EXHIBIT G

NATIONAL ENERGY TECHNOLOGY LABORATORY

Improving Efficiency of Coal-fired Power Plants for Near Term CO₂ Reductions

Presented By: Phil DiPietro

November 9, 2009

Overview

- NETL has evaluated the opportunity to improve the efficiency of coal-fired power plants as a way to reduce GHG emissions
- Increasing coal-fired power plant efficiency makes sense
 - US has enormous coal reserves.
 - It is expensive and takes a long time to build new power plants
 - Side benefits of air quality and reduced water usage
 - Momentum toward carbon capture and storage

Analysis results

- Average efficiency of coal generating units can be improved from 33.1% to 35.6%
- Under a constant generation from coal, GHG emissions reduced by 125 MMmtCO₂/yr (2% of total U.S. emissions)

What is Efficiency?

- Theoretical maximum is 61% for a PC power plant (depends on temperature difference)
- Plants that are more efficient emit less CO₂ per unit of electricity because they use less coal.

Wide Variation in Efficiencies at Coal-fired Power Plants Indicates an Opportunity

- Top-performing generating units are much more efficient than the average
- The efficiency of individual power plants varies from year-to-year
- Online year does not matter much, power plants of the same vintage achieve markedly different efficiencies in 2008

Top-performing Coal-fired Power Plants, Possible Target for Fleet Efficiency

Decile	Number of Units	Capacity (GW)	Capacity Factor	2008 Total Generation (BkWh)	2008 Generation-Weighted Efficiency (HHV)
1	197	30.7	62%	169	28.1%
2	107	30.8	67%	182	30.3%
3	95	30.6	68%	184	31.4%
4	77	30.6	71%	190	32.0%
5	92	30.8	71%	191	32.8%
6	71	30.6	67%	178	33.7%
7	70	30.4	68%	183	34.4%
8	77	30.9	68%	186	35.2%
9	58	30.9	71%	192	36.1%
10	55	30.7	75%	201	38.0%
Overall	899	307	69%	1855	33.1%

Data Source: Ventyx's Energy Velocity 2008 average net heat rate data for coal-fired units using 97% or more coal with capacity factors above 10%. Heat rates were weighted by generation and units with missing or anomalous data were omitted. Omitted units accounted for 1.5% of generation

Barriers to Improved Efficiency

- Focus on availability
 - Sharpened by the profitability of coal-fired generating units
- Cost pass through
 - Zero (sometimes negative) incentive for reducing fuel use
 - Many deregulated regions have pass through clauses
- Fear of triggering New Source Review
- Uncertainty about future GHG regulation
 - Forces super short payback periods

We have found that operators of high performing generating units share a corporate commitment to high efficiency

Benchmark Regression Used to Quantify Magnitude of Opportunity to Improve Efficiency

Adopted benchmark regression method developed by Goudarzi and Roberts in 1998

- 1. Perform an initial regression with power plant efficiency as the dependent variable (R² of 0.73)
- 2. Identify and rank "overachievers," generating units that beat the regression.
- 3. Perform a 2nd regression on the top 10%, "best overachievers", with plant efficiency as the dependent variable (R² of 0.93)
- 4. Apply the MVR factors from the 2nd regression to entire fleet.
 - Represents what each generating unit could accomplish if it adopted practices of the overachievers.

Power Plant Characteristic Consider in the Multi-variable Regression Analysis

Explanatory Variables

- 1. Plant design efficiency
 - Fully loaded tested efficiency from the EV database
- Net nameplate capacity
- 1. Yes/No SO₂ scrubber
- 2. BTU content of coal
- 3. Load factor
 - Percentage of max generation when the plant is operating

Benchmark Regression Example

Benchmark Regression Example

Benchmark Regression Example

Bundling GHGs and NSR

- Regression shows that a good target for fleet efficiency is 36.4%.
- Under a NSR compliance scenario we apply SO₂ scrubbing to 165 GW, reduces efficiency target to 35.6%

North Dakota Compares Favorably

Plant Name	Online Year	Capacity (MW)	SO2 Controls	2008 Efficiency
Heskett	1963	75	N	27.8%
Leland Olds	1966	216	N	31.3%
Milton R. Young	1970	257	N	32.5%
Leland Olds	1975	440	N	32.3%
Milton R. Young	1977	477	Υ	32.8%
Coal Creek	1979	605	Υ	31.5%
Coal Creek	1980	605	Υ	32.2%
Coyote	1981	450	Υ	29.5%
Antelope Valley	1984	435	Υ	31.5%
Antelope Valley	1986	435	Υ	30.3%
Total		3995		31.5%

- Average efficiency of coal-fired power plants in North Dakota, 31.5%
- Target from the regression analysis 32.6%
- North Dakota delta 1.1 pp, U.S. delta 2.5 pp

How much will it cost?

Some gains can be relatively inexpensive

- Improved operation practices
- More frequent/pro-active maintenance
- Sensors and controls

Other gains will be very expensive

- Bundled with a new SO₂ scrubber
- Require upgrade of ancillary equipment
- Turbine overhauls / heat exchanger replacement

Maximum Year Efficiency

Decile	2008 Efficiency	Max Efficiency
1	28.1%	30.1%
2	30.3%	32.1%
3	31.4%	32.8%
4	32.0%	33.5%
5	32.8%	34.3%
6	33.7%	35.3%
7	34.4%	36.1%
8	35.2%	37.0%
9	36.1%	37.9%
10	38.0%	40.1%
Average	33.1%	34.7%

- Setting each unit to the highest achieved efficiency (1998-2009), yields overall fleet efficiency that is 1.6pp higher than 2008.
- Increase may be due to better operation or maintenance cycle.
- If each plant achieved their maximum efficiency each year, 5% reduction in CFPP CO₂ Emissions

Real-World Projects to Improve Efficiency

Plant improved efficiency from 32% to 35%

Real-World Projects to Improve Efficiency

Summary

- Top 10% of CFPPs are 38.0% efficient.
- 35.6% is a good generation weighted target for the fleet average
 - Includes 0.8 pp to account for sulfur scrubbing deployed at 165 GW
 - Under a constant coal generation scenario
 - 5.6% reduction in power sector emissions
 - 1.8% reduction in overall U.S. emissions
- NETL is continuing to assess the opportunity and to identify actions to motivate it.
 - Working on cost assessment
 - Workshop planned for Feb 24 and 25 in Baltimore, MD

Acknowledgements

- NETL analysis team includes Chuck Zelek, Katrina Krulla, Gavin Pickenpaugh, Kristin Gerdes, and Chris Nichols
- Information contained in the Energy Velocity Database greatly aided our efforts
- We apply a benchmark regression analysis methodology developed by Goudarzi and Roberts
- The analysis benefits from insights provided by participants at a workshop that NETL hosted in July of 2009

Thank you!