 usage to 0 and
16	allowed the block 2 usage to account for the entire 4.8 million kWh decrease, then the total

1	change in normalized revenue would be a decrease of \$1.4 million rather than \$1.25 million.	
2	This constraint results in the minimum possible revenue reduction for the associated total	
3	usage decrease that would potentially be reasonable to use for purposes of weather	
4	normalization in this case. Any other combination of block 1 and block 2 usage reductions,	
5	i.e. any non-zero reduction in block 1 usage, would result in an even greater revenue decrease.	
6	Q. Why do you spend so much time discussing this one issue? Is it the only	
7	unreasonable thing Staff has done related to billing units and normalized revenue?	
8	A. No, there are other issues, and I will address several more later, but there are	
9	two reasons I spend so much time discussing this issue. First, I spent a lot of time	
10	understanding this issue, because the illogical nature of the result made the issue stick out	
11	early in my review, when I had time to carefully work through Staff's workpapers and	
12	understand the issue in depth. Second, I spend significant time because I want to illustrate	
13	something to the Commission. It takes significant time and effort to understand unreasonable	
14	decisions in this type of complex modeling, and I want to illustrate the Company's capacity to	
15	understand. Furthermore, issues like this one raise real concern about whether Staff made	
16	reasonable decisions in this case more generally concerning normalized billing units and	
17	revenue. If there are real concerns about the reasonableness of Staff's decisions in this case,	
18	then there are real concerns about the reasonableness the billing units and normal revenue	
19	Staff produced in this case. If neither are reasonable, then neither should be relied on to set	
20	rates in this case.	
21	The time and effort required to understand decisions increases when testimony fails to	
22	mention new or unexpected models that play a significant role in determining outcomes. This	
23	is magnified when workpapers papers poorly present work that wasn't mentioned in	

1	testimony, but significantly impacts outcomes. In the specific case of the residential block
2	normalization, these two things are true. As we mention above, Staff estimated two
3	normalization models for residential block usage, one 'shoulder' and one 'winter'. Staff
4	presents a few facts about the 'winter' model in testimony but fails to even mention the
5	existence of another 'shoulder' model. As far as presentation in the workpaper, there are
6	several models estimated on the residential block normalization sheet without clear indication
7	of which models were ultimately used to normalize billing units. In fact, the model which was
8	least clearly identifiable in the workpaper was ultimately the one that Staff chose for the
9	'shoulder' month normalization. Furthermore, the data used in the final model was copied and
10	pasted as values from multiple locations within the sheet without any labeling, so it wasn't
11	clear what the data even represented. ⁶ What the data really represented was key to
12	understanding why it wasn't reasonable to include that data.

1	3
T	\mathcal{I}

Figure 3. The Top-Left of Staff's Residential block normalization workpaper

1 Image: model of the section of th		Α	В	С	D	E	F	G	н	1.1	J	К	L	M	N	0	Р	Q	R	S
2 Installable Summer U/C Bloch 18 Syning Fall Summer U/C Bloch 18 Syning Fall Statk N 4 0% 8 62015824 39613895 94419877 63001701 0 1.247 0.731171 0 •	1																			
3 2% 7 61910728 596189582 6301910728 596189582 0 0 1 0 0 1,203 5778 1 0 0 1,203 5778 1 0 0 1,203 5778 1 0 0 1 1,247 0.771171 0 0 1 1,247 0.771171 0 0 1 0.771171 0 0 1 0.771171 0 0 0 1 0.771171 0 0 0 1 0.771171 0 0 0 1 0.771171 0 0 0 0 0.771171 0 0 0 0.771171 0 0 0 0.77127 0 0.77127 0 0.77127 0<	2			Total kWh	Summer kWh	Winter Block 1 kWh	Winter Block 2 kWh			Block 1 %	Spring	Fall	Summer	U/C		Block 1 %	Spring	Fall	Total kWh	
4 0% 8 612015824 612015824 0 0 490763 FD1V(01 0 0 1 1,47 0,73171 0 I 1,48 0,73171 0 I 1,48 0,73171 0 I 1,48 0,73171 0 I 1,48 0,73171 0 I 1,01 0,72171 0,43565 0 1,48 44 0,43565 0 1,48 0,4456739 0,43565 0 1,46 44 0,43567 0,4466739 0,43565 0 1,46 44 0,43567 0,4466739 1,437 0,5357 0 0 0 1,446 44 0,455192 0 1,46 44 0,45519 1,438 0 0 0 1,446 44 0,45519 1,438 0 0 0 1,446 44 0,45519 1,438 0 0 0 1,446 44 0,45519 1,438 0 0 0 1,446 44 4,45629 1,44 1,446 1,446 1,446 1,446 1,446 1,446 1,446 1,	3	2%	7	610910728	596158956	8446927	6304845	507642		57%	6 1	L (0 0	1,203		57%	1	L 0	6.11E+08	
5 0% 9 95.633582 0.0 0 475.73 POIV/01 0 0 1 1.61 0.718036 00 7 0.74 11 337281059 11.549797 22388656 914444 437058 72% 0 1 0 858 0.438559 0.0 0 0 1.072 0.433559 0.0 0 0 0 0 0.0375% 0.00 0 0.0375% 0.00 0 0.043469 0.00 0 0 0.043699 0 0.02737898 0.027378978737373757 3705 443% 0 0 0 0.4434% 0.65766 0 0 0 0.4383 0.65766 0 0 0 0 0.4383 0.65766 0 0 0 0 0.4383 0.65766 0 0 0 0 0.4383 0.65766 0 0 0 0.0384 0.65766 0 0 0 0 0.03976 0.03976 0.03976 0.03976 0.03976 0.03976 0.03976 0.03976 0 0 <t< td=""><td>4</td><td>0%</td><td>8</td><td>612015824</td><td>612015824</td><td>0</td><td>0</td><td>490763</td><td></td><td>#DIV/0!</td><td>(</td><td>) (</td><td>0 1</td><td>1,247</td><td></td><td>0.731171</td><td></td><td>1</td><td>3 000 100</td><td></td></t<>	4	0%	8	612015824	612015824	0	0	490763		#DIV/0!	() (0 1	1,247		0.731171		1	3 000 100	
6 25% 10 881/663 25074078 72093313 2507244 435818 73% 0 1 0 858 0.55288 0 007 8 100% 12 449687998 0 244968797 23386865 91144406 43702 0 0 0 1.6794204 0 077 0 3357 0 0 0 0 1.484 4350 0.65612 0 6% 0 0 0 0 0.4446 0.55056 0 6% 0 0 0 0 0.444 0.55126 0 6% 0	5	0%	9	551639582	551639582	0	0	475173		#DIV/0!	() (0 1	1,161		0.718036)		
7 97% 11 337281059 11549797 233886856 9144449 43708 72% 0 1 0 772 0.438559 0 00% 9 100% 11 24968794224 0 247429173 32031311 39250 444% 0 0 0 1.446 44% 0.59254 0 5% 0 0 0 1.446 44% 0.59254 0 5% 0 0 0 1.438 0.555 0 0 0 1.438 0.555 0 0 0 1.438 0.555 0 0 0 0 33021337 0 13456232 347.33 5% 0 0 0 0 366 6.66 0.66766 1 4% 0 0 0 0 333 20%	6	25%	10	389176635	290574078	72095313	26507244	453618		73%	6 () :	1 0	858		0.552588		90%		
8 100% 12 449857998 0 2449857998 0 70% 55% 0 0 1,78 55% 0,2255 0 70% 10 100% 2 5358,2059 0 227548394 333379577 371205 443% 0 0 1,444 445% 0.55512 0 50% 1 10% 13 300% 33321397 0 1956546223 34349 59% 0 0 0 95% 0.7556 0 5 2552360 0 1647656 1 40% 2256 46% 0 0 0 846 66% 0.667566 1 40% 20% 1 0 0 75% 0 0 0 75% 0 0 0 75% 0 0 0 10% 20%	7	97%	11	337281059	11549797	233886856	91844406	437058		72%	i () :	1 0	772		0.435659) 00%		
9 100% 1.67342.284 0 2474.29173 320213311 33250 44% 0 0 0.446 44% 0.53256 0 60% 11 100% 3 330213397 0 125568472 13456225 347.33 59% 0 0 0 95% 0.73105 0 9% 47522643 0 1366 1 40% 4752 13757 375% 1 0 0 836 65766 1 40% 475 66% 0 0 0 866 667566 1 40% 475 1 0 0 920 10% 20% 10% 10% 20% 10%	8	100%	12	449687998	0	248492411	201195587	417157		55%	i () (0 0	1,078	55%	0.42859		70%		
10 100% 2.3302/4599 0 227548384 30337957 371205 43% 0 0 0 43% 0.656192 0 5%	9	100%	1	567942284	0	247429173	320513111	392650		44%	i () (0 0	1,446	44%	0.592504		60%		
11 100% 3 330213397 0 139565472 13456225 347439 59% 0 0 998 59% 0.73105 0 0 0 846 65% 0.65666 1 40% 472526323 0 1806725118 325323 303449 75% 0 0 0 846 66% 0.65666 1 40% 475 475 0 0 0 846 66% 0.65666 1 40% 475 475 0 0 0 920 475 4	10	100%	2	530924959	0	227548984	303375975	371205		43%	i () (0 0	1,430	43%	0.656192		50%		
12 100% 4 77526243 0 180601125 9462318 32529 66% 0 0 846 66% 0.667566 1 00% 1 16 16 16 0 75% 0 0 0 738 75% 0 0 0 738 75% 0 0 0 738 75% 0 0 0 738 75% 0 0 0 738 75% 0 0 0 75% 0 0 0 930 1 0 0 920 10% </td <td>11</td> <td>100%</td> <td>3</td> <td>330219397</td> <td>0</td> <td>195656472</td> <td>134562925</td> <td>347439</td> <td></td> <td>59%</td> <td>i (</td> <td>) (</td> <td>0 0</td> <td>950</td> <td>59%</td> <td>0.751056</td> <td></td> <td>)</td> <td></td> <td></td>	11	100%	3	330219397	0	195656472	134562925	347439		59%	i () (0 0	950	59%	0.751056)		
13 100% 5 515823300 0 16247928 5385242 303449 75% 0 0 713 75% 90%	12	100%	4	275226243	0	180601125	94625118	325259		66%	i () (0 0	846	66%	0.667566	1	40%		
14 66% 6 255522 248869 118402580 58961973 284302 67% 1 0 920 20%	13	100%	5	216323360	0	162470928	53852432	303449		75%	i () (0 0	713	75%			30%		
15 SUMMARY OUTPUT 10 <td>14</td> <td>68%</td> <td>6</td> <td>261553212</td> <td>84188659</td> <td>118402580</td> <td>58961973</td> <td>284302</td> <td></td> <td>67%</td> <td>i :</td> <td>L (</td> <td>0 0</td> <td>920</td> <td></td> <td></td> <td></td> <td>20%</td> <td></td> <td></td>	14	68%	6	261553212	84188659	118402580	58961973	284302		67%	i :	L (0 0	920				20%		
16 SUMMARY OUTPUT 1 <th1< th=""> <th1< th=""> 1 <</th1<></th1<>	15																	10%		
17	16			SUMMARY	OUTPUT															
18 Regression Statistics Regression Statistics Image: Control of the statistics Im	17																	0%	200	400
19 Multiple R 0.921664221 0.643464837 0.643464837 0.643464837 21 Adjusted R 0.774197405 0.61464837 0.674197405 0.677263 22 Standard F 0.054669859 0.674197405 0.677263 0.55258 23 Observatio 10 10 1446.434 0.435559 24 0 1446.434 0.435559 25 ANOVA 950.4385 0.592584 26 0f SS MS F Significonce F 27 Regression 3 0.10193579 0.0339786 11.25941 0.73056 28 Total 6 0.01004209 0.03010701 11546 0.45556 29 Total 9 0.12000008 1546 0.425566 1544646462 0.291985 31 Coefficients Standard Eror t Statt P-value Lower 95K/pper 95K/mer 95.0% pper 95.0% 1427.8 0.466032 33 Spring 0.0767565 0.45124627 7.8656-6 0.677207 0.961011 117.7.48 0.893705 34 <td>18</td> <td></td> <td></td> <td>Regres</td> <td>sion Statistics</td> <td></td>	18			Regres	sion Statistics															
20 R Square 0.03496(33) → 0 0 </td <td>19</td> <td></td> <td></td> <td>Multiple R</td> <td>0.921664221</td> <td></td>	19			Multiple R	0.921664221															
21 Adjusted R 0.774197405 0.6542988 0.05429889 22 Standard F 0.05469899 0.052598 0.552588 23 Observatio 10 146.434 0.45559 24 0 146.043 0.45559 25 ANOVA 107.788 0.552588 26 df S. K 0 140.235 26 df S. MS F 950.438 0.55258 26 df S. MS F 950.438 0.55258 27 Regression 3 0.101935799 0.0339786 1.285941 0.0702 1154 0.453566 29 Total 6 0.10200000 1154 0.453566 1154 0.453566 31 Coefficients Standard Error t Stott P-value 1154 0.43370 0.51748 0.03370 1417.8 0.66032 32 Intercept 0.41910992 0.045142962 7.865-06 0.077270 0.961011 0.177.40 0.9317 1417.8 0.660327 33 <td< td=""><td>20</td><td></td><td></td><td>R Square</td><td>0.849464937</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	20			R Square	0.849464937															
22 Standard Fr 0.05869839 1077.98 0.552588 23 Observatio 10 146.434 0.45559 24 Observatio 10 146.434 0.45559 25 ANOVA 1400.274 0.42859 26 ANOVA 950.435 0.5250.40 27 Regression 3 0.01393796 11.285941 0.007027 28 Residual 6 0.01393796 0.0339706 0.03010701 1154 0.432566 28 Total 9 0.12000008 0.03010701 1154 0.432566 29 Total 9 0.12000008 0.12000008 11454.03.0972 1354 0.30972 31 Coefficients Standard Error t Stat P-value Lower 95%.0per 95%wer 95.0%per 95.0% Char Title 236.0 0.31985 32 Intercept 0.61310.077270 0.951011 1177.48 0.06327 33 Spring 0.07675550 0.04514565 0.024328 0.24318	21			Adjusted R	0.774197405															
23 Observativo 10 1446.448 0.4355593 26 ANOVA - - - 1400.274 0.425569 26 ANOVA - - - - 1400.274 0.425569 26 - - - - - - 1400.274 0.525924 26 - - - - - - 1400.274 0.525924 26 - - - - - 72.821 0.50505 27 Regression 3 0.101935799 0.0339786 11.255941 0.07027 - 712.821 0.55056 28 Total 9 0.120000101 - - - 154 0.425566 30 - - - - - 154 0.23978 1.245267 2.8556 0.677207 0.961011 0.671207 0.961011 1171.748 0.591266 31 - Codfficients	22			Standard Er	0.054869859													1077.983	0.552588	
24 ANOVA 1430.274 0.42829 25 ANOVA 950.435 0.52204 950.435 0.52204 26 df SS MS F Significance F 950.435 0.52504 26 Regression 3 0.01395799 0.0339786 11.285941 0.007027 1712.821 0.71056 26 Residual 6 0.018054209 0.003010701 1540 0.42556 29 Total 9 0.12000000 1540 0.42556 1540 0.43566 31 Coefficients Standord Error 1504 P-value 1417.8 0.466032 32 Intercept 0.513106922 0.67592356 1.63943109 0.403433 0.63770 0.551011 1173.3 0.567166 33 Spring 0.07667550 0.045146669 1.65943109 0.435148 0.03379 0.517148 0.6337 0.58716 34 Fall 0.13504321 0.44567620066 0.004329 .9456-10 .38-10 .	23			Observatio	10													1446.434	0.435659	
25 ANOVA - <td>24</td> <td></td> <td>1430.274</td> <td>0.42859</td> <td></td>	24																	1430.274	0.42859	
26 off SS MS F Significance F Significance F Significance F 27 Regression 3 0.0193579 0.033786 11.285941 0.07027 12.88541 0.71556 28 Residual 6 0.01804209 0.003010701 1448 0.432566 29 Total 9 0.12000000701 1448 0.432566 1549 0.33762 12.85941 0.45156 0.53972 30	25			ANOVA														950.4385	0.592504	
27 Regression 3 0.01935799 0.033788 11.265941 0.00707 712.8821 0.71056 26 Residual 6 0.019864209 0.003010701 10481 0.425566 26 Total 9 0.120000008 10491 0.42566 15491 0.42566 30 Coefficients Standar Error t Stat P.value Lower 955/Upper 955/were 95.0% per 95.0% 12482 0.721982 0.339702 31 Coefficients Standar Error t Stat P.value Lower 955/Upper 95.0% 11173 0.45032 32 Intercept 0.81109092 0.057992366 1.412442967 7.8552.06 0.677207 0.951011 677207 0.51011 11173 0.567105 33 Spring 0.005765506 0.045146801 0.00379 0.187148 0.00379 0.187148 0.03379 0.187148 0.03379 0.187148 0.03972 0.56110 3512 0.50372 34 Fail 0.135401254 0.024328 0.45188	26				df	SS	MS	F		Significance	2 F							846.1756	0.656192	
Participant Residual 6 0.018064209 0.03010701 1488 0.425566 29 Total 9 0.12000000 0 1548 0.425566 30 Cheft Tile 20.6 0.21985 0.21985 0.21985 31 Coefficients Standard Error 1540 0.425266 0.21985 32 Intercept 0.81910992 0.05793256 1.1242962 7.8655-06 0.077207 0.961011 0.57126 1177.8 0.68032 33 Spring 0.07667550 0.045146669 1.65943109 0.02379 0.157148 -0.03379 0.157148 -0.03379 0.57148 -0.03379 0.57148 -0.03379 0.57148 -0.03379 0.57148 -0.03379 0.57148 -0.03379 0.57148 -0.03379 0.57148 -0.03379 0.57148 -0.03379 0.57148 -0.03379 0.57148 -0.03379 0.57148 -0.03379 0.57148 -0.03379 0.57148 -0.03379 0.57148 -0.03379 0.57148 -0.035749 <td>27</td> <td></td> <td></td> <td>Regression</td> <td>3</td> <td>0.101935799</td> <td>0.0339786</td> <td>11.285941</td> <td></td> <td>0.007027</td> <td>7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>712.8821</td> <td>0.751056</td> <td></td>	27			Regression	3	0.101935799	0.0339786	11.285941		0.007027	7							712.8821	0.751056	
29 Total 9 0.120000008 1540 0.350972 30	28			Residual	6	0.018064209	0.003010701					1						1648	0.425566	
30 Coefficients Standard Error t Stat P-value Lower 955%/pper 95.0% Chart Tille 2205.6 0.291985 31 Coefficients Standard Error t Stat P-value Lower 955%/pper 95.0% 1427.8 0.492580.02 32 Intercept 0.819109092 0.057992366 14.12442962 7.865E-06 0.677207 0.961011 0.677207 0.961011 1117.8 0.557186 33 Spring 0.076678506 0.045146669 1.698431100 0.403379 0.187148 -0.03379 0.187148 -0.03379 0.857148 -0.03379 0.857148 -0.03379 0.857148 -0.03379 0.857148 -0.03379 0.857148 -0.03379 0.857148 -0.03379 0.857148 -0.03379 0.857148 -0.0357 -0.03379 0.857148 -0.03572 0.245188 0.926128 0.245148 0.024528 0.245188 0.926121 0.250377 36 Total KWh -6.32095-10 1.35403E-10 -4.667620066 0.0034399 -9.6E-10 -3E-10 -3E-10	29			Total	9	0.12000008												1954	0.350972	
31 Coefficients Standard Error t Stat P-value Lower 95%Upper 95%wer 95.0%per 95.0% 1427.8 0.466032 32 Intercept 0.61910092 0.05799266 14.1244296 7.865-06 0.677207 0.961011 0.677207 0.961011 0.71727 0.961011 0.71727 0.961011 0.71727 0.961011 0.71727 0.961011 0.71727 0.961011 0.71727 0.961011 0.71727 0.961011 0.71727 0.961011 0.71727 0.961011 0.71727 0.961011 0.71727 0.97148 0.99 0.94705 0.96114 0.71727 0.961011 0.71727 0.97148 0.99 0.94705 0.97148 0.99 0.94705 0.97148 0.99114 0.97126 0.2928 0.245188 0.024928 0.245188 0.924928 0.245188 0.924928 0.245188 0.924928 0.245188 0.924928 0.245188 0.99142 0.42928 0.426128 0.426128 0.426128 0.426128 0.426128 0.426128 0.426128 0.426128 0.426128	30															Charl	Title	2305.6	0.291985	
32 Intercept 0.81910992 0.057992366 14.124/2967 7.855-06 0.677207 0.951011 0.1117.8 0.557186 33 Spring 0.07675506 0.04514669 1.698431109 0.1403433 -0.03379 0.187148 0.03379 0.187148 0.099 0.657105 34 Fail 0.135058229 0.045007549 0.00772544 0.023943 0.024288 0.245188 0.02428 0.245188 0.02428 0.245188 0.02617 35 35 Total kWh -6.32095-10 1.354035-10 -4.657620066 0.004329 -9.6E-10 -3E-10 -3E-10 1179.498 0.03728 36 -9.6E-10 -3E-10 -3E-10 1179.447 0.49248	31				Coefficients	Standard Error	t Stat	P-value		Lower 95%	Upper 95	6ower 95.0	9 pper 95.0	8				1427.8	0.466032	
33 Spring 0.076678506 0.045146669 1.69431109 0.1403433 -0.03379 0.187148 0.03379 0.18	32			Intercept	0.819109092	0.057992366	14.12442962	7.865E-06		0.677207	0.96101	0.67720	7 0.961011					1117.8	0.567186	
54 Fall 0.135058229 0.045007818 3.000772654 0.023928 0.245188 0.024928	33			Spring	0.076678506	0.045146669	1.698431109	0.1403433		-0.03379	0.18714	-0.03379	9 0.187148					899	0.634705	
35 Total kWh -6.32009E-10 1.35403E-10 -4.667620066 0.0034399 -9.6E-10 -3E-10 -3E-10 1179.989 0.503722 36 1179.474 0.492348 1179.442 0.492348 1179.442 0.492348	34			Fall	0.135058229	0.045007818	3.000772654	0.0239843		0.024928	0.24518	0.024928	8 0.245188					890.6812	0.620537	
36 1179.424 0.492348	35			Total kWh	-6.32009E-10	1.35403E-10	-4.667620066	0.0034399		-9.6E-10	-3E-10	-9.6E-10	0 -3E-10					1179.989	0.503722	
	36																	1179.424	0.492348	

