Appendix H - TRM - Vol. 2: C&I Measures

Volume 2: Commercial and Industrial Measures

2025 MEEIA 4 Plan MEEIA 2019-21<u>4 2025</u> Plan-Page 1 Revision <u>56</u>.0

Ameren Missouri TRM – Volume 2: C&I Measures Revision Log

Revision	Date	Description		Formatted Table
1.0	05/30/2018	Initial version filed for Commission approval.		
1.1	06/19/2020	Updated version to include new measures and updates to		
		existing measures		
2.0	10/15/2020	Updated version to include updates to existing measures.	1	
3.0	9/15/2021	Update "Deemed Tables" with PY2020 Evaluation results plus	1	
		updates to existing measures (lighting, chiller, pool pump).		
		Added EUL lookup table for lighting measures from PY19.		
4.0	9/26/2022	Updated "Deemed Tables" with PY2021 Evaluation results and		
		added two new measures: 2.2.2 Compressed Air Leak Repair		
		(shifting Compressed Air Nozzle and VSD Air Compressor to		
		2.2.3 and 2.2.4, respectively) and 2.5.10 Chiller Tune-Up.		
5.0	10/05/2023	Updated baselines to 2015 IECC (effective 1/1/2024) for 2.5.5,		
		2.5.6, and 2.5.8. Updated baseline table to include only 2015		
		IECC for 2.5.7 PTAC/PTHP. Added "exterior" to 24/7 lighting		
		coincidence factor because 24/7 interior lighting (e.g., exit		
		signs) are included in the indoor lighting coincidence factor.		
		Retired measures 2.6.4 and 2.6.7 in response to the EISA		
		backstop provision becoming effective 8/1/2023. Expanded		
		measure 2.2.4 VSD Air Compressor description to include units		
		up to 200-hp.		
<u>6.0</u>		-Removed measures to align with approved measure list from		Formatted: No underline
	<u>1201/01\15/202</u> 45			Formatted: No underline
		Cooling Towers, Dedicated Outdoor Systems. Removed several		
		measures currently not active in the programs. Reviewed and		
		updated all measures including source documentation.		
			1	
			1	
			1	
			1	
			1	
			1	
			1	
			1	
			1	

2025_MEEIA_4_2019-21_Plan

Revision 56.0

Appendix H - TRM - Vol. 2: C&I Measures

2 Compressed Air	
2.2.1 Compressed Air No Loss Condensate Drain	
2.2.2 Compressed Air Leak Repair	
2.2.3 Compressed Air Nozzle	
2.2.4 VSD Air Compressor	
3 Food Service	
2.3.1 Combination Oven	
2.3.2 Commercial Steam Cooker	
2.3.3 Fryer	
2.3.4 Convection Oven	
2.3.5 Griddle	
2.3.6 Kitchen Demand Ventilation Controls	
2.3.7 Hot Food Holding Cabinet	
2.3.8 Pre-Rinse Spray Valve	
4 Hot Water	
2.4.1 Low Flow Faucet Aerator	
2.4.2 Circulator Pump	
2.4.3 Heat Pump Water Heater	
2.4.4 Low Flow Showerheads	
5 HVAC	
2.5.1 Small Commercial Learning Thermostats	
2.5.2 Demand Controlled Ventilation	
2.5.3 Advanced Roof Top Unit (RTU) Controls	
2.5.4 Electric Chiller	
2.5.5 Heat Pump Systems	
2.5.6 Packaged Terminal Air Conditioner (PTAC) - Packaged Terminal Heat	Pump (PTHP)
2.5.7 Single-Package and Split System Unitary Air Conditioner	
2.5.8 High Volume Low Speed Fans	
2.5.9 Chiller Tune Up	
2.5.10 Efficient Cooling Towers	
2.5.11 Dedicated Outdoor Systems (DOAS)	
.6 Lighting	

Appendix H - TRM - Vol. 2: C&I Measures

2.6.1 LED Bulbs and Fixtures (Available for Income Eligible and BSS programs)	
2.6.2 LED Screw Based Omnidirectional Bulb (Available for Income Eligible and B	SS programs)179
2.6.3 LED Exit Sign (Available for Income Eligible and BSS programs)	
2.6.4 LED Specialty Lamp (Available for Income Eligible and BSS programs)	
2.6.5 Lighting Power Density (Available for Income Eligible and BSS programs)	
2.6.6 Lighting Controls	
2.7 Miscellaneous	
2.7.1 Computer Server	
2.8 Motors and Pumps	
2.8.1 Motors	
2.8.2 Pool Pump	
2.8.3 Pump Optimization	
2.8.4 Variable Frequency Drives for Pumps and Fans on Hydronic HVAC Systems .	
2.8.5 Variable Frequency Drives for HVAC Supply and Return Fans	
2.8.6 Efficient Pumps	
2.9 Refrigeration	
2.9.1 Commercial Solid and Glass Door Refrigerators & Freezers	
2.9.2 Refrigerated Beverage Vending Machine	
2.9.3 Door Heater Controls for Cooler or Freezer	
2.10 Shell	
2.10.1 Windows	
2.10.2 Ceiling and Wall Insulation	
Volume 2: Commercial and Industrial Measures	
2.2 Compressed Air	
2.2.1 Compressed Air No Loss Condensate Drain	
2.2.2 Compressed Air Leak Repair	
2.2.3 Compressed Air Nozzle	
2.2.4 VSD Air Compressor	
2.3 Food Service	
2.3.1 Combination Oven	
2.3.2 Commercial Steam Cooker	
2.3.3 Fryer	<u>59</u>
2.3.4 Convection Oven	
2.3.5 Griddle	
2.3.6 Kitchen Demand Ventilation Controls	
2.3.7 Hot Food Holding Cabinet	
2.3.8 Pre-Rinse Spray Valve	

<u>2025 MEEIA 4 2019-21 Plan</u>

Revision 56.0

Appendix H - TRM - Vol. 2: C&I Measures

2.4 Hot Water	 6	3
2.4.1 Low Flow Faucet Aerator	 6 .	3
2.4.2 Circulator Pump	7	L
2.4.3 Heat Pump Water Heater	7	3
2.4.4 Low Flow Showerheads	7	9
2.5 HVAC	8	6
2.5.1 Small Commercial Learning Thermostats	8'	7
2.5.2 Demand Controlled Ventilation	9	4
2.5.3 Advanced Roof Top Unit (RTU) Controls	9	9
2.5.4 Electric Chiller	10	
2.5.5 Heat Pump Systems	11	0
2.5.6 Packaged Terminal Air Conditioner (PTAC) - Packaged Terminal Heat Pump (PTHP)	12	
2.5.7 Single-Package and Split System Unitary Air Conditioner-	12	8
2.5.8 High Volume Low Speed Fans	13	
2.5.9 Chiller Tune Up	13	
2.5.10 Efficient Cooling Towers	14	
2.5.11 Dedicated Outdoor Systems (DOAS)	15	
	15	
2.6.1 LED Bulbs and Fixtures (Available for Income Eligible and BSS programs)	16	Г
2.6.2 LED Screw Based Omnidirectional Bulb (Available for Income Eligible and BSS programs)	17	t
2.6.3 LED Exit Sign (Available for Income Eligible and BSS programs)	18	
2.6.4 LED Specialty Lamp (Available for Income Eligible and BSS programs)	19	
2.6.5 Lighting Power Density (Available for Income Eligible and BSS programs)	19	I
	20	I
	21	I
2.7.1 Computer Server	22	
£	22	T
2.8.1 Motors-	22	
	23	ſ
2.8.2 Pool Pump	23	t
2.8.3 Pump Optimization	23	t
2.8.4 Variable Frequency Drives for Pumps and Fans on Hydronic HVAC Systems	<u>23</u>	T
	<u>-24</u> -24	I
2.8.6 Efficient Pumps		
	<u>25'</u>	
	<u>25'</u>	
2.9.2 Refrigerated Beverage Vending Machine	<u>26</u> 26	
2.9.3 Door Heater Controls for Cooler or Freezer-	26	t

Appendix H - TRM - Vol. 2: C&I Measures

2.10 Shell-	
2.10.1 Windows	
2.10.2 Ceiling and Wall Insulation	
Volume 2: Commercial and Industrial Measures	
2.2 Compressed Air	
2.2.1 Compressed Air No Loss Condensate Drain	
2.2.2 Compressed Air Leak Repair	
2.2.3 Compressed Air Nozzle	
2.2.4 VSD Air Compressor	
2.3 Food Service	
2.3.1 Combination Oven	
2.3.2 Commercial Steam Cooker	
2. <u>3.3 Fryer</u>	
2.3.4 Convection Oven	
2.3.5 Griddle	
2.3.6 Kitchen Demand Ventilation Controls	52
2.3.7 Hot Food Holding Cabinet	
2.3.8 Pre-Rinse Spray Valve	58
2.4 Hot Water-	
2.4.1 Low Flow Faucet Aerator-	
2.4.2 Circulator Pump	
2.4.3 Heat Pump Water Heater	
2.4.3 Heat Pump Water Heater	
2.4.4 Low Flow Showerheads	73 79
2.4.4 Low Flow Showerheads.	
2.4.4 Low Flow Showerheads	73 79 86 87
2.4.4 Low Flow Showerheads: 2.5.1 Small Commercial Learning Thermostats: 2.5.2 Demand Controlled Ventilation	73 79 86 87 94
2.4.4 Low Flow Showerheads	73 79 86 87 94 99
2.4.4 Low Flow Showerheads	73 79 86 87 94 99 102
2.4.4 Low Flow Showerheads: 2.5 HVAC 2.5.1 Small Commercial Learning Thermostats 2.5.2 Demand Controlled Ventilation 2.5.3 Advanced Roof Top Unit (RTU) Controls 2.5.4 Electric Chiller 2.5.5 Heat Pump Systems	73 79 86 87 94 99 102 110
2.4.4 Low Flow Showerheads	73 79 86 87 94 99 102 110 110 122
2.4.4 Low Flow Showerheads	73 79 86 87 94 99 102 102 110 122 128
2.4.4 Low Flow Showerheads: 2.5 HVAC 2.5.1 Small Commercial Learning Thermostats 2.5.2 Demand Controlled Ventilation 2.5.3 Advanced Roof Top Unit (RTU) Controls 2.5.4 Electric Chiller 2.5.5 Heat Pump Systems 2.5.5 Heat Pump Systems 2.5.6 Packaged Terminal Air Conditioner (PTAC) Packaged Terminal Heat Pump (PTHP) 2.5.7 Single Package and Split System Unitary Air Conditioner 2.5.8 High Volume Low Speed Fans	73 79 86 87 94 99 102 102 110 110 122 128 128 137
2.4.4 Low Flow Showerheads	73 79 86 87 94 99 102 110 110 122 128 137 139
2.4.4 Low Flow Showerheads	73 79 86 87 94 99 102 110 110 122 128 137 139 148
2.4.4 Low Flow Showerheads	73 79 86 87 94 99 102 102 102 102 110 122 128 137 139 148 148
2.4.4 Low Flow Showerheads	73 79 86 87 94 99 102 102 102 102 110 122 128 137 139 148 148

2025_MEEIA_4_2019-21_Plan

Revision 56.0

Appendix H - TRM - Vol. 2: C&I Measures

2.6.2 LED Screw Based Omnidirectional Bulb (Available for Income Eligible and BSS programs)	
2.6.4 LED Specialty Lamp (Available for Income Eligible and BSS programs)	
2.6.5 Lighting Power Density (Available for Income Eligible and BSS programs)	
2.6.6 Lighting Controls-	
2.7 Miscellaneous	
2.7.1 Computer Server	
2.8 Motors and Pumps	
2.8.1 Motors	
2.8.2 Pool Pump	
2.8.3 Pump Optimization	
2.8.4 Variable Frequency Drives for Pumps and Fans on Hydronic HVAC Systems	
2.8.5 Variable Frequency Drives for HVAC Supply and Return Fans	
2.8.6 Efficient Pumps	
2.9 Refrigeration-	
2.9.1 Commercial Solid and Glass Door Refrigerators & Freezers	
2.9.2 Refrigerated Beverage Vending Machine	
2.9.3 Door Heater Controls for Cooler or Freezer	
2.10 Shelt	
2.10 Sher	
2.10.2 Ceiling and Wall Insulation	
Volume 2: Commercial and Industrial Measures-	
2.2 Compressed Air	2
2.2.1 Compressed Air No Loss Condensate Drain-	<u></u> 2.
2.2.2 Compressed Air Vo Loss Condensate Drain	<u>2</u> 2'
2.2.3 Compressed Air Leak Repair	<u>2</u> 2'
2.2.4 VSD Air Compressor	<u></u>
2.3 Food Service	4
2.2.1 Combination Oven	
2.3.2 Commercial Steam Cooker	ار ح
2.3.3 Fryer	د
2.3.4 Convection Oven.	
2.3.5 Griddle	6
2.3.6 Kitchen Demand Ventilation Controls	
2.3.7 Hot Food Holding Cabinet	5
2.3.8 Pre-Rinse Spray Valve	5
2.4 Hot Water	<u>6</u>
2.4.1 Low Flow Faucet Aerator	6

2025 MEEIA 4 Plan MEEIA 2019-21<u>4 2025</u> Plan-

Appendix H - TRM - Vol. 2: C&I Measures

2.4.2 Circulator Pump	
2.4.3 Heat Pump Water Heater	
2.4.4 Low Flow Showerheads	
2.5 HVAC	<u></u>
2.5.1 Small Commercial Learning Thermostats	
2.5.3 Demand Controlled Ventilation	
2.5.4 Advanced Roof Top Unit (RTU) Controls	
2.5.5 Electric Chiller	
2.5.6 Heat Pump Systems	
2.5.7 Packaged Terminal Air Conditioner (PTAC) - Packaged Terminal Heat Pump (PTHP)	
2.5.8 Single-Package and Split System Unitary Air Conditioner	
2.5.9 High Volume Low Speed Fans	
2.5.10 Chiller Tune Up	<u>139</u>
2.5.11 Efficient Cooling Towers	
2.5.12 Dedicated Outdoor Systems (DOAS)	<u>151</u>
2.6 Lighting	<u></u>
2.6.3 LED Bulbs and Fixtures (Available for Income Eligible and BSS programs)	
2.6.4 LED Screw Based Omnidirectional Bulb (Available for Income Eligible and BSS programs)	<u></u>
2.6.7 LED Specialty Lamp (Available for Income Eligible and BSS programs)	
2.6.8 Lighting Power Density (Available for Income Eligible and BSS programs)	
2.6.10 Lighting Controls-	
2.7 Miscellaneous	
2.7.4 Computer Server	
2.8 Motors and Pumps	
2.8.1 Motors	
2.8.2 Pool Pump	
2.8.4 Pump Optimization	
2.8.5 Variable Frequency Drives for Pumps and Fans on Hydronic HVAC Systems	
2.8.6 Variable Frequency Drives for HVAC Supply and Return Fans	
2.8.7 Efficient Pumps	
2.9 Refrigeration	<u></u>
2.9.1 Commercial Solid and Glass Door Refrigerators & Freezers	
2.9.2 Refrigerated Beverage Vending Machine	
2.9.3 Door Heater Controls for Cooler or Freezer	
2 <u>.10 Shell</u>	<u></u>
2.10.1 Windows	
2.10.2 Ceiling and Wall Insulation	

2025_MEEIA_4_2019-21_Plan

Revision 56.0

Appendix H - TRM - Vol. 2: C&I Measures

ume 2: Commercial and Industrial Measures	
2.1 Appliances	*****
2.1.1 Clothes Washer-	
2.1.2 Clothes Dryer	
2-2 Compressed Air	
2.2.1 Compressed Air No Loss Condensate Drain	1
2.2.2 Compressed Air Leak Repair	1
2.2.3 Compressed Air Nozzle	
2.2.4 VSD Air Compressor	
2.3.1 Combination Oven	
2.3.2 Commercial Steam Cooker	
2.3.3 Fryer	
2.3.4 Convection Oven	
2.3.5 Griddle	
2.3.6 Kitchen Demand Ventilation Controls	
2.3.7 Hot Food Holding Cabinet.	
2.3.8 Pre-Rinse Spray Valve	••••••
2 	
2.4.1 Low Flow Faucet Aerator	
2.4.2 Circulator Pump	
2.4.3 Heat Pump Water Heater	,
2.4.4 Low Flow Showerheads	
5 HVAC	, ,
2.5.1 Small Commercial Learning Thermostats	
2.5.2 Small Commercial Programmable Thermostats	
2.5.3 Demand Controlled Ventilation	
2.5.4 Advanced Roof Top Unit (RTU) Controls	
2.5.5 Electric Chiller	9
2.5.6 Heat Pump Systems	9
2.5.7 Packaged Terminal Air Conditioner (PTAC) - Packaged Terminal Heat Pump (PTHP)	
2.5.8 Single-Package and Split System Unitary Air Conditioner	
2.5.9 High Volume Low Speed Fans	
2.5.9 High Volume Low Speed Fans	

2025 MEEIA 4 Plan MEEIA 2019-214 2025 Plan-

Appendix H - TRM - Vol. 2: C&I Measures

2.6.3 LED Bulbs and Fixtures (Available for Income Eligible and BSS programs)	<u>134169</u>
2.6.4 LED Screw Based Omnidirectional Bulb (Available for Income Eligible and BSS programs)	
2.6.6 LED Exit Sign	<u>150189</u>
2.6.7 LED Specialty Lamp (Available for Income Eligible and BSS programs)	<u>153192</u>
2.6.8 Lighting Power Density (Available for Income Eligible and BSS programs)	<u>158197</u>
2.6.10 Lighting Controls.	
2.7 Miscellaneous	<u></u>
2.7.3 Heat Pump Pool Heater	
2.7.4 Computer Server-	
2.8 Motors and Pumps	
2.8.1 Motors	
2.8.2 Pool Pump	
2.8.3 Pool Pump Timer	
2.8.4 Pump Optimization	189242
2.8.5 Variable Frequency Drives for Pumps and Fans on Hydronic HVAC Systems	191244
2.8.6 Variable Frequency Drives for HVAC Supply and Return Fans	
2.8.7 Efficient Pumps	198251
2.9 Refrigeration	203262
2.9.1 Commercial Solid and Glass Door Refrigerators & Freezers	203262
2.9.2 Refrigerated Beverage Vending Machine	207266
2.9.3 Door Heater Controls for Cooler or Freezer-	210269
2.9.4 Electronically Commutated Motors (ECM) for Walk-in and Reach-in Coolers/Freezers	213272
2.9.5 Strip Curtain for Walk-in Coolers and Freezers-	215275
2.10 Shell	218278
2.10.1 Windows	218278
2.10.2 Ceiling and Wall Insulation	223283
2.1 Appliances	
2.1.1 Clothes Washer	5
2.1.2 Clothes Dryer	
2.2 Compressed Air	
2.2.1 Compressed Air No Loss Condensate Drain-	
2.2.2 Compressed Air Leak Repair	
2.2.3 Compressed Air Nozzle	
2.2.4 VSD Air Compressor	24
2.3 Food Service	
2.3.1 Combination Oven	

2025_MEEIA_4_2019-21_Plan

Appendix H - TRM - Vol. 2: C&I Measures

2.3.2 Commercial Steam Cooker	<u>32</u>	
2.3.3 Fryer	<u></u>	
2.3.4 Convection Oven		
2.3.5 Griddle		
2.3.6 Kitchen Demand Ventilation Controls	<u></u>	
2.3.7 Hot Food Holding Cabinet.	5,1	
2.3.8 Pre-Rinse Spray Valve		
2.4 Hot Water		
2.4.1 Low Flow Faucet Aerator	60	
2.4.2 Circulator Pump	65	
2.4.3 Heat Pump Water Heater	67	
2.4.4 Low Flow Showerheads		
2.5.1 Small Commercial Learning Thermostats		
2.5.2 Small Commercial Programmable Thermostats		
2.5.3 Demand Controlled Ventilation		
2.5.4 Advanced Roof Top Unit (RTU) Controls	89	
2.5.5 Electric Chiller		
2.5.6 Heat Pump Systems	97	
2.5.7 Packaged Terminal Air Conditioner (PTAC) - Packaged Terminal Heat Pump (PTHP)	104	
2.5.8 Single Package and Split System Unitary Air Conditioner		
2.5.9 High Volume Low Speed Fans	117	
2.5.9 Tright volume Low Speed Fails		
2.5.11 Efficient Cooling Towers (TRC request)	124	
2.5.12 Dedicated Outdoor Systems (DOAS)	127	
2.6 Lighting		
	125	
2.6.1 Fluorescent Delamping 2.6.2 High Performance and Reduced Wattage T8 Fixtures and Lamps (Retired, effective 1/1/2025)	138	
	146	
2.6.3 LED Bulbs and Fixtures		
2.6.4 LED Screw Based Omnidirectional Bulb (Retired, effective 8/1/2023)	1.0	
2.6.5 T5 Fixtures and Lamps (Retired, effective 1/1/2025)		
2.6.6 LED Exit Sign	<u>161</u>	
2.6.7 LED Specialty Lamp (Retired, effective 8/1/2023)	<u>167</u>	
2.6.8 Lighting Power Density	<u>172</u>	
2.6.9 Metal Halide Fixtures and Lamps (Retired, effective 1/1/2025)		Formatted: Font color: Auto
2.6.10 Lighting Controls	<u>182</u>	
2.6.11 Street Lighting (Retired, effective 1/1/2025)	186	

2025 MEEIA 4 Plan MEEIA 2019-214 2025 Plan-

Page 11

Appendix H - TRM - Vol. 2: C&I Measures

2.7 Miscellancous	<u></u>
2.7.1 Laptop Computer	
2.7.2 Computer Power Management Software	
2.7.3 Heat Pump Pool Heater	
2.7.4 Computer Server	<u></u>
2.8 Motors and Pumps	
2.8.1 Motors	
2.8.2 Pool Pump	
2.8.3 Pool Pump Timer	
2.8.4 Pump Optimization	
2.8.5 Variable Frequency Drives for Pumps and Fans on Hydronic HVAC Systems	
2.8.6 Variable Frequency Drives for HVAC Supply and Return Fans	
2.8.7 Efficient Pumps	
2.9 Refrigeration	<u></u>
2.9.1 Commercial Solid and Glass Door Refrigerators & Freezers	
2.9.2 Refrigerated Beverage Vending Machine	
2.9.3 Door Heater Controls for Cooler or Freezer	
2.9.4 Electronically Commutated Motors (ECM) for Walk-in and Reach-in Coolers/Freezers	
2.9.5 Strip Curtain for Walk-in Coolers and Freezers	
2.10 Shell	
2.10.1 Windows	
2.10.2 Ceiling and Wall Insulation	
Volume 2: Commercial and Industrial Measures	1
2.1 Appliances	
2.1.1 Clothes Washer	
2.1.2 Clothes Dryer	
2.2 Compressed Air	
2.2.1 Compressed Air No Loss Condensate Drain	
2.2.2 Compressed Air Leak Repair	
2.2.3 Compressed Air Nozzle	22
2.2.4 VSD Air Compressor	26
2.3 Food Service-	29
2.3.1 Combination Oven	29
2.3.2 Commercial Steam Cooker	34
2.3.3 Fryer	40
2.3.4 Convection Oven	
2.3.5 Griddle	49

