

The Deployment of Clean Power Systems for Coal

Nick Otter

CCT2007 Sardinia 15-18th May 2007

POWER SYSTEMS

Agenda

1st topic	Strategy and Drivers	
2nd topic	CO2 Reduction and Capture Technologies	
3rd topic	Capture Ready Plant and other important issue	
4th topic	Concluding Remarks	

Agenda

1st topic	Strategy and Drivers	
2nd topic	CO2 Reduction and Capture Technologies	
3rd topic	Capture Ready Plant and other important issue	
4th topic	Concluding Remarks	

A Power Generation System Provider Perspective

Some key touchstones

Importance of clean use of fossil fuels

- > a critical transitional issue in getting to a sustainable energy future
- > an essential part of the portfolio

Importance of accelerating the take-up of clean fossil

- > need for incentives for early action on `zero emission` power plant
- >stable financial and regulatory framework to get "many of a kind"

- Importance of addressing issue worldwide

- > use of high efficiency technologies, and
- > prepare the way `zero emission`
 - retrofitting of high efficient coal plant with capture to avoid "carbon lock-in"
 - how to ensure new plant is "capture ready"
 - increase use of low carbon technologies

Pathway to zero emission power for fossil fuels

The ALSTOM CO2 STRATEGY: key elements

Efficiency of installed base

Advanced cycles for new plants

CO2 ready power plant

Retrofitable CO2 capture solution

Agenda

1st topic	Strategy and Drivers	
2nd topic	CO2 Reduction and Capture Technologies	
Zila topic	CO2 Reduction and Capture recrinologies	
3rd topic	Capture Ready Plant and other important issue	
4th topic	Concluding Remarks	

Retrofit = Immediate CO₂ avoidance

Efficiencies of coal fired power plants

Karlsruhe, Unit 8, 890 MW

Karlsruhe, Unit 8, 890 MW

Technology

Once Through

Fuel Coal

- Bituminous

Capacity

t/h 2.347

Pressure

bar 285

Temperature

°C 603/621

Exit gas temperature°C 120

Boiler efficiency (LHV) % 95

Country

- Germany

Customer

- EnBW

Steam turbine retrofit

Indicative Figures, Assuming 300 MW el. Output, 6500 h/a, Hard Coal

Sulfur content: 0.7%

Biomass co-firing retrofit

- •Fully commissioned in 2006, first dedicated biomass co-firing plant in the UK
- •2/4 x 500 MWe ALSTOM T Fired Boilers EPC retrofit to biomass co-firing
- Processing Up to 20% Biomass (Heat Input Basis) per unit equivalent to
 100MWe

ellets, Palm Kernels, Olive Stones, Olive

D2 savings per year = 800k T/annu

Zero emission technology pathways

Efficiency reduction: goal < 5%-points Cost of CO2 avoided: goal < 20 €t CO2

CO₂ capture solutions Oxy-combustion: 30 MW_{th} Oxyfuel Pilot Plant

CO₂-free coal-fired pilot plant at 'Schwarze Pumpe' site based on Oxyfuel technology (planned operation: mid 2008)

- Large quantity of O2 required
- CO2 separation with no use of chemicals
- Smaller boiler and flue gas volume reduction (Low NOx)

CO₂ capture solutions Post Combustion Solutions for New Plants and Retrofit

CO₂ absorption processes (MEA, MDEA)

PP Esbjerg (DK)

- Available in commercial scale
- Retrofitable and flexible
- High energy demand for regeneration of solvents

Alternative processes:

e.g. Frosting

CO₂ freezes on cooling fins

1 t CO₂/h pilot plant (CASTOR EU-FP6)

Retrofitable CO₂ capture solutions Chilled Ammonia Process

A promising technology for post combustion carbon

Advantages

- High efficiency capture of CO₂ and low heat of reaction
- Low cost reagent
- No degradation during absorption-regeneration
- Tolerance to oxygen and contaminations in flue gas