⁶ This is particularly troublesome, given Staff's vociferous complaints in several recent dockets (see, for example the testimony of J Luebbert in the Company's MEEIA 4 application case, File No. EO-2023-0136) about the Company including "hard-coded" values in workpapers.

- 1 The source of the data is not identified, but it appears to be Anytime Users usage data
- 2 and any Anytime Users specific block normalization model. It appears that this portion of the
- 3 workpaper was not used by Staff in its final analysis.
- 4 Scrolling down, we find more unused unlabeled data and analysis. It turns out to be
- 5 Legacy Time-of-Day and Evening Morning data and model results which are partially deleted.
- 6 Then moving back up and to the right of the above screenshot, we find Figure 4.
- 7

Figure 4. Data and Model Used for Staff's Should Model

8

9 In Figure 5, I zoom in to highlight the data used by Staff to estimate their 'shoulder' 10 month block normalization model. There are no column labels, i.e. no indication of what the 11 variables definitions. There are no row labels, i.e. indication of the rate plan or months from 12 which the data came. There is also no indication that some of the data is extraneous, i.e. not 13 used to estimate the model.

	1		
	1	l	

Figure 5. Staff Shoulder Month Model Data

AB	AC	AD	AE	AF	AG	AH	AI	AJ
	57%	1	0	0	1,203	57%		
	60%	1	0	0	1,275	60%		
	54%	0	1	0	1,080	54%		
	57%	1	0	0	1,111	57%		
	73%	0	1	0	858	73%		
	72%	0	1	0	772	72%		
	67%	1	0	0	920	67%		
	60%	0	1	0	940	60%		
	94%	1	0	0	671	94%		
	76%	0	1	0	809	76%		
	78%	0	1	0	659	78%		
	67%	1	0	0	909	67%		

2

3

After some searching, we identify the source of the data points and which of the data

4 points are ultimately used in the model. You can see the data is randomly ordered (yellow)

5 and not all data is used (only the information in the tan rows is used).

	-	
r	۰.	
L		

Figure 6. Staff Shoulder Month Model Data Explained

3	AC	AD	AE	AF	AG	AH	AI	
	57%	1	0	0	1,203	57%	anytime July	
	60%	1	0	0	1,275	60%	TOD July	
	54%	0	1	0	1,080	54%	TOD Oct	
	57%	1	0	0	1,111	57%	eveMorn July	
	73%	0	1	0	858	73%	anytime Oct	
	72%	0	1	0	772	72%	anytime Nov	
	67%	1	0	0	920	67%	anytime June	
	60%	0	1	0	940	60%	TOD Nov	
	94%	1	0	0	671	94%	TOD June	
	76%	0	1	0	809	76%	Eve Morn Oct	
	78%	0	1	0	659	78%	Even Morn Nov	
	67%	1	0	0	909	67%	Eve Morn June	

7

8 Under these conditions, it's difficult to identify what decisions were made and assess 9 the significance of their impact. We did that from top to bottom for this issue in this case. It 10 took a lot of time. We want to impress upon the Commission the thought and care the 11 Company puts into its model choices and results, by illustrating our ability to understand 12 Staff's choices and results even when Staff provides little direction. We also want to illustrate 13 by this example and the others that follow that Staff did not make reasonable choices. And

1

2	revenue results, so they cannot be relied upon in this case.
3	Q. Do you have any other comments on the outliers and statistics more
4	generally, which are worth keeping in mind as we consider the statistical modeling
5	choices Staff made throughout their normalization of billing units?
6	A. Yes. The Legacy Time-of-Day observations themselves illustrate the same
7	point about imprecision (or high variance) as the point we made, implicitly, above about
8	imprecision in Staff's model. Imprecision in Staff's model is best illustrated in Figure 2 by the
9	degree to which the estimated relationship (the line) moves when just two observations are
10	removed. Small sample sizes lead to imprecise estimates. In statistics, imprecision is
11	synonymous with high variance. If a statistical estimate is imprecise, it means the estimate has
12	high variance.
13	You can also see the high variance in the Legacy Time-of-Day observations
14	themselves. In one month, with 8 customers, the block 1 percentage is 60%. In the other
15	month, when there are 4 customers, the block 1 percentage is 94%. There are a small number
16	of customers (observations) that determine the block 1 percentage, and the block 1 percentage
17	varies greatly. Again, small sample size leads to a lot of variance. Of course, these are
18	different months, but we do not see the 34% variation in the other two residential rate plans
19	which have hundreds of thousands of customers. The deviations between June and November
20	for the other two rate plans are 5% and 11% respectively.

ultimately, those unreasonable choices produced unreasonable billing units and normal

1 Q. Does Staff allow Legacy Time-of-Day outliers to influence its residential

2 block normalization 'winter' model?

- 3 A. Yes. Legacy Time-of-Day observations have equal weight in the
- 4 determination of Anytime Users and Evening-Morning Savers block normalization in all
- 5 'winter' months as well. Figure 7 shows the 'winter' observations by residential rate plan.
- 6

Figure 7. Staff's 'Winter' Block Normalization Data

7

8 Half of the Legacy Time-of-Day observations lie to the right and below all of the 9 Anytime Users and Evening-Morning Savers observations. Also, if you imagine a line 10 running through the Legacy Time-of-Day observations separately from a line running through 11 the Anytime Users and Evening Morning Savers, you'd imagine two lines with different 12 slopes. These outlier observations represent the relationship between usage-per-customer and 13 block-usage of between 5 and 6 Legacy Time-of-Day customers, while the other observations represent between 303,449 and 785,243 Anytime Users or Evening Morning Savers 14 15 customers. They, too, are clearly outliers and inappropriate to include in a model that is 16 applied to the broader residential population.

1 **Q**. Do you have any other concerns about Staff's residential block

2 normalization 'winter' model?