2025_MEEIA_4_2019-21_Plan

Appendix H - TRM - Vol. 2: C&I Measures

2.3.6 Kitchen Demand Ventilation Controls	<u>52</u>
2.3.7 Hot Food Holding Cabinet	
2.3.8 Pre-Rinse Spray Valve	
2.4 Hot Water	
2.4.1 Low Flow Faucet Aerator	
2.4.2 Circulator Pump	65
2.4.3 Heat Pump Water Heater	67
2.4.4 Low Flow Showerheads	
2.5 HVAC	
2.5.1 Small Commercial Learning Thermostats	
2.5.2 Small Commercial Programmable Thermostats	
2.5.3 Demand Controlled Ventilation	
2.5.4 Advanced Roof Top Unit (RTU) Controls	
2.5.5 Electric Chiller	
2.5.6 Heat Pump Systems	
2.5.7 Packaged Terminal Air Conditioner (PTAC) - Packaged Terminal Heat Pump (PTHP)	
2.5.8 Single Package and Split System Unitary Air Conditioner	
2.5.9 High Volume Low Speed Fans	
2.5.10 Chiller Tune Up	
2.5.12 Dedicated Outdoor Systems (DOAS)	127
2.5.12 Dedicated Outdoor Systems (DOAS)	<u></u>
2.6 Lighting	
2.6.1 Fluorescent Delamping	132
2.6.1 Fluorescent Delamping 2.6.2 High Performance and Reduced Wattage T8 Fixtures and Lamps (Retired, effective 1/1/2025)	
2.6.1 Fluorescent Delamping. 2.6.2 High Performance and Reduced Wattage T8 Fixtures and Lamps (Retired, effective 1/1/2025). 2.6.3 LED Bulbs and Fixtures.	
2.6 Lighting 2.6.1 Fluorescent Delamping 2.6.2 High Performance and Reduced Wattage T8 Fixtures and Lamps (Retired, effective 1/1/2025) 2.6.3 LED Bulbs and Fixtures 2.6.4 LED Screw Based Omnidirectional Bulb (Retired, effective 8/1/2023)	
2.6 Lighting. 2.6.1 Fluorescent Delamping. 2.6.2 High Performance and Reduced Wattage T8 Fixtures and Lamps (Retired, effective 1/1/2025). 2.6.3 LED Bulbs and Fixtures. 2.6.4 LED Screw Based Omnidirectional Bulb (Retired, effective 8/1/2023) 2.6.5 T5 Fixtures and Lamps (Retired, effective 1/1/2025)	
2.6 Lighting	<mark>132</mark> 135 146 146 161 161
2.6 Lighting 2.6.1 Fluorescent Delamping 2.6.2 High Performance and Reduced Wattage T8 Fixtures and Lamps (Retired, effective 1/1/2025) 2.6.3 LED Bulbs and Fixtures 2.6.4 LED Screw Based Omnidirectional Bulb (Retired, effective 8/1/2023) 2.6.5 T5 Fixtures and Lamps (Retired, effective 1/1/2025) 2.6.6 LED Exit Sign 2.6.7 LED Specialty Lamp (Retired, effective 8/1/2023)	<mark>132</mark> 135 146 146 161 167 167
2.6 Lighting 2.6.1 Fluorescent Delamping 2.6.2 High Performance and Reduced Wattage T8 Fixtures and Lamps (Retired, effective 1/1/2025) 2.6.3 LED Bulbs and Fixtures 2.6.4 LED Screw Based Omnidirectional Bulb (Retired, effective 8/1/2023) 2.6.5 T5 Fixtures and Lamps (Retired, effective 1/1/2025) 2.6.6 LED Exit Sign 2.6.7 LED Specialty Lamp (Retired, effective 8/1/2023) 2.6.8 Lighting Power Density	132 135 138 146 146 154 169 161 167 167 172
2.6 Lighting 2.6.1 Fluorescent Delamping 2.6.2 High Performance and Reduced Wattage T8 Fixtures and Lamps (Retired, effective 1/1/2025) 2.6.3 LED Bulbs and Fixtures 2.6.4 LED Screw Based Omnidirectional Bulb (Retired, effective 8/1/2023) 2.6.5 T5 Fixtures and Lamps (Retired, effective 1/1/2025) 2.6.6 LED Exit Sign 2.6.7 LED Specialty Lamp (Retired, effective 8/1/2023) 2.6.8 Lighting Power Density 2.6.9 Metal Halide Fixtures and Lamps (Retired, effective 1/1/2025)	132 135 138 146 151 160 161 167 172 178
2.6 Lighting 2.6.1 Fluorescent Delamping 2.6.2 High Performance and Reduced Wattage T8 Fixtures and Lamps (Retired, effective 1/1/2025) 2.6.3 LED Bulbs and Fixtures 2.6.4 LED Screw Based Omnidirectional Bulb (Retired, effective 8/1/2023) 2.6.5 T5 Fixtures and Lamps (Retired, effective 1/1/2025) 2.6.6 LED Exit Sign 2.6.7 LED Specialty Lamp (Retired, effective 8/1/2023) 2.6.8 Lighting Power Density 2.6.9 Metal Halide Fixtures and Lamps (Retired, effective 1/1/2025) 2.6.10 Lighting Controls	132 135 138 138 146 151 161 167 172 178 182
2.6 Lighting 2.6.1 Fluorescent Delamping 2.6.2 High Performance and Reduced Wattage T8 Fixtures and Lamps (Retired, effective 1/1/2025) 2.6.3 LED Bulbs and Fixtures 2.6.4 LED Screw Based Omnidirectional Bulb (Retired, effective 8/1/2023) 2.6.5 T5 Fixtures and Lamps (Retired, effective 1/1/2025) 2.6.6 LED Exit Sign 2.6.7 LED Specialty Lamp (Retired, effective 8/1/2023) 2.6.8 Lighting Power Density 2.6.9 Metal Halide Fixtures and Lamps (Retired, effective 1/1/2025) 2.6.10 Lighting Controls 2.6.11 Street Lighting (Retired, effective 1/1/2025)	132 135 138 138 146 161 167 172 178 182 185
2.6 Lighting 2.6.1 Fluorescent Delamping 2.6.2 High Performance and Reduced Wattage T8 Fixtures and Lamps (Retired, effective 1/1/2025) 2.6.3 LED Bulbs and Fixtures 2.6.4 LED Screw Based Omnidirectional Bulb (Retired, effective 8/1/2023) 2.6.5 T5 Fixtures and Lamps (Retired, effective 1/1/2025) 2.6.6 LED Exit Sign 2.6.7 LED Specialty Lamp (Retired, effective 8/1/2023) 2.6.8 Lighting Power Density 2.6.9 Metal Halide Fixtures and Lamps (Retired, effective 1/1/2025) 2.6.10 Lighting Controls 2.6.11 Street Lighting (Retired, effective 1/1/2025) 2.7 Miscellaneous	132 135 138 138 146 151 160 161 167 167 172 178 186 189
2.6 Lighting 2.6.1 Fluorescent Delamping 2.6.2 High Performance and Reduced Wattage T8 Fixtures and Lamps (Retired, effective 1/1/2025) 2.6.3 LED Bulbs and Fixtures 2.6.4 LED Screw Based Omnidirectional Bulb (Retired, effective 8/1/2023) 2.6.5 T5 Fixtures and Lamps (Retired, effective 1/1/2025) 2.6.6 LED Exit Sign 2.6.7 LED Specialty Lamp (Retired, effective 8/1/2023) 2.6.8 Lighting Power Density 2.6.9 Metal Halide Fixtures and Lamps (Retired, effective 1/1/2025) 2.6.10 Lighting Controls. 2.6.11 Street Lighting (Retired, effective 1/1/2025) 2.7.1 Laptop Computer	132 135 138 138 146 151 161 162 163 164 167 168 189 189
2.6 Lighting 2.6.1 Fluorescent Delamping 2.6.2 High Performance and Reduced Wattage T8 Fixtures and Lamps (Retired, effective 1/1/2025) 2.6.3 LED Bulbs and Fixtures 2.6.4 LED Screw Based Omnidirectional Bulb (Retired, effective 8/1/2023) 2.6.5 T5 Fixtures and Lamps (Retired, effective 1/1/2025) 2.6.6 LED Exit Sign 2.6.7 LED Specialty Lamp (Retired, effective 8/1/2023) 2.6.8 Lighting Power Density 2.6.9 Metal Halide Fixtures and Lamps (Retired, effective 1/1/2025) 2.6.10 Lighting Controls 2.6.11 Street Lighting (Retired, effective 1/1/2025) 2.7 Miscellaneous	132 135 138 138 146 151 161 167 172 178 186 186 186

2025 MEEIA 4 Plan MEEIA 2019-214 2025 Plan-

Appendix H - TRM - Vol. 2: C&I Measures

2.7.4 Computer Server	<u>196</u>	
.8 Motors and Pumps		
2.8.1 Motors	<u>198</u>	
2.8.2 Pool Pump		
2.8.3 Pool Pump Timer		
2.8.4 Pump Optimization		
2.8.5 Variable Frequency Drives for Pumps and Fans on Hydronic HVAC Systems		Formatted: Default Paragraph Font, Font: Bold, Check spelling and grammar
2.8.6 Variable Frequency Drives for HVAC Supply and Return Fans		Formatted: Default Paragraph Font, Font: Bold, Check
2.8.7 Efficient Pumps		spelling and grammar
.9 Refrigeration	<u></u>	Formatted: Default Paragraph Font, Check spelling and
2.9.1 Commercial Solid and Glass Door Refrigerators & Freezers		grammar
2.9.2 Refrigerated Beverage Vending Machine-		Formatted: Default Paragraph Font, Check spelling and
2.9.3 Door Heater Controls for Cooler or Freezer	228	grammar
2.9.4 Electronically Commutated Motors (ECM) for Walk-in and Reach-in Coolers/Freezers		Formatted: Default Paragraph Font, Font: Bold, Check spelling and grammar
2.9.5 Strip Curtain for Walk-in Coolers and Freezers		Formatted: Default Paragraph Font, Check spelling and
		grammar
2.10.1 Windows		Formatted: Default Paragraph Font, Check spelling and
2.10.2 Ceiling and Wall Insulation		grammar
lume 2: Commercial and Industrial Measures		Formatted: Default Paragraph Font, Check spelling and grammar
2.1 Appliances		Formatted: Default Paragraph Font, Check spelling and
2.1.1 Clothes Washer	5	grammar
2.1.2 Clothes Dryer	<u>10</u> ///	Formatted: Default Paragraph Font, Font: Bold, Check
2.2 Compressed Air		spelling and grammar
2.2.1 Compressed Air No Loss Condensate Drain		Formatted: Default Paragraph Font, Check spelling and grammar
2.2.2 Compressed Air Leak Repair		Formatted: Default Paragraph Font, Check spelling and
2.2.3 Compressed Air Nozzle		grammar
2.2.4 VSD Air Compressor		Formatted: Default Paragraph Font, Check spelling and
.3 Food Service		grammar
2.3.1 Combination Oven		Formatted: Default Paragraph Font, Check spelling and
2.3.2 Commercial Steam Cooker		grammar
2.3.3 Fryer		Formatted: Default Paragraph Font, Check spelling and grammar
2.3.4 Convection Oven		Formatted: Default Paragraph Font, Check spelling and
2.3.5 Griddle		grammar
2.3.6 Kitchen Demand Ventilation Controls	44	Formatted: Default Paragraph Font, Check spelling and
2.3.7 Hot Food Holding Cabinet		grammar
2.3.8 Pre Rinse Spray Valve		Formatted: Default Paragraph Font, Check spelling and grammar
2.4 Hot Water		grammar Formatted: Default Paragraph Font, Font: Bold, Check spelling and grammar

2025 MEEIA 4 2019-21 Plan

Revision 56.0

Appendix H - TRM - Vol. 2: C&I Measures

2.4.1 Low Flow Faucet Aerator	51	Formatted	
2.4.2 Circulator Pump	56	Formatted	
2.4.3 Heat Pump Water Heater	58	(
2.5 HVAC		Formatted	
2.5.1 Small Commercial Learning Thermostats	61	Formatted	
2.5.2 Small Commercial Programmable Thermostats	67	Formatted	
2.5.3 Demand Controlled Ventilation	70	Formatted	
2.5.5 Demand Controlled Ventilation 2.5.4 Advanced Roof Top Unit (RTU) Controls	71	Formatted	
	/+	Formatted	
2.5.5 Electric Chiller	······ //	Formatted	
2.5.6 Heat Pump Systems		Formatted	
2.5.7 Packaged Terminal Air Conditioner (PTAC) Packaged Terminal Heat Pump (PTHP)	91	Formatted	
2.5.8 Single Package and Split System Unitary Air Conditioner	98	Formatted	
2.5.9 High Volume Low Speed Fans	105	Formatted	
2.5.10 Chiller Tune Up	 107	Formatted	
. 6 Lighting	112	Formatted	
2.6.1 Fluorescent Delamping	114	Formatted	
2.6.2 High Performance and Reduced Wattage T8 Fixtures and Lamps	117	Formatted	
2.6.3 LED Bulbs and Fixtures	125	Formatted	
2.6.4 LED Screw Based Omnidirectional Bulb (Retired, effective 8/1/2023)	131	Formatted	
2.6.5 T5 Fixtures and Lamps	137	Formatted	
2.6.6 LED Exit Sign		Formatted	
2.6.7 LED Specialty Lamp (Retired, effective 8/1/2023)	144		
2.6.8 Lighting Power Density	140	Formatted	
2.6.9 Metal Halide Fixtures and Lamps	16	Formatted	
2.6.10 Occupancy Lighting Sensor Controls	165	Formatted	
	1.0	Formatted	
2.6.11 Street Lighting	108	Formatted	
.7 Miscellaneous		Formatted	
2.7.1 Laptop Computer	17/	Formatted	
2.7.2 Computer Power Management Software	174	Formatted	
2.7.3 Heat Pump Pool Heater	176	Formatted	
2.7.4 Computer Server	178	Formatted	
& Motors	 180	Formatted	
2.8.1 Motors	180	Formatted	
2.8.2 Pool Pump	184	Formatted	
2.8.3 Pool Pump Timer	186	Formatted	
- 2.8.4 Pump Optimization	188		
2.8.5 Variable Frequency Drives for Pumps and Fans on Hydronic HVAC Systems	190	Formatted	
		Formatted	

2025 MEEIA 4 Plan MEEIA 2019-214 2025 Plan-

Appendix H - TRM - Vol. 2: C&I Measures

2.8.6 Variable Frequency Drives for HVAC Supply and Return Fans	194
2.9 Refrigeration	<u>201</u>
2.9.1 Commercial Solid and Glass Door Refrigerators & Freezers	201
2.9.2 Refrigerated Beverage Vending Machine	 205
2.9.3 Door Heater Controls for Cooler or Freezer	207
2.9.4 Electronically Commutated Motors (ECM) for Walk in and Reach in Coolers/Freezers	
2.9.5 Strip Curtain for Walk in Coolers and Freezers	212
2.10 Shell	
2.10.1 Windows	
2.10.2 Ceiling and Wall Insulation	

Formatted: Default Paragraph Font, Check spelling and grammar
Formatted: Default Paragraph Font, Font: Bold, Check spelling and grammar
Formatted: Default Paragraph Font, Check spelling and grammar
Formatted: Default Paragraph Font, Check spelling and grammar
Formatted: Default Paragraph Font, Check spelling and grammar
Formatted: Default Paragraph Font, Check spelling and grammar
Formatted: Default Paragraph Font, Check spelling and grammar
Formatted: Default Paragraph Font, Font: Bold, Check spelling and grammar
Formatted: Default Paragraph Font, Check spelling and grammar
Formatted: Default Paragraph Font, Check spelling and grammar

1

Revision <u>56</u>.0

Appendix H - TRM – Vol. 2: C&I Measures

Volume 2: Commercial and Industrial Measures

2.1 Appliances

2.1.1 Clothes Washer

DESCRIPTION

This measure relates to the installation of a commercial grade clothes washer meeting the ENERGY STAR[®]-minimum qualifications. Note it is assumed the domestic hot water (DHW) and dryer fuels of the installations are known.

This measure was developed to be applicable to the following program types: TOS and NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The commercial grade clothes washer must meet the ENERGY STAR[®] minimum qualifications (provided in the table below),<u>in the following table</u>, as required by the program. The current <u>Version 8.0, is effective as of February 2018</u>. Or a top load commercial grade clothes washer <u>exceeding the California Modernized Appliance Efficiency Database (CA MAEDBS) minimum qualifications</u>. as of 2024.specification is effective as of February 5, 2018.

E	ficiency Level	Top loading	Front Loading	
Efficient	<u>ENERGY STAR[®] Or CA MAEDBS</u>	<u>≥1.49 MEF, ≤7.92 IWF</u>	<u>≥2.2 MEF, ≤4.0 IWF</u>	

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font: 11 pt

Formatted Table

Formatted: Font: 8 pt

Field Code Changed

Formatted: Line spacing: single

Formatted: Indent: Left: 0", Line spacing: single

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is a commercial-grade clothes washer meeting the minimum federal energy efficiency baseline as of January 2013<u>2018</u>.⁴

E	ficiency Level	Top loading	Front Londing
Baseline	Federal Standard	<u>1.35 MEF, 8.8 IWF</u> ≥1.6 <u>MEF, ≤8.5 WF</u>	2.00 MEF, 4.1 IWF≥2.00 MEF, ≤5.5 WF
Efficient	ENERGY STAR®	N/A	≥ 2.2 MEF, ≤4.0 IWF

*DOE, Commercial Clothes Washer efficiency, <u>eCFR</u> :: 10 CFR Part 431 — Energy Efficiency Program for Certain Commercial and Industrial Equipmenthttps://www.ecfr.gov/current/title-10/chapter-Il/subchapter-D/part-431#431.97DOE/Commercial Washers/https://www.ecfr.gov/current/title-10/chapter Il/subchapter D/part 431#431.97DOE/Commercial Cothes Washers/ https://www.ecfr.gov/current/title-10/chapter Il/subchapter D/part 431#431.97DOE/Commercial Cothes Washers/ https://www.ecfr.gov/current/title-10/chapter-Il/subchapter D/part 431#431.97DOE/Commercial Cothes Washers/ https://www.ecfr.gov/current/title-10/chapter-Il/subchapter-D/part 431#431.97DOE/Commercial Cothes Washers/ https://www.ecfr.gov/current/title-10/chapter-Il/subchapter-D/part 431#431.97DOE/ Il/subchapter-D/part-431#431.97Bee/Ederal standard 10 CFR 431.152.

2025 MEEIA 4 Plan MEEIA 2019-214 2025 Plan

Revision <u>56</u>.0

1

Page 17

Appendix H - TRM – Vol. 2: C&I Measures

The Modified Energy Factor (MEF) includes unit operation, water heating, and drying energy use, with the higher the value the more efficient the unit; "*The quotient of the capacity of the clothes container, divided by the total clothes washer energy consumption per cycle, with such energy consumption expressed as the sum of the machine electrical energy consumption, the hot water energy consumption, and the energy required for removal of the remaining moisture in the wash load.*"

The <u>The Integrated</u> Water Factor (<u>IWF</u>) indicates the total water consumption of the unit, with the lower the value the less water required; "*The quotient of the total weighted per cycle water consumption for <u>all wash cycles</u> cold wash, divided by the capacity of the clothes washer:"²*

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 11 years.³

DEEMED MEASURE COST

The incremental cost is assumed to be \$200.4

LOADSHAPE

Loadshape Miscellaneous BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERCY SAVINGS

$$\begin{split} & \underline{AkWh} = [(Capacity_* \underline{x} \underbrace{1}_{MEFbase} * Ncycles) * \underline{x} ((& CW_{base} + (& DHW_{base} * \underline{x} & Electric_{DHW}) + \\ & (& Dryerbase * \underline{x} & Electric_{Dryer})] = [(Capacity * \underbrace{1}_{MEFeff} * Ncycles) * \underline{x} ((& CWeff + \\ & (& DHWeff * \underline{x} & Electric_{DHW}) + (& Dryereff * \underline{x} & Electric_{Dryer})]] \end{split}$$

Where:

Capacity = Clothes washer capacity (cubic feet)

² <u>Clothes Washers Key Product Criteria ENERGY</u>	•	Formatted: Footnotes
STARhttps://www.energystar.gov/products/clothes_washers/key_product_criteriaENERGY_STAR Clothes Washers https://www.energystar.gov/products/clothes_washers/key_product_criteriaENERGY_STAR Clothes_Washers		Field Code Changed
https://www.energystar.gov/products/clothes_washers/key_product_criteriaENERGY_STAR@+Clothes_Washers+ https://www.energystar.gov/products/clothes_washers/key_product_criteriaDefinitions provided on the Energy Star® website.		
³ DOE, Multifamily EUL 11.3 and Laundromat 7.1, applied 11 years to align with other TRMs, Page 76, "Energy Conservation Standards for Commercial Clothes Washers", https://www.energy.gov/eere/buildings/articles/issuance-2014-12-05-energy-		Formatted: Font color: Text 1
conservation-standards-commercial-clothes-Appliance Magazine, September 2007 as referenced in ENERGY STAR®		
Commercial Clothes Washer Calculator. ⁴ ENERGY_STAR@ https://dnr.mo.gov/sites/dnr/files/media/file/2021/01/energy-star-appliance-calculator.xlsx ("Clothes Washer Calcs" tab Cell E11)Based on Industry Data 2007 as referenced in ENERGY_STAR® Commercial Clothes Washer	•	Formatted: Footnotes, Space After: 0 pt, Line spacing:
Calculator.		single

<u>2025</u>MEEIA<u>4</u>2019-21-Plan

Revision <u>56</u>.0

Page 18

Formatted: Indent: Left: 0"

Formatted Table

Appendix H - TRM - Vol. 2: C&I Measures

= Actual - If capacity is unknown, assume 3.1 8 cubic feet-5 = Modified Energy Factor of baseline unit = Actual. If unknown, assume average values provided below for early replacement, else Ffederal Sstandard in following table .. = Modified Energy Factor of efficient unit, must exceed minimum values in following table.