Principle Principle

- Ammonia (NH₃) reacts with CO₂ and water. It forms ammonia carbonate or bicarbonate
- Moderately raising the temperatures reverses the above reactions - releasing CO₂

5 MW Pilot Plant (USAtart-up anticipated for 2007

CO2 CAPTURE SOLUTIONS

Pre Combustion Solution for New Plants: IGCC+Capture

Coal gasification

Tampa Electric Company, Polk Power Station, 252 MWe, Mulberry, USA (FL)

- CO2 Capture technology is proven and economical in other industries
- High Capital and Operating Costs
- Limited operation flexibility
- Plant retrofit: not generally possible
- Landspace 1,5 x
 PC plant for same

Hydrogen-fired gas turbines

Cost of Electricity: 800MW Coal Plant Comparisons

CO₂ capture technologies impact plant performance

CO₂ capture solutions Time-line of CO₂ capture processes

Agenda

1st topic	Strategy and Drivers	
2nd topic	CO2 Reduction and Capture Technologies	
3rd topic	Capture Ready Plant and other important issue	

Capture ready power plant concept

The need

The answer

Prepare the way for the future

.

address
today the
issues
raised by
future
stringent
CO2
regulations

ready power plant concep

- CO₂ capture ready plant definition:
 - Plant designed to have CO₂ capture added at some time in the future with minimal impact on plant lifetime performance and cost
- Availability of a CO₂ ready plant:
 - Based on post-combustion scrubbing or oxycombustion processes, coal-fired plants are CO₂ ready provided that:
 - Extra room is left for the installation of the capture plant or the ASU
 - A suitable back-end equipment is installed
 - Future shut-down time is minimised
 - Transport and storage of CO2 is validated

Ensure CO2 readiness of current power plants

Source: ALSTOM analysis

CO₂ "Capture Ready" coal power plant

An integrated approach is key

Advanced Capture Processes

Technology development will provide additional solutions

- Oxygen Fired CFB
- Chemical Looping
 - **≻** Combustion
 - ➤ Gasification

POWER SYSTEMS

Multi-pollutant Control Systems

- Integrated APC system based around commercially proven and reliable technologies
- Uses readily available reagents
- Produces reusable byproduct(s)
- Superior cost/performance ratio:

 - Extremely compact design
 Fewer moving parts reduces maintenanc
 Superior environmental performance
- Targeted emissions levels:
 - SO₂: 0.02 lb/MMBTU (> 99.5%)
 Hg: 1.0 lb/TBTU (> 90%)
 PM: 0.01 lb/MMBTU (99.99%)
 NO_x: 0.05 lb/MMBTU w/SCR

Controls SO_v, PM₁₀/PM_{2.5} Mercury & NOx

Not just CO2

CO₂ Transportation and Storage

Key Issues

- **Cost Reduction**
- **Public Acceptance**
- Safe and Effective Storage
- Developing the Legal, Regulatory & Fiscal Framework

No point in capturing CO2 unless storage and/or use is addressed safety and acceptance of CO2 Storage is a critical issue .. holistic approach required

Agenda

1st topic	Strategy and Drivers	
2nd topic	CO2 Reduction and Capture Technologies	
3rd topic	Capture Ready Plant and other important issue	
4th topic	Concluding Remarks	

Summary an integrated approach

Near Term

Medium to Long Term

Installed base

- Integrated retrofit offerings with higher efficiency and STs
- Fuel switch
- Biomass co-firing

New power plants

- Fuel flexibility via CFBs
- 620 C best available technology for improved efficiency
- CO2 ready power plant concept

- CO2 post-combustion capture products: amine, ammonia, oxy-combustion for retrofit
- Advanced cycles retrofit
- Integrated CO2 postcombustion capture or oxyfuel firing and chemical looping
- 700 C USC boilers & steam turbines
- Gasification for polygeneration

Clean Combustion = limiting emissions while maintaining power plant economics

www.alstom.com

POWER SYSTEMS