3 A. Yes. Staff has likely succumbed to a common statistical pitfall when they choose to estimate a power function. Typically, regressions are used to estimate linear 4 5 relationships. If you estimate some non-linear relationship, typically, you'd have a theoretical 6 or intuitive reason for doing so. Staff does not appear to have a theoretical reason for 7 estimating a power function. 8 In Testimony, Staff said this. "First, I graphed the Residential Block 1 usage as a 9 percentage of total winter usage against total Residential rate schedule usage per customer. 10 The resulting figure, shown as Figure 1 below, indicated that all residential rate schedules 11 could be combined to form an estimate and that a power function was the best functional form 12 for the regression."⁷ Staff's Figure 1 is reproduced as Figure 8 here. 13

Figure 8: Staff Figure 1

14

15 It's not clear how the figure indicates that all residential rate schedules 'should' be

16 combined, but they certainly 'could' be combined and that is what Staff does. The Company's

⁷ File No. ER-2024-0319, Michael L. Stahlman Direct Testimony, p. 5, ll. 7-10.

1 Figure 7 above and the facts about the Legacy Time-of-Day observations are evidence that all 2 the residential rate plans should not be combined. It is also unclear what indicates that a 3 power function is the 'best' functional form. 4 Later comments in Staff's testimony related to the SGS block normalization hint at the 5 common pitfall Staff has likely succumbed to. Staff states that 'while a quadratic formulation 6 with a dummy variable for shoulder month periods performed satisfactorily for single phase 7 rate schedule, (footnote 2) a similar technique was insufficiently precise for the three phase 8 rate schedule (footnote 3).¹⁸ Footnotes 2 and 3 report the Adjusted R-squared of Staff's 9 regressions. This suggests that Staff relied heavily upon the R-squared metric to dictate 10 functional form selection. This is common pitfall.9 11 One of the foremost educators on the subject, Jefferey Wooldridge, has this to say in 12 Section 6.3 of his Introductory Econometrics. 'Until now, we have not focused much on the 13 size of R-squared in evaluating our regression models, because beginning students tend to put 14 too much weight on R-squared. As we will see shortly, choosing a set of explanatory 15 variables based on the size of the R-squared can lead to nonsensical models.¹⁰ The choice of 16 functional form of variables is part of choosing the set of explanatory variables. When a 17 power function is estimated, the usage-per-customer variable is transformed by the natural 18 logarithm prior to estimation. The variable in levels and the natural logarithm of the variable 19 are different variables from a technical perspective. Staff offers no theoretical or intuitive 20 reason for selecting different functional forms for different models of the relationship between

⁸ File No. ER-2024-0319, Michael L. Stahlman Direct Testimony, p. 6, ll. 9-11.

⁹ Stock, James and Watson, Mark, *Introduction of Econometrics*, 2nd Edition pg. 238 Key Concept 7.4 R-squared and Adjusted R-squared: What They Tell You – And What They Don't.

¹⁰ Wooldridge, Jeffery, *Introductory Econometrics*, 3rd Edition, p. 206-207(emphasis added).

1 usage-per-customer and block-usage, but Staff does prominently display the R-squared

2 statistic in its testimony and workpapers.

3 To put a finer point on the things Staff says about its functional form selection, 4 Wooldridge also has this to say, "Nothing about the classical linear model assumptions 5 requires R-squared be above any particular value."11 Furthermore, "The zero conditional 6 mean assumption is what determines whether we get unbiased [accurate or true] estimators of 7 the ceteris paribus effects of the independent variables, and the size of the R-squared has no 8 direct bearing on this."¹² If Staff has used R-squared to determine 'satisfactory performance' 9 or 'sufficient precision', then Staff is illustrating that they have succumbed to a common pitfall 10 in regression analysis. 11 A practical implication of over-emphasizing R-squared is sometimes called 12 overfitting. There are natural unobserved sources of variation in all measured things, even in 13 the most controlled laboratory. We are not talking about anything like the laboratory setting. 14 There are all kinds of sources of unobserved variation in customer usage data. A useful 15 regression analysis will seek to identify the underlying relationship between variables using 16 data that has other sources of variation in it, sometimes referred to as noise. "An R-squared or adjusted R-squared near 1 means that the regressors are good at predicting the values of the 17 18 dependent variable in the sample".¹³ If you focus on increasing R-squared, then the model will 19 predict the values in the sample well. If you overfit the noise, or unobserved sources of 20 variation, in the data then the model may not predict well **outside of the sample**. In this case,

21 predicting normal block usage outside of the sample is what Staff is trying to do. The more

¹¹ Wooldridge, Jeffery, Introductory Econometrics, 3rd Edition, p. 207.

¹² Wooldridge, Jeffery, Introductory Econometrics, 3rd Edition, p. 207.

¹³ Stock, James and Watson, Mark, *Introduction to Econometrics*, 2nd Edition p. 237.

1	Staff focuses on maximizing R-squared, the more likely Staff overfits the model, and predic	cts
2	out-of-sample normal block usage poorly. The evidence suggests that Staff is overfitting the	heir
3	block normalization models, as well as including outliers, and therefore normalizing block	
4	usage poorly. It is not reasonable to rely on poorly normalized block usage to determine	
5	normal revenue and rates.	
6	Q. Did you also review Staff's SGS block normalization?	
7	A. Yes.	
8	Q. Do you have any summary observations about Staff's SGS block	
9	normalization?	
10	A. Yes. There are a few interesting differences between Staff's SGS and	
11	Residential block normalization, but also many similarities. Some of the differences highlig	ght
12	points I made earlier related to past general criticisms of Staff's approach. I will briefly	
13	describe those differences and provide a little more information about the Company's	
14	approach to highlight why Staff's general approach dictates the need for extra steps. Those	
15	extra steps could look like improvements, but in fact, they rely on average results in earlier	
16	steps, that mean the apparent improvement is just that, apparent, not actual.	
17	Regardless, these differences aren't as compelling as what Staff itself says about the	r
18	own SGS block normalization results. Staff has this to say after completing a brief descript	ion
19	of their choices. "This indicates that the rate block adjustment analysis is highly sensitive [to	0
20	modeling choices] and could benefit from additional data points." ¹⁴ This is effectively	
21	confirmation of the criticisms I outlined above related to Residential results and Staff's meth	nod
22	generally – specifically that using only test year observations results in insufficient sample	

¹⁴ File No. ER-2024-0319, Michael L. Stahlman Direct Testimony, p. 7, ll. 1-2.

sizes to estimate reasonable models or produce reasonable results in this case. None of the differences between Staff's modeling treatment of the SGS and Residential classes resolve that issue. Staff's choice to use only actual test year observations makes their results sensitive, i.e. they vary or change a lot when small changes are made to the input data or model. In the Residential case, combining Residential rate plan data (including Legacy Time-Of-Day with Anytime and Evening-Morning) was an input data choice which exposed the high degree of variance in the model.

8 In the SGS block normalization analysis, Staff chooses to separate single phase and 9 three phase customers. Staff's tendency to overfit models by selecting functional forms based 10 on R-squared decreases the precision of out-of-sample estimates of block usage, i.e. the 11 normalization step. Staff's statement about highly sensitive models comes directly after they 12 discuss fitting two different functional forms, one quadratic and one power function form, to 13 the two different groups of SGS customers. The Company's monthly models of SGS block 14 kWh based on 17 years of weather and block data are not 'highly sensitive' like Staff's models. 15 In fact, the Company's model grows in precision over time as more historical weather and 16 block kWh data are added to the well specified model. The Company is not changing the 17 functional form or splitting data along different lines from case to case, because the 18 Company's general framework is well designed. Staff's general framework is not well-19 designed, and the collection of ad hoc decisions which vary from case to case illustrate this. 20 The collection of ad hoc decisions lead to unreasonable models and unreasonable SGS block 21 usage results in this case.

1	Q. Do you have any other concerns about Staff's SGS block normalization?
2	A. In the prior question, I alluded to the pitfalls of putting too much weight on R-
3	squared. In simple terms, it can lead to nonsense. Staff produced separate block
4	normalization models for single phase and three phase SGS customers. Staff said, 'a quadratic
5	formulation' 'performed satisfactorily for the single-phase rate schedule'. ¹⁵ This was
6	followed by a footnote indicating the adjusted R-squared was 99.3%. Wow, that's high, but
7	what sense does a quadratic make? The estimated equation represents a parabola opening
8	upward. As usage-per-customer increases initially, block 1 usage (known as base in SGS
9	schedules) as a percent of total usage will decrease, but at some usage-per-customer level
10	(approximately 1770 kWh), the relationship will reverse, and the parabolic shape will
11	necessarily mean that block 1 usage as a percent of total will start to increase. Staff followed
12	this by saying "a similar technique [or functional form] was insufficiently precise for the three
13	phase rate schedule". ¹⁶ I conclude that Staff is likely basing these decisions on R-squared
14	statistics for different functional forms, rather than some well-founded conceptual framework.
15	Like Stock and Watson said: "R-squared and adjusted R-squared tell you whether the
16	regressors are good at predicting, or 'explaining' the values of the dependent variable in the
17	sample of data on hand." ¹⁷ R-squared will not tell you that you have the right set of regressors
18	or functional form needed to estimate the dependent variable well outside of the sample.
19	Predicting (normalizing) the dependent variable (block kWh) outside of the sample is
20	precisely what Staff is doing, and R-squared will not tell you if the model will do that well.
21	The smaller your sample or more arbitrarily you choose a functional form, the more likely you

¹⁵ Case No. ER-2024-0319, Michael L. Stahlman Direct, p. 6, ll. 9-10.
¹⁶ Case No. ER-2024-0319, Michael L. Stahlman Direct, p. 6, ll. 10-11.
¹⁷ Stock, James and Watson, Mark, *Introduction of Econometrics*, 2nd Edition p. 238.

have overfitted the model and will not predict well out of sample. If this sounds repetitive, it
is because I discussed the issue above in the context of Residential block normalization. The
same issue applies here to the SGS block normalization.

4

Q. Why does Staff have to make these choices (splitting the data)?

5 A. Staff has to split the model because they do not model block usage and 6 weather directly. Staff models the relationship between usage-per-customer and block usage. 7 Staff uses their model of weather and total usage to come up with normal usage-per-customer, 8 and uses this to normalize block usage. It is worth noting that Staff normalizes usage-per-9 customer for both single phase and three phase customers using a *single* SGS total weather 10 normalization factor. The appearance of increased granularity resulting from splitting the 11 single phase and three phase customers in the block normalization step is undermined by the 12 fact that the two usage-per-customer values are generated using a SGS class average, i.e. they 13 are not single phase and three phase specific. Splitting them apart is just an added step which 14 is 'required' because of Staff's initial choice not to model the relationship between block usage 15 and weather directly.

16

Q. Why doesn't the Company have to split the SGS block data?

A. The average single phase customer and the average three phase customer have different levels of usage-per customer. However, each SGS customer has their own baseline defining block 1 and block 2 usage. Therefore, block usage as a percentage of total usage is much more consistent across the two groups than usage-per-customer. Plus, those block percentages, which are closely related across the two groups (single and three phase) are highly correlated with (and actually caused by) the weather.

1 Below in Figure 9 is a reproduction of Staff Figure 2 with dashed horizontal lines 2 added. Figure 9 shows how the range of usage in block 1 doesn't vary significantly between 3 single phase and three phase SGS customers. It's only the level of usage-per-customer that 4 varies significantly. The Company models the relationship between weather and block 1 5 percentage directly, which obviates the differences between these subgroups and allows the 6 Company to estimate the relationship in a single model. 7

Figure 9: Staff Figure 2 with Dashed Lines Added

Figure 2: Percentage of SGS Winter Usage in Block 1 Compared to Usage per Customer (Dec - May)

8

9 Figure 10 more clearly shows how block usage for single and three phase customers

10 doesn't only exist within a similar band but are highly correlated across months.¹⁸

¹⁸ August and September 2023 are omitted because these months do not have any winter kWh, and therefore have no block kWh, since the SGS rate plan like the residential rate plans only have block rates in the winter.

1

2

3 Figure 11 shows the relationship between block usage for single and three phase 4 customers and heating degree days("HDD").¹⁹ Most importantly, Figure 11 shows how a 5 single linear relationship between weather (HDD) and block usage for single phase and three 6 phase customers accurately and parsimoniously describes the data well. Parsimony is an 7 important principle in regression analysis. The more simply specified a model is, the more 8 likely it is, that the model captures the underlying relationship and not the noise in the sample. 9 All the ad hoc complexity in Staff's choices about splitting data and functional form further 10 exacerbate the small sample size problem and makes it more likely that Staff is modeling the 11 noise rather than the relationship. Models based on the noise in small samples rather than 12 fundamental underlying relationships won't produce reasonable block normalization results.

¹⁹ Heating degree days is superior to average temperature for monthly measure since HDD aggregates daily deviations below a HDD baseline without offsetting them by warmer than HDD baseline days. Expected load for a four day period of 40, 40, 60, 60 would be different than a four day period of 50, 50, 50, 50 even though they have the same average temperature. If the HDD baseline was 50, the scenario one would have HDD = 20 and scenario two would have HDD = 0.

3

4 A. Yes. Staff's choice to estimate their block normalization using the relationship 5 between usage-per-customer and block usage, rather than weather, causes Staff to split their 6 SGS data, and then fit two different functional forms without any a priori logic. These 7 additional choices compound the small sample problem Staff has initially created for itself. 8 The fact that they state concern about the same point I am making about variance, imprecision 9 or high sensitivity, shows Staff has doubt about whether they have generated reasonable block 10 normalization results in this case. If Staff has not generated reasonable block normalization 11 results, then their results should not be used to determine normal revenue or rates in this case. 12 **B.** Residential and SGS Time-of-Use Normalization 13 Q. Did the Company consider applying new time-of-use weather 14 normalization techniques in this case? 15 Yes. Early in the case, Staff reached out to me to discuss time-of-use A. 16 normalization and indicated that they intended to perform a distinct and novel time-of-use

1 normalization in this case. I indicated to Staff that we also considered time-of-use weather 2 normalization, specifically for the residential Evening-Morning Savers rate plan. The other 3 time-of-use rate plans, the Legacy Time-of-Day plans that exist in each class, had been in 4 existence for some time, but the Evening-Morning Savers schedule is relatively new and, 5 more importantly, applied to a majority of residential customers, largely by default, during the 6 test period. The Evening-Morning Savers on-peak period is very broad and the on-peak to 7 off-peak rate differential is very small. Ex ante, one shouldn't expect too much behavioral 8 change as a result nor should one expect significantly different weather effects. The analysis 9 undertaken by the Company showed no significant difference between the effects of weather 10 normalization on the on-peak kWh than the off-peak kWh. There were also limitations on the 11 analysis associated with data availability. These two things together caused the Company to 12 continue to apply total weather normalization proportionally to time-of-use periods as both the 13 Company and Staff had done in the past. For rate plans like Evening-Morning Savers, where 14 on-peak usage is greater than off peak usage, the proportional application of total weather 15 normalization factors will increase on-peak usage by more in absolute kWh than it increases 16 off-peak usage. This is a reasonable result given it is reasonable to expect weathers effect on 17 the absolute number of kWh to be greater in the broad on-peak period. Staff, however, did 18 choose to undertake a distinct and novel weather normalization analysis and apply the results 19 to certain time-of use rate plans in this case.

20

Q. Can you summarize the issues with Staff's time-of-use weather

21 normalization in this case?

A. Yes. Broadly speaking there are two issues. First, Staff applies time-of-use
normalization factors that are derived from hourly data for an entire class to the subset of

1 customers on the time-of-use rates plans within that class. This choice is not clearly 2 unreasonable for the Evening-Morning Saver's rate plan, because the majority of residential 3 customers are on that plan and likely arrived there by default rather than voluntary choice. 4 However, these facts are not true for Legacy Time-of-Day SGS customers or residential 5 customers on more advanced time-of-use rates; the Overnight Savers, Smart Savers, and 6 Ultimate Savers rate plans. Ultimately, Staff partially recognized the issue and choose not to 7 apply time-of-use weather normalization factors to the more advanced residential rate plans. 8 Specifically, Staff said, "While other TOU rate schedules were considered, this analysis was 9 only ultimately applied to the Residential Evening and Morning rate schedule and the SGS 10 Time of Day rate schedule due to the small number of customer in other rate schedules."²⁰ 11 Staff fails to recognize that it is not the small number of customers in the other rate plans that 12 matters per se, but rather that the customers on those rate plans are fundamentally different 13 than the average customer in the class. I will show clearly how this second fact is true for 14 SGS Time-of-Day customers and how Staff's choice to normalize their time-of-use usage is 15 unreasonable. 16 Second, Staff's time-of-use weather normalization model is lengthy and tedious 17 involving a large number of mathematical and logical transformations as well as assumptions.

18 This complexity makes the calculations difficult to track and increases the probability for

19 error. There are some unreasonable results in the application of time-of-use weather

20 normalization results to the Evening-Morning Savers class, which cast doubt on the general

21 reliability of the time-of-use normalization results. The general reliability of the time-of-use

normalization results is extremely important in this case, because Staff chose to apply a

²⁰File No. ER-2024-0319, Michael L. Stahlman Direct Testimony, p. 4, ll. 1-4.
1 monthly aggregate of their time-of-use weather normalization model results to weather

- 2 normalize total kWh for the residential and SGS classes. This issue will be addressed in more
- 3 detail in the section of total weather normalization.
- 4

5

- Q. Can you explain the general procedure Staff used to develop time-of-use weather normalization factors in this case?
- 6 A. Yes. Staff uses the results of their class-level total usage weather

7 normalization model and actual hourly class-level usage data to conduct their time-of-use

8 weather normalization analysis.²¹ Actual hourly class-level usage was provided to Staff in

9 response to Data Request MPSC 529.

Both Staff and the Company use daily class-level total usage and daily weather data to estimate models that produce monthly total usage weather normalization factors.²² In the first step, the relationship between usage and weather is estimated using actual daily usage and

13 actual daily weather inputs. In the second step, the estimated relationship and normal weather

14 are used to produce daily normalized usage outputs. At this point we have described general

15 steps from the total weather normalization procedure historically used by both Staff and the

16 Company to produce monthly weather normalization factors. Now we diverge into the Staff's

- 17 time-of-use weather normalization. Staff uses the daily actual and normal usage values to
- 18 generate daily weather normalization factors. Staff uses these daily weather normalization
- 19 factors to normalize the class-level hourly data provided in response to MPSC 529. Both Staff

²¹ This fact is one of two that underlie the concern the Company has about Staff's use of their time-of-use weather normalization model results to weather normalize total usage for the residential and SGS classes. They are derived from the same source but produce different results. I would expect them to produce the same result if performed at the same level of quality. The fact that Staff chose the results from the more complex novel model, rather than their standard model seems unreasonable.

²² There are some differences which we outline later, but this general approach and a lot of the specifics have been generally accepted by both the Company and Staff as the basis for producing monthly total usage weather normalization factors. On the contrary, monthly aggregates of hourly weather normalized usage has never been the basis for monthly total usage weather normalization factors.

1 and the Company have daily average and daily peak models, and therefore have daily actual 2 and daily normal numbers for daily peak and daily average usage. This allows Staff to 3 normalize each hour within each day differently. It's hard to assess the quality of this part of 4 the procedure without more time due to its complexity, but a cursory evaluation doesn't 5 indicate any obvious issues with this step.23 6 The next few steps are the most complex and novel. Staff uses the Company's bill 7 cycle meter read schedule to aggregate calendar actual and normal hourly usage data to usage 8 between the start and end date for each bill cycle.²⁴ This is done separately for daily totals and 9 different time-of-use periods. These bill cycle start and end data aggregates are then scaled (to 10 eliminate the overlapping bill cycle effect) using the proportion of actual revenue-month test-11 year sales by bill cycle.²⁵ Finally, the revenue month version of the scaled bill cycle usage 12 data is aggregated to primary-month actual and normal usage for total monthly and several time-of-use periods using an assumed relationship between revenue and primary month.²⁶ The 13 14 ratio of primary-month normal usage to primary month actual usage for total usage and

²³ The general process for weather normalizing hourly class kWh here is similar to the general process used by the Company to weather normalize system hourly kWh for fuel cost modeling.

²⁴ The result of aggregating this way is an increase of total usage by approximately 21 times, because each bill cycle captures approximately 30 days and overlaps with approximately 21 bill cycles before and after it. The degree of overlap associated with any one bill cycle decreases as you move farther away from that bill cycle in both directions. This decreasing overlap is symmetric on either side of each bill cycle and results in this factor of 21 increase. For example, the aggregate of the overlapping actual usage is 269,883,894,336 and the scaled version is 12,948,493,883. A factor difference of 20.84.

²⁵ A bills revenue month is projected by the meter read schedule, but the actual realized revenue month is determined by the date the meter is read within its reading window and potential exceptions which delay accounting recognition of the billed revenue. The actual revenue month of a bill is determined by the date the bill is recognized for accounting purposes.

²⁶ The primary month of a bill is predetermined by the meter read schedule. It can vary from the revenue month when the actual date revenue associated with the bill is recognized for accounting purposes varies from the average expected date on the meter read schedule. This is predominantly true for early and late bill cycles, where variation in the accounting recognition crosses into a different month than the meter read schedule expected with some regularity.

1 several time-of-use period usages is used to define total and time-of-use weather

2 normalization factors.

Q. Can you explain why it is unreasonable for Staff to apply their time-ofuse weather normalization to the SGS Legacy Time-of-Day customers?

5 A. Yes. Staff uses SGS class-level daily and hourly usage data to derive time-of-6 use normalization factors using the method described above. Approximately 5% of SGS 7 customers voluntarily chose the Legacy Time-of-Day rate plan. Presumably, customers who 8 voluntarily choose this rate schedule are different than average. The important difference is 9 that they consume a lower proportion of their total usage on-peak relative to the average 10 customer in the class. If this wasn't true, voluntary selection of the Time-of-Day rate would 11 increase their bill and that is not a rational choice. Furthermore, more than half of the Time-12 of-Day customers are unmetered and operate individual devices on a predetermined schedule, 13 and these devices usage does not vary based on weather. Staff did not appear to recognize 14 this, but it has been a fact for a long time. The test year actual usage data alone strongly 15 suggest this fact. 16 Another important fact is that Staff did not use the incremental change in on-peak 17 usage modeled for the entire SGS class to make an incremental change to the Time-of-Day

18 actual on-peak usage, but rather Staff used the final proportion of total usage that was on-peak

19 for the entire SGS class to replace the proportion of total usage that was on-peak for the Time-

20 of-Day customers.²⁷

²⁷ For example, assume actual on-peak usage for the entire class was 46% of total usage. Assume weathernormalization indicated that the normal on-peak usage for the entire class was 47% of total usage. That would be a 1% incremental change in on-peak usage. Now assume the SGS Legacy Time-of-Day actual on peak usage was 36% of total usage. An application of the incremental change would produce normal onpeak usage of 37%. Replacement would involve simple substitution of the 37% with 47%.

- 1 Q. Can you provide some quantitative evidence to support your position?
- 2 A. Yes. Table 5 shows the actual percent of SGS Legacy Time-of-Day usage that
- 3 occurred on-peak during the test year, the normalized percent produced by Staff's time-of-use
- 4 weather normalization, and the difference between the two.
- 5

 Table 5. SGS Time-of-Day On-Peak Usage (% of Total Usage)

Month	Actual	Normal	Difference
Jul-2023	36%	47%	11%
Aug-2023	37%	47%	10%
Sep-2023	37%	46%	9%
Oct-2023	37%	47%	10%
Nov-2023	37%	45%	8%
Dec-2023	34%	39%	5%
Jan-2024	33%	38%	5%
Feb-2024	36%	38%	2%
Mar-2024	37%	40%	3%
Apr-2024	36%	41%	5%
May-2024	37%	45%	7%
Jun-2024	36%	44%	8%

- 7 Figure 12 shows the actual and normal on-peak percentage graphically. Two
- 8 additional years of actual data are added to make the facts even clearer.

Figure 12: SGS Time-of-Day On-Peak Usage (% of Total Usage)

2

1

3	Figure 12 shows how the SGS TOU customers on-peak usage as a percentage of their
4	total usage is relatively constant at around 35 or 36%. It dips predictably in December and
5	January but shows no evidence of increasing above 36 or 37% at any point in time across the
6	three years shown here. Staff's normalization (the green line) has this on-peak usage markedly
7	higher than any observed month over the past three years in every month, including some
8	months as high as 47%. This is an unreasonable adjustment. The source of the
9	unreasonableness is clear. Staff used on-peak and off-peak weather normalization ratios for
10	the entire class, when the SGS TOU subclass is clearly different from the average member of
11	the entire SGS class.
12	Q. Can you quantify the impact of Staff's unreasonable choice to normalize
13	SGS TOU subclass using the entire SGS class?
14	A. Yes. In order to perform the analysis, we make one simplifying assumption.
15	We assume that the on-peak to off-peak kWh ratio is not weather sensitive, i.e. I use the
16	average actual summer and winter on-peak percentage and weather normalized total to

1	calculate reasonable weather normalized on and off-peak kWh. This assumption is reasonable
2	given the observation that the ratio is relatively constant by month across several years as
3	shown in Figure 12. In the final row of the Revenue Difference column of Table 6, we can
4	see that Staff's choice to weather normalize SGS Time-of-Day customer billing units using the
5	entire classes normalized hourly billing units increases revenue by \$648,275.
6	There is another fact displayed in the Rates column of Table 6 that is worthy of note.
7	The on-peak to off-peak rate differentials for the SGS Legacy Time-of-Day rate plan are large
8	relative to the differentials in other non-residential Legacy Time-of-Day and the residential
9	Evening-Morning rate plans. This makes the revenue impact larger relative to what it would
10	have been had the rate differential been something smaller like it is for those other rate plans.
11	Staff's choice to normalize the SGS Legacy Time-of-Day usage by these means is clearly
12	unreasonable, and the fact about rate differentials makes it more impactful.

13 Table 6: Revenue Impact of Staff's SGS Time-of-Use Weather Normalization

Billing Unit	Rates	Staff kWh	Staff Revenue	Reasonable kWh	Reasonable Revenue	Revenue Difference
Summer On Peak	0.1779	20,677,035	3,678,445	17,268,903	3,072,138	606,307
Summer Off Peak	0.0726	23,781,919	1,726,567	27,190,051	1,973,998	-247,430
Winter On Peak	0.1172	35,671,580	4,180,709	31,128,430	3,648,252	532,457
Winter Off Peak	0.0535	51,190,165	2,738,674	55,733,315	2,981,732	-243,059
Total		131.320.699	12.324.395	131.320.699	11.676.120	648.275

14

15Q.Do you have the same level of concern for the time-of-use normalization16applied to Evening-Morning Savers?

A. Not exactly. I mentioned the differences between the SGS Legacy Time-of-Day customers and Evening-Morning customers. Specifically, Evening-Morning make up a much larger proportion of the Residential class total and, perhaps more importantly, many if not most customers end up on the rate plan by default. However, a summary analysis does

- 1 raise some concern about the efficacy of the time-of-use normalization. Table 7 and Figure 13
- 2 show the actual and Staff's weather normalized on-peak usage as a percentage of total usage
- 3 for Evening-Morning Savers.

4

Fable 7. Evening-Morning	Savers On-Peak	Usage (% of	Total Usage)

Month	Actual	Normal	Difference
Jul-2023	61%	60%	-1%
Aug-2023	60%	59%	-1%
Sep-2023	60%	58%	-2%
Oct-2023	60%	57%	-3%
Nov-2023	54%	52%	-2%
Dec-2023	51%	50%	-1%
Jan-2024	51%	51%	0%
Feb-2024	50%	51%	0%
Mar-2024	49%	49%	0%
Apr-2024	51%	50%	-1%
May-2024	56%	53%	-3%
Jun-2024	61%	57%	-4%

6

7

8 The curious thing about the table and the figure are that all the normalized values are 9 less than the actual values. We know there are some differences in total usage between the 10 Evening-Morning Savers and Anytime Users customers, who make up the vast majority of the

1	remainder of the residential class, but we do not know anything about the difference in their
2	relative on-peak usage as a percentage of the total usage. I have witnessed the evolving
3	differential in total usage and presume it is a function of the non-random nature of the
4	geographical rollout of Advanced Metering Infrastructure ("AMI") and subsequent default
5	process rather than behavioral change associated with the rate plans or voluntary rate plan
6	selection, but this is also unknown. And regardless, the result of Staff's weather normalization
7	is either no change or a decrease in every month. This is curious because I would expect some
8	variation in the time-of-use weather normalization effect just like we see some variation in the
9	total weather normalization effect. What I mean by variation here is some negatives and some
10	positives. However, it is not clear whether my expectation is wrong, the application of the
11	entire class to Evening-Morning customers distorts the outcome, or if there is something more
12	fundamental wrong with Staff's novel time-of-use normalization calculation.
13	Q. Are there any other odd or unreasonable results associated with Staff's
14	time-of-use normalization?
15	A. Yes. Above I showed results for Evening-Morning customers on a primary
16	month basis. However, primary months which contain billing cycles, which cross the
17	seasonal boundaries (June 1 and October 1) have both summer and winter usages. If you look
18	at Staff's on-peak ratios for the summer and winter usage separately, you will find some odd
19	and unreasonable results. Table 8 shows summer and winter total and on-peak usage as well
20	as summer and winter on-peak usage as a percent of total for the Evening-Morning Savers rate
21	plan in the months of July and November.

Billing Unit	Actual July	Normal July	Actual	Normal
Dinnig Unit		Normai July	November	November
Summer kWh	618,673,234	612,300,800	19,296,115	19,009,419
Winter kWh	21,698,211	21,474,716	408,648,977	402,577,382
Summer On Peak	379,181,588	375,770,262	10,973,828	18,055,719
Winter On Peak	13,216,605	3,438,855	220,711,931	203,124,084
Summer On Peak %	61%	61%	57%	95%
Winter On Peak %	61%	16%	54%	50%

Table 8. Unreasonable Evening-Morning Time-of-Use Normalizations

2

1

3 Staff's weather normalization results for July winter on peak usage (16%) and 4 November summer on-peak usage (95%) are clearly unreasonable (note that all other on peak 5 ratios in this table are within the range of 50% to 61%, making these two observations 6 extreme outliers). It's not entirely clear what is driving these results. It appears to be 7 something in the different definitions of time needed to convert calendar hourly data into 8 revenue month billing cycle data then to primary month data with winter and summer billing 9 units, but exactly where reason gets lost is not clear. 10 **Q**. Can you summarize your findings related to time-of-use normalization? 11 Yes. Staff performed a novel and complex set of calculations and data A. 12 transformations to produce time-of use normalization factors. Regardless of the quality of the 13 calculations, Staff chose to apply SGS normalization factors derived from class level data to a 14 subset of characteristically different SGS customers who voluntarily chose the Legacy Time-15 of-Day rate plan, and it was unreasonable to do so in that it overstated the normal revenues 16 associated with Staff's billing unit calculations. Staff's application of time-of-use weather 17 normalization factors to the residential Evening-Morning customers did not change on-peak 18 usage significantly, but did universally decrease the on peak usage percentage which is

1	unexpected. In two months, Staff weather normalization procedure produced unreasonable
2	results for seasonally differentiated on-peak usage in the Evening-Morning Savers rate plan.
3	C. Total Usage Weather Normalization
4	Q. Can you explain the relationship between total usage and other billing
5	units discussed above?
6	A. Yes. Let's put lighting classes aside for a moment and focus on the following
7	five classes, Residential, SGS, Large General Service ("LGS"), Small Primary Service
8	("SPS"), and Large Primary Service ("LPS"). Every class but LPS has multiple kWh billing
9	units due to the existence of block rates in the Company's tariffs, at least in the winter season.
10	The standard LGS and SPS rate schedules have three and four kWh billing units (blocks) in
11	summer and winter respectively. Most Residential customer's rate plan has two kWh usage
12	billing units in winter months, block 1 usage and block 2 usage. The Legacy Time-of-Day
13	rate plan for the SGS class has on-peak and off-peak kWh billing units.
14	In these cases, total kWh is not a billing unit strictly speaking. It is the sum of the
15	block or time-of-use billing units. In the case of LPS year-round and most Residential and
16	SGS customers rates schedules in summer, total kWh is a billing unit (i.e., there are no block
17	rates associated with those class/month combinations). Regardless, total kWh usage is the
18	total number of kWh consumed by a customer during a billing cycle. Total kWh may or may
19	not be a billing unit. When total kWh is not a billing unit, it is the sum of the several
20	applicable kWh billing units associated with a customer's rate schedule.
21	Q. At a high level, what are the unreasonable decisions Staff made in the
22	context of total weather normalization?
23	A. There are three high level decisions Staff made in the context of total weather
24	normalization that are unreasonable:

1	1. Staff chooses to include an autoregressive term, yesterday's
2	total kWh, in their model of the effect of today's weather on today's
3	total kWh. Yesterday's total kWh does not cause today's kWh and
4	therefore does not belong in a model of the causal relationship
5	between weather and total kWh. The inclusion of yesterday's total
6	kWh leads to imprecision in the estimate of weather's effect on today's
7	total kWh;
8	2. Staff chooses to remove the impact of unobservable
9	variables on kWh in its 'weather normalization.' This means that Staff's
10	weather normalization does more than remove the impact of abnormal
11	weather. Removing the impact of unobservable variables is
12	synonymous with omitting the residuals from the definition of actual
13	and normal total kWh; and
14	3. Staff chooses to construct a second set of monthly weather
15	normalization factors for the Residential and SGS classes that are
16	inferior to their first set. Staff than chooses to use those second set of
17	factors for the Residential and SGS classes.
18	Autoregressive Term
19	Q. Why is Staff's choice to include an autoregressive term, yesterday's total
20	kWh, in its regression model used for weather normalization unreasonable?
21	A. There is no reason to believe that yesterday's total kWh causes today's total kWh.
22	If there is no reason to believe that yesterday's kWh cause today's kWh, then there is no reason
23	to include yesterday's total kWh in a model that is intended to estimate the causal relationship
24	between today's total kWh and weather.

1	Q.	Why do you say there is no reason to include yesterday's total kWh in a
2	model of toda	ay's total kWh and weather? Isn't yesterday's total kWh a good predictor
3	of today's tot	al kWh?
4	А.	Yes, yesterday's total kWh is a good predictor of today's total kWh, but that is
5	part of the pro	blem, not a defense of its inclusion. I think Staff disagrees, but I believe their
6	disagreement	is based on misunderstanding.
7	Q.	Why do you believe Staff would disagree with the prior statement? Did
8	Staff justify (he inclusion of yesterday's total kWh based on its ability to predict today's
9	kWh?	
10	А.	It was not stated in Staff's direct testimony in this case but has been part of
11	Staff's justific	ation in the past. I also believe Staff believes that we are trying to predict
12	today's total k	Wh usage. It is not true. We are trying to weather normalize today's total kWh
13	usage, and the	ere is a difference between predicting today's usage and weather normalizing
14	today's usage.	I don't know if Staff agrees that there is a difference. The second issue, the fact
15	that Staff rem	oves unobservable sources of variation, the residuals from the regression, also
16	suggest this b	elief that there is no difference. The residuals from a regression of weather and
17	total kwh are	by definition not related to weather, but represent some number of actual kWh
18	usage. When	they are removed from the equation that determines today's total kWh, you are
19	not weather n	ormalizing, you are predicting today's total kWh.
20	Q.	Why do you say that the fact that yesterday's total kWh is a good
21	predictor of	today's total kWh is part of the problem?
22	А.	Yesterday's total kWh is a good predictor of today's total kWh because
23	yesterday's to	tal kWh is highly correlated with today's weather, which is the real cause of

1	today's total kWh. It's a good predictor because it's correlated with the underlying cause, not
2	because it is the underlying cause. If it's not the underlying cause, there is no reason to be
3	included in a model which seeks to estimate the relationship between the underlying cause,
4	today's weather, and today's total kWh. The only thing we need to accurately estimate the
5	relationship between today's weather and today's total kWh is strict exogeneity. ²⁸ There is no
6	evidence that the strict exogeneity assumption fails in a model which includes today's weather
7	and today's total kWh. Even if the assumption failed, there is no reason to believe that
8	including yesterday's total kWh would solve the problem. There is evidence however that
9	including yesterday's total kWh will reduce the precision of our estimate of the relationship
10	between weather and today's total kWh. The evidence is that yesterday's total kWh is highly
11	correlated with today's weather. That correlation is what makes yesterday's total kWh a good
12	predictor and also a problem, a source of imprecision in the estimate of weather's effect of
13	today's total kWh.
14	In my opinion, and I said it before, the thing we care about is an accurate (in statistical
15	language, an unbiased estimate) and precise (low variance) estimate of the relationship
16	between weather and today's total kWh, because it's the only thing we need to know to
17	remove the effect of abnormal weather. This again highlights the difference in perspectives
18	between the Company and Staff. Staff, consciously or not, believes we are trying to estimate
19	today's total kWh as a function of normal weather and other stuff, like yesterday's total kWh.
20	In the past, Staff has said things like, "The inclusion of a lagged dependent variable

²⁸ I will define and discuss this concept in more detail later in this section of my testimony, but one intuitive understanding relates to the direction of causality. In our situation, weather is exogenous if daily weather causes daily total kWh and daily total kWh do not cause the daily weather. There are a lot of variables especially in economic applications whose relationship is intertwined, and causality is complicated. There aren't many variables which are as clearly exogenous as the daily weather.

1 [yesterday's total kWh] is motivated conceptually by the need to capture the common type of 2 electricity usage patterns."29 This statement has nothing to do with the weather but has 3 everything to do with predicting total kWh usage. 4 We are not trying to predict total kWh, we are trying to remove the impact of 5 abnormal weather. I said it above and I will say it again, there is a difference between 6 predicting today's total kWh and weather normalizing today's total kWh. 7 **Q**. You say including yesterday's total kWh causes imprecision in the 8 estimate of the effect of weather on today's total kWh. Can you provide more detail? 9 A. Yes. The first thing you must understand and accept is causality. Variation in 10 weather causes variation in total kWh. Temperature goes up in nature, temperature goes up in 11 buildings, thermostat set points are triggered, air conditioning goes on, total kWh usage goes 12 up. That is causal. If your air conditioning goes on today, does it cause your air conditioning 13 to go on tomorrow? No. It may be more likely because there is correlation between today's 14 and tomorrow's weather but it's not causal. If you accept this fact, then yesterday's total kWh 15 does not belong in a model intended to estimate the causal relationship between today's 16 weather and today's total kWh. In other words, yesterday's total kWh is irrelevant to a model 17 intended to estimate causal effects. Jeffery Wooldridge has this to say, "As we will see in 18 Section 3.4 including irrelevant variables can have undesirable effects on the variances of the 19 Ordinary Least Squares ("OLS") estimators."³⁰ OLS, or ordinary least squares, is the name of 20 the procedure used to estimate most regressions. The OLS estimator we are interested in here 21 is the estimate of the relationship between weather and today's total kWh. Earlier we 22 discussed how precision and variance are synonymous in statistics. If we turn to Section 3.4

²⁹ File No. ER-2022-0337, Hari K. Poudel, PhD Surrebuttal Testimony p. 3, ll. 1-3.

³⁰ Wooldridge, Jeffery, *Introductory Econometrics*, 3rd Edition, p. 95.

1	of Wooldridge's text, we see the definition of the variance of the estimate of the OLS	
2	estimator, the effect of weather on today's total kWh. In that equation, you will see the	
3	correlation between the OLS estimator and other variables in the model. Specifically, one	
4	minus the correlation is in the denominator. If an irrelevant variable is included in the model	
5	and that irrelevant variable is correlated with the causal variable of interest, the variance or	
6	imprecision of the OLS estimator increases. Since OLS is just math, it doesn't "know"	
7	anything about causality, it only "knows" correlation. When you provide it with two	
8	correlated variables, it can't tell which one is causing the outcome variable to vary, and it	
9	imprecisely estimates the real causal variable. The inclusion of an irrelevant variable that is	
10	correlated with the variable of interest will cause the variance, imprecision, of the estimated	
11	relationship to increase.	
12	Q. Can you provide evidence that yesterday's total kWh and today's	
13	weather are correlated?	
14	A. Yes. Figure 14 shows the relationship between yesterday's total kWh and	
15	today's weather for the residential class. Temperature is on the horizontal axis and yesterday'	

16 load is on the vertical axis.

Figure 14. Correlation between yesterday's total kWh and today's weather.

1

2

3 The correlation between yesterday's total kWh and today's weather is complicated in 4 the sense that they are negatively correlated at lower temperatures and positively correlated at 5 higher temperatures. However, this is very similar to the correlation between today's total 6 kWh and today's weather. The way both Staff and the Company specify temperature in their 7 weather models recognizes this by use of a piecewise linear weather variable. Each linear 8 piece corresponds to different parts the range of temperature and captures this correlation, 9 some on the negative slope and some on the positive. The fact is that different pieces of the 10 piecewise weather variable will be correlated with different segments of yesterday's total kWh 11 and the imprecision problem discussed above persists without loss of generality. One way to 12 show this numerically would be to split the data along the breakpoints of the piecewise 13 weather variable and calculate the correlation with yesterday's total kWh for each piece. 14 Another way to do this more quickly is to split the data by month, since months roughly 15 correspond to different temperature bands between the breakpoints and calculate the 16 correlation between today's weather and yesterday's total kWh by month. The result of that 17 analysis is shown in Table 9.

1	
_	
-	

Table 9. Correlation between Today's Weather and Yesterday's Total kWh

Month	Correlation
Jul-2023	0.80
Aug-2023	0.87
Sep-2023	0.84
Oct-2023	-0.09
Nov-2023	-0.84
Dec-2023	-0.70
Jan-2024	-0.86
Feb-2024	-0.65
Mar-2024	-0.56
Apr-2024	0.19
May-2024	0.72
Jun-2024	0.86

2	Table 9 shows correlation is large and negative in cold months associated with the
3	downward sloping part of Figure 14, ³¹ low in shoulder months where the temperature is near
4	to the inflection or flat point of Figure 14, and high and positive in warm months associated
5	with the upward sloping part of Figure 14.
6	Q. Above you say, 'The only thing we need to accurately estimate the
7	relationship between today's weather and today's total kWh is strict exogeneity?' What
8	is strict exogeneity and what evidence do you have that the assumption does not fail?
9	A. Strict exogeneity is the 'crucial assumption' for unbiased or accurate estimates
10	in time series regression analysis.32 The assumption says that the expectation of the
11	unobserved variation, the error term or residuals, is zero conditional on the regressors; weather

- 12 in our case. This is also called the zero conditional mean assumption. It's best understood in
- 13 terms of correlation. The zero conditional mean assumption implies that there is zero

³¹ Lack of correlation would result in values very close to zero. Positive or negative values closer to 1 (or negative 1) than they are to zero signify higher levels of correlation of the variables.

³² Wooldridge, Jeffery, *Introductory Econometrics*, 3rd Edition, p. 349-351.

- 1 correlation between the residuals of a regression and the variable we care about, weather.
- 2 Figure 15 shows the lack of correlation between the residuals of the Company's residential
- 3 weather model and daily temperature.

4

Figure 15. Strict Exogeneity of Weather

5

6 Figure 15 shows that the mean of the residuals (measured on the vertical axis) is zero 7 along all values of temperature (measured on the horizontal axis). I compute the correlation 8 between temperature and the residuals and get 0.00000003. That's indistinguishable from 9 zero and good evidence that we get an unbiased or accurate estimate of the relationship 10 between weather and today's total kWh in a model without yesterday's total kWh. 11 Q. Has Staff made any other arguments in the past to support their inclusion

12 of yesterday's total kWh?

- 13 Yes. Staff has argued that yesterday's total kWh should be included because A.
- 14 not including it indicates 'a possible autocorrelation issue'.33

³³ File No. ER-2022-0337, Hari K. Poudel, PhD, Surrebuttal Testimony, p. 4, 1. 4.

1

Q. Is autocorrelation an issue?

2 No. Econometric theory tells us that 'as long as the explanatory variables are A. 3 strictly exogenous, the β s (estimated relationship) are unbiased (accurate), regardless of the 4 degree of serial correlation (autocorrelation).'³⁴ Autocorrelation does not make the estimate of 5 the relationship between weather and today's total usage inaccurate. The most important 6 thing is an accurate estimate of this relationship and autocorrelation has no bearing on this. 7 Staff has made false, albeit somewhat confused statements about this in the past. Staff said 8 this when the test statistic for autocorrelation shows no autocorrelation in their model with 9 yesterday's total kWh, 'this provide empirical support for the claim that Staff's model, which 10 includes a lagged dependent variable (footnote 7), has accurately forecasted the relationship 11 between weather and electricity usage.^{'35} The use of the term forecast is confused here and 12 somewhat suggests Staff is conflating estimation of the model and model prediction. For a 13 moment, let's assume Staff meant accurately estimate the relationship, because you don't 14 forecast or predict the relationship, you estimate it, and you can use that estimate to make 15 forecasts, or predictions, or normalizations as is our case. But to the point, if Staff means to 16 say that the lack of autocorrelation provides empirical support that they have accurately 17 estimated the relationship, that is false. The estimate of the relationship is unbiased (accurate) 18 if weather is strictly exogenous, and autocorrelation has nothing to do with it. 19 **Staff Removes Residuals before Calculating Normalization Factors** 20 Q. How do you know that Staff removes the unobservable sources of

22 calculations?

21

variation from their actual and normal daily loads used in weather normalization

³⁴ Wooldridge, Jeffery, *Introductory Econometrics*, 3rd Edition, p. 413.

³⁵ File No. ER-2022-0337, Hari K. Poudel, PhD, Surrebuttal Testimony p. 4, l. 10 to p. 5, ll. 1-2.

1	A. The daily actual total kWh and daily predicted kWh are clearly identifiable in
2	Staff's MetrixND ³⁶ Energy Model file. I compared the actual total kWh and predicted kWh to
3	the values used to produce daily normalization factors in Staff's time-of-use weather
4	normalization workpaper. I can clearly see that the values in that file are the model predicted
5	values rather than the actuals, i.e. the residuals are omitted. There is not clear evidence that
6	Staff has omitted the residuals from its standard monthly weather normalization calculations,
7	but the fact about the time-of-use normalization suggests its possible. Furthermore, the time-
8	of-use weather normalization calculations were used to produce the monthly total weather
9	normalization factors for the Residential and SGS class. Therefore, we know the residuals
10	were omitted from those two normalization factor calculations at the least.
11	Q. What is wrong with omitting the residuals?
11 12	Q. What is wrong with omitting the residuals?A. When a regression model is estimated, there is variation in the outcome
11 12 13	Q.What is wrong with omitting the residuals?A.When a regression model is estimated, there is variation in the outcomevariable that is explained by the explanatory variables in the model. The outcome in our case
11 12 13 14	Q.What is wrong with omitting the residuals?A.When a regression model is estimated, there is variation in the outcomevariable that is explained by the explanatory variables in the model. The outcome in our caseis today's total When a regression was an explanatory variable of greatest interest is the weather. Some of
11 12 13 14 15	Q.What is wrong with omitting the residuals?A.When a regression model is estimated, there is variation in the outcomevariable that is explained by the explanatory variables in the model. The outcome in our caseis today's total What and the explanatory variable of greatest interest is the weather. Some ofthe variation in today's total kWh will be explained by variation in weather, but some won't.
 11 12 13 14 15 16 	 Q. What is wrong with omitting the residuals? A. When a regression model is estimated, there is variation in the outcome variable that is explained by the explanatory variables in the model. The outcome in our case is today's total kWh and the explanatory variable of greatest interest is the weather. Some of the variation in today's total kWh will be explained by variation in weather, but some won't. The unexplained variation will be captured in a term called the 'error' or residual. Error term is
 11 12 13 14 15 16 17 	 Q. What is wrong with omitting the residuals? A. When a regression model is estimated, there is variation in the outcome variable that is explained by the explanatory variables in the model. The outcome in our case is today's total kWh and the explanatory variable of greatest interest is the weather. Some of the variation in today's total kWh will be explained by variation in weather, but some won't. The unexplained variation will be captured in a term called the 'error' or residual. Error term is really a misnomer. The best way to think about it is other variables that are unobserved or
 11 12 13 14 15 16 17 18 	 Q. What is wrong with omitting the residuals? A. When a regression model is estimated, there is variation in the outcome variable that is explained by the explanatory variables in the model. The outcome in our case is today's total kWh and the explanatory variable of greatest interest is the weather. Some of the variation in today's total kWh will be explained by variation in weather, but some won't. The unexplained variation will be captured in a term called the 'error' or residual. Error term is really a misnomer. The best way to think about it is other variables that are unobserved or unmeasurable. I prefer unobserved variation or residual, because there are real things out
 11 12 13 14 15 16 17 18 19 	 Q. What is wrong with omitting the residuals? A. When a regression model is estimated, there is variation in the outcome variable that is explained by the explanatory variables in the model. The outcome in our case is today's total kWh and the explanatory variable of greatest interest is the weather. Some of the variation in today's total kWh will be explained by variation in weather, but some won't. The unexplained variation will be captured in a term called the 'error' or residual. Error term is really a misnomer. The best way to think about it is other variables that are unobserved or unmeasurable. I prefer unobserved variation or residual, because there are real things out there that we don't observe that are causing today's total kWh to vary.³⁷ Those unexplained

³⁶ MetrixND is the statistical software package that both the Company and Staff use to conduct statistical load modeling, such as weather normalization modeling.

³⁷ For example, imagine a manufacturing facility which has a one-day production outage due to labor dispute. The variation in the class total usage for that day created by this labor dispute is not related the weather, and it would appear in the residual. When Staff throws out the residuals, they end up distorting weather normalization in a random way based on real events unrelated to the weather.

1 variation or residual when they use the predicted values of the regression model. They do this 2 for actual and normal versions of the model. Then they take the ratio of these two values to 3 compute weather factors. Even though the unobserved variation is the same in both the actual 4 and normal versions of today's total kWh, and would be in both the numerator and the 5 denominator of the weather factor, they do not cancel out. That is not how the math works. 6 By construction of OLS, the sum of the errors is zero across the whole period, but there will be 7 positives and negatives scattered across the months. The impact could be small, but there is 8 no reason to eliminate it. It is real variation in today's total kWh that could just as easily be 9 kept and should be. This is memorialized in a peer-reviewed published article written by two 10 MPSC Staff employees and a University of Missouri professor.³⁸ The inclusion of the 11 residuals in the weather normalization process is captured in equations 3 through 6 of that 12 article. Equations 3 and 6 provide the clear mathematical expression that the unobserved 13 variation or error term is intended to be included in both the actual total kWh and normal total 14 kWh values used to calculate weather-normalization factors. When Staff uses the predicted 15 and simulated values from their model, they are excluding the residuals whether they know it 16 or not. This article is something that Staff has cited in the past and provides some of the 17 foundational aspects of the weather normalization models used by both Staff and the 18 Company. Staff has denied this issue exists in the past.³⁹ 19 **Q**. Can you provide a simple numeric example of the issue?

- A. Yes. Imagine actual total kWh is 100 and the weather model with actual
- 21 weather predicts it to be 96 kWh. This means the residual unexplained by weather is 4.

³⁸ Won, Seoung Joun, Wang, X. Henry, Warren, Henry E. Climate Normals and Weather Normalization for Utility Regulation, p. 405-416, Energy Economics, Volume 54 (2016).

³⁹ File No. ER-2022-0337, Hari K. Poudel, PhD, Surrebuttal Testimony p. 5, ll 14 -20 and p. 6 ll. 1-4.

1	Now assume the weather model with normal weather predicts 90 kWh. This implies the
2	effect of abnormal weather is $96 - 90 = 6$ kWh. If we subtract the effect of abnormal
3	weather from actual total kWh we get $100 - 6 = 94$, which is what the weather model
4	predicts under normal weather conditions plus the residual, $90 + 4 = 94$. Now think
5	about the two potential weather normalization factors. The one with the residual is
6	94/100 = 0.94 and the one without is $90/96 = 0.9375$. The 100 kWh is the billing units
7	we are normalizing. If we apply the 0.94 we get $100*0.94 = 94$, which is the actual total
8	kWh minus the impact of abnormal weather. If we apply the second factor without the
9	residuals, 0.9375, to the billing units, we get $100*0.9375 = 93.75$ kWh. The 94 is the
10	right number, its actual total kWh minus the effect of abnormal weather. The 93.75 is
11	nothing. It's not the actual minus abnormal weather. It's not the level predicted by the
12	weather model under normal weather conditions. It's just something slightly different
13	than the right answer. Hence my position, that Staff does 'more' than normalize for
14	weather. In fact, depending on the sign of the daily residual (some are positive and some
15	are negative), Staff could be doing 'more' or 'less'. The important thing is that what Staff
16	is doing is not accurate.
17	Two Total Normalization Factors
18	Q. Did Staff calculate two total kWh weather normalization factors for some
19	customer classes?
20	A. Yes. Staff calculated two total normalization factors for the Residential and
21	SGS classes. First, Staff constructs monthly total kWh weather normalization factors using
22	the traditional means, aggregating the results of their daily total kWh weather normalization
23	results directly. Second, Staff uses the same daily total kWh weather normalization results it
24	directly aggregates in the first case to normalize hourly kWh data, and then aggregates those

1	hourly values to compute monthly normalization factors. We discussed the complexity and
2	novelty of that hourly normalization procedure in some detail and presented some odd, if
3	nothing else, results. If we take a step back and look at the second version of monthly
4	normalization factors, we can see that they are computed using the normalized results of the
5	first. The only conceptual difference is that the second set first produces hourly normal kWh
6	from the daily normal kWh, then sums those up to get the monthlies. If the hourly normal are
7	derived from the daily normal kWh used in the first aggregation, then it seems like they both
8	should produce the same result since the hourly normal kWh are just a more granular version
9	of the daily normal kWh. The fact is that in Staff's analysis they do not produce the same
10	result. The unreasonable thing Staff does is to choose the version that went through a large set
11	of novel, complex, and tedious calculations, rather than the one that those novel, complex and
12	tedious calculations started with but didn't go through.
13	Q. Can you summarize the issues with Staff's total weather normalization
14	testimony?
15	A. First, Staff includes yesterday's total kWh in its model of the relationship
16	between today's total kWh and the weather. Including this variable creates imprecision in the
17	estimate of the relationship between today's total kWh and the weather. An accurate estimate
18	of this relationship is the most important to get from the weather model. There is no apparent
19	weather normalization benefit of including this variable in the weather model. The inclusion
20	of the variable may indicate Staff is more interested in predicting total kWh than weather
21	normalizing total kWh and there is a difference. Second, Staff removes residuals from their
22	definitions of actual and normal total kWh, and this causes weather normalization factors to do
23	'more' or 'less' than weather normalize. Third, Staff creates two sets of monthly total weather

1	normalization	a factors for the Residential and SGS classes. The second set is based on the
2	same inputs a	as the first, but goes through an extra set of novel and tedious calculations. There
3	is a principle	d reason to believe two sets should be equal, but they are not. There is not a good
4	reason to thin	k the second set is superior, and more reason to believe the contrary, but Staff
5	chooses the se	econd set.
6		2. Staff's MEEIA Annualization Adjustment
7	Q.	Did you review Staff's MEEIA Adjustment in this case?
8	А.	Yes.
9	Q.	Did you find any errors in that calculation?
10	А.	Yes. I found a handful of data entry and one simple formula error which I
11	provided to S	taff by email on December 17, 2024.
12	Q.	Did correcting the simple errors 'correct' Staff's MEEIA Adjustment?
13	А.	In my view, yes. The Company produces an estimate of the MEEIA
14	adjustment as	ssociated with Staff direct test period, aka the update period. After changing a
15	few input data	a differences and one formula error, just a reference that missed one cell, the
16	Company and	d Staff's models produced answers within a few kWh. Those few kWh could be
17	traced to mine	or rounding differences in some inputs. The differences were so minor that I'd
18	say the outco	mes were the same. In the last case, Staff and the Company had aligned on the
19	correct inputs	s, but I recall some less trivial difference in the outcomes that were presumably
20	tied to differe	nces in our models that we couldn't identify.
21	Q.	Did Staff accept the errors they made and agree to correct them?
22	А.	Not exactly. Staff indicated after discussion and several emails that they had
23	no other conc	erns aside from one which continued to be the subject of conversation at the time
24	of drafting th	is testimony.

1	Q.	What issue continued to be the subject of conversation?
2	А.	The subject of conversation continued to be the exclusion of residential
3	demand respo	nse optimization savings from the annualization adjustment. The Company
4	changed its tre	eatment of residential demand response optimization in the MEEIA
5	annualization	adjustment since the last case. The change makes good sense in principle and
6	benefits custo	mers (i.e. increases normalized usage and revenue, which reduced the required
7	rate increase r	needed to achieve the revenue requirement).
8	Q.	Do you expect Staff to accept the corrections you offered and reflect those
9	corrections in	n their True-up testimony.
10	А.	Yes, I do. But for the record, I will present those errors here.
11		1. For the residential, SGS, LGS, SPS, and LPS classes, staff used inputs from
12	the Planning	Year ("PY") 2023 December 2023 Throughput Disincentive calculation file
13	provided in re	sponse to Data Request MPSC 265. The correct file, which included all PY
14	2023 MEEIA	measures and evaluated savings is the PY 2023 June 2024 calculation file also
15	provided in re	sponse to MPSC 265.
16		2. For the SGS and LGS class, monthly end use load shapes were misaligned
17	with monthly	savings. End use load shapes were organized from July to June and savings
18	from January	to December.
19		3. For SGS, LGS, SPS and LPS, total installed savings omits savings from one
20	end-use categ	ory in every month (the formula error I referenced above).
21		4. For the residential, SGS, LGS, SPS, and LPS classes, Demand Response
22	Event Net End	ergy ("DRENE") savings is not added back to offset the annualization
23	adjustment.	

1		5. For residential, demand response optimization (non-event) savings are not
2	excluded from	n total savings.
3		3. Staff's Solar Annualization Adjustment
4	Q.	Did Staff make an adjustment for behind-the-meter solar installations
5	made in the	test year?
6	А.	No.
7	Q.	Is it reasonable for Staff to make a behind the meter solar adjustment?
8	А.	Yes. The level of solar generation capacity installed by customers behind
9	Company's r	neters, which reduced Company sales and revenues, is known and measurable
10	because of th	e Company's safety inspection process that is conducted as part of these
11	installations a	and their application for net metering. A reasonable calculation of generation
12	given the kno	own capacity of behind the meter generation can be performed to determine how
13	behind the m	eter generation will impact billing units and revenue as a result of known
14	installations 1	nade during the test year. The Company provided such a calculation with its
15	direct testimo	ony, and that calculation should be used to annualize test year billing units.
16 17		4. Staff's Economic Development Incentive Annualization Adjustment
18	Q.	Did Staff make a reasonable Economic Development Incentive
19	Adjustment	?
20	А.	Yes, the Company's estimate of the Economic Development Incentive
21	Annualizatio	n Adjustment for Staff's direct test year, aka the update period, was reasonably
22	close to the a	djustment calculated by Staff. There is room for discretion in the calculation of
23	the Economic	c Development Incentive Annualization Adjustment because customers receiving
24	the incentive	for the first time are typically ramping up their usage, as is the nature of the

1	incentive. The	re is room for discretion in the choice of months used to calculate the expected
2	annual impact	of the discount given there is no bright line between this ramp period and when
3	the customer is	s consuming at the 'full capacity' level expected in the future.
4	Q.	Will Economic Development Incentives be the subject of True-up data
5	and calculatio	ns?
6	A.	Yes, we expect the Staff and the Company to produce reasonably similar
7	Economic Dev	elopment Incentive Annualization Adjustments in true up direct testimony.
8		5. Staff's Growth Adjustment
9	Q.	Did Staff make a Growth Adjustment in their direct case?
10	А.	Yes, but Staff's growth adjusted billing units and revenue is not directly
11	comparable to	the Company's growth adjusted billing units and revenue because it is made
12	using a differen	nt end date. Staff sets customer counts in all months of their test period equal to
13	customer coun	ts in June 2024, the end of the update period that Staff analyzed for its direct
14	case. The Con	npany forecasts customer counts out to December 2024, the true-up date in this
15	case, and make	es a pro forma adjustment to set customer counts in all months of our test period
16	equal to custor	ner counts forecast for December 2024. There is nothing mechanically wrong
17	with Staff's gro	owth adjustment as far as I saw, but Staff's growth adjusted billing units are just
18	not comparable	e to the Company's. In true-up, I expect both Staff and the Company to adjust
19	customer coun	ts in all months to equal actual customer counts observed in December 2024.
20		III. <u>REVENUE REQUIREMENT ALLOCATION</u>
21	Q.	What do you think about Staff's revenue allocation in this case?
22	A.	Staff's revenue requirement allocation is supported by Staff's cost of service.
23	There are a num	mber of significant problems with Staff's cost of service that are outlined by
24	Company with	esses Hickman, Wills, and Phillips. The big picture prospective provided by

Company witness Wills gives you a sense of distance between Staff's cost of service and
 reasonable. Given the number and magnitude of issues associated with Staff's cost of service,
 the Commission should reject Staff's revenue requirement allocation proposal.

4

Q. What do you think about CCM's revenue requirement allocation

5 **position**?

6 A. CCM primarily represents the interest of residential consumers and yet takes a 7 position that is basically supportive of the Company's cost of service study. I will later take 8 issue with one other policy position CCM takes related to residential customer interests, but 9 here I think they got it right. CCM explicitly supports the Company's revenue requirement 10 allocation, which allocates a percentage increase to the residential class that is greater than the 11 total revenue requirement percentage increase in this case. That greater-than-total increase is 12 a small fraction, just 0.25%, but CCM supports it. When asked "Do you support the 13 Company's revenue requirement allocations?" CCM witness Palmer says "Yes. The 14 Company has mitigated some of my concern around its CCOSS methodologies by exercising 15 judgement when using its CCOSS to inform revenue allocation and rate design."40 CCM 16 witness Palmer could have very simply recommended an equal percentage increase to all 17 classes, but instead Palmer saw the broader picture and made the reasonable choice to support 18 the Company's big picture view of the facts and fairness.

19

Q. Why do you say CCM Witness Palmer 'saw the broader picture'?

A. CCM Witness Palmer did some specific cost of service work in this case, but then looked up and saw the impact of the change in the context of the Company's cost of service and, presumably, general knowledge of the broader industry cost of service facts.

⁴⁰ File No. ER-2024-0319, Caroline Palmer Direct Testimony, p. 15. ll. 17-20.

1	CCM Witness Palmer made a single, but substantial conceptual and methodological
2	change to the Company's cost of service. CCM witness Palmer changed the company's
3	distribution allocator from a minimum system framework to a basic customer allocation
4	method. The basic customer allocation method is generally recognized, but it is on one end of
5	the distribution cost-allocator spectrum. The significant, but generally recognized modeling
6	change didn't cause the Company's cost of service to change drastically.
7	I would like to thank CCM witness Palmer for acknowledging the reasonableness of
8	the Company's proposal and, tacitly, the cost of service. We need other reasonable (an
9	important qualifier) perspectives on cost of service to keep revenue allocation and rate design
10	reasonable. At times this means making revenue shifts to classes who'd probably rather not
11	receive them. If parties representing those classes are reasonable, we can continue to balance
12	the interests of all classes, including those who might need to pay a greater share of the total.
13	Q. What do you think about MECG's revenue requirement allocation
14	proposal?
15	A. From a cost of service perspective, I think MECG's proposal is reasonable.
16	Generally, I share MECG witness Maini's views on economic efficiency and equity, although
17	it is probably true that I have not placed as much weight as witness Maini has on it in this
18	case. ⁴¹ Economic efficiency is achieved by definition when rates equal cost of service. I also
19	think MECG's definition of equity is rates equal to cost of service. I don't think that is an
20	unreasonable definition of equity or fairness, but I do think there are other equity perspectives.
21	I think MECG witness Maini is also correct to assert that the Company has put 'emphasis on
22	tempering rate [or bill] impacts'. ⁴² On the other side of the bill impact coin is the fact that

 ⁴¹ File No. ER-2024-0319, Kavita Maini Direct Testimony, p. 21. II. 4-10.
 ⁴² File No. ER-2024-0319 Kavita Maini Direct Testimony, p. 23. I. 14.

1	customer classes with revenue requirement allocations above their cost of service have been	
2	paying bills that are too high and will continue to do so as long as rates do not move towards	
3	the cost of service. This is probably the perspective which I think provides the most credit to	
4	MECG's proposal in terms of reasonableness.	
5	Q. What do you think about MIEC's revenue allocation proposal?	
6	A. The perspective I shared above in response to MECG's revenue allocation	
7	proposal also applies to MIEC. Both MECG and MIEC express appreciation for the	
8	Company's effort to make a revenue adjustment or finally recognize the imbalance in rates but	
9	emphasize the need to do more. I think these expressions of appreciation reflect that fact that	
10	the Company's attempts to balance the competing interests of parties in recent cases ultimately	
11	resulted in proposals to increase revenue requirement allocations by equal percentages in each	
12	of those recent cases, and the Company's proposal in this case is an effort to finally recognize	
13	the imbalance in rates by making a revenue neutral revenue requirement reallocation.	
14	Differential bill impacts are always a compelling reason for equal percentage increases, but the	
15	recognition of the imbalance in rates was paramount in this case.	
16	IV. <u>RATE DESIGN</u>	
17	Q. What do you think about Staff's proposal that would keep the residential	
18	customer charge fixed at its current level?	
19	A. Staff makes a cost of service argument to support their proposal to keep the	
20	monthly residential customer charge at \$9.00. In order to maintain costs at this level, Staff	
21	uses a narrow definition of customer-related costs to estimate a cost of service based	
22	residential customer charge. I don't agree with Staff's definition of residential customer costs,	
23	and I don't find the estimates to be compelling. I do find the Company's definition of	

1	customer related costs compelling. The estimate of residential customer related costs from
2	Company Witness Hickman's work is approximately \$31 per month. Given the large gap
3	between the Company's current residential customer charge and the Company's estimate of
4	residential customer related costs, increasing the customer charge is good policy.
5	Additionally, Staff footnotes their analysis with the following, "Given AMI metering
6	and online billing, I did not include incremental costs for meter reading, billing, or postage."43
7	This statement unreasonably assumes that AMI and online billing are costless. Digital
8	metering and billing have costs even if there is not a physical meter reader walking door to
9	door or a physical envelope sent by mail. These complex digital systems have a real cost.
10	And, to the point here, these costs are the same per customer regardless of the customer
11	demand or energy. These are real costs that should be classified as customer-related costs and
12	further justify increasing the fixed customer charge in this case.
13	Q. What do you think about Staff's proposal to increase the Evening-
13 14	Q. What do you think about Staff's proposal to increase the Evening- Morning Savers On Peak Adjustments?
13 14 15	Q.What do you think about Staff's proposal to increase the Evening-Morning Savers On Peak Adjustments?A.I prefer the Company's proposal to keep the On Peak Adjustments constant in
13 14 15 16	Q.What do you think about Staff's proposal to increase the Evening-Morning Savers On Peak Adjustments?A.I prefer the Company's proposal to keep the On Peak Adjustments constant inthis case for a couple of reasons, but I do not think that Staff's proposal is unreasonable.
 13 14 15 16 17 	 Q. What do you think about Staff's proposal to increase the Evening- Morning Savers On Peak Adjustments? A. I prefer the Company's proposal to keep the On Peak Adjustments constant in this case for a couple of reasons, but I do not think that Staff's proposal is unreasonable. Currently, the On Peak Adjustment rates are 0.25 and 0.5 cents per kWh for the winter and
 13 14 15 16 17 18 	Q. What do you think about Staff's proposal to increase the Evening- Morning Savers On Peak Adjustments? A. I prefer the Company's proposal to keep the On Peak Adjustments constant in this case for a couple of reasons, but I do not think that Staff's proposal is unreasonable. Currently, the On Peak Adjustment rates are 0.25 and 0.5 cents per kWh for the winter and summer respectively. Staff's proposal, assuming the Company's revenue requirement request
 13 14 15 16 17 18 19 	Q. What do you think about Staff's proposal to increase the Evening- Morning Savers On Peak Adjustments? A. I prefer the Company's proposal to keep the On Peak Adjustments constant in this case for a couple of reasons, but I do not think that Staff's proposal is unreasonable. Currently, the On Peak Adjustment rates are 0.25 and 0.5 cents per kWh for the winter and summer respectively. Staff's proposal, assuming the Company's revenue requirement request and revenue allocation, would produce On Peak Adjustment rates of 0.29 and 0.57 cents per
 13 14 15 16 17 18 19 20 	Q. What do you think about Staff's proposal to increase the Evening- Morning Savers On Peak Adjustments? A. I prefer the Company's proposal to keep the On Peak Adjustments constant in this case for a couple of reasons, but I do not think that Staff's proposal is unreasonable. Currently, the On Peak Adjustment rates are 0.25 and 0.5 cents per kWh for the winter and summer respectively. Staff's proposal, assuming the Company's revenue requirement request and revenue allocation, would produce On Peak Adjustment rates of 0.29 and 0.57 cents per kWh for the winter and summer respectively. The first reason I prefer to keep the adjustment
 13 14 15 16 17 18 19 20 21 	Q. What do you think about Staff's proposal to increase the Evening- Morning Savers On Peak Adjustments? A. I prefer the Company's proposal to keep the On Peak Adjustments constant in this case for a couple of reasons, but I do not think that Staff's proposal is unreasonable. Currently, the On Peak Adjustment rates are 0.25 and 0.5 cents per kWh for the winter and summer respectively. Staff's proposal, assuming the Company's revenue requirement request and revenue allocation, would produce On Peak Adjustment rates of 0.29 and 0.57 cents per kWh for the winter and summer respectively. The first reason I prefer to keep the adjustments at the current levels is consistency, simplicity, and salience. The rollout of the AMI meters

⁴³ File No. ER-2024-0319, Sarah L.K. Lange Direct Testimony, p. 47, l. 16.

lagged default to this rate will complete around the time this case is completed. The last of the customers to receive AMI meters will just be exposed to the rate right when it would be changed by Staff's proposal. There is where the salience (or lack thereof) of Staff's suggestion comes in. The nice round numbers stand out. I think this increases the probability that a customer notices the new kind of charge on their bill and when they notice it, they have a better chance of understanding it.

7 The second reason to reject Staff's proposal is tied to the long-term intention of these 8 rates. What is Staff's long-term goal for the Evening-Morning Savers on peak adjustment or 9 the Evening-Morning Savers rate schedule more generally? To the best of my understanding, 10 the level of the charge recommended by Staff is not directly linked to any cost-based measure. 11 In principle, the broad on peak period has and/or will cause more of the total cost, but Staff's 12 specific level of the charge appears to be more or less arbitrary. Given the absolute size of the 13 adjustments is small and the general principle is a good one, choosing the small arbitrary level 14 of the charge was reasonable initially. However, it makes sense to me to consider what the 15 cost is intended to represent or what it is intended to achieve before we start changing it. 16 Staff's testimony articulates no basis for making such a change.

Q. What do you think about Staff's proposal to eliminate the additional
 monthly charge associated with the Legacy Time-of-Day rates for non-residential
 customers?

A. We made the same proposal in our direct, so I support it. This is a small but tangible benefit that was born out the Company's Non-Residential Rate Design working docket. In that working docket, the Company used the Legacy Time-of-Day rate plan to illustrate the type of bill impact analysis the Company was prepared to do in that proceeding

using AMI data. The juxtaposition of the rate with an extra customer charge and the AMI
 meter data led to the realization that the charge was no longer needed.

3 Q. What do you think about Staff's proposal to continue to hold the Rider B 4 charge constant?

5 A. I think it is unreasonable. Rider B is intended to remove substation related 6 costs from demand charges for customers taking service at voltages above the voltage level 7 exiting those substations, i.e. those customers who can't possibly be using those substations. 8 In ER-2022-0337, the Company showed that the level of substation cost in rates is nearly 9 identical to the Rider B rates. Applying Rider B, which was very close to those dollar 10 amounts, would remove those costs from rates. The Company still thinks that that is all that 11 we need to know to demonstrate that Rider B is doing what it was intended to do. It is true, 12 the Company has agreed to do more so Rider B is not necessary in the future, but those future 13 rates will just do in one charge what is currently done with a secondary charge adjustment, 14 Rider B. It will not change anything about the principled correctness in what Rider B is 15 currently doing. It is likely that substations costs are increasing along with other costs 16 generally, so it is reasonable to increase Rider B. 17 Q. What do you think about MECG's recommendation concerning a Non-18 **Residential Rate Design workshop progress report and timeline?** 19 A. I think it's a little bit confusing. In preparation for the workshops, the 20 Company spent considerable time and effort acquiring meter data, developing analytical 21 programs, conducting research, and developing an agenda aimed at facilitating constructive collaboration with the parties. The first slide, beyond the title slides, from the first workshop 22

contained the following:

1	Report and Order from ER-2022-0337 issued June 14, 2023.	
2	"What changes should be made, if any, to the Non-Residential, Non-Lighting rate	
3	options offered by the Company?"	
4	1. "The Commission does not find that a shift between demand charges and energy	
5	charges within the LGS and SPS rate classes is appropriate at this time. The Commission said	
6	as much in File No. ER-2021-0240. The Commission does find that this issue is appropriate	
7	for the non-residential working docket, where the parties can collaborate and look at ways to	
8	adjust these classes more toward their relative costs of service."	
9	2. "The Commission also finds it appropriate for MECG's proposed optional EV	
10	charging rate to be examined in the non-residential working docket."	
11	I'm not sure what MECG witness Maini is imagining in the recommendation made	
12	here, but I know MECG has made demand and energy charge and optional EV proposals in	
13	this case. MECG is making these proposals when the Commission ordered the parties to	
14	address those issues collaboratively in the non-residential working docket. Those issues were	
15	the first issues put on the table, and I do not recall any MECG participation. The idea that	
16	MECG wants a progress report on a working docket primarily ordered to address their issues	
17	and where they had the opportunity, and frankly the expectation, to actively participate but	
18	failed to do so, is a little confusing. As far as a timeline, I'd say it depends but could be	
19	accelerated through active participation by the parties.	
20	Q. What do you think about MECG's proposal to increase demand charges	
21	for the LGS and SPS class by 150%?	
22	A. As MECG witness Maini correctly identified in testimony and I acknowledge	
23	above, the Company is interested in bill impacts. I do not feel comfortable supporting this	

1	proposal without knowing something about the distribution of bill impacts within the LGS and	
2	SPS classes. This would have been something that was perfectly feasible to study in the non-	
3	residential working docket. A collaborative study like that could have resulted in a Company	
4	proposal or Company support for an MECG proposal of this nature in this case.	
5	Q. What do you think about MECG's EV rate proposal in this case?	
6	A. I think MECG should have actively participated in the non-residential working	
7	docket where the Commission ordered this issue to be addressed collaboratively. In the first	
8	workshop, the Company actually presented some AMI data for EV charging stations that	
9	could be used for analysis and a survey of current EV rates used by other utilities. There was	
10	no input or feedback provided by the participants.	
11	Q. What do you think about CCM's proposal not to change the Residential	
12	customer charge?	
13	A. CCM makes a policy argument to support their Residential customer charge	
14	proposal. Generally, CCM argues that Residential customer charge increases harm low-	
15	income customers. Presumably, disproportionately to other residential customers, because it	
16	can't harm both groups of customers due to revenue neutrality. I accept that policy has a place	
17	but I do not think the facts support CCM policy position.	
18	Q. What leads you to believe the facts don't support the CCM policy	
19	position?	
20	A. I conducted a low-income customer bill impact analysis comparing the	
21	Company's proposal and the CCM proposal. ⁴⁴ The impact on the whole low-income group of	
22	the Company's proposal relative the CCM proposal is zero, practically speaking. Technically,	

⁴⁴ The Company identified low incomes using customers who have qualified for the Company's Rider EEIC low-income exemption.

the Company's proposal increases the total paid by the low-income customer group over
twelve months by \$9 thousand. The total of those customers' bills is approximately \$64.5
million over the same time period. That means that the Company's customer charge proposal,
relative to CCM's, results in an increase of just 0.014% for the low-income group. Practically,
speaking the total bill outcomes for the group is equal under the two proposals. Here are the
actual numbers:

7

Table 10: Total Low Income Bills

Proposal	Total Bills (\$)
Ameren	64,471,777
CCM	64,462,695

8

9 You could argue about the \$9 thousand or what is practically different, but that's not 10 the point. The point is that the residential customer charge policy position taken by CCM is 11 not really supported by the facts. The fact above actually indicates that the residential 12 customer charge isn't a big issue for low-income customers as a group. It's not a big issue 13 because it doesn't clearly harm or benefit the low-income group in total. 14 There are a couple reasons we undertook this analysis. One, CCM requested low-15 income customer usage data in this case, so we had the data prepped and ready for analysis. 16 Two, this residential customer charge issue gets a lot of attention in every case, and some of 17 the facts we already knew didn't line up with some of the policy positions being taken by other 18 parties. 19 Q. Did the analysis provide any additional insights that might guide better 20 policy discussion in the future? 21 A. Yes, we looked at this question from a couple angles in our bill impact 22 analysis and quantified another layer of the story. Generally, there are two kinds of low-
Rebuttal Testimony of Nicholas Bowden

1	income customers. One kind of low-income customer fits the assumption you need to make
2	to believe that the increased customer charge will hurt low-income customers, i.e. that low-
3	income customers are low-usage customers. CCM witness Palmer says it: "The impact is
4	more acute for low-usage customers whose bills are relatively small and therefore more
5	influenced by the customer charge. Low-usage customers are also more likely to be low-
6	income and have less ability to pay high bills."45 The other type of low-income customer does
7	not fit this description. The other type of low-income customer consumes a lot of energy,
8	especially in the winter. Presumably, these customers are electric space heat customers. They
9	may also have inefficient homes and appliances. These customers are hurt by the CCM policy
10	position. CCM witness Palmer doesn't explicitly recognize that these customers exist. The
11	Commission should consider the CCM proposal in light of these facts.
12	CCM witness Hutchinson on the other hand constructs a narrative that fits the story of
13	this second set of customers but does not recognize that support for the CCM policy position
14	hurts the customers CCM witness Hutchinson expresses concern about. The customers with a
15	high energy burden, which is a customer's energy bill as a percent of customer income. By
16	definition, low-income and high usage customers have the highest energy burden of any
17	customers since the numerator of the energy burden (energy expenditures) is higher for these
18	high usage customers, and the denominator is low since they are low-income customers by
19	definition. If one is largely concerned with energy burden, a higher customer charge will
20	unambiguously benefit customers with the highest energy burdens.

⁴⁵ ER-2024-0319, Direct Testimony of Caroline Palmer, p. 16, ll.16-19

Q. Are there any other policy arguments related to low-income customers
 and customer charges that you would like to address before providing the other results
 of the analysis?

4	A. Yes. Both CCM witness Palmer and witness Hutchinson talk about
5	customers' ability to control their bill better when usage or volumetric rates are higher. There
6	is some truth in this, but customers still have very similar control of their bill when volumetric
7	rates are a tiny fraction lower, as is the case with the Company's proposal. More importantly,
8	what customers <i>could</i> do is far less compelling than what is <i>actually happening</i> . If the
9	analysis showed that the CCM proposal hurt low-income customers, then the argument that
10	low-income customers have more control still stands. Would witness Palmer and Hutchinson
11	still make that argument under those conditions? Maybe yes, I don't know. Regardless, I
12	think the impact a policy does have on customers' bills is far more compelling than what a
13	policy might allow customers to do. Especially, when the facts don't show that they are doing
14	that thing which they might.
15	Q. Please share the findings of the Company's low-income customer

- 16 analysis.
- A. The first fact, shown in Table 11, is that the average low-income customeruses more than the average residential customer.

Table 11: Average Residential Usage

	Low Income	All Residential
Apr-2023	1,059	843
May-2023	791	694
Jun-2023	896	874
Jul-2023	1,155	1,154
Aug-2023	1,244	1,223
Sep-2023	1,162	1,143
Oct-2023	886	830
Nov-2023	817	704
Dec-2023	1,174	962
Jan-2024	1,542	1,275
Feb-2024	1,568	1,264
Mar-2024	1,067	861

2

- 3 The total bills calculated under both the Company's and CCM's customer charge
- 4 proposals by month are shown in Table 12.

_	
٦.	
2	

Table 12: Total Low-Income Bills

Month	Ameren	ССМ	Difference
Apr-2023	3,996,232	3,986,970	9,262
May-2023	3,280,731	3,261,184	19,547
Jun-2023	5,776,584	5,776,062	522
Jul-2023	7,393,781	7,408,812	(15,031)
Aug-2023	8,020,772	8,041,383	(20,611)
Sep-2023	7,590,110	7,605,898	(15,788)
Oct-2023	3,832,866	3,816,101	16,766
Nov-2023	3,566,644	3,546,999	19,645
Dec-2023	4,654,080	4,648,841	5,239
Jan-2024	5,864,964	5,874,673	(9,709)
Feb-2024	5,992,344	6,003,157	(10,813)
Mar-2024	4,502,670	4,492,615	10,056
Total	64,471,777	64,462,695	9,082

6

7 Now for the interesting stuff. There are winners (customers who realize lower bills),

8 and losers (customers who realize higher bills) associated with each rate proposal, so let's look

9 at the results on that basis. For the purposes of this presentation, winners have lower bills

Rebuttal Testimony of Nicholas Bowden

- 1 under the CCM proposal and losers have higher bills under the CCM proposal. Table 13
- 2 shows that there are more winners than there are losers. This fact supports CCM's policy
- 3 position if the policy objective is to simply help more customers than they hurt.
- 4

Month	Winners	Losers	No Change	Total
Apr-2023	26,289	10,383	98	36,770
May-2023	31,335	5,748	106	37,189
Jun-2023	22,019	15,542	197	37,758
Jul-2023	15,878	22,059	163	38,100
Aug-2023	14,252	24,107	167	38,526
Sep-2023	15,709	22,981	189	38,879
Oct-2023	31,787	7,739	145	39,671
Nov-2023	32,932	6,406	106	39,444
Dec-2023	26,652	12,777	90	39,519
Jan-2024	23,054	17,154	108	40,316
Feb-2024	23,427	17,181	115	40,723
Mar-2024	29,360	11,753	103	41,216

Table 13: Number of Winners and Losers

5

6

- The next natural question is one of the degrees to which winners win and losers lose.
- 7 Table 14 presents the answer to that question. The customers who benefit, benefit by less,
- 8 than the than the harm caused to those who are harmed.

1

Table 14: Average Bill Impact

Month	Winners	Losers
Apr-2023	0.71	-0.91
May-2023	0.72	-0.50
Jun-2023	0.60	-0.82
Jul-2023	0.56	-1.08
Aug-2023	0.55	-1.18
Sep-2023	0.55	-1.06
Oct-2023	0.64	-0.46
Nov-2023	0.70	-0.54
Dec-2023	0.68	-1.02
Jan-2024	0.65	-1.45
Feb-2024	0.67	-1.54
Mar-2024	0.71	-0.93
Total	7.75	-11.49

2

- 3 Finally, losers, as expected, have higher bills than winners. Again, they are the ones
- 4 with the largest energy burden.

5

Table 15: Average Bills under CMM Proposal

Month	Winners	Losers
Apr-2023	74	196
May-2023	74	167
Jun-2023	94	237
Jul-2023	98	263
Aug-2023	99	273
Sep-2023	99	261
Oct-2023	80	164
Nov-2023	75	169
Dec-2023	76	204
Jan-2024	79	235
Feb-2024	78	242
Mar-2024	74	197
Total	1,000	2,608

6

7

Table 16 shows the different average usage of winners and losers. It is these

8 differences in usage which really explain all the interesting results we see above.

Q.

1

			All
Month	Winners	Losers	Residential
Apr-2023	613	2,188	843
May-2023	607	1,784	694
Jun-2023	524	1,424	874
Jul-2023	551	1,591	1,154
Aug-2023	558	1,651	1,223
Sep-2023	556	1,578	1,143
Oct-2023	675	1,745	830
Nov-2023	620	1,820	704
Dec-2023	636	2,298	962
Jan-2024	662	2,727	1,275
Feb-2024	651	2,820	1,264
Mar-2024	610	2,206	861
Average	605	1,986	986

Table 16 Average Monthly Usage

2

3

Any final conclusion from this analysis?

A. There will be low-income customers who are winners and who are losers if
CCM's proposal is accepted. There will be more winners, but plenty of losers. Each loser
loses by more than each winner, such that the impact on the whole group is effectively zero.
Finally, those who lose are those who already have the largest energy burden. If helping lowincome customers is CCM's intention, I don't think their proposal does that.

9

Q. Any recommendation for the Commission?

A. Yes, reject CCM's proposal. The facts do not clearly support their rationale
 and might actually contradict it. The Company made its proposal based on cost of service
 considerations. Now that I have more information about the low-income customer policy
 implications, I am even more enthusiastic in our recommendation that the Commission accept
 our residential rate design proposal, including the customer charge part of the proposal.
 Q. Does this conclude your rebuttal testimony?

16 A. Yes, it does.

76

BEFORE THE PUBLIC SERVICE COMMISSION OF THE STATE OF MISSOURI

)

)

In the Matter of Union Electric Company d/b/a Ameren Missouri's Tariffs to Adjust) Its Revenues for Electric Service.

Case No. ER-2024-0319

AFFIDAVIT OF NICHOLAS BOWDEN

STATE OF MISSOURI)) ss **CITY OF ST. LOUIS**)

Nicholas Bowden, being first duly sworn states:

My name is Nicholas Bowden, and on my oath declare that I am of sound mind and lawful

age; that I have prepared the foregoing Rebuttal Testimony; and further, under the penalty of perjury, that the same is true and correct to the best of my knowledge and belief.

> /s/ Nicholas Bowden Nicholas Bowden

Sworn to me this 17th day of January, 2025