MEF_{eff}

MEFbase

<u>Standard</u>	Top Load	Front Load	•	Format
Baseline Federal standard	1.35 MEF ⁶	<u>2.00 MEF</u> ⁷	•	Format
Efficient ENERGY STAR®	<u>N/A</u>	2.39 MEF ⁸	*	Format
Efficient - CA MAEDBS	<u>1.50 MEF⁹</u>			Format

Neycles	= Number of wash Cycles cycles per year
	$=2190^{10}$
%C₩	= Percentage of total energy consumption for clothes
	washer operation (different for baseline and efficient
	unit see table below)
%DH₩	= Percentage of total energy consumption used for
	water heating (different for baseline and efficient unit
	- see table below)

⁵ ENERGY STAR® | Average volume of certified models | ENERGY STAR|Average volume/https://www.energystar.gov/productfinder/product/certified_commercial_clothes_washers/resultsENERGY_STAR® {

2025 MEEIA 4 Plan MEEIA 2019-214 2025 Plan

Revision 56.0

Formatted: Font: 11 pt, Bold, Font color: Background 1
Formatted: Centered, Keep lines together
Formatted: Font: 11 pt
Formatted: Keep lines together
Formatted: Centered, Keep lines together
Formatted: Font: 11 pt
Formatted: Space Before: 3 pt, Keep lines together
Formatted: Centered, Keep lines together
Formatted Table
Formatted: Centered, Space Before: 6 pt, Keep lines together
Formatted: Font: 11 pt
Formatted: Keep lines together
Formatted: Keep lines together
Formatted: Centered, Keep lines together
Formatted: Font: 11 pt
Formatted: Keep lines together, Border: Between : (Single solid line, Auto, 0.5 pt Line width, From text: 1 pt Border spacing:), Bar : (Single solid line, Auto, 0.5 pt Line width), Box: (Single solid line, Auto, 0.5 pt Line width)
Formatted: Keep lines together
Formatted: Font: 11 pt
Formatted: Keep lines together
Formatted Table

Formatted: Footnotes

Average volume/https://www.energystar.gov/productfinder/product/certified-commercial-clothes-washers/resultsENERGY STAR® | Average volume of certified models | https://www.energystar.gov/product/inder/product/certified commercial-clothu washers/resultshttps://www.energystar.gov/productfinder/product/certified-commercial-clothes-washers/resultsBased on the average ENERGY STAR certified commercial clothes washer volume from year 2024. Based on the 11/26/2015) (CEC)

⁶Footnote 1 ⁷IBID

CA MAEDBS & ENERGY STAR, Weighted MEF average, Aggregated in local file "2024 ENERGY STAR®, CA MAEDB Clothes Washer.xlsx"

^a CA MAEDBS, MEF average of 110 top-load units, "Commercial Top Load Clothes Washers", (August 2024), Aggregated in local file "2024 ENERGY STAR® , CA MAEDBS Clothes Washer.xlsx" *dysis*", p.8.15. k Pariod A

Appendix H - TRM - Vol. 2: C&I Measures

%Dryer	= Percentage of total energy consumption for dryer
	operation (different for baseline and efficient unit –
	see table below)
%Electric_{DHH}	= Percentage of DHW savings assumed to be electric
<u>w</u> w	
%Electric _{Dryer}	= Percentage of dryer savings assumed to be electric

Efficiency Level	Percentage of Total Energy Consumption ⁴⁴			
Efficiency Level	%℃W	<mark>%DH₩</mark>	%Dryer	
Federal Standard	6.5%	25.9%	67.6%	
ENERGY STAR®	3.5%	14.1%	82.4%	

DHW fuel	%Electric _{DHW}
Electric	100%
Natural Gas	0%

Electric	100%
Natural Gas	0%

Using the default assumptions provided above, the prescriptive savings for each configuration are presented below.¹²

			AkWh			
Efficiency Level	Electric DHW	Gas DHW	Electric DHW	Gas DHW		
	Electric Dryer	Electric Dryer	Gas Dryer	Gas Dryer		
ENERGY STAR®	808.2<u>679</u>	229.3<u>92</u>	725.3<u>735</u>	146.5<u>149</u>		

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

<u>AkWh</u> = Energy Savings as calculated above

<u>2025</u>MEEIA<u>4</u>2019-21-Plan

Revision <u>56</u>.0

Formatted Table

¹¹ The percentage of total energy consumption that is used for the machine, heating the hot water, or by the dryer is different depending on the efficiency of the unit. Values are based on a data provided in the ENERGY STAR[®] Calculator for Commercial Clothes Washers.

Clothes Washers. ¹² Note that the baseline savings is based on the weighted average baseline MEF (as opposed to assuming front baseline for frontefficient unit and top baseline for top – efficient unit). The reasoning is that the support of the program of more efficient units (which are predominately front loading) will result in some participants switching from planned purchase of a top loader to a front loader.

Appendix H - TRM - Vol. 2: C&I Measures

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor = 0.0001379439¹³

Using the default assumptions provided above, the prescriptive savings for each configuration are presented below.

	AkW				
Efficiency Lovel	Electric DHW	Gas DHW	Electric DHW	Gas DHW	
	Electric Dryer	Electric Dryer	Gas Dryer	Gas Dryer	
ENERGY STAR®	0.1115 <u>0.0937</u>	0.0316 <u>0.0127</u>	0.10010.1014	0.0202 <u>0.0205</u>	

NATURAL GAS SAVINGS

$$\begin{split} & \Delta Therms = [[(Capacity*\frac{1}{MEFbase}*\underline{x}.Ncycles)*\underline{x}((\%DHWbase*\underline{x}\%Natural\\ GasDHW*R_eff) + (\%Dryerbase*\underline{x}\%GasDryer\%Gas_Dryer))]=[(Capacity*\underline{x}\\ & \frac{1}{MEFeff}*Ncycles)*\underline{x}((\%DHWeff*\underline{x}\%GasDHW\underline{*x}\%NaturalGas_DHW*R_eff) + (\%Dryereff*\%GasDryer\%Gas_Dryer))]]*\underline{)}]]\underline{x}Therm_convert \end{split}$$

Where:

%Gas_{DH₩}	= Percentage of DHW savings assumed to be Natural natural Gas gas
R_eff	= Recovery efficiency factor
	$= 1.26^{14}$
%Gas _{Dryer}	= Percentage of dryer savings assumed to be Natural natural Gas gas
Therm_convert	= Conversion factor from kWh to Thermtherm
	=0.03412

Other factors as defined above.

DHW fuel	%Gas _{DHW}
Electric	0% -
Natural Gas	100%

2025 MEEIA 4 Plan MEEIA 2019-214 2025 Plan-

Revision 56.0

Formatted: Line spacing: Multiple 1.04 li

¹³ Ameren Missouri TRM Volume 1 – Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"Business program end use category load shape: Miscellaneous, "2016 Appendix E – End Use Shapes and <u>Coincident Peak Factors pdf</u>² , <u>Ameren Missouri End UseEnergyLoadshape and CoincidentPeakFactor 2016 01 12.x1kk</u> (<u>mo.gov</u>)Based on Ameren Missouri 2016 Loadshape for Business Miscellaneous End Use. Upon inspection and comparison to the residential clothes washer coincidence factor, this is a reasonable assumption until data becomes available to inform technology specific coincidence factor. Given that business laundry schedules are likely more variable compared to residential, follows that less overlap with the system peak hour is possible.

¹⁴ To account for the different efficiency of electric and natural gas hot water heaters (gas water heater: recovery efficiencies ranging from 0.74 to 0.85 (0.78 used), and electric water heater with 0.98 recovery efficiency

⁽http://www.energystar.gov/ia/partners/bldrs_lenders_raters/downloads/Waste_Water_Heat_Recovery_Guidelines.pdf). Therefore a factor of 0.98/0.78 (1.26) is applied.

Appendix H - TRM – Vol. 2: C&I Measures

Ameren Missouri

	%Gas _{Dryer}
Electric	0%-
Natural Gas	100%

Using the default assumptions provided above, the prescriptive savings for each configuration are presented below:

	ATherms				
Efficiency Lovel	Electric DHW	Gas DHW	Electric DHW	Gas DHW	
Efficiency Level	Electric Dryer	Electric Dryer	Gas Dryer	Gas Dryer	
ENERGY STAR®	0.0	24.9	2.8	27.7	

WATER IMPACT DESCRIPTIONS AND CALCULATION

<u>AWater (gallons) = Capacity * <u>x (IWFbase - IWFeff) * x Neycles</u></u>

Where:

 WFbase
 = Water Factor of baseline clothes washer

 WFeff
 = Water Factor of efficient clothes washer

 - Actual - If unknown assume average values provided below

Using the default assumptions provided above, the prescriptive water savings for each efficiency level are presented below.

					AWater		
	A				(gallons per year)	 	Formatted: Font color: Background 1
	Efficiency Level	Top	Front	Weighted			_
		Loaders	Loaders	Average			
	Federal Standard ¹⁵	8.5	5.5	7.4	n/a		
Ī	ENERGY STAR®		4 .5		19,874		

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

¹⁵-Weighted average MEF of federal standard rating for frontloading and top loading units. Baseline weighting is based upon the relative top v front loading percentage of available non-ENERGY STAR[®] commercial product in the CEC database (accessed 11/26/2015) and ENERGY STAR[®] weighting is based on eligible products as of 11/26/2015. The relative weightings are as follows, see more information in "Commercial Clothes Washer Analysis.xlsx":

Efficiency Level	Front	Top
Baseline	37%	63%
ENERGY STAR®	99%	1%

Formatted	Table	

<u>2025</u>MEEIA<u>4</u>2019-21-Plan

Revision 56.0

Page 22

Formatted: Left

Appendix H - TRM - Vol. 2: C&I Measures

2.1.2 Clothes Dryer

DESCRIPTION

This measure is for the installation of a residential clothes dryer, utilized in a commercial setting, meeting the ENERGY STAR[®] criteria. ENERGY STAR[®] qualified clothes dryers save energy through a combination of more efficient drying and reduced runtime of the drying cycle. More efficient drying is achieved through increased insulation, modifying operating conditions (such as air flow and/or heat input rate) improving air circulation through better drum design or booster fans, and improving efficiency of motors. Reducing the runtime of dryers through automatic termination by temperature and moisture sensors is believed to have the greatest potential for reducing energy use in clothes dryers.¹⁶ ENERGY STAR[®] provides criteria for both gas and electric clothes dryers.

This measure was developed to be applicable to the following program types: TOS and NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

Clothes dryer must meet the ENERGY STAR® version 1.1 criteria, as required by the program.

Definition of Baseline Equipment

The baseline condition is a clothes dryer meeting the minimum federal requirements for units manufactured on or after January 1, 2015. <u>As the DOE Federal Efficiency Standard perform</u> testing with the D1 method in their appendix and the ENERGY STAR[®] certifies with the D2 test the Ffederal Standard CEF value is adjusted.

Deemed Lifetime of Efficient Equipment

The expected measure life is assumed to be 14 years.⁴⁷

Deemed Measure Cost

Dryer Size	Incremental Cost 48
Standard	\$75
Compact	\$105

LOADSHAPE

Loadshape - Miscellaneous BUS

Algorithm

¹⁶ ENERGY STAR[®] <u>"Market & Industry Scoping Report. Residential Clothes Dryers"</u> Table 8. (November 2011). http://www.energystar.gov/ia/products/downloads/ENERGY_STAR_Scoping_Report_Residential_Clothes_Dryers.pdf ¹⁷ Based on an average estimated range of 12-16 years. "ENERGY STAR[®] Market & Industry Scoping Report. Residential Clothes Dryers". (November 2011).

http://www.energystar.gov/ia/products/downloads/ENERGY_STAR_Scoping_Report_Residential_Clothes_Dryers.pdf ¹⁸ Cost based on ENERGY STAR[®] Savings Calculator for ENERGY STAR[®] Qualified Appliances.

https://www.energystar.gov/sites/default/files/asset/document/appliance_calculator.xlsx https://dnr.mo.gov/sites/dnr/files/media/file/2021/01/energy_star_appliance_calculator.xlsx ("Clothes Drver Calcs" tab Cell E8)

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted: Font: 12 pt, Font color: Text 1 Formatted: Font: Font color: Text 1 Formatted: Font: 9 pt, Underline, Font color: Blue Formatted: Font color: Text 1 Formatted: Normal, Indent: Left: 0"

Appendix H - TRM – Vol. 2: C&I Measures

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

standard.

Where:

nere.					
Load	= The average	total weight (lbs.) of clothes	per drying cycle. If dryer		
	size is unknow	vn, assume standard.			
		Load (lbs.) ¹⁹			
	Standard	<u>8.45</u>			
	Compact	<u>3</u>			
CEFbase	= Combined of	energy factor (CEF) (lbs./kWh) of the baseline unit is		
	based on exist	ing federal standards energy f	actor and adjusted to CEF		
	as performed	in the ENERGY STAR [®] analy	vsis. ²⁰ If product class		
	unknown, assume electric, standard.				
	Decile of Class		<u>CEFbase</u>		
			(lbs./kWh)		
	Vented/Ventless Elect	ric, Standard (≥4.4 ft³)	<u>3.11.93</u>		
	Vented/Ventless Elect	ric, Compact (120V) (< 4.4 ft³)	<u>3.0180</u>		
	Vented Electric, Com	pact (240V) (<4.4 ft ³)	2.733.45		
	Ventless Electric, Cor	npact (240V) (<4.4 ft ³)	2.13-68		
	Vented Gas		2.843.48 ²¹		
CEF _{eff}	= CEF (lbs./k	Wh) of the ENERGY STAR®-	unit based on ENERGY		
		ements. ²² If product class unk			

⁴⁹ Based on ENERGY STAR® test procedures. https://www.energystar.gov/index.cfm?c=clothesdry.pr_crit_clothes_dryers	 Formatted: Font color: Text 1, Superscript
Based on ENERGY STAR® test procedures.	
https://www.energystar.gov/index.cfm?c=clothesdry.pr_crit_clothes_dryersENERGY_STARENERGY_STAR® Certification	 Field Code Changed
<u>criteria https://www.energystar.gov/index.cfm?c=clothesdry.pr_crit_clothes_dryers</u>	
²⁰ ENERGY STAR® Draft 2 Version 1.0 <u>1</u> Clothes Dryers Data and Analysis	 Formatted: Font color: Text 1, Superscript
²¹ Federal standards report CEF for gas clothes dryers in terms of lbs/kWh. To determine gas savings, this number is later	Tornatted. Font coloi: Text 1, Superscript
converted to therms.	
²² ENERGY STAR® Clothes Dryers Key Product Criteria, .	
https://www.energystar.gov/index.cfm?c=clothesdry.pr_crit_clothes_dryers	 Formatted: Font color: Auto

<u>2025</u>MEEIA<u>4</u>2019-21-Plan

Revision 56.0

Appendix H - TRM – Vol. 2: C&I Measures

Product Class	<u>CEFeff</u> (lbs./kWh)	
Vented or Ventless Electric, Standard (≥ 4.4 ft3)	3.93	
Vented or Ventless Electric, Compact (120V) (<4.4 ft3)	<u>3.80</u>	
Vented Electric, Compact (240V) (< 4.4 ft3)	<u>3.45</u>	
Ventless Electric, Compact (240V) (< 4.4 ft3)	<u>2.68</u>	
Vented Gas	3.48 ²³	
Neycles = Number of dryer cycles per year. Use actual data	a if available. If	
unknown, refer to the table below. ²⁴		

Application	<u>Cycles per Year</u>
Multi family	1,074
Laundromat	1,483
On-Premise Laundromat	3 607

 $\frac{\text{\% Electric}}{\text{= 100\% for electric dryers, 5\% for gas dryers}^{25}}$

Dryer Size	Load (lbs.) ²⁶
Standard	8.45
Compact	3

Product-Class	CEFbase (lbs./kWh)
Vented Electric, Standard (\geq 4.4 ft ³)	3.11
Vented Electric, Compact (120V) (< 4.4 ft ³)	3.01
Vented Electric, Compact (240V) (<4.4 ft ³)	2.73
Ventless Electric, Compact (240V) (<4.4 ft ³)	2.13
Vented Gas	2.84 ²⁷

²⁵ %Electric accounts for the fact that some of the savings on gas dryers comes from electricity (motors, controls, etc.). 5% was determined using a ratio of the electric to total savings from gas dryers given by ENERGY STAR[®] Draft 2 Version 1.0 <u>1</u> Clother Dryers Data and Analysis. Value reported in 2015 EPA EnergySTAR[®] appliance calculator.

²⁶ Based on ENERGY STAR[®] test procedures. <u>https://www.energystar.gov/index.cfm?c=clothesdry.pr_crit_clothes_dryers</u> ²⁷ Federal standards report CEF for gas clothes dryers in terms of lbs/kWh. To determine gas savings, this number is later converted to therms.

²³ Federal standards report CEF for gas clothes dryers in terms of lbs/kWh. To determine gas savings, this number is later converted to therms.

²⁴ NOPR analysis for DOE Commercial Clothes Washer standard. Annual use cycles of 1,074 and 1,483 for multifamily and laundromat applications, respectively. <u>https://www.regulations.gov/document?D=EERE-2012_BT_STD_0020_0021</u>. On-premise laundromat cycle average value for dryer cycles in healthcare facility, hotels, drycleaners and laundromats from tests conducted in Nicor Gas Emerging Technology Program's Commercial Dryer Modulation Retrofit Public Project Report. <u>Metering data in local file: "VEIC GTI Analysis.xtxx."</u>

Appendix H - TRM – Vol. 2: C&I Measures

Product Class	CEFeff (lbs./kWh)
Vented or Ventless Electric, Standard (≥ 4.4 ft3)	3.93
Vented or Ventless Electric, Compact (120V) (<4.4 ft3)	3.80
Vented Electric, Compact (240V) (< 4.4 ft3)	3.45
Ventless Electric, Compact (240V) (< 4.4 ft3)	2.68
Vented Gas	3.48²⁸

Application	Cycles per Year
Multi family	1,074
Laundromat	1,483
On Premise Laundromat	3,607

Using defaults provided above, with the average CEF efficiency of ENERGY STAR certified dryers:

	AkWh			
Product Class	Multifamily	Laundromat	On-Premise	
			Laundromat	
Vented/Ventless Electric, Standard (\geq 4.4 ft ³)	608.9<u>96</u>	840.7<u>132</u>	2044.9<u>322</u>	
Vented/Ventless Electric, Compact (120V) (<4.4 ft ³)	222.5<u>342</u>	307.3<u>472</u>	747.4<u>1,149</u>	
Vented Electric, Compact (240V) (<4.4 ft ³)	246.3<u>0</u>	<u>340.10</u>	<u>827.20</u>	
Ventless Electric, Compact (240V) (<4.4 ft ³)	310.4<u>310</u>	<u>428.7428</u>	1042.6<u>1,040</u>	
Vented Gas	<u>29.40</u>	<u>40.60</u>	98.7<u>0</u>	

Formatted: Indent: Left: 0"

Formatted Table

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\frac{AkW = h * CF}{h * CF}$

Where:

AkWh CF Energy savings as calculated above.
 Summer peak coincidence demand (kW) to annual energy (kWh) factor
 0.0001379439²⁹

²⁸ Federal standards report CEF for gas clothes dryers in terms of lbs/kWh. To determine gas savings, this number is later converted to therms.

²⁹ <u>Ameren Missouri TRM Volume 1 Appendix G: "Table 2 Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors" Business program end use category load shape: Miscellaneous, "2016 Appendix E End Use Shapes and Coincident Factors.pdf", <u>Ameren MissouriEnd UseEnergyLoadshape_and_CoincidentPeakFactor_2016_01-12.xlsx</u> (<u>mo.gov</u>)Based on Ameren Missouri 2016 Loadshape for Business Miscellaneous End-Use. Upon inspection and comparison to the Residential clothes washer coincidence factor, this is a reasonable assumption until data becomes available to inform a technology specific coincidence factor. Given that business laundry schedules are likely more variable compared to residential, it follows that less overlap with the system peak hour is possible.</u>

2025 MEEIA 4 2019-21 Plan

Revision <u>56</u>.0

Appendix H - TRM – Vol. 2: C&I Measures

Using defaults provided above:

	AkW			
Product Class	Multifamily	Laundromat	On-Premise Laundromat	
Vented Electric, Standard ($\geq 4.4 \text{ ft}^3$)	0.0840	<u>0.01160 182</u>	<u>0.2821 0443</u>	
	<u>0132</u>			
Vented Electric, Compact (120V) (<4.4 ft ³)	0.0307 <u>0472</u>	<u>0.0424 <u>0651</u></u>	0.1031 <u>1584</u>	
Vented Electric, Compact (240V) (<4.4 ft ³)	0.0340<u>0</u>	0.0469<u>0</u>	<u>0.11410</u>	
Ventless Electric, Compact (240V) (<4.4 ft ³)	0.0428	0.0591 <u>0589</u>	<u>0.1438 <u>1435</u></u>	
Vented Gas	<u>0.00410</u>	0.0056<u>0</u>	<u>0.01360</u>	

NATURAL GAS ENERGY SAVINGS

Natural gas savings only apply to ENERGY STAR® vented gas clothes dryers.

$$\Delta Therm = \left(\frac{Load}{CEFbase} - \frac{Load}{CEFeff}\right) * x N cycles * x Therm_convert * x %Gas$$

Where:

 Therm_convert
 = Conversion factor from kWh to Therm

 = 0.03413
 = 0.03413

 %Gas
 = Percent of overall savings coming from gas

 = 0% for electric units and 84% for gas units³⁰

Using defaults provided above:

ΔTherms = (8.45/2.84 8.45/3.48) *x Neycles *x 0.03413 *x 0.84

	ATherms				
Product Class	Multi-family	Laundromat	On-Premise		
			Laundromat		
Vented Gas	16.8<u>0</u>	23.3<u>0</u>	56.6<u>0</u>		
All certified models (2024) I	have efficiency values eq	ual to the standard, res	sulting in zero		
savings.					
PEAK GAS SAVINGS					
Savings for this measure is assumed to be evenly spread across the year. The Peak Gas Savings is therefore assumed to be:					
$\Delta Therms$					
³⁰ % Gas accounts for the fact that some of the savings on gas dryers comes from electricity (motors, controls, etc.). 84% was determined using a ratio of the gas to total savings from gas dryers given by ENERGY STAR [®] Draft 2 Version 1.0 Clothes Dryers Data and Analysis.					

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Page 27

Formatted: CambriaTextFormula

Appendix H - TRM – Vol. 2: C&I Measures

APeakTherms = _____ 365.25

Where:

ATherms 365.25

= Therm impact calculated above
= Days per year

Using defaults provided above:

	APeakTherms		
Product Class	Multi-family	Laundromat	On Premise
	with tanny		Laundromat
Vented Gas	0.0461<u>0</u>	0.0637<u>0</u>	0.1549<u>0</u>

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

Measure Code:

<u>2025</u>MEEIA<u>4</u>2019-21-Plan

1

Revision <u>56</u>.0

Appendix H - TRM - Vol. 2: C&I Measures

2.2 Compressed Air

2.2.1 Compressed Air No Loss Condensate Drain

DESCRIPTION

No-loss condensate drains remove condensate as needed without venting compressed air, resulting in less air demand and better efficiency. Replacement or upgrades of existing no-loss drains are not eligible for this measure.

This measure was developed to be applicable to the following program type: RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is a no-loss condensate drain.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a standard condensate drain (open valve, timer, or both).

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The lifetime of a no-loss condensate drain is assumed to be 13 years.³¹

DEEMED MEASURE COST

The measure cost is \$700-79478 per drain.³²

LOADSHAPE

Air Comp BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = CFM_{reduced} * kWCFM * Hours$

Where:

 $CFM_{reduced}$ = Reduced air consumption (CFM) per drain = 3 CFM³³

³¹ " <i>Measure Life Study</i> ,", by Energy & Resource Solutions (prepared for the Massachusetts Joint Utilities), "Measure Life
Study", + Table 1-1, 2005, Measure Life Study for Massachusetts Joint Utilities (ers-inc.com) https://www.ers-inc.com/wp-
content/uploads/2018/04/Measure-Life-Study_MA-Joint-Utilities_ERS.pdf
³² Based on empirical project data from ComEd Comprehensive Compressed Air Study program and VEIC review of pricing

³³ Reduced CFM consumption is based on a <u>90 CFM</u> timer drain opening for 10 seconds every 300 seconds as the baseline. <u>Loc</u> <u>file: "Install NoLoss CondDrainValves worksheet, cell G44,See-</u>"Industrial System Standard Deemed Saving Analysis.xls."

2025 MEEIA 4 Plan	MEEIA 2019-21	Plan Revision 56.0
-------------------	---------------	--------------------

 Formatted: Font: (Default) +Body (Calibri)

 Formatted: Underline, Font color: Blue

 Field Code Changed

 Formatted: Underline, Font color: Blue

 Formatted: Font color: Blue

 Formatted: Font color: Blue

 Formatted: Justified, Space After: 0.15 pt

Formatted: Font: (Default) +Body (Calibri)

Appendix H - TRM – Vol. 2: C&I Measures

kWCFM

= System power demand reduction per reduced air consumption (kw/CFM), depending on the type of compressor control, see table $below^{34}$

<u>Compressor Control Type</u>	<u>kW_{CFM}</u>
Reciprocating On/off Control	<u>0.184</u>
Reciprocating Load/Unload	<u>0.136</u>
Screw - Load/Unload	<u>0.152</u>
Screw Inlet Modulation	<u>0.055</u>
Screw Inlet Modulation w/ Unloading	<u>0.055</u>
Screw Variable Displacement	<u>0.153</u>
Screw VFD	<u>0.178</u>

Formatted Table

	Co	<u>mpressor Control Type</u>	<u>kW/CFMW_{CFM}</u>			
	Reciprocatin	g - On/off Control	<u>0.184</u>			
	Reciprocatin	g - Load/Unload	<u>0.136</u>			
	Screw - Load	/Unload	<u>0.152</u>			
	Screw - Inlet	Modulation	<u>0.055</u>]		
	Screw - Inlet	Modulation w/ Unloading	<u>0.055</u>			
	Screw - Vari	able Displacement	<u>0.153</u>			
	Screw - VFE		<u>0.178</u>			
	Shift					
	Single shift (8/5)	<u>1976 hours: 7 AM 3 PM, wee</u>	kdays, minus some holi	days and		
	Single shirt (0/5)	scheduled down time				
	2-shift (16/5)	3952 hours: 7AM 11 PM, weekdays, minus some holidays and				
	2-31111 (10/3)	scheduled down time				
	2 chift $(24/5)$	5928 hours: 24 hours per day, v	veekdays, minus some h	olidays and		
	<u>3 shift (24/5)</u> scheduled down time					
	4 shift (24/7)	8320 hours: 24 hours per day, 7	days a week minus son	ie holidays		
	<u>4-shift (24/7)</u>	and scheduled down time				
Hours	= Comp	essed air system pressurized hou	ırs			
	= Use ac	tual hours if known, otherwise a	ssume values in table	below		

³⁴ Calculated based on <u>load curves from Compressed Air Challenge. Aggregated data the type of compressor control. This</u> assume<u>ds</u> the compressor will be between 40% and 100% capacity-<u>Worksheet "Install High Efficiency Nozzles", Range N18:AG38, before and after the changes to the system demand. See Local file: "Industrial System Standard Deemed Saving Analysis.xls."</u>

2025 MEEIA 4 2019-21 Plan

Revision 56.0

Appendix H - TRM - Vol. 2: C&I Measures

	<u>1976 hours:</u>
Simple shift (9/5)	7 AM-3 PM, weekdays, less holidays & scheduled down time 1976
Single shift (8/5)	hours: 7 AM 3 PM, weekdays, minus some holidays and
	scheduled down time
	<u>3952 hours:</u>
$2 + \frac{16}{2} (16/5)$	7AM - 11 PM, weekdays, less holidays & scheduled down
<u>2-shift (16/5)</u>	time3952 hours: 7AM 11 PM, weekdays, minus some holidays
	and scheduled down time
	<u>5928 hours:</u>
2 1:0 (24/5)	24 hours per day, weekdays, less holidays & scheduled down
<u>3-shift (24/5)</u>	time5928 hours: 24 hours per day, weekdays, minus some holidays
	and scheduled down time
	<u>8320 hours:</u>
<u>4-shift (24/7)</u>	24 hours per day, 7 days, less holidays & scheduled down time8320
	hours: 24 hours per day, 7 days a week minus some holidays and
	scheduled down time

Compressor Control Type	<mark>₩₩</mark> €₽₩
Reciprocating On/off Control	0.184
Reciprocating Load/Unload	0.136
Screw Load/Unload	0.152
Screw Inlet Modulation	0.055
Screw Inlet Modulation w/ Unloading	0.055
Screw - Variable Displacement	0.153
Screw VFD	0.178

SUMMER COINCIDENT PEAK DEMAND SAVINGS

		$\Delta kW = \Delta kWh + \underline{X}CF$		Formatted: Font: Italic
Where	:		•	
	∆kWh CF	 = Electric energy savings, calculated above = Summer peak coincidence demand (kW) to annual energy (kWh) factor = 0.0001379439³⁵ 		
MEASU	JRE CODE:			
		Uvolume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes a "Business program end-use category load shape: Air Compressor, "2016 Appendix E – End Use Shaped Sha		 Formatted: Font: 9 pt
-	pincident Fac	ors.pdf", AmerenMissouriEnd-UseEnergyLoadshape_and_CoincidentPeakFactor_2016-01-12.x Missouri Coincident Peak Demand Factor for Commercial Compressed Air. See reference "Ame	_	
		Hissouri Confedent Feat Denand Factor for Commercial Compressed Air. See reference Ame E End Use Shapes and Coincident Factors.pdf."	en	Formatted: Font: 9 pt
<u>2025</u>	MEEIA 4 F	Page 3	31	

Appendix H - TRM - Vol. 2: C&I Measures

2.2.2 Compressed Air Leak Repair

DESCRIPTION

This measure applies to an installed air compressor<u>system</u> that has developed <u>leaks.leaks</u>. Leaks in a compressed air system lead to an increase in energy use to maintain the necessary pressure in the system.

Savings are calculated by using information collected through survey and measurement of the compressed air system, including the cubic feet per minute (CFM) of the airflow of each leak using ultrasonic leak detection equipment.

DEFINITION OF EFFICIENT EQUIPMENT

Efficient Equipment is defined as the state of the air compressor system after leaks have been repaired. It is not necessarily the air compressor with no leaks left as some leaks may be impossible to reach or have substantial difficulty in fixing, therefore the efficient equipment is one that has all leaks repaired that have been stated to be repaired.

DEFINITION OF BASELINE EQUIPMENT

Baseline equipment is characterized by the condition of the compressed air system at the time of inspection before the leaks are repaired.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The effective useful life is 2 years.³⁶

DEEMED MEASURE COST

Measure cost should include the inspection and repair cost.

LOADSHAPE

Air Comp BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

When a CFM-bin approach model built with trended data is not available, the simplified approach listed below may be used. The following algorithm is applicable to the trim air compressor

 $\Delta kWh = CFM$]eak <u>x</u> + k<u>W/CFM</u> <u>X CFCAF x</u> + Hours_-

Where:

CFM_{leak}

= CFM <u>leaks repaired</u>leaving the air compressor system through leaks

³⁶ 2022 WI TRM₂- PA Consulting Group. "Focus on Energy, Business Programs: Measure Life Study Final Report". (August 25, 2009). <u>https://focusonenergy.com/sites/default/files/bpmeasurelifestudyfinal_evaluationreport.pdf (See table1-2 on page 1-4)</u>

<u>2025 MEEIA 4 2019-21 Plan</u>

Revision 56.0

Formatted: Indent: Left: 0", Right: 0", Space After: 0 pt, Line spacing: single
Formatted: Font: Not Bold
Formatted: Font: Cambria Math, Not Italic
Formatted: Cambria12 Char
Formatted: Cambria12 Char, Font: 12 pt
Formatted: Cambria12 Char
Formatted: Cambria12 Char, Font: 12 pt
Formatted: Cambria12 Char
Formatted: Font: Not Italic
Formatted: Cambria12, Space After: 0 pt, Line spacing: single, Tab stops: Not at 2.3" + 4"

Appendix H - TRM – Vol. 2: C&I Measures

Formatted: Font: 11 pt Formatted: Font: 11 pt

Formatted: Font: 9 pt

Formatted: Font: 9 pt

Formatted: Font: 9 pt

Formatted: Left, Indent: Left: 0.01"

Formatted: Font: (Default) Times New Roman, 11 pt Formatted: Font: (Default) Times New Roman, 11 pt

= <u>Sum of CFM losses</u>Use actual value if known, otherwise approximate value can be found-using dB <u>from ultrasonic</u> <u>measurement</u> and psig reading and the in the table below³⁷

<u>Digital</u> <u>Reading</u>	<u>,10 PSIG</u>	<u>25 PSIG</u>	<u>50 PSIG</u>	<u>75 PSIG</u>	<u>100 PSIG</u>
<u>10 dB</u>	0.05	<u>0.1</u>	0.2	<u>0.3</u>	<u>0.5</u>
<u>20 dB</u>	<u>0.15</u>	<u>0.3</u>	<u>0.5</u>	<u>0.9</u>	<u>0.8</u>
<u>30 dB</u>	<u>0.4</u>	<u>0.5</u>	<u>0.8</u>	<u>1.1</u>	<u>1.4</u>
<u>40 dB</u>	<u>0.5</u>	<u>0.8</u>	<u>1.1</u>	<u>1.4</u>	<u>1.7</u>
<u>50 dB</u>	<u>1.9</u>	<u>2</u>	2.2	<u>1.8</u>	<u>2</u>
<u>60 dB</u>	<u>2.3</u>	<u>2.6</u>	<u>2.8</u>	<u>3</u>	<u>3.6</u>
<u>70 dB</u>	<u>3</u>	<u>3.4</u>	<u>3.9</u>	<u>4.9</u>	<u>5.2</u>
<u>80 dB</u>	3.6	<u>5.1</u>	<u>5.6</u>	<u>6.8</u>	<u>7.7</u>
<u>90 dB</u>	<u>5.3</u>	<u>6.8</u>	<u>7.1</u>	<u>7.7</u>	<u>8.4</u>
100 dB	<u>6</u>	7.3	<u>9.6</u>	<u>10</u>	<u>10.6</u>

kW/CFM₩_{CFM}

 = System power demand reduction per reduced air consumption
 <u>from CAGI data sheets (kw/CFM), generation efficiency, depending</u> on the type of compressor control, see table below³⁸-obtained from model plate or CAGI sheets, full load power/full flow. Adjust for output pressure if different than specification sheets.
 =If unknown, assume 0.19 kW/CFM.

Compressor Control Type	<u>kW/CFM</u> _{CFM}
Reciprocating On/off Control	<u>0.184</u>
Reciprocating Load/Unload	<u>0.136</u>
<u>Screw Load/Unload</u>	<u>0.152</u>
Screw Inlet Modulation	<u>0.055</u>
Screw - Inlet Modulation w/ Unloading	<u>0.055</u>
Screw Variable Displacement	<u>0.153</u>
Sorow VED	0.178

<u>CCAF</u>

=Values applicable to trim air compressor, in following table.; in a multiple air compressor plant, additional modeling may be required to determine the CCAF.

Control Method

CCAF

³⁷ Values extrapolated from "Compressed Air Ultrasonic Leak Detection Guide" from UE Systems. Readings compensated for atmospheric pressure and taken at 40 kHz. (See page 6) Local file: "UE Systems compressed air ultrasonic leak detection.jpg"<u>https://www.yumpu.com/en/document/read/10787703/compressed air-ultrasonic-leak detection-guide-swagelok-</u>

=Trim compressor control type adjustment factor³⁹

energy-³⁸ Calculated based on the type of compressor control. This assumes the compressor will be between 40% and 100% capacity before and after the changes to the system demand. See "Industrial System Standard Deemed Saving Analysis.xls."

³⁹NREL, Factors based on power vs capacity curves from table 5 on page 16 for reciprocating, rotary screw compressor and table 2 on page 9 for centrifugal compressors, "Chapter 22: Compressed Air Evaluation Protocol", https://www.nrel.gov/docs/fy17osti/68577.pdfhttps://www.nrel.go

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Appendix H - TRM - Vol. 2: C&I Measures

		1			,		
	g – On/Off control	1.00					
	g – Load/Unload	0.74					
	Unload oil free	0.73					
	d/Unload 1 gal CFM	0.43					
	d/Unload 3 gal CFM	0.53					
	d/Unload 5 gal CFM	0.63					
	d/Unload 10 gal CFM	0.73					
	nodulation w/o blowdown	0.29					
	nodulation, blowdown	0.74					
	le displacement	0.60					
	le speed drive	0.97					
	BV blowdown	0.20					
	GV blowdown	0.26				Formatted Table	
Start/Stop		1.00					
				_			
	Control Method		<u>CCAF</u>		-	Formatted: Font color: Background 1	
	Reciprocating On/Off contro	lInlet	<u>1.000.31</u>		\sim	Formatted: Centered	
	Modulation					Formatted Table	
	Reciprocating: Load/Unload		<u>0.740.40</u>			Tornatted Table	
	Screw: Load/Unload oil free	Variable	<u>0.730.750</u>				
	Displacement			-			
	Screw: Load/Unload 1gal/CH	M	<u>0.90.43</u>				
	storageVariable Speed			-			
	Screw: Load/Unload 3gal/CH	² M	<u>1.000.53</u>				
	storageStart/Stop			=			
	Screw: Load/Unload 5 gal/C		<u>0.63</u>	=			
	Screw: Load/Unload 10 gal/G	<u>CFM storage</u>	<u>0.73</u>	=			
	Screw: Inlet Modulation		<u>0.30</u>	_			
	Screw: Inlet Modulation w/u		<u>0.30</u>	=			
	Screw: Variable Displacement		<u>0.60</u>	=			
	Screw: Variable Speed Drive		<u>0.97</u>	_			
	Centrifugal Compressor		Slope of full				
			load power to				
			zero flow power	_			
				_			
			L				
Hours	= Compressed air sy			ada a d	4	Formatted Table	
	= Use actual hours<u>A</u>						
	assume values in tab	ie below, base	ea on business <u>com</u>j	pressor			
	operating schedule	TT	ours				
		H	<u>JUIS</u>				
Cime I.	$\frac{1976 \text{ hours:}}{7 \text{ AM}} = 3 \text{ pM}$	aledana minu 1	ana aoma halidarra o	and cohod-lad			
Single		екаауs, minus l	ess -some holidays &	the scheduled			
	<u>down time</u>						
	t (16/5) <u>3952 hours:</u>						

2025_MEEIA_4_2019-21_Plan

Revision 56.0

Appendix H - TRM - Vol. 2: C&I Measures

	7AM – 11 PM, weekdays, less holidays & scheduled down time, weekdays, minus some holidays and scheduled down time
<u>3-shift (24/5)</u>	5928 hours: 24 hours per day, weekdays, less holidays & scheduled down time weekdays, minus some holidays and scheduled down time
<u>4-shift (24/7)</u>	8320 hours: -24 hours per day, 7 days-a-week-, less holidays & scheduled down timeminus some holidays and scheduled down time

Digital Reading	10-PSIC	25 PSIG	50 PSIC	75 PSIG	100 PSIG
10 dB	0.05	0.1	0.2	0.3	0.5
20 dB	0.15	0.3	0.5	0.9	0.8
30 dB	0.4	0.5	0.8	1.1	1.4
40 dB	0.5	0.8	1.1	1.4	1.7
50 dB	1.9	2	2.2	1.8	2
60 dB	2.3	2.6	2.8	3	3.6
70 dB	3	3.4	3.9	4.9	5.2
80 dB	3.6	5.1	5.6	6.8	7.7
90 dB	5.3	6.8	7.1	7.7	8.4
100 dB	6	7.3	9.6	10	10.6

Compressor Control Type	kW _{CFM}
Reciprocating - On/off Control	0.184
Reciprocating Load/Unload	0.136
Screw - Load/Unload	0.152
Screw Inlet Modulation	0.055
Screw Inlet Modulation w/ Unloading	0.055
Screw - Variable Displacement	0.153
Screw VFD	0.178

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$\Delta kW = \Delta kWh + \underline{\mathbf{x}} CF$

Where:

∆kWh CF = Electric energy savings, calculated above

= Summer peak coincidence demand (kW) to annual energy (kWh) factor = 0.0001379439^{40}

Formatted: Footnotes

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

⁴⁰Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors" 2016 Ameren Missouri Coincident Peak Demand Factor for Commercial Compressed Air. See reference "Ameren Missouri 2016 Appendix E - End Use Shapes and Coincident Factors.pdf."

Appendix H - TRM - Vol. 2: C&I Measures

MEASURE CODE:

<u>2025 MEEIA 4 2019-21 Plan</u>

Revision <u>56</u>.0

2.2.3 Compressed Air Nozzle

DESCRIPTION

This measure applies to the replacement of a standard air nozzle with high-efficiency air nozzle used in a compressed air system. High-efficiency air nozzles use the Coandă effect to pull in free air and use significantly less compressed air for blowing off parts or for drying. These nozzles have the added benefits of noise reduction and improved safety in systems with greater than 30 psig. The measure is applicable to continuous air blow off processing and manual air blow off tools.

This measure was developed to be applicable to the following program types: DI and RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is a <u>high efficiency</u> compressed air nozzle meeting program requirements.

The air flow, CFM, is from the manufacturer model specification sheet, for the applicable working pressure.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a standard air nozzle that is OSHA approved. for hand tools, or a standard blow off nozzle for continuous processing.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is 15 years.⁴¹

DEEMED MEASURE COST

Incremental measure costs are presented in the following table.⁴²

Nozzle Diameter	Measure Cost
1/8"	\$42
1/4"	\$ 57<u>59</u>
5/16 <u>3/8</u> "	\$ 87<u>236</u>
1/2"	\$ 121<u>335</u>

LOADSHAPE

Air Comp BUS

⁴² Costs are from EXAIR's website and are an average of nozzles that meet the flow requirements. Models include Atto Super, Pico Super, Nano Super, Micro Super, Mini Super, Super and Large Super nozzles. www.exair.com. Accessed March 20,

2014. Data in local file: "2024 Air nozzle incremental cost.xlsx"

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted Table

⁴¹ "Focus on Energy Evaluation - Business Programs: Measure Life Study," prepared for State of Wisconsin Public Service Commission by PA Consulting Group, August 25, 2009 (See page 89 or search "compressed air nozzle").

Ameren Missouri	Append	dix H - TRM – Vol. 2: 0	C&I Measures	
	Algorithm			
CALCULATION OF ENERG	GY SAVINGS			
Electric Energy Savi	INGS			
$\Delta kWh = (\frac{SCFN}{SCFN})$	M * SCFM%ReducedCFM _{base} - CFM	<u>₄_{eff})* kW/<mark>C</mark></u> €FM * <mark>C(</mark>	<u>CAF%Use*</u>	
Hours <u>x % Use</u>				
Where:				
SCFM _{base}	= Air flow through standard <u>ope</u> = Actual rated flow at 80 psi, if orifice diameter <u>for rounded edg</u>	known. If unknown, us		
	Orifice Diameter S 1/16"	<u>SCFM</u> 5	•	Formatted Table
	<u>1/8"</u>	<u>21</u>	4	Formatted Table
		<u>58-85</u>		
		13 193- 343 280-		
<u>CFM_{eff} SCFM%Reduced</u>	=Engineered nozzle rate flow at = Percent reduction in air loss per = Estimated at 50% ⁴⁶ -	t 80 psi.		
kW/ <u>100</u> CFM	 System power generation effice CAGI sheets, full load power/fue different than specification sheet If unknown, assume 0.19 kW/1 	ull flow. Adjust for outr ets.	put pressure if	
CCAF	≡Trim compressor control type a =Values applicable to trim air co	adjustment factor ⁴⁷ compressor, in following		
Inlet Me control	Control Method Iodulation<u>Reciprocating – On/Off</u> I	CCAF 0.31 <u>1.00</u>	-	Formatted Table
Load/U Load/U	- Jnload<u>Reciprocating</u> - Jnload	0.40<u>0.74</u>		·
	Load/Unload oil free	0.73		Formatted Table Formatted: Footnotes
	le Displacement<u>Screw</u> – Jnload 1 gal CFM	<u>0.700.43</u>	•	Formatted: Footnotes
1.000 -			/	Formatted: Font color: Blue Formatted: Font: 9 pt, Font color: Blue
				Formatted: Font color: Blue
				Formatted: Font: 9 pt, Font color: Black

43 Review of manufacturer's information-¹⁴ Moss, Sanford, "Flow of gases" <u>https://www.engineersedge.com/fluid_flow/images/oriifce-pressure-drop.gif</u>, 45 Technical Reference Manual (TRM) for Ohio Senate Bill 221, "Energy Efficiency and Conservation Program" and 09–512 GEUNC. October 15, 2009, Pgs 170–171.

<u>2025</u>MEEIA<u>4</u>2019-21-Plan

Revision 56.0

Formatted: Font: 9 pt, Font color: Black Formatted: Font: 9 pt, Font color: Black

Formatted: Font: 9 pt, Font color: Black Formatted: Underline, Font color: Blue

^{46 (} ded by the 's Ha ⁴⁷ NREL, Factors based on power vs capacity curves from table 5 on page 16 for reciprocating, rotary screw compressors and table 2 on page 9 for centrifugal compressors, "Chapter 22: Compressed Air Evaluation Protocol", https://www.nrel.gov/docs/fy17osti/68577.pdf

_

Appendix H - TRM – Vol. 2: C&I Measures

Screw	– Load/Unload 3 gal CF	M	<u>0.53</u> 0.90				
	le Speed						
	– Load/Unload 5 gal CF	M	0.63				
Screw	– Load/Unload 10 gal C	FM	0.73				
Screw-	inlet modulation w/o bl	owdown	0.29				
Screw-	inlet modulation, blowd	own	0.74				
Screw-	variable displacement		0.60				
Screw-	variable speed drive		0.97				
	ugal IBV blowdown		0.20				
Centrif	ugal IGV blowdown		0.26				
Start/S	top		1.00		•	Formatted Table	
Air Compr	essor Type	AkW/CFM	<u>4</u>				
Reciprocating On/o	off Control	<u>-0.18</u>					
Reciprocating Load	l/Unload	<u>0.14</u>					
Screw Load/Unload	d	<u>0.15</u>					
Screw Inlet Module	ation	<u>0.06</u>					
Screw Inlet Module	ation w/	0.06					
UnloadingScrew - V	ariable Displacement	<u>0.15</u>					
Screw VFD		<u>0.18</u>					
%USE	= Percent of the cor	apressor tota	al operating hours that the	nozzle is in			
	use-						
	= Custom, or if unk						
Hours	= Compressed air sy						
		f known, oth	herwise assume values in	table			
615 J 0	below.			1			
Shift		Ho	ours		•	Formatted Table]
Single shift (8/5)		s, minus some	ne holidays and scheduled do	own time			
2-shift (16/5)	3952 hours: 7AM – 11 PM, weekday	ys, minus som	ne holidays and scheduled d	own time			
3-shift (24/5)	5928 hours: 24 hours per day, weeko time	lays, minus so	ome holidays and scheduled	l down			
4-shift (24/7)	8320 hours: 24 hours per day, 7 days time	s a week minu	us some holidays and schedu	uled down			
%Use	= Percent of the con use	npressor tota	al operating hours that the	nozzle is in			

⁴⁸ Assumes 50% handheld air guns and 50% stationary air nozzles. Manual air guns tend to be used less than stationary air nozzles, and a conservative estimate of 1 second of blow-off per minute of compressor run time is assumed. Stationary air nozzles are commonly more wasteful as they are often mounted on machine tools and can be manually operated resulting in the possibility of a long term open blow situation. An assumption of 5 seconds of blow off per minute of compressor run time is used.

Appendix H - TRM – Vol. 2: C&I Measures

= Custom, or if unknown, assume $5\%^{49}$

<u>Shift</u>	Hours
Single shift $(8/5)$	1976 hours: 7 AM 3 PM, weekdays, minus some holidays and scheduled
Single Shirt (0/5)	down time
2 shift (16/5)	3952 hours: 7AM 11 PM, weekdays, minus some holidays and scheduled
z-siiiit (10/3)	down time
2 shift $(24/5)$	5928 hours: 24 hours per day, weekdays, minus some holidays and
3-Shiit (24/3)	scheduled down time
A = hift (24/7)	8320 hours: 24 hours per day, 7 days a week minus some holidays and
<u>4 snitt (24/7)</u>	scheduled down time

-Orifice Diameter	SCFM-
<u>1/8"</u>	21-
1/4"	58-
<u>5/16"</u>	113-
<u>1/2"-</u>	280-

Air Compressor Type	AkW/CFM
Reciprocating - On/off Control	-0.18
Reciprocating Load/Unload	0.14
Screw Load/Unload	0.15
Screw Inlet Modulation	0.06
Serew - Inlet Modulation w/	0.06
UnloadingScrew Variable Displacement	0.15
Screw VFD	0.18

Shift	Hours				
Single shift (8/5)	1976 hours: 7 AM 3 PM, weekdays, minus some holidays and scheduled				
Single shirt (0/3)	down time				
2-shift (16/5)	3952 hours: 7AM 11 PM, weekdays, minus some holidays and scheduled				
$\frac{2-51111}{2-51111}$	down time				
2 $chift (24/5)$	5928 hours: 24 hours per day, weekdays, minus some holidays and scheduled				
3-shift (24/5)	down time				
A shift (24/7)	8320 hours: 24 hours per day, 7 days a week minus some holidays and				
4 smit (24/7)	scheduled down time				

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh \underline{\mathbf{x}} + CF$

Where:

 ΔkWh = Electric energy savings, calculated above

⁴⁹ Assumes 50% handheld air guns and 50% stationary air nozzles. Manual air guns tend to be used less than stationary air nozzles, and a conservative estimate of 1 second of blow-off per minute of compressor run time is assumed. Stationary air nozzles are commonly more wasteful as they are often mounted on machine tools and can be manually operated resulting in the possibility of a long term open blow situation. An assumption of 5 seconds of blow-off per minute of compressor run time is used.

<u>2025</u>MEEIA<u>4</u>2019-21-Plan

Revision <u>56</u>.0

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor = 0.0001379439^{50}

NATURAL GAS SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

Formatted: Indent: Left: 0"

⁵⁰ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"016 Ameren Missouri Coincident Peak Demand Factor for Commercial Compressed Air. See reference "Ameren Missouri 2016 Appendix E – End Use Shapes and Coincident Factors.pdf."

Formatted: Footnotes

Appendix H - TRM – Vol. 2: C&I Measures

2.2.4 VSD Air Compressor

DESCRIPTION

This measure relates to the installation of an air compressor with a variable frequency drive, load/no load controls, or variable displacement control. A baseline modulating compressor regulates output by choking off the inlet air, which is not efficient. Efficient compressors use a variable speed drive on the motor to match output to the load. Savings are calculated using representative baseline and efficient demand numbers for compressor capacities according to the facility's load shape, and the number of hours the compressor runs at that capacity. Demand curves are as per US Department of Energy (DOE) data for a \underline{v} -ariable \underline{s} -speed compressor versus a \underline{m} -doulating compressor. This measure applies only to an individual compressor ≤ 200 hp. Only one compressor per compressed air distribution system is eligible.

This measure was developed to be applicable to the following program type: TOS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The high efficiency equipment is a compressor 5-200 hp with variable speed control.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a modulating compressor with blow down 5-200 hp

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

10 years.51

DEEMED MEASURE COST⁵²

Incremental Cost (\$) = ((127 x hp_{compressor}) + 1446) x 1.2443^{53}

Where:

hp_{compressor} = compressor motor nominal horsepower 127 and 1,446 = compressor motor nominal hp to incremental cost conversion factor and offset

LOADSHAPE

Air Comp BUS

Algorithm

⁵¹ Based on data provided by vendors, reference file "VSD compressor lifetime and costs.xls."

⁵³ Adjustment for inflation since incremental cost study is in \$2008. The U.S. Bureau of Labor Statistic CPI Inflation Calculator was used to adjust \$2008 (JanuaryJuly) to \$220214 (JanuaryJuly). The resulting factor was 1.2443. This adjustment was evaluated against current pricing of compressors (20212024) and found to be a reasonable and appropriate.

2025 MEEIA 4 2019-21 Plan

Revision 56.0

⁵² Based on data provided by vendors, reference file "VSD compressor lifetime and costs.xls."

Appendix H - TRM - Vol. 2: C&I Measures

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 ΔkWh =

 $= 0.9 \text{ x hp}_{compressor} \text{ x HOURS x } (CF_b - CF_e)$

Where:

ΔkWh	= gross customer annual kWh savings for the measure	•
hpcompressor	= compressor motor nominal horsepower	
0.9	= compressor motor nominal horsepower to full load kW conversion factor ⁵⁴	
HOURS	= compressor total annual hours of operation. Custom input, if unknown use	
	the defaults based on shift structure below.	

<u>Shift</u>	Hours
Single shift (8/5)	1976 hours: 7 AM - 3 PM, weekdays, minus some holidays and scheduled down
Single shirt (0/5)	time
2-shift (16/5)	3952 hours: 7AM - 11 PM, weekdays, minus some holidays and scheduled
2-81111(10/3)	down time
2 $chift(24/5)$	5928 hours: 24 hours per day, weekdays, minus some holidays and scheduled
<u>3-shift (24/5)</u>	down time
4 shift (24/7)	8320 hours: 24 hours per day, 7 days a week minus some holidays and
<u>4-shift (24/7)</u>	scheduled down time
<u>Unknown /</u>	5702 hours: Weighting of 16% single shift, 23% two shift, 25% three shift and
Weighted average55	<u>36% continual</u>
	•

<u>Cobb</u>

= baseline compressor factor, refer to table below

⁵⁴Conversion factor based on a linear regression analysis of the relationship between air compressor motor nominal horsepower and full load kW from power measurements of 72 compressors at 50 facilities on Long Island. See "VSD Air Compressor – Supporting Information_with40to50hpbucket.xlsx" for more information.

⁵⁵ Weighting based on DOE evaluation of the Compressed Air Challenge, section 2.1.5 Facility Operating Schedules. (see Table 2-5 on page 2-3 https://www.compressedairchallenge.org/data/sites/1/media/library/evaluation/Evaluation.pdf. Formatted: Font: (Default) Times New Roman Formatted: Underline, Font color: Blue

Formatted Table

Modulating w/ Blowdown

Load/No Load w/ 1 Gallon/CFM

Load/No Load w/ 3 Gallon/CFM

Load/No Load w/ 5 Gallon/CFM

Appendix H - TRM – Vol. 2: C&I Measures

	<u>Baseline</u> <u>Compressor</u>	<u>Compressor</u> <u>Factor</u> (≤40 hp) ⁵⁶	<u>Compressor</u> <u>Factor</u> (> 40 - < 50hp 49 hp) ⁵⁷	$\frac{\text{Compressor Factor}}{(50 - 200 \text{ hp})^{58}}$		Formatted: Left Formatted: Font: 11 pt
	Modulating w/ Blowdown	<u>0.890</u>	<u>0.886</u>	<u>0.863</u>	4	Formatted Table
	Load/No-Load w/ 1 Gallon/CFM	0.909	<u>0.905</u>	<u>0.887</u>		
	Load/No-Load w/ 3 Gallon/CFM	0.831	0.827	<u>0.811</u>		
	Load/No-Load w/ 5 Gallon/CFM	<u>0.806</u>	<u>0.802</u>	<u>0.786</u>		
CFe	= effi	cient compressor fact	tor ⁵⁹			

0.802

= efficient compressor <u>factor</u>⁵⁹ $= 0.705 \text{ for units} \le 40 \text{ hp}$

=0.701 for units > 40 hp and < 50 hp

=0.658 for units 50 – 200 hp

(> 40 < 50hp)⁶¹ (50 200 hp)⁶² Formatted Table 0.886 0.863 0.905 0.887 0.827 0.811 0.811 0.811

0.786

⁵⁶ Compressor factors were developed using DOE part load data for different compressor control types as well as load profiles from 50 facilities employing air compressors less than or equal to 40 hp. See "VSD Air Compressor – Supporting Information with40to50hpbucket.xlsx" for more information.

0.890

0.909

0.831

0.806

- Compressor factors for the size range between 40 and 50 hp were interpolated from data used to derive the compressor factors for the other size ranges. See "VSD Air Compressor Supporting Information with40to50hpbucket.xlsx" for more information. ⁵⁸ Compressor factors for this size range were developed using DOE part-load data for different compressor control types as well as load profiles from 45 compressors and 20 facilities. This data comes from ComEd Custom and Industrial Systems programs. The compressors were filtered to reflect only rotary screw compressors, between 50 and 200 hp, and operating a minimum of 4 hours per day, Additionally, compressors with clear and consistent baseload profiles were excluded from this analysis. See "VSD
- Air Compressor Supporting Information_with40to50hpbucket.xlsx" for more information. ⁵⁹ Compressor factors were developed using DOE part load data for different compressor control types as well as load profiles from 50 facilities employing air compressors less than or equal to 40 hp. The "variable speed drive" compressor factor has been adjusted up from the 0.675 presented in the analysis to 0.705 to account for the additional power draw of the VSD.See "VSD Air Compressor – Supporting Information_with40to50hpbucket.xlsx" for more information.
- ⁶⁰ Compressor factors were developed using DOE part load data for different compressor control types as well as load profiles from 50 facilities employing air compressors less than or equal to 40 hp. See "VSD Air Compressor — Supporting Information_with40to50hpbucket,xlsx" for more information.
- ⁶¹ Compressor factors for the size range between 40 and 50 hp were interpolated from data used to derive the compressor factors for the other size ranges. See "VSD Air Compressor Supporting Information_with40to50hpbucket.xlsx" for more information.
 ⁶² Compressor factors for this size range were developed using DOE part-load data for different compressor control types as well as load profiles from 45 compressors and 20 facilities. This data comes from ComEd Custom and Industrial Systems programs. The compressors were filtered to reflect only rotary screw compressors, between 50 and 200 hp, and operating a minimum of 4 hours per day, Additionally, compressors with clear and consistent baseload profiles were excluded from this analysis. See "VSD Air Comparison of Comparison of

2025 MEEIA 4 2019-21 Plan

Revision 56.0

Page 44

Formatted: Footnotes, Line spacing: single
Formatted: Font color: Text 1
Formatted: Font: Font color: Text 1
Formatted: Font: Font color: Text 1
Formatted: Footnotes

Formatted: Footnotes, Indent: Left: 0"

Formatted: Footnotes, Line spacing: single

Formatted: Footnotes

Appendix H - TRM – Vol. 2: C&I Measures

Shift	Hours
Single shift $(8/5)$	1976 hours: 7 AM - 3 PM, weekdays, minus some holidays and scheduled down
Single shift (0/5)	time
2 shift $(16/5)$	3952 hours: 7AM-11 PM, weekdays, minus some holidays and scheduled
2 shift (10/5)	down time
3 shift $(24/5)$	5928 hours: 24 hours per day, weekdays, minus some holidays and scheduled
5 sint (24/5)	down time
A shift (24/7)	8320 hours: 24 hours per day, 7 days a week minus some holidays and scheduled
4-51111 (24/7)	down time
Unknown /	5702 hours: Weighting of 16% single shift, 23% two shift, 25% three shift and
Weighted average63	36% continual

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta k = \Delta kWh + \underline{X}CF$

Where:

CF

= Summer peak coincidence demand (kW) to annual energy (kWh) factor⁶⁴ = 0.0001379439^{65}

MEASURE CODE:

Formatted: Footnotes, Left, Line spacing: single

Formatted: Footnotes

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

4

⁶³ Weighting based on DOE evaluation of the Compressed Air Challenge, section 2.1.5 Facility Operating Schedules.

 ⁶⁴ Ameren Missouri Coincident Peak Demand Factor for Commercial Compressed Air. See reference "Ameren Missouri 2016 Appendix E - End Use Shapes and Coincident Factors.pdf."
 ⁶⁵ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes

and Coincident Peak Factors"

Appendix H - TRM – Vol. 2: C&I Measures

2.3 Food Service

2.3.1 Combination Oven

DESCRIPTION

This measure applies to full or half-sized electric ENERGY STAR[®] combination ovens with a pan capacity ≥ 3 and ≤ 40 and to full or half-sized natural gas fired ENERGY STAR[®] combination ovens with a pan capacity ≥ 5 and ≤ 40 capacity ≥ 5 and ≤ 20 and to full or half-sized natural gas fired ENERGY STAR[®] combination ovens with a pan capacity ≥ 6 -installed in a commercial kitchen. Combination ovens combine the function of hot air convection (convection mode), saturated and superheated steam heating (steam mode), and combination convection/steam mode for moist heating, to perform steaming, baking, roasting, re-thermalizing, and proofing of various food products. ENERGY STAR[®] certified combination ovens are approximately 20% more efficient than standard ovens.

This measure was developed to be applicable to the following program type: TOS.

If applied to other program types, measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be an ENERGY STAR[®] certified combination oven meeting idle energy rate (kW or Btu/hr) and cooking efficiency (%) limits, as determined by fuel type, operation mode (steam or convection), and pan capacity.

ENERGY STAR[®] Requirements (Version 3.0, Effective October 12, 2023) ⁶⁶(Version 2.2, Effective October 7, 2015)

Fuel Type	Operation	Idle Rate (Btu/hr for Gas, kW for Electric)	Cooking-Energy Efficiency (%)		-(Formatted: Font: 11 pt
Natural Gas	Steam Mode	<u>≤200P+6,511</u>	<u>≥ 41</u>	•	-[Formatted: Font: 11 pt
<u>(5-40 pan)</u>	Convection Mode	<u>≤ 140P+3,800 Natural Gas</u>	<u>≥ 57</u> <u>≥ 41</u>		Y	Formatted Table
Natural Gas	Steam Mode	<u>Natural Gas</u> ≤200P+6,511	<u>≥ 56</u>		C	
Natural Gas	Convection Mode	<u>≤ 150P+5,425</u>				
Natural Gas						
Electric	Steam Mode	<u>≤0.133P+0.64</u>	<u>≥ 55</u>		-	Formatted: Font: 11 pt
(5-40 pan)	Convection Mode	≤0.083P+0.35 (5-40 pan)≤	<u>≥ 78Steam Mode ≥ 55</u>			·
Electric (5-40	Steam Mode Steam	0.133P+0.6400	<u>≥76</u>			
pan) Electric	Mode	<u> </u>			0	
1	Convection Mode				Λ	Formatted: Font: 11 pt
Electric	Steam Mode	<u>≤ 0.60P</u>	<u>≥ 51</u>			Formatted: Font color: Text 1
<u>(3-4</u>	Convection Mode	≤ 0.05P+0.55 Convection Mode	≥ 70 <u>≤ 200₽+6,511</u>		1	Formatted: Footnote Char, Font: 9 pt, No underline,
pan)Convection	200P+6,511	1				Font color: Text 1
Mode		1		/	1/3	Formatted: Footnote Char, Font: 9 pt, No underline,
					//	Font color: Text 1
				///	/	Formatted: Font color: Text 1

66 ENERGY STAR | Commercial Oven |

2025 MEEIA 4 2019-21 Plan

Revision <u>56</u>.0

Page 46

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Hyperlink

Appendix H - TRM – Vol. 2: C&I Measures

Note: $P = Pan capacity a$	as defined in Section 1.T	of the Commercial Ovens Program Reg	uirements Version 2.23.0.67

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new electric or natural gas combination oven that is not ENERGY STAR[®] certified.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years.⁶⁸

DEEMED MEASURE COST

The incremental capital cost for each type of combination oven for this measure is \$4,300<u>1,850</u>628 is listed in the following table.

$\frac{34,3001,330}{223}$ is listed in the following table.					Formatted: Font: 11 pt, Font color: Background 1
Equipment	Size	Incremental Cost ⁶⁹		\bullet	Formatted: Centered
Electric combination oven	≥ 15 pans and	\$1,850			Formatted Table
	< <u>29 pansAll</u> sizes				Formatted: Font: 11 pt
	<u>→</u> <u>>30 pans</u>	\$2,692	-		Formatted: Font: 11 pt
A		\$2,072	-		Formatted: Font: 11 pt
	A 11 - 1	¢1.701			Formatted: Font: 11 pt
GasElectric combination oven	All sizes	<u>\$1,701</u>			Formatted: Font: 11 pt

. 70

LOADSHAPE

Cooking BUS

⁶⁷ Pan capacity is defined as the number of steam table pans the combination oven is able to accommodate as per the ASTM F1495-05-20 standard specification, required for ENERGY STAR® product certification. https://www.energystar.gov/sites/default/files/Commercial%20Ovens%20Final%20Version%202.2%20Specification.pdfhttps:// www.energystar.gov/sites/default/files/asset/document/ENERGY%20STAR%20Version%203.0%20Commercial%20Ovens%20Final%20Specification.pdfhttps:// Final%20Specification.pdf

⁶⁸ ENERGY STAR[®], "Results Detail" worksheet (Equipment Life field), *Commercial Kitchen Equipment Savings Calculator*, (March 2024), https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsxLifetime from ENERGY STAR[®] Commercial Kitchen Equipment Savings Calculator, which cites reference as "FSTC research on available models, 2009."

https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx (See "Oven Calcs" tab) https://www.energystar.gov/sites/default/files/asset/document/commercial_kitchen_equipment_calculator.xlsx 69 ENERGY STAR®, "Oven Calcs" hidden worksheet (Incremental Cost field), Commercial Kitchen Equipment Savin

https://view.officeapps.live.com/op/view.aspx?src=https://s2F%2F%2Fw2Fwatroom/s2Fmedia/2Freferencedocuments/2FSWES003_Comb_Oven_Prices_11072023_kbz/ksudOcioin=BROWSELINK

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Page 47

Formatted: Font: 11 pt, Font color: Background 1

Formatted: Font: 11 pt, Font color: Background 1

Formatted: Body Text, Indent: Left: 0", Right: 0"

Formatted: Footnotes, Right: 0", Line spacing: single

Formatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted: Hyperlink Field Code Changed

Formatted: Hyperlink

Formatted: Underline

Formatted: Font: Italic

Formatted: Font: 9 pt

Formatted: Font: 9 pt

Formatted: Font: 9 pt

Formatted: Font: 9 pt

Formatted: Font: 9 pt Formatted: Underline

Formatted: Font: 9 pt

Formatted: Font: 9 pt

Formatted: Underline, Font color: Auto

Formatted: Font color: Text 1

https://www.energystar.gov/sites/default/files/2024_

^{03/}CFS%20Equipment%20Calculator.xlsxhttps://www.energystar.gov/sites/default/files/asset/document/commercial_kitchen uipment_calculator.xlsx

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

$\Delta IdleEnergyconvElec$ $\Delta CookingEnergyConvElec$ $\Delta CookingEnergySteamElec$ $\Delta CookingEnergySteamElec$ $\Delta CookingEnergySteamElec$ $\Delta IdleEnergyConvElec$ $\Delta IdleEnergySteamElec$	0 0,		 Formatted: Indent: Left: 0.1", Right: 0.1", Line s Multiple 1.1 li Formatted: Font: (Default) Times New Roman Formatted: Normal, Indent: Left: -0", Right: 0", After: 9.85 pt Formatted Formatted: Indent: Left: 0.1", Right: 0.1", Space 1.65 pt, Line spacing: Multiple 1.1 li, Tab stops: Centered + 3.22", Centered
here: ΔkWh $= (\Delta CookingE)$ $\Delta IdleEnergyc\Delta PreHeatEnergyc\Delta PreHeatEnergyc\Delta PreHeatEnergyc\Delta PreHeatEnergyc\Delta PreHeatEnergyc\Delta PreHeatEnergyc\Delta PreHeatEnergyc\Delta PreHeatEnergyc\Delta PreHeatEnergyc\Box Difference in ccombination ove= FoodCookedEEFOODConvElec\Delta CookingEnergySteamElec= Difference in ccombination ove= FoodCookedEEFOODSteamElf\Box Difference in iccombination ove= ((ElecIDLEconFoodCookedElec\Delta IdleEnergySteamElec= Difference in iccombination ove= ((ElecIDLEconFoodCookedElec\Delta IdleEnergySteamElec= Difference in iccombination ove= [(ElecIDLEstealConvElec$	$\frac{nergy_{ConvElec} + \Delta CookingEnergy_{Steams}}{onvElec} + \Delta IdleEnergy_{SteamElec} + \frac{ogy_{Elec}}{2gy_{Elec}} \times Days/1,000$ ooking energy between baseline and effinn in convection mode		Formatted: Normal, Indent: Left: -0", Right: 0", After: 9.85 pt Formatted Formatted: Indent: Left: 0.1", Right: 0.1", Space 1.65 pt, Line spacing: Multiple 1.1 li, Tab stops:
$\Delta CookingEnergy_{ConvElec}$ $\Delta CookingEnergy_{SteamElec}$ $\Delta CookingEnergy_{SteamElec}$ $\Delta CookingEnergy_{SteamElec}$ $\Delta CookingEnergy_{SteamElec}$ $\Delta CookingEnergy_{SteamElec}$ $= Difference in in combination ove = FoodCookedH = FoodCook$	onvElec <u>+ ΔIdleEnergySteamElec</u> + <u>gyElec) x Days/1.000</u> ooking energy between baseline and effi n in convection mode		After: 9.85 pt Formatted Formatted: Indent: Left: 0.1", Right: 0.1", Space 1.65 pt, Line spacing: Multiple 1.1 li, Tab stops:
Δ PreHeatEner Δ CookingEnergyConvElec= Difference in combination ove = FoodCookedE EFOODConvElec Δ CookingEnergySteamElec= Difference in combination ove = FoodCookedE EFOODSteamElec Δ IdleEnergyConvElec= Difference in in combination ove = ((ElecIDLECon /ElecPCConvBase) FoodCookedElec Δ IdleEnergySteamElec= Difference in in combination ove = ((ElecIDLECon /ElecPCConvBase) FoodCookedElec Δ IdleEnergySteamElec= Difference in in combination ove = ((ElecIDLEStea E))	gy _{Elec}) x Days/1.000 ooking energy between baseline and effi n in convection mode	icient	Formatted: Indent: Left: 0.1", Right: 0.1", Space 1.65 pt, Line spacing: Multiple 1.1 li, Tab stops:
Where: $\Delta CookingEnergy_{ConvElec}$ = Difference in c combination ove = FoodCookedE EFOODConvElec $\Delta CookingEnergy_{SteamElec}$ = Difference in combination ove = FoodCookedE - 	ooking energy between baseline and effi n in convection mode	icient	1.65 pt, Line spacing: Multiple 1.1 li, Tab stops:
$\Delta CookingEnergy_{SteamElec}$ $\Delta CookingEnergy_{SteamElec}$ $\Delta CookingEnergy_{SteamElec}$ $= Difference in in combination ove = FoodCookedIle = Difference in in combination ove = FOODSteamElec = Difference in in combination ove = ((ElecIDLE_{ConvBase})) FoodCookedElec = Difference in in combination ove = [(ElecIDLE_{SteamElec})]$	n in convection mode	icient	
$\Delta CookingEnergy_{SteamElec} = FoodCookedE EFOODConvElec = Difference in combination ov = FoodCookedE - EFOODSteamEl \Delta IdleEnergy_{ConvElec} = Difference in ic combination ove = ((ElecIDLECon / ElecPC_{ConvBase}))FoodCookedElec = Difference in ic combination ove = ((ElecIDLESteamElec))$			Formatted: Space Before: 1 pt, After: 1 pt
$\Delta CookingEnergy_{SteamElec} = Difference incombination ov= FoodCookedU-EFOODSteamEl\Delta IdleEnergy_{ConvElec} = Difference in iccombination ove= _{a}((ElecIDLE_{Con}))FoodCookedElec\Delta IdleEnergy_{SteamElec} = Difference in iccombination ove= _{a}((ElecIDLE_{ConvBase}))$		vBase -	Formatted
$\Delta IdleEnergy_{ConvElec}$ $\Delta IdleEnergy_{SteamElec}$ $\Delta IdleEnergy_{SteamElec}$ $combination ove = \frac{(ElecIDLE_{ConvBase})}{FoodCookedElec}$ $\Delta IdleEnergy_{SteamElec}$ $combination ove = \frac{(ElecIDLE_{SteamElec})}{(ElecIDLE_{SteamElec})}$	c / ElecEFFConvEE) <u>*x</u> %Conv		
$= FoodCookedI$ $= FoodCookedI$ $= EFOODSteamEI$ $= Difference in ic combination ove$ $= _{a}((ElecIDLE_{Conv})$ $FoodCookedElec$ $\Delta IdleEnergy_{SteamElec}$ $= Difference in ic combination ove$ $= _{a}(ElecIDLE_{Stead})$	cooking energy between baseline and	efficient 🔸	Formatted: Font: Cambria Math
- EFOODSteamEl ΔIdleEnergyConvElec = Difference in it combination ove = ((ElecIDLECon /ElecPCconvBase) FoodCookedElec ΔIdleEnergySteamElec = Difference in it combination ove = [(ElecIDLEStea	en in steam mode		Formatted: Space Before: 1 pt, After: 1 pt
$\Delta Idle Energy_{ConvElec} = Difference in iscombination ove= ((ElecIDLE_{Conv})FoodCooked_{Elec})\Delta Idle Energy_{SteamElec} = Difference in iscombination ove= [(ElecIDLE_{Steal})$	Ele <u>ç *x</u> (EFOODSteamEle <mark>ç / ElecEFF</mark> Ste	eamBase	Formatted
$\Delta Idle Energy_{ConvElec} = Difference in iscombination ove= ((ElecIDLE_{Conv})FoodCooked_{Elec})\Delta Idle Energy_{SteamElec} = Difference in iscombination ove= [(ElecIDLE_{SteamElec})]$	eç / ElecEFFSteamEE) 🐴 %Steam		Formatted
$\Delta Idle Energy_{Steam Elec} = Difference in incombination over= \int (ElecIDLE_{Steam})^{Elec}$	dle energy between baseline and efficien n in convection mode	ıt	Formatted: Space Before: 1 pt, After: 1 pt
$\Delta Idle Energy_{Steam Elec}$ $FoodCooked_{Elec}$ $= Difference in in combination ove$ $= \int (ElecIDLE_{Stea})^{-1} dE = 0$	vBase 🐴 ((Hours – FoodCooked _{Elec}		Formatted
combination ove = [(ElecIDLE _{Stea}	<u>*x %conv)) - (ElecIDLEconvee *x ((Hours</u> /ElecPCConvEE) <u>*x %Conv)))</u>		
	dle energy between baseline and efficien n in steam mode	ıt 🔸	Formatted: Space Before: 1 pt, After: 1 pt
	mBase *x ((Hours – FoodCooked _{Elec} / se) *x %Steam)) - (ElecIDLESteamEE- CookedElec / ElecPCSteamEE) *x %Ste		Formatted
	reheat energy between baseline and efficient		Formatted: Space Before: 1 pt, After: 1 pt
= <u>PreHeat_{Conv} - P</u>	<u>reHeatee</u>	•	Formatted
			Formatted: Space Before: 1 pt, After: 1 pt

⁷¹ ENERGY STAR[®], Algorithms and assumptions derived from ENERGY STAR[®]-Commercial Kitchen Equipment Savings Calculator, (March 2024), -https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx

2025 MEEIA 4 2019-21 Plan

Revision 56.0

Page 48

Field Code Changed

Appendix H - TRM – Vol. 2: C&I Measures

						Formatted: Space Before: 1 pt, After: 1 pt
Days	= Annual	days of operation			4	· · · · · · · · · · · · · · · · · · ·
Dujs		- <u>Actual, or,</u> if unkn	own. use 365.25 da	ivs per vear		Formatted: Space Before: 1 pt, After: 1 pt
1,000		<u>tt-hour to kWh kilo</u>		• • •		Formatted: Space Before: 1 pt, After: 1 pt
FoodCooked _{Ele}		oked per day for el			•	Formatted: Space Before: 1 pt, After: 1 pt
		if unknown, Custon				Tomatted. Space before. T pt, After. T pt
		$\frac{250}{125} \text{ lbs if P} \ge 1$				
EFOOD _{ConvElec}		energy to food for e	electric combination	n oven in	+	Formatted: Space Before: 1 pt, After: 1 pt
	convection					
	<u>=73.2 Wat</u>					
ElecEff	<u>=</u> =73.2 ₩		C 1 / · · · · · · ·		4	Formatted: Space Before: 1 pt, After: 1 pt
		geEnergy efficienc or if unknown,Act				
	table below		ual, il ulikilowil us	<u>e,</u> -use values from	1	
	Equipmen		E E fficient			Formatted: Font: Bold, Font color: Background 1
	ElecEFF _{Conv} (5-4		78%			Formatted: Font: Bold
	ElecEFF _{Conv} (>5		70%			Formatted: Font: Bold
	ElecEFF _{Steam} (5-4		55%			Formatted: Font: Bold
	ElecEFF _{Steam} (>5		51%			Formatted: Centered, Space Before: 1 pt, After: 1 pt
% _{Conv}		age of time in conv			1	Formatted: Space Before: 1 pt, After: 1 pt
70 Conv		or, if unknown, <u>Ac</u>		1. use 50%		Formatted Table
EFOODSteamElec		energy to food for e				Formatted: Space Before: 1 pt, After: 1 pt
	mode	23			$ \langle \rangle \rangle$	Formatted: Space Before: 1 pt, After: 1 pt
	= 30.8 W <u>a</u>	<u>att-hour</u> h/lb				Formatted Table
% _{steam}		age of time in stean	n mode		•	Formatted: Space Before: 1 pt, After: 1 pt
	$= 1 - \%_{conv}$					Formatted: Space Before: 1 pt, After: 1 pt
ElecIDLE _{Base} = Idle energy rate (W) of baseline electric combination oven = <u>Custom or, if unknown, Actual, or if unknown</u> , use values from				•	Formatted: Space Before: 1 pt, After: 1 pt	
	= Custom table belov		<u>ctual, or if unknowi</u>	<u>n, use values from</u>		Formatted: Space Before: 1 pt, After: 1 pt
I		w Convection Mode	Steam Mode		1	Formatted: Space Before: 1 pt, After: 1 pt
			(ElecIDLE _{SteamBa}	(926	+	Formatted: Space Before: 1 pt, After: 1 pt
	<> 15 5	1,754680	5,260 2,090	4307		Formatted: Space Before: 1 pt, After: 1 pt
-	≥ 15 to <3040	2,966 1,320	8,866- 5,260			
-	<u>≥30</u>	4,418	<u>11,875</u>		4	Formatted: Space Before: 1 pt, After: 1 pt
L		Base	EE		-	Formatted: Space Before: 1 pt, After: 1 pt
	ElecEFF _{Conv}	72%	768%			Formatted: Space Before: 1 pt, After: 1 pt
	ElecEFF _{Steam}	4952%	<u>55%</u>			Formatted: Space Before: 1 pt, After: 1 pt
Hours		e daily hours of ope			•	Formatted Table
110015	U	or, if unknown, Ac		n. use 12 hours per		Formatted: Space Before: 1 pt, After: 1 pt
	day	. ,		<u></u>		Formatted: Space Before: 1 pt, After: 1 pt
	-					Formatted: Space Before: 1 pt, After: 1 pt
						Formatted: Space Before: 1 pt, After: 1 pt

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Appendix H - TRM - Vol. 2: C&I Measures

ElecPC _{Base}	= Proc	luction capacity (lbs/hr) of baseline electric ee	mbination -	Formatted: Space Before: 1 pt, After: 1 pt
	oven	1 2 4	, ,		(
	= Cus	tom or, if unknown, <u>Ac</u>	<u>etual, or if unknown, </u> use	e values from	
	table l		1		
P	Pan Capacity	<u>Convection Mode</u> (ElecPC _{ConvEEBase})	<u>Steam Mode</u> (ElecPC _{SteamEEBase)}	•	Formatted: Space Before: 1 pt, After: 1 pt
	<u> </u>	<u>119-7929</u>	<u>17712645</u>		Formatted Table
	$\rightarrow 15$ to 40	201 -1 66 07	349 295 151		Formatted: Space Before: 1 pt, After: 1 pt
		Convection Mode	Steam Mode		Formatted: Space Before: 1 pt, After: 1 pt
Ŧ			(ElecIDLE _{SteamBase)}	▲ \	Formatted: Space Before: 1 pt, After: 1 pt
	<u><15</u>	<u></u>	<u>5,260</u>	•	Formatted: Space Before: 1 pt, After: 1 pt
	<u>≥ 15 to <30</u>	2,966	8,866	•	Formatted Table
	<u>≥ 30</u>	<u>4,418</u>	<u>11,875</u>	-	Formatted: Font color: Text 1
ecIDLEConvEE			Y STAR [®] electric con	bination oven	Formatted: Space Before: 1 pt, After: 1 pt
		vection mode			Formatted: Font color: Text 1
			,000 <u>for 5-40 pan capac</u>	<u>vity</u>	Formatted: Space Before: 1 pt, After: 1 pt
cPC _{EE}		$\frac{5 \times xP + 055) \times x1,000 \text{ fo}}{4 \text{ uction capacity (lbs/hr}}$) of ENERGY STAR [®]	electric •	Formatted: Font color: Text 1
CEE		ination oven			Formatted: Space Before: 1 pt, After: 1 pt
	= Cus	tom or, if unknown, <u>Ac</u>	tual, or if unknown, use	e values from	Formatted: Space Before: 1 pt, After: 1 pt
_	table ł				Formatted: Space Before: 1 pt, After: 1 pt
F	Pan Capacity	Convection Mode	Steam Mode	•	Formatted: Space Before: 1 pt, After: 1 pt
		(ElecPC _{ConvEE)}	(ElecPC _{SteamEE)}		Formatted: Space Before: 1 pt, After: 1 pt
	$> \frac{<155}{<155}$	<u>119-37</u> 201-174	<u>177-59</u>	-	Formatted Table
cIDLE _{SteamEE}			<u>349-247</u> Y STAR [®] electric con	bination oven	Formatted: List Paragraph, Left, Indent: Left: 0.25", Space Before: 1 pt, After: 1 pt
		am mode 33 <u>*</u> xP + 0.64) <u>*</u> x1,000	for 5-40 pap capacity		Formatted: Space Before: 1 pt, After: 1 pt
		$0 \times xP + 0.64) \times 1,000 \text{ for } 1,$		\ \	Formatted: Space Before: 1 pt, After: 1 pt
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u>F *** ***</u>		Formatted: Space Before: 1 pt, After: 1 pt
					Formatted: Space Before: 1 pt, After: 1 pt
	Base	EE			
CEFF _{Conv}	72%	76%			
ecEFF _{Steam}	49%	55%			

Pan Canacity	Convection Mode	Steam Mode
	(ElecIDLE _{ConvBase)}	(ElecIDLE _{SteamBase)}
<15	1,320	5,260
<u>≥15</u>	2,280	8,710

Pan Capacity	Convection Mode (ElecPC _{ConvBase)}	Steam Mode (ElecPC _{SteamBase)}
<15	79	126

2025_MEEIA_4_2019-21_Plan

Revision <u>56</u>.0

Appendix H - TRM – Vol. 2: C&I Measures

Ameren	Missouri

<u>>15</u>	166	295	
Deve Constant	Convection Mode	Steam Mode	
Pan Capacity	(ElecPC _{ConvEE)}		
<15	119	177	
<u>≥15</u>	201	349	

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta k = \Delta kWh + \underline{X}CF$$

Where:

 $\Delta kWh = Electric energy savings, calculated above$

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor = 0.0001998949^{72}

Other variables as defined above.

NATURAL GAS ENERGY SAVINGS

Custom calculation for a gas combination oven below:73

$\frac{\Delta Therms = (\Delta CookingEnergy_{ConvGa} + \Delta CookingEnergy_{SteamGas} + \Delta IdleEnergy_{ConvGa} + (\Delta CookingEnergy_{ConvGa})$	
ATTICT MS - (Accounting Intergy stormas + Accounting Intergy stormas + Artice Intergy stormas +	
AIdleEnergysteamGas) * Days/100,000	
$\Delta fut(c) f(c) + y + b + y + b + y + y + b + y + y + b + y + y$	

Where:

X	There:			
				Formatted: Cambria12
	<u>∆Therms</u>	<u>=(ΔCookingEnergyConvGas + ΔCookingEnergySteamGas +</u> <u>ΔIdleEnergyConvGa + ΔIdleEnergySteamGas+</u>	•	Formatted: Font: Cambria Math
		$\Delta PreHeatEnergy_{Gas}$ * $Days/100,000$		Formatted: Cambria12 Char, Font: Cambria
	Where:			Formatted: Cambria12 Char, Font: Cambria, 12 pt
	$\Delta Cooking Energy_{ConvGas}$	= Difference in cooking energy between baseline and efficient		Formatted: Cambria12 Char, Font: Cambria
		combination oven in convection mode		Formatted: Cambria12 Char, Font: Cambria
		= FoodCookedGas		Formatted: Cambria12 Char, Font: Cambria, 12 pt
		x %Conv		Formatted: Cambria12 Char, Font: Cambria
	$\Delta Cooking Energy_{Steam Gas}$	= Difference in cooking energy between baseline and efficient		Formatted: Cambria12 Char, Font: Cambria, 12 pt
	combination oven in steam mode		Formatted: Cambria12 Char, Font: Cambria	
		= FoodCookedGas, <u>*x</u> (EFOODSteamGas / GasEFFSteamBase – EFOODSteamGas / GasEFFSteamEE) <u>*x</u> %Steam	_ /	Formatted: Cambria12 Char, Font: Cambria, 12 pt
				Formatted: Cambria12 Char, Font: Cambria

⁷² Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors" 2016 Ameren Missouri Coincident Peak Demand Factor for Commercial Electric Cooking. See reference "Ameren Missouri

2016 Appendix E - End Use Shapes and Coincident Factors.pdf." Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

⁷³ Algorithms and assumptions derived from ENERGY STAR[®] Commercial Kitchen Equipment Savings Calculator.

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

1

Formatted: Indent: Left: 0.1", Right: 0.1", Line spacing:

Formatted: Cambria12 Char, Font: Cambria, 12 pt Formatted: Cambria12 Char, Font: Cambria

Formatted: Cambria12 Char, Font: Cambria, 12 pt

Formatted: Cambria12 Char, Font: Cambria

Formatted: Font: 9 pt

Formatted: Space After: 1.3 pt

Multiple 1.1 li

Ameren Missouri Appendix H - TRM – Vol. 2: C&I Measures ∆IdleEnergy_{ConvGas} = Difference in idle energy between baseline and efficient combination oven in convection mode = ((GasIDLEConvBase +x ((Hours - FoodCookedGas / GasPCConvBase) ** % Conv)) - (GasIDLEConvEE * x ((Hours - FoodCookedGas /GasPCConvEE) + x %Conv))) ∆IdleEnergy_{SteamGas} = Difference in idle energy between baseline and efficient combination oven in steam mode = $[(GasIDLESteamBase \rightarrow x ((Hours - FoodCookedGas /$ GasPCSteamBase) *****x %Steam)) - (GasIDLESteamEE ***** x ((Hours - FoodCookedGas / GasPCSteamEE) * x %Steam))] ∆PreHeatEnergy_{SteamGas} =Difference in daily preheat energy from baseline to efficient 100,000 = Btu to therms conversion factor FoodCooked_{Gas} = Food cooked per day for gas combination oven = Custom, or, if unknown, use 200 lbs if P <15, 250 lbs if $15 \le P$ 30, or 400 lbs if $P \ge 30$ **EFOOD**_{ConvGas} = ASTM energy to food for gas combination oven in convection mode = 250 Btu/lb GasEff = Cooking energy efficiency of gas combination oven = Custom or, if unknown, Actual, or if unknown, use values from table below Formatted Table GasEFF_{Conv} 52% 56% GasEFFstear 39% 41% **EFOOD**_{SteamGas} = ASTM energy to food for gas combination oven in steam mode = 105 Btu/lb= Idle energy rate (Btu/hr) of baseline gas combination oven **GasIDLE**_{Base} = Custom or, if unknown, Actual, or if unknown, use values from table below **Formatted Table** 8,7479,840 < 15 18.65624.003 15 < P <u>30</u> 10.78811.734 24 56227 795 43,30027,957 13,00015,376 ≥30 GasPC_{Base} = Production capacity (lbs/hr) of baseline gas combination oven = Custom or, if unknown, Actual, or if unknown, use values from table below **Formatted Table** < 15 125 195 $15 \le P \ 30$ 176 211 <u>≥30</u> <u>392</u> <u>579</u> GasIDLECONVEE = Idle energy rate of ENERGY STAR[®] gas combination oven in convection mode

2025 MEEIA 4 2019-21 Plan

Revision <u>56</u>.0

Appendix H - TRM – Vol. 2: C&I Measures

GasPC_{EE}

Ameren Missouri

= Production capacity (lbs/hr) of ENERGY STAR[®] gas

combination oven

 $= \frac{150140 \times xP}{5,4253,800}$

= Custom or, if unknown, <u>Actual</u>, or if unknown, use values from

table below

= 200**[∗]**<u>×</u>P +6,511

	Pan Capacity	Convection Mode (GasPC _{ConvEE)}	<u>Steam Mode</u> (GasPC _{SteamEE)}		
	<u><15</u>	<u>124</u>	<u>172</u>		
	<u>15 ≤ P 30</u>	<u>210</u>	<u>277</u>		
	<u>≥30</u>	<u>394</u>	<u>640</u>		
GasIDLESteam	= Idle energy rate of ENERGY STAR [®] gas combination oven in $ $				
	steam	mode			

Formatted Table

1

1

Other variables as defined above.

	Base	EE
GasEFF _{Conv}	52%	56%
GasEFF _{Steam}	39%	41%

Pan Canacity	Convection Mode	Steam Mode
Fan Capacny	(GasIDLE _{ConvBase)}	(GasIDLE _{SteamBase)}
<15	8,747	18,656
<u>15 ≤ P 30</u>	10,788	24,562
<u>≥30</u>	13,000	43,300

Pan Capacity	Convection Mode (CasPC _{ConvBase)}	Steam Mode (GasPC _{SteamBase)}
<15	125	195
15 ≤ P 30	176	211
<u>≥30</u>	392	579

Pan Capacity	Convection Mode (GasPC _{ConvEE)}	Steam Mode (CasPC _{SteamEE)}
<15	124	172
<u>15 ≤ P 30</u>	210	277
<u>≥30</u>	394	640

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

Appendix H - TRM - Vol. 2: C&I Measures

MEASURE CODE:

<u>2025 MEEIA 4 2019-21 Plan</u>

1

Revision <u>56</u>.0

Appendix H - TRM - Vol. 2: C&I Measures

2.3.2 Commercial Steam Cooker

DESCRIPTION

This measure applies to electric or natural gas fired ENERGY STAR[®] steam cookers installed in a commercial kitchen. Commercial steam cookers contain compartments where steam energy is transferred to food by direct contact. ENERGY STAR[®] certified steam cookers have shorter cook times, higher production rates, and reduced heat loss due to better insulation and more efficient steam delivery.

This measure was developed to be applicable to the following program type: TOS.

If applied to other program types, measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be an ENERGY $STAR^{\otimes}$ certified steam cooker meeting idle energy rate (W or Btu/hr) and cooking efficiency (%) limits, as determined by fuel type and pan capacity.

ENERGY STAR[®], Requirements (Version 1.2, Effective August 1, 2003)

	Electric Efficiency Requirements		Natural Gas Efficiency	
Pan Capacity	Idle Energy Rate	Cooking	Idle Energy Rate	Cooking
	Idle Energy Rate	Efficiency		Efficiency
3-pan	$\leq 400 \ \mathrm{W}$		\leq 6,250 Btu/hr	
4-pan	\leq 530 W		\leq 8,350 Btu/hr	
5-pan	$\leq 670 \ \mathrm{W}$	$\geq 50\%$	≤10, 400-<u>417</u>	≥ 38% N/A
			Btu/hr	
6-pan and larger	$\leq 800 \ \mathrm{W}$		\leq 12,500 Btu/hr	

Formatted: Font: Not Bold

Formatted: Font: Not Bold

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new electric or natural gas steam cooker that is not ENERGY STAR[®] certified.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years.74

DEEMED MEASURE COST

⁷⁴ Lifetime-ENERGY STAR[®], "Results Detail" worksheet (Equipment Life field), Commercial Kitchen Equipment Savings Calculator, (March 2024), https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx from ENERGY STAR[®] Commercial Kitchen Equipment Savings Calculator, which cites reference as "FSTC research on available models, 2009." https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx (See "Steam <u>Cookers Calcus" tab</u>) http://www.energystar.gov/sites/default/files/commercial_kitchen_equipment_calculator.xlsx

Formatted: Underline

Actual incremental cost for this measure should be used. If actuals are unavailable use \$4,1502,000 for all electric cooker pan sizes and \$1,000 for gas cooker.⁷⁵

LOADSHAPE

Cooking BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Custom calculation for an electric steam cooker below with inputs for the existing cooker and efficient cooker; otherwise use deemed values from the variable default value and the table that follows, sourced from the EnergyStar Commercial Equipment Savings Calculator,...76 Formatted: Font: Italic $\Delta kWh = (\Delta IdleEnergy + \Delta CookingEnergy) *-Days/1,000 Where:$ Formatted: Body Text, Justified, Indent: Left: 0", Right: 0", Space After: 0 pt, Line spacing: single ΔkWh = $(\Delta IdleEnergy + \Delta CookingEnergy + -\Delta PreHeatEnergy) - x - Days/$ Formatted Table 1,000 Where: ∆IdleEnergy = Difference in idle energy between baseline and efficient steam cooker = [(1 - SteamMode) *-x(IdleRate_{base}IdleRateBase</sub> + SteamMode -* x Production_{base} ProductionBase + x Pans + xEFOOD/ Eff_{base}) EffBase) * x (Hours - FoodCooked/(ProductionBase * $x Pans))] - [(1 - SteamMode) + x(IdleRate_{ESTAR} + IdleRateESTAR + IdleRateESTAR)] - [(1 - SteamMode) + x(IdleRateESTAR + IdleRateESTAR)] - [(1 - SteamMode) + x(IdleRateESTAR)] - [(1 - SteamMode)] - [(1 - SteamMode) + x(IdleRateESTAR)] - [(1 - SteamMode) + x(IdleRateESTAR)] - [(1 - SteamMode)] - [(1 - SteamMode)] + x(IdleRateESTAR)] + x(IdleRateESTAR)] - [(1 - SteamMode)] + x(IdleRateESTAR)] + x(IdleRateESTA$ SteamMode ***** x Production_{ESTAR} * x Pans ***** $x EFOOD/Eff_{ESTAR} EffESTAR) * x (Hours - FoodCooked/$ $(Production_{ESTAR} \xrightarrow{ProductionESTAR} \xrightarrow{} x Pans))]$ =Difference in preheat energy between baseline and efficient cooker ∆PreHeatEnergy Formatted: Font: (Default) Times New Roman =104.3Watt-hour Formatted: Left ∆CookingEnergy = Difference in cooking energy between baseline and efficient steam cooker = (FoodCooked + x EFOOD / Effbase EffBase) - (FoodCooked + $x EFOOD / Eff_{ESTAR} EffESTAR$) = Annual days of operation Days = Custom Actual, or, if unknown, use 365.25 days per year 1.000 = Watth to kWh conversion factor SteamMode = Time (%) in constant steam mode = <u>Actual</u>Custom or, if unknown, use 40% = Idle energy rate (W) of baseline electric steam cooker IdleRate_{Base}

⁷⁵ Cost from ENERGY STAR® Commercial Kitchen Equipment Savings Calculator, which cites reference as "EPA research using AutoQuotes, October 2020." https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx (See "Steam Cookers Calcs" tab rows 10 &51)Ameren Missouri Technical Resour Manual – Effective January 1, 2018.

⁷⁶ Algorithms and assumptions derived from ENERGY STAR[®] Commercial Kitchen Equipment Savings Calculator.

2025 MEEIA 4 2019-21 Plan

Revision <u>56</u>.0

Formatted: Font: 9 pt

Formatted: Left, Indent: Left: 0"

Ameren Missouri	Appendix H - TRM – Vol. 2: C&I Measures
IdleRate _{ESTAR}	 = 1,100-200 W for steam generator, or 1,000 W for all others⁷⁷ = Idle energy rate (W) of ENERGY STAR[®] electric steam cooker = <u>ActualCustom, i</u>-or, if unknown, use value from table below as determined by pan capacity
	Pan Capacity IdleRate _{ESTAR} 3 400
	4 530
	<u>5</u> <u>670</u>
	<u>6 to 10</u> <u>800</u>
	$\frac{10}{10} \frac{800}{10}$
Production _{Base}	= Production capacity (lb/hr) per pan of baseline electric steam cooker = Actual, if unknown, use 23.3 lb/hr
Production _{ESTAR}	= Production capacity (lb/hr) per pan of ENERGY STAR [®] electric steam cooker
	= Custom or, if Actual, if unknown, use 16.7 lb/hr
Pans	= Pan capacity of steam cooker
EFOOD	= Custom or, Actual, if unknown, use 6 pans = ASTM energy to food testing standard
	= 30.8 Where the standard
Eff _{Base}	= Cooking efficiency (%) of baseline electric steam cooker $\frac{78_{79}}{10}$
E.C.	$= \frac{\text{Actual, if unknown, use } 2830\%}{\text{C}_{\text{A}} + 1}$
Effestar	= Cooking efficiency (%) of ENERGY STAR [®] electric steam cooker = Custom or, if Actual, if unknown, use 50%
Hours	= Average daily hours of operation
	= Custom or Acutal, if unknown, use 12 hours per day
FoodCooked	= Food cooked per day (lbs)
	= Custom or, Actual, if unknown, use 100 pounds
Pan Capacity	IdleRate ESTAR
3	400
4	530
5	670 800
6 10	800
10	
Savings for all pan ca	apacities are presented in the table below.
	Energy Consumption of Electric Steam Cookers
Pan Capacity	kWh _{Base} kWh _{ESTAR} Savings (kWh)
77 Idla ananay nota fan basal:	ne steam cookers is the average of rates provided by ENERGY STAR [®] for steam generator and boiler-
based cookers. (Average of	1000 & 1200 in formula in "Steam Cooker Calcs" tab cell "D26")
(March 2024), Source of alg 03/CFS%20Equipment%20	
	useline steam cookers is the average of efficiencies provided by ENERGY STAR [®] Commercial 3 Calculator for steam generator and boiler-based cookers. (Average of .30 & .26 in formula in "Steam"
Cooker Calcs" tab cell "C2	
2025 MEEIA 4 Pla	In MEEIA 2019-21 Plan Revision 56.0 Page 57

Appendix H - TRM – Vol. 2: C&I Measures

3	<u>37,857 18,438.9</u>	<u>17,642 7,637.6</u>	<u>7,3843 10,801.3</u>
4	<u>45,004</u> 23,018.6	<u>21,543 9,784.1</u>	<u>8,569 13,234.5 8,569 </u>
5	<u>52,047</u> 27,563.8	<u>25,509</u> 11,953.8	<u>9,693 15,609.9 9,693 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</u>
6	<u>59,040</u> 32,091.7	<u>29,410 14,100.1</u>	<u>10,822 17,991.6</u>
10	<u>86,803</u> 50,134.5	<u>41,452 21,384.3</u>	<u>16,564 28,750.1</u>
Average	56,150 30,249,5	27.111 12.972.0	10.606 17.277.5

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta k W = \Delta k W h - x C F$$

Where:

 $\Delta kWh = Electric energy savings, calculated above$

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor $= 0.0001998949^{s_0}$

Other variables as defined above.

NATURAL GAS ENERGY SAVINGS

Custom calculation for a natural gas steam cooker below; otherwise use deemed value from the table that follows.⁸¹

	$rms = (\Delta IdleEnergy + \Delta CookingEnergy + \Delta PreHeatEnergy)_{*}$		Formatted: Font: Cambria Math, Italic
Where:	/100,000	•	Formatted: Indent: Left: 1", Right: 0.2", Line spacing: Multiple 1.1 li
∆IdleEnergy	= [(1 - SteamMode) *x(IdleRateBase + SteamMode * x ProductionBase *x Pans *xEFOOD/EffBase) * x (Hours - FoodCooked/(ProductionBase * x Pans))] - [(1 - SteamMode) *x(IdleRateESTAR + SteamMode *x ProductionESTAR *x Pans *x EFOOD/ EffESTAR) *x (Hours - FoodCooked/ProductionESTAR * x Pans)]		
$\Delta CookingEnergy$	= $(FoodCooked + x EFOOD / EffBase) - (FoodCooked + x EFOOD / EffESTAR)$		
<u>ΔPreHeatEnergy</u> 100,000	=Difference in daily preheat energy from baseline to efficient = Btu to therms conversion factor		
Coincident Peak Factors"201 "Ameren Missouri 2016 App ⁸¹ ENERGY STAR®, Algorit 2024), https://www.energysta	Jume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes an 6 Ameren Missouri Coincident Peak Demand Factor for Commercial Electric Cooking. See reference endix E - End Use Shapes and Coincident Factors.pdf." hms and assumptions derived from <i>Commercial Kitchen Equipment Savings Calculator</i> , (March r.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsxAlgorithms and IERGY STAR® Commercial Kitchen Equipment Savings Calculator.	<u>id</u> 20	Formatted: Font: 9 pt
		_	

2025 MEEIA 4 2019-21 Plan

Revision <u>56</u>.0

Ameren Missouri	Appendix H - TRM – Vol. 2: C&I Measures
IdleRateBase	= Idle energy rate (Btu/hr) of baseline gas steam cooker = $16,500 \text{ Btu/hr}^{s_2}$
IdleRate ESTAR	= Idle energy rate (Btu/hr) of ENERGY STAR [®] gas steam cooker
	= Custom or, if unknown, Actual, or if unknown, use value from table
	below as determined by pan capacity
	Pan Capacity IdleRate _{ESTAR}
	<u>3</u> <u>6,250</u>
	<u>5-4</u> <u>10,4008,333</u>
	<u>6-5</u> <u>12,500</u> 10,417
	<u>10-6 to 10</u> <u>12,500</u>
Production _{Base}	= Production capacity (lb/hr) per pan of baseline gas steam cooker
	= 23.3 lb/hr
ProductionESTAR	= Production capacity (lb/hr) per pan of ENERGY STAR [®] gas steam
	cooker
	= Custom or, if unknown, Actual, or if unknown, use 20 lb/hr
EFOOD	= ASTM energy to food
	= 105 Btu/lb
Eff _{Base}	= Cooking efficiency (%) of baseline gas steam cooker ⁸³
	= 16.5%
	= Cooking efficiency (%) of ENERGY STAR [®] gas steam cooker
Effestar	= Custom or if unknown, Actual, if unknown use 38%

Other variables as defined above.

Pan Capacity	IdleRate_{ESTAR}
3	6,250
5	10,400
6	12,500
10	12,500

Savings for all pan capacities are presented in the table below.

Energy Consumption of Gas Steam Cookers			
Pan Capacity	Therms _{Base}	Therms _{ESTAR}	Savings (Therms)
3	1,301.5	492.8	808.7
5	1,842.1	795.7	1,046.4
6	2,107.2	947.8	1,159.4
10	3,157.4	1,344.5	1,812.9
Average	1,996.0	845.0	1,150.0

(Formatted: Keep with next
(Formatted: Keep with next
	Formatted: Keep with next
	Formatted: Keep with next
	Formatted: Keep with next
\square	Formatted: Keep with next
	Formatted: Keep with next

Formatted Table

82 Idle energy rate for baseline steam cookers is the average of rates provided by ENERGY STAR® for steam generator and boiler-

based cookers- (See formula in "Steam Cooker Calcs" tab cell "F26"). ⁸³ Cooking efficiency for baseline steam cookers is the average of efficiencies provided by ENERGY STAR® for steam generator and boiler-based cookers (See formula in "Steam Cooker Calcs" tab cell "F21").

WATER IMPACT DESCRIPTIONS AND CALCULATION

Custom calculation below; otherwise use deemed value of 134,412.0 gallons per year.⁸⁴ Savings are the same for electric and gas steam cookers.

 $\Delta Water = (WaterUseBase - WaterUseESTAR) + Hours$ + x Days

Where:

WaterUseBase= Water use (gal/hr) of baseline steam cooker= 40 gal/hrWaterUseESTAR= Water use (gal/hr) of ENERGY STAR® steam cookers= Custom or, if unknown, Actual, or if unknown, use 9.3 gal/hr

Other variables as defined above

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

2025 MEEIA 4 2019-21 Plan

I

Revision 56.0

⁸⁴ Algorithms and assumptions derived from ENERGY STAR[®] Commercial Kitchen Equipment Savings Calculator.
⁸⁵ Water use for ENERGY STAR[®] steam cookers is the average of water use values provided by ENERGY STAR[®] for steam generator, boiler-based, and boiler-less cookers (See formula in "Steam Cooker Calcs" tab cell "G19" average of 15,10 &3).

Appendix H - TRM - Vol. 2: C&I Measures

Ameren Missouri

2.3.3 Fryer

DESCRIPTION

This measure applies to electric or natural gas fired ENERGY STAR[®] certified fryers installed in a commercial kitchen. ENERGY STAR[®] fryers offer shorter cook times and higher production rates through advanced burner and heat exchanger designs. Fry pot insulation reduces standby losses, resulting in lower idle energy rates. Standard-sized ENERGY STAR[®] fryers are up to 30% more efficient, and large-vat ENERGY STAR[®] fryers are up to 35% more efficient, than standard fryers.

This measure was developed to be applicable to the following program type: TOS.

If applied to other program types, measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be an ENERGY STAR[®] certified fryer meeting idle energy rate (W or Btu/hr) and cooking efficiency (%) limits, as determined by both fuel type and fryer capacity (standard versus large vat).

ENERGY STAR® Requirements	(Version 23.0, Effective	April 22, 2011)October 1, 2016)
---------------------------	--------------------------	---------------------------------

	Electric Efficiency Requirements		Natural Gas Efficiency Requirements	
Fryer Capacity	Idle Energy Rate	Cooking Efficiency Consumption	Idle Energy Rate	Cooking Efficiency Consumption
Standard Open Deep-Fat Fryer	$\leq \frac{1,000800}{100}$ W	<u>≥ 83%</u>	≤ 9,000 Btu/hr	> 50%
Large Vat Open Deep-Fat Fryer	≤ 1,100 W	$\geq 80\%$	≤ 12,000 Btu/hr	$\geq 30\%$

Formatted: Body Text, Justified, Indent: Left: 0"

Formatted: Footnotes, Line spacing: single

Formatted: Footnotes, Indent: Left: 0"

Formatted: Underline

Formatted: Underline

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new electric or natural gas fryer that is not ENERGY STAR[®] certified.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years.⁸⁶

DEEMED MEASURE COST

The incremental capital cost for this measure is $\frac{210}{1,500}$ for standard electric, $\frac{6500}{500}$ for large vat electric, $\frac{1.00}{1,1202,000}$ for standard gas, and $\frac{1,1202,000}{1,1202,000}$ for large vat gas fryers.⁸⁷

⁸⁶ ENERGY STAR[®], "Results Detail" worksheet (Equipment Life). Commercial Kitchen Equipment Savings Calculator, (March 4 2024), https://www.energystar.gov/sites/default/files/2024-03/CFS% 20Equipment%20Calculator.xlsxLifetime from ENERGY STAR[®] Commercial Kitchen Equipment Savings Calculator, which eites reference as "FSTC research on available models, 2009," https://www.energystar.gov/sites/default/files/2024-03/CFS% 20Equipment%20Calculator.xlsx (See "Fryer Calces" tabhttps://www.energystar.gov/sites/default/files/2024-03/CFS% 20Equipment%20Calculator.xlsx (See "Fryer Calces") tabhttps://www.energystar.gov/sites/default/files/asset/document/commercial_kitchen_equipment_calculator.xlsx

⁸⁷ ENERGY STAR[®], "Fryer Calcs" hidden worksheet (Incremental Cost), *Commercial Kitchen Equipment Savings Calculator*, (March 2024), https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx Measure costs from ENERGY STAR[®] Commercial Kitchen Equipment Savings Calculator (See formula in "Fryer Calcs" tab cells "C9:F9"), which cites reference as "EPA research using AutoQuotes, October 2020EPA research using AutoQuotes, 2012."

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted: Centered

Appendix H - TRM - Vol. 2: C&I Measures

LOADSHAPE Cooking BUS

<u>2025 MEEIA 4 2019-21 Plan</u>

Revision <u>56</u>.0

Appendix H - TRM – Vol. 2: C&I Measures

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Custom calculation for an electric fryer below; otherwise use deemed value of $\frac{952.33,128.12311}{\text{kWh}}$ for standard fryers and $\frac{2,537.92,696}{2,537.92}$ kWh for large vat fryers.⁸⁸

<u>∆kWh</u>	= $(\Delta IdleEnergy + \Delta CookingEnergy + \Delta CookingEnergy + \Delta PreHeatEnergy) * Days/1,000$
Where:	
ΔIdleEnergy	= Difference in idle energy between baseline and efficient fryer = (<i>ElecIdle_{base}ElecIdleBase *-x</i> (<i>Hours - FoodCooked</i> /
	ElecPC _{base} ElecPCBase)) – ElecIdle _{ESTAR} ElecIdleESTAR *
	x (Hours - FoodCooked/ElecPC _{ESTAR} ElecPCESTAR))
<u>APreHeatEnergy</u>	=Difference in daily preheat energy between baseline and efficient
ΔCookingEnergy	= Difference in cooking energy between baseline and efficient fryer
6 6,	= (FoodCooked + x EFOODElec/
	ElecEff _{base} ElecEffBase) - (FoodCooked
	ElecEffestar)
∆PreHeatEnergy	=Difference in daily preheat energy from baseline to efficient
	=Actual, or if unknown, 500 watts for standard and large vat
Days	= Annual days of operation
•	= Custom or, if unknown, Actual, or if unknown, use 365.25 days per
	year
1,000	= Wh to kWh conversion factor
ElecIdle _{Base}	= Idle energy rate of baseline electric fryer
	= $1,050-200$ W for standard fryers and $1,350$ W for large vat fryers
ElecIdle _{ESTAR}	= Idle energy rate of ENERGY STAR [®] electric fryer
	= Custom or, if unknown, Actual, or if unknown, use 1,000800 W for
	standard fryers and 1,100 for large vat fryers
Hours	= Average daily hours of operation
	= Custom or, if unknown, Actual, or if unknown, use 16 hours per day
	for a standard fryer and 12 hours per day for a large vat fryer
FoodCooked	= Food cooked per day
	= Custom or, if unknown, Actual, or if unknown, use 150 pounds
ElecPC _{Base}	= Production capacity of baseline electric fryer

⁸⁸ ENERGY STAR[®], "Results Detail" worksheet: Cells F25:F28, Commercial Kitchen Equipment Savings Calculator, (March 2024), Source of algorithms and assumptions for savings, https://www.energystar.gov/sites/default/files/2024_ 03/CFS%20Equipment%20Calculator.xlsxAlgorithms and assumptions derived from ENERGY STAR[®] Commercial Kitchen Equipment Savings Calculator <u>https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx</u> (See "Results Detail" tab Cells F25:F28).

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted: Justified, Indent: Left: -0", Right: 0", Space After: 8.75 pt

Ameren Missouri	Appendix H - TRM – Vol. 2: C&I Measures
ElecPC _{ESTAR}	 = 65 lb/hr for standard fryers and 100 lb/hr for large vat fryers = Production capacity of ENERGY STAR[®] electric fryer
	= Custom or, if unknown, <u>Actual, or if unknown</u> , use 70 lb/hr for standard fryers and 110 lb/hr for large vat fryers
EFOOD _{Elec}	= ASTM energy to food = 167 Wh/lb
ElecEff _{Base}	 = 107 white = Cooking efficiency of baseline electric fryer = 75% for standard fryers and 70% for large vat fryers = Cooking efficiency of ENERGY STAR[®] electric fryer
ElecEff _{ESTAR}	= Cooking enclency of ENERGY STAR electric fryer = Custom or, if unknown, Actual, or if unknown, use 8083% for both standard and 80% for large vat fryers

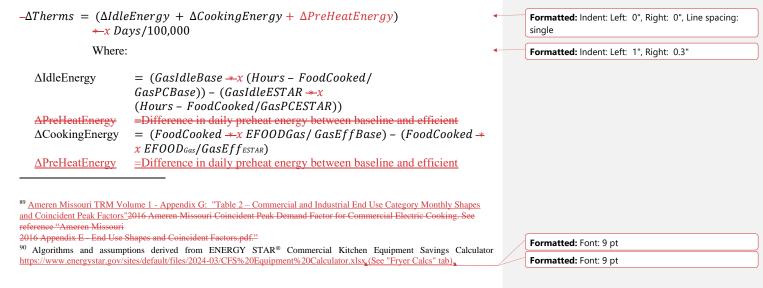
Other variables as defined above

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta k = \Delta kWh - x CF$

Where:

 ΔkWh
 = Electric energy savings, calculated above


 CF
 = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 = 0.0001998949⁸⁹

Other variables as defined above.

NATURAL GAS ENERGY SAVINGS

Custom calculation for a natural gas fryer below; otherwise use deemed value of $\frac{507.9512}{1000}$ therms/yr for standard fryers and $\frac{415.1420}{1000}$ therms/yr for large vat fryers.⁹⁰

2025_MEEIA_4_2019-21_Plan

Revision <u>56</u>.0

Appendix H - TRM - Vol. 2: C&I Measures

100,000 GasIdle _{Base}	 Btu to therms conversion factor Idle energy rate of baseline gas fryer 14,000 Btu/hr for standard fryers and 16,000 Btu/hr for large vat 	
Castella	fryers	
GasIdle _{ESTAR}	= Idle energy rate of ENERGY STAR [®] gas fryer = Custom or, if unknown, Actual, or if unknown, use 9,000 Btu/hr for	
	standard fryers and 12,000 Btu/hr for large vat fryers	
GasPc _{Base}	= Production capacity of baseline gas fryer	
	= 60 lb/hr for standard fryers and 100 lb/hr for large vat fryers	
	= Production capacity of ENERGY STAR [®] gas fryer	
	= Custom or, if unknown, Actual, or if unknown, use 65 lb/hr for	
GasPcestar	standard fryers and 110 lb/hr for large vat fryers	-
EFOOD _{Gas}	= ASTM energy to food	
	= 570 Btu/lb	
GasEff _{Base}	= Cooking efficiency of baseline gas fryer	
	= 35% for both standard and large vat fryers	
	= Cooking efficiency of ENERGY STAR [®] gas fryer	
	= Custom or, if unknown, Actual, or if unknown, use 50% for both	
GasEff _{ESTAR}	standard and large vat fryers	

Other variables as defined above

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

Appendix H - TRM - Vol. 2: C&I Measures

2.3.4 Convection Oven

DESCRIPTION

This measure applies to either full or half-sized electric ENERGY STAR[®] convection ovens and to half-full sized natural gas fired ENERGY STAR[®] convection ovens installed in a commercial kitchen. Convection ovens are general purpose ovens that use fans to circulate hot, dry air over the food surface. ENERGY STAR[®] certified convection ovens are approximately 20% more efficient than standard ovens.

This measure was developed to be applicable to the following program type: TOS.

If applied to other program types, measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be an ENERGY STAR[®] certified convection oven meeting idle energy rate (kW or Btu/hr) and cooking efficiency (%) limits, as determined by both fuel type and oven capacity (full size versus half size).

ENERGY STAR[®] Requirements (Version 2.23.0, Effective October 7, 2015 January 12, 2023) 91

	Electric Efficiency Requirements		
Oven Capacity	Idle Energy Rate	Cooking Efficiency	
<u>Electric,</u> Full Size <u>, ≥ 5 pans</u>	≤ 1 .60 .40 k₩ kW	≥ 71<u>76</u>%	
Electric, Half Size Full Size, < 5 pans	$\leq 1.00 \text{ kW}$	<u>≥76%</u>	
Half Size	$\leq 1.00 \text{ kW}$	≥71%	
Gas, full size	<u>≤9,500 Btu/hr</u>	<u>≥49%</u>	

	Formatted: Line spacing: single
	Formatted: Line spacing: single
	Formatted: Centered, Line spacing: single
$\langle \rangle$	Formatted: Centered, Line spacing: single
	Formatted: Line spacing: single
	Formatted Table

Formatted: Body Text, Justified, Indent: Left: 0"

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new electric or natural gas convection oven that is not ENERGY ${\rm STAR}^{\circledast}$ certified.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years.92

DEEMED MEASURE COST

	_https://www.energystar.gov/products/commercial_food_service_equipment/commercial_ovens/key_product_criteria
92	ENERGY STAR®, "Results Detail" worksheet (Equipment Life), Commercial Kitchen Equipment Savings Calculator, (Marc
2	024), https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx Lifetime from ENERGY
S	TAR [®] Commercial Kitchen Equipment Savings Calculator, which cites reference as "FSTC research on available models,
24	009." https://www.energystar.gov/sites/default/files/asset/document/commercial_kitchen_equipment_calculator.xlsx

Formatted: Font: 9 pt	
Formatted: Font: 9 pt	
Formatted: Indent: Left: 0"	
Formatted: Underline	

2025_MEEIA_4_2019-21_Plan

Revision 56.0

£

The incremental capital cost for this measure is \$8280 for half-size oven and \$1,191 for full size ovens.⁹³

LOADSHAPE Cooking BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Custom calculation for an electric convection oven below; otherwise use $\frac{1,938.51,090 \text{ W for} \ge 5}{\text{pan full-size ovens}, 4,576 \text{ W for} <5 \text{ pan and } 2,491 \text{ W for half-size ovens} \frac{2,001}{\text{kWh for full-size}}$

<u> ΔkWh = (ΔIdleEnergy + ΔCookingEnergy) + Days/1,000</u>

Where	÷	
	ΔkWh	= (ΔIdleEnergy + ΔCookingEnergy + Δ CookingEnergy PreHeatEnergy) * x Days/1,000
	Where:	
	Where:	
	∆IdleEnergy	 = Difference in idle energy between baseline and efficient convection oven = (ElecIdleBase * x (Hours - FoodCooked/ElecPCBase)) - (ElecIdleESTAR * x (Hours - FoodCooked/ElecPCESTAR))

Formatted Table

Formatted: Indent: Left: 0"

⁹³ Measure cost from ENERGY STAR[®] <u>https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx (See "Oven Calcs" tab rows 11 and 149)</u> which cites reference as "EPA research on available models using AutoQuotes, 2013. <u>https://www.energystar.gov/sites/default/files/asset/document/ENERGY%20STAR%20Version%203.0%20Commercial%20Ovens%20Final%20Specification.pdf.</u>²²

⁹⁴ Algorithms and assumptions derived from ENERGY STAR[®]-Commercial Kitchen Equipment Savings Calculator. https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx (See "Results Detail" tab Cells F26:F43)ENERGY STAR[®], "Results Detail" worksheet: Cells F26:F43, Commercial Kitchen Equipment Savings Calculator, (March 2024), Source of algorithms and assumptions for savings, https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx

Appendix H - TRM - Vol. 2: C&I Measures

ΔCookingEnergy	= Difference in cooking energy between baseline and efficient	
	= $(FoodCooked \rightarrow x EFOODElec/ElecEffBase) -$	
	(FoodCooked + x EFOODElec/ElecEffESTAR)	
<u>APreHeatEnergy</u>	=Difference in daily preheat energy from baseline and efficient oven	
Days	= Annual days of operation	
2	= Custom or, if unknown, Actual, or if unknown, use 365.25 days per	
	year	
1,000	= Wh to kWh conversion factor	
ElecIdle _{Base}	= Idle energy rate of baseline electric convection oven	
	$=\frac{2,0001,630}{2}$ W for ≥ 5 pan full-size ovens, $2,000$ W for <5 pan and	
	1,0301,510-W for half-size ovens	
ElecIdleestar	= Idle energy rate of ENERGY STAR [®] electric convection oven	
	= Custom or, if unknown, Actual, or if unknown, use 1,600 W for full-	
	size ovens and 1,000 W for half-size ovens-values in efficient	
	equipment table	
Hours	= Average daily hours of operation	
	= Custom or, if unknown, Actual, or if unknown, use 12 hours per day	
FoodCooked	= Food cooked per day	
	= Custom or, if unknown, Actual, or if unknown, use 100 pounds	
ElecPC _{Base}	= Production capacity of baseline electric convection oven, <u>lb/hr</u>	
	= 102 for ≥ 5 pan full-size ovens, 68 for <5 pan and 45 for half-size	
	ovens90 lb/hr for full-size ovens and 45 lb/hr for half-size ovens	
ElecPC _{ESTAR}	= Production capacity of ENERGY STAR [®] electric convection oven	
	= Custom or, if unknown, <u>Actual</u>, or if unknown, use <u>98 for ≥5 pan</u>	
	<u>full-size ovens, 60 for <5 pan and 42 for half-size ovens</u> 90 lb/hr for	
	full-size ovens and 50 lb/hr for half-size ovens	
EFOOD _{Elec}	= ASTM energy to food for electric convection oven	
	= 73.2 Wh/lb	
ElecEff _{Base}	= Cooking efficiency of baseline electric convection oven	
	= 74% for ≥ 5 pan full-size ovens, 65% for < 5 pan and 64% for half-	
	size ovens65% for full size ovens and 68% for half size ovens	
ElecEff _{ESTAR}	= Cooking efficiency of ENERGY STAR [®] electric convection oven	
	= Custom or, if unknown, Actual, or if unknown, use 71% for full-size	
	and half-size ovensvalues in efficient equipment table	

1

Revision <u>56</u>.0

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh - x CF$

Where:

 ΔkWh = Electric energy savings, calculated above CF = Summer peak coincidence demand (kW) t

F = Summer peak coincidence demand (kW) to annual energy (kWh) factor = 0.0001998949^{95}

Other variables as defined above.

NATURAL GAS ENERGY SAVINGS

Custom calculation for a natural gas convection oven below, otherwise use deemed value of $1\frac{29.4}{711}$ therms/yr.⁹⁶

 $-\Delta Therms = (\Delta Idle Energy + \Delta Cooking Energy) * Days/100,000$

Where:

<u>ΔTherms</u>	<u>= (ΔIdleEnergy + ΔCookingEnergy + ΔPreHeatEnergy) *</u> <u>Days/100,000</u>	•	Formatted: Body Text Formatted Table
Where:			
∆IdleEnergy	= (GasIdleBase + x (Hours - FoodCooked/		
	GasPCBase)) – (GasIdleESTAR		
	FoodCooked/GasPCESTAR))		
ΔCookingEnergy	= (FoodCooked <u>+x</u> EFOODGas/GasEffBase) -		
200011192110189	(FoodCooked ** x EFOODGas/ GasEffESTAR)		
<u> APreHeatEnergy</u>	=Difference in daily preheat energy from baseline and efficient		
	oven, if unknown, assume 1,190 BTU/hr		
100,000	= Btu to therms conversion factor		
GasIdleBase	= Idle energy rate of baseline gas convection oven		
e monore buse	$=\frac{15,10012,245}{10012,245}$ Btu/hr		
	= Idle energy rate of ENERGY STAR [®] gas convection oven		
GasIdleESTAR	= Custom or, if unknown, <u>Actual, or if unknown,</u> use <u>12,0009,500</u>		
	Btu/hr		
GasPC _{Base}	= Production capacity of baseline gas convection oven		
CarDC	$=\frac{83.95}{10}$ lb/hr		
GasPC _{ESTAR}	= Production capacity of ENERGY STAR [®] gas convection oven		

⁹⁵ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"2016 Ameren Missouri Coincident Peak Demand Factor for Commercial Electric Cooking. See reference "Ameren Missouri

2016 Appendix E - End Use Shapes and Coincident Factors.pdf."

⁹⁶ Algorithms and assumptions derived from ENERGY STAR[®] Commercial Kitchen Equipment Savings Calculato https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx Formatted: Font: 9 pt Formatted: Font: 9 pt

Ameren Missouri	Appendix H - TRM – Vol. 2: C&I Measures	
	= Custom or, if unknown, <u>Actual</u>, or if unknown, use 86-91 lb/hr	
EFOOD _{Gas}	= ASTM energy to food for gas convection oven = 250 Btu/lb	
$GasEff_{Base}$	= Cooking efficiency of baseline gas convection oven = 4448%	
<u>GasEffestar</u>	= Cooking efficiency of ENERGY STAR® gas convection oven	Formatted: Subscript
GasEff ESTAR	 <u>= Custom or, if unknown, Actual, or if unknown, use 494946%.</u> = Cooking efficiency of ENERGY STAR[®] gas convection oven = Custom or, if unknown, use 46% <u>49%.</u> 	Formatted: Justified

Other variables as defined above.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

Revision <u>56</u>.0

Appendix H - TRM – Vol. 2: C&I Measures

Ameren Missouri

2.3.5 Griddle

DESCRIPTION

This measure applies to electric or natural gas fired ENERGY STAR[®] certified griddles installed in a commercial kitchen. ENERGY STAR[®] commercial griddles achieve approximately 10% higher efficiency than standard griddles with strategies such as highly conductive or reflective plate materials and improved thermostatic controls.

This measure was developed to be applicable to the following program type: TOS.

If applied to other program types, measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be a new ENERGY STAR[®] electric or natural gas fired griddle meeting idle energy rate limits as determined by fuel type.

ENERGY STAR[®] Requirements (Version 1.2, Effective May 8, 2009 for natural gas and January 1, 2011 for electric griddles) ⁹⁷

Electric Efficiency Requirements		Natural Gas Efficiency Requirements		1	
Idle Energy Rate	Cooking Efficiency Consumption	Idle Energy Rate	Cooking Efficiency Consumption		
$\leq 320 \text{ W/ft}^2$ $\leq 1.00 \text{ kW}$	Reported	\leq 2,650 Btu/hr/ft ² N/A	Reported	•	Formatted Table

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new electric or natural gas fired griddle that is not ENERGY STAR[®] certified.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years.98

DEEMED MEASURE COST

The incremental capital cost for this measure is:

Electric: \$850 for a single sided and \$0 for double sided an electric griddle

andGas: \$360-1,250 for a single sided gas griddleand \$0 for double sided.99

⁹⁷ <u>https://www.energystar.gov/products/commercial_food_service_equipment/commercial_griddles/key_products_criteria</u>
 ⁹⁸ ENERGY STAR[®], "Results Detail" worksheet (Equipment Life), *Commercial Kitchen Equipment Savings Calculator*, (Marc 2024), <u>https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx Lifetime from ENERGY</u>
 STAR[®] Commercial Kitchen Equipment Savings Calculator, which cites reference as "FSTC research on available models, 2009," <u>https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx (See "Griddle Calcs" tab rows 10. & 50)</u>

http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equipment_calculator.xlsx

⁹⁹ Measure costs from ENERGY STAR[®] Commercial Kitchen Equipment Savings Calculator, which cites reference as "EPA research on available models using AutoQuotes, July 20126."

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted: Body Text, Indent: Left: 0"

Formatted: Indent: First line: 0.5"

Formatted: Font: 9 pt

Formatted: Underline

Formatted: Indent: Left: 0"

Appendix H - TRM - Vol. 2: C&I Measures

LOADSHAPE

Cooking BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Custom calculation for an electric griddle below; otherwise use deemed value of $\frac{1,910.4}{2,641}$ kWh.¹⁰⁰

$\Delta kWh = (\Delta IdleEnergy + \Delta CookingEnergy) * Days/1,000$

Where:

<u>∆kWh</u>	= $(\Delta IdleEnergy + \Delta CookingEnergy +$		Space After: 0 pt
	$\Delta PreHeatEnergy) \times Days/1,000$	Formatted: No widow/orphan control	
Where:			Formatted Table
∆IdleEnergy	= Difference in idle energy between baseline and efficient griddle		
	$= [(ElecIdle_{Base} * \underline{x} Width * \underline{x} Depth) * \underline{x} (Hours - \underline{x} Uepth) + \underline{x} (H$		Formatted: Font: Italic
	$FoodCooked/ElecPC_{Base})] - [(ElecIdle_{ESTAR} * x Width * x Depth)]$	\frown	Formatted: Font: Italic
A Cooling Engange	* <u>x</u> (Hours - FoodCooked/ElecPC _{ESTAR}))	Formatted: Font: Italic	
ΔCookingEnergy	= Difference in cooking energy between baseline and efficient griddle	Formatted: Font: Italic	
	= $(FoodCooked *_{\underline{X}} EFOOD_{Elec} / ElecEff_{Base}) - (FoodCooked *_{\underline{X}})$	$\left \right \right\rangle$	Formatted: Font: Italic
	$EFOOD_{Elec} / ElecEff_{ESTAR}$)	\mathbb{V}/\mathbb{V}	Formatted: Font: Italic
<u><u>APreHeatEnergy</u></u>	<u>=Difference in daily preheat energy baseline and efficient griddle</u> =Actual, if unknown, assume 2,000 W, 1 per day	\mathbb{N}	Formatted: Font: Italic
Days	= Annual days of operation		Formatted: Font: Italic
5	= Custom or, if unknown, Actual, or if unknown, use 365.25 days	//	Formatted: Font: Italic
1,000	per year = Wh to kWh conversion factor	\	Formatted: Font: Italic
ElecIdle _{Base}	= Idle energy rate of baseline electric griddle = 400 W/ft^2		
ElecRate _{ESTAR}	 Idle energy rate of ENERGY STAR[®] electric griddle Custom or, if unknown, Actual, or if unknown, use 320 W/ft² 		
Width	= Griddle width = Custom or, if unknown, Actual, or if unknown, use 3 feet		
Depth	= Griddle depth = Custom or, if unknown, <u>Actual</u>, or if unknown, use 2 feet		

http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=COG. https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx (See "Griddle Calcs" tab

rows 23 & 51). ¹⁰⁰ ENERGY STAR[®], "Results Detail" worksheet, *Commercial Kitchen Equipment Savings Calculator*, (March 2024), Source of ^{algorithms} and assumptions for savings, https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsxAlgorithms and assumptions derived from ENERGY STAR[®]-Commercial Kitchen Equipment Savings Calculator.

Formatted: Footnotes

Formatted: Indent: Left: 0"

Formatted: Body Text, Indent: Left: 0", Right: 0",

<u>2025 MEEIA 4 2019-21 Plan</u>

Revision <u>56</u>.0

Appendix H - TRM - Vol. 2: C&I Measures

1

1

Hours	= Average daily hours of operation
	= Custom or, if unknown, Actual, or if unknown, use 12 hours per
	day
FoodCooked	= Food cooked per day
	= Custom or, if unknown, Actual, or if unknown, use 100 pounds
ElecPC _{Base}	= Production capacity of baseline electric griddle
	= 35 lb/hr
ElecPC _{ESTAR}	= Production capacity of ENERGY STAR [®] electric griddle
	= Custom or, if unknown, Actual, or if unknown, use 40 lb/hr
EFOOD _{Elec}	= ASTM energy to food
	= 139 Wh/lb
ElecEff _{Base}	= Cooking efficiency of baseline electric griddle
	= 65%
ElecEffestar	= Cooking efficiency of ENERGY STAR [®] electric griddle
	= Custom or, if unknown, Actual, or if unknown, use 70%

Other variables as defined above.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWh + \underline{\mathbf{x}} CF$$

Where:

Ameren Missouri

 $\begin{array}{ll} \Delta k W h & = Electric \mbox{ energy savings, calculated above} \\ CF & = Summer \mbox{ peak coincidence demand (kW) to annual energy (kWh) factor} \\ & = 0.0001998949^{101} \end{array}$

Other variables as defined above.

NATURAL GAS ENERGY SAVINGS

Custom calculation for a natural gas griddle below; otherwise use deemed value of 131.4 therms. 102

$$\Delta Therms = (\Delta Idle Energy + \Delta Cooking Energy) * Days/100,000$$

Where:

∆IdleEnergy	$= [GasIdle_{Base} \stackrel{*}{} (Width \stackrel{*}{} Depth) \stackrel{*}{} (Hours -$
	$FoodCooked/GasPC_{Base}$] – [GasIdle _{ESTAR} $\underline{*_{x}}$ (Width $\underline{*_{x}}$ Depth) $\underline{*_{x}}$
	(Hours – FoodCooked/GasPC _{ESTAR}))
ΔCookingEnergy	= $(FoodCooked * x EFOOD_{Gas}/GasEff_{Base}) - (FoodCooked * x)$
	EFOOD _{Gas} / GasEffestar)

¹⁰¹ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors" 2016 Ameren Missouri Coincident Peak Demand Factor for Commercial Electric Cooking. See reference "Ameren Missouri

2016 Appendix E - End Use Shapes and Coincident Factors.pdf."

¹⁰² Algorithms and assumptions derived from ENERGY STAR® Commercial Kitchen Equipment Savings Calculator.

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted: Font: Times New Roman, Not Italic

1	Formatted: Font: Italic
-{	Formatted: Font: Italic
1	Formatted: Font: Italic
ľ	Formatted: Font: Italic
ľ	Formatted: Font: Italic
)(Formatted: Font: Italic
ľ	Formatted: Font: Italic
ľ,	Formatted: Font: Italic
ľ	Formatted: Font: Italic
ľ	Formatted: Font: Italic

I

Appendix H - TRM - Vol. 2: C&I Measures

Δ PreHeatEnergy	=Difference in daily preheat energy baseline and efficient griddle
-100,000	= Btu to therms conversion factor
GasIdle _{Base}	= Idle energy rate of baseline gas griddle
	$= 3,500 \text{ Btu/hr/ft}^2$
GasIdleESTAR	= Idle energy rate of ENERGY STAR [®] gas griddle
	= Custom or, if unknown, Actual, or if unknown, use 2,650
	Btu/hr/ft ²
GasPC _{Base}	= Production capacity of baseline gas griddle
	= 25 lb/hr
GasPC _{ESTAR}	= Production capacity of ENERGY STAR [®] gas griddle
	= Custom or, if unknown, Actual, or if unknown, use 45 lb/hr
EFOOD _{Gas}	= ASTM energy to food
	= 475 Btu/lb
GasEff _{Base}	= Cooking efficiency of baseline gas griddle
	= 32%
	= Cooking efficiency of ENERGY STAR [®] gas griddle
GasEffestar	= Custom or, if unknown, <u>Actual, or if unknown,</u> use 38%

Other variables as defined above.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

Revision <u>56</u>.0

2.3.6 Kitchen Demand Ventilation Controls

DESCRIPTION

Installation of commercial kitchen demand ventilation controls that vary the ventilation based on cooking load and/or time of day. This measure applies to the following program types: RF, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be a control system that varies the exhaust rate of kitchen ventilation (exhaust and/or makeup air fans) based on the energy and effluent output from the cooking appliances (i.e., the more heat and smoke/vapors generated, the more ventilation needed). This involves installing a new temperature sensor in the hood exhaust collar and/or an optic sensor on the end of the hood that sense cooking conditions which allows the system to automatically vary the rate of exhaust to what is needed by adjusting the fan speed accordingly.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is kitchen ventilation that has constant speed ventilation motor.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT¹⁰³

The expected measure life is assumed to be 15 years.

MEASURE COST10310380

The incremental capital cost for this measure is:

Measure Category	Incremental Cost (\$/HP)
DVC Control Retrofit	\$1,991
DVC Control New	\$1,991

LOADSHAPE

Cooking BUS

Algorithm

Calculation of Savings

Annual energy use was based on monitoring results from five different types of sites, as summarized in PG&E Food Service Equipment work paper.

Electric Energy Savings¹⁰⁴⁸⁰

Formatted: Not Highlight

¹⁰³ Pacific Gas & Electric Company Work Paper PG			/	Formatted: Left, Indent: Left: 0.01"
¹⁰⁴ https://www.nvenergy.com/publish/content/dam filings/nve/irp/NVE-18-06003-IRP-VOL9.pdf (NV				Field Code Changed
		<u></u>		Formatted: Indent: Left: 0", First line: 0"
<u>2025</u> MEEIA <u>4</u> 2019-21-Plan	Revision 5 6.0	Page 52		

Appendix H - TRM – Vol. 2: C&I Measures

Formatted: Keep with next, Keep lines together Formatted: Keep with next, Keep lines together

Formatted: Keep with next, Keep lines together

Formatted Table

Formatted Table

Formatted: Font: 9 pt

Measure Name	Annual Energy Savings per Unit (kWh/HP)
DVC Control Retrofit	4,197
DVC Control New	4,197

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWhkWhsavings + x CF$

Where:

CF

- $\Delta kWh = Electric energy savings, calculated above$
 - = Summer peak coincidence demand (kW) to annual energy (kWh) factor = 0.0001998949^{105}

NATURAL GAS SAVINGS

Where:

CFM	= the average airflow reduction with ventilation controls per hood
	= 430 cfm/HP
HP	= actual if known, otherwise assume 7.75 HP^{106}
Annual Heating	= Annual heating energy required to heat fan exhaust make-up air
Load	dependent on location. Actual, else value in table below.

	Zone	Annual Heating Load (BTU/cfm)	
	Missouri Average ¹⁰⁷	<u>137,000</u>	
Eff(heat)	= Heating Efficiency		
	= actual if know	vn, otherwise assume 80% ¹⁰⁸	
100,000	= conversion from	om Btu to Therm	

¹⁰⁵ <u>Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors" See reference "Ameren Missouri 2016 Appendix E – End Use Shapes and Coincident Factors.pdf."
¹⁰⁶ "Illinois Statewide Technical Reference Manual for Energy Efficiency Version 6.0, Volume 2: Commercial and Industrial Measures," Section 4.2.16, Kitchen Demand Ventilation Controls; <u>JL Statewide TRM IL Statewide TRM Version 6.0 - Illinois</u></u>

Measures, Section 4.2.16, Kitchen Demand Ventuation Controls; JL Statewide TKM EL Statewide TKM Version 6.0 - Hintols Energy Efficiency Stakeholder Advisory Group (ilsag.info)https://s3.amazonaws.com/ilsag/IL_TRM_Effective_010118_v6.0_Vol_2_C_and_L020817_Final.pdf ¹⁰⁷ Opinion Dynamics Used <u>https://s3.amazonaws.com/ilsag/2020_IL_TRM_Version_8.0_dated_October_17_</u> 2019_Final_Volumes_1-4_Compiled.pdfhttps://s3.amazonaws.com/ilsag/2020_IL_TRM_Version_8.0_dated_October_17_ 2019_Final_Volumes_1-4_Compiled.pdfhttps://s3.amazonaws.co

weather stations to estimate Heating Load values for zones in Ameren Missouri territory ¹⁰⁸ "Illinois Statewide Technical Reference Manual for Energy Efficiency Version 6.0, Volume 2: Commercial and Industrial Measures", Section 4.2.16, Kitchen Demand Ventilation Controls; IL Statewide TRM IL Statewide TRM Version 6.0 - Illinois Energy Efficiency Stakeholder Advisory GroupIllinois Energy Efficiency Stakeholder Advisory Group [isag.info)https://s3.amazonaws.com/ilsag/IL_TRM_Effective_010118_v6.0_Vol_2_C_and_L020817_Final.pdf

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Appendix H - TRM – Vol. 2: C&I Measures

 Zone
 Annual Heating Load (BTU/cfm)

 Missouri Average¹⁰⁹
 137,000

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

Measure Code:

Formatted: Footnotes, No widow/orphan control

2025 MEEIA <u>4</u> 2019-21 Plan

Revision <u>56</u>.0

Page 54

_¹⁶⁹ <u>Used https://s3.amazonaws.com/ilsag/2020_IL_TRM_Version_8.0_dated_October-17-2019_Final_Volumes_1_</u> <u>4_Compiled.pdf to</u> compare savings values by weather zone from the IL TRM to zone-specific HDD values, and determined a linear relationship between Heating Load and HDD, then applied that linear relationship to HDD values (using base 60) for MO weather stations to estimate Heating Load values for zones in Ameren Missouri territory.

Appendix H - TRM - Vol. 2: C&I Measures

Ameren Missouri

2.3.7 Hot Food Holding Cabinet

DESCRIPTION

This measure applies to electric ENERGY STAR[®] certified hot food holding cabinets (HFHCs) installed in a commercial kitchen. ENERGY STAR[®] HFHCs achieve approximately 70% higher efficiency than standard models by incorporating better insulation which reduces heat loss, offers better temperature uniformity within the cabinet from top to bottom, and keeps the external cabinet cooler. In addition, many certified HFHCs may include additional energy saving devices such as magnetic door gaskets, auto-door closures, or dutch doors.

This measure was developed to be applicable to the following program type: TOS.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be a new ENERGY STAR[®] electric HFHC meeting idle energy rate limits as determined by product interior volume.

ENERGY STAR® Requirements (Version 2.0, Effective October 1, 2011) 110

Interior Volume (ft ³)	Idle Energy Consumption Rate (W)
0 < V < 13	\leq 21.5 V
$13 \le V \le 28$	\leq 2.0 V + 254.0
$28 \le V$	\leq 3.8 V + 203.5

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new electric HFHC that is not ENERGY STAR[®] certified.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years.¹¹¹

DEEMED MEASURE COST

Actual incremental costs should be used if available. If actual costs are unknown, assume $\frac{1,7831,000}{12}$

LOADSHAPE

Cooking BUS

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted Table

Formatted: Hyperlink, Font: 9 pt, No underline, Font color: Black

Field Code Changed

Formatted: Footnotes, Line spacing: single

Formatted: Underline

¹¹⁰ ENERGY STAR®, ,

⁽March 2024), https://www.energystar.gov/sites/default/files/2024-03/CFS% 20Equipment% 20Calculator.xlsx Lifetime from ENERGY STAR[®] Commercial Kitchen Equipment Calculator, which cites reference as "FSTC research on available models, 2009."

¹¹² ENERGY STAR[®] https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsxAmeren Missouri Technical Resource Manual — Effective January 1, 2018.

Appendix H - TRM - Vol. 2: C&I Measures

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS¹¹³

 $\Delta kWh = (IdleRate_{Base} - IdleRate_{EE}) * Hours * Days/1,000$

Where:

V

= Idle energy rate (W) of baseline HFHC IdleRate_{Base} = 40-30 *x V = Interior volume (ft³) of new HFHC

= Custom

IdleRateESTAR

= Idle energy rate (W) of ENERGY STAR[®] HFHC = See table below for idle energy rates based on interior volume

	Interior Volume	Idle Energy Consumption Rate			
		<u>(Watt)</u>			
	<u>$0 < V < 13$</u>	<u>21.5 *x V</u>			
	$\underline{13 \leq V < 28}$	<u>(2.0 *x V) + 254.0</u>			
	$\underline{28 \leq V}$	<u>(3.8 *x V) + 203.5</u>			
Hours	= Average daily hours of operation				
	= Custom or, if unknown, Actual, or if unknown, use 15 hours per				
	day				
Days	= Annual days of operation				
	= Custom or, if unknown, Actual, or if unknown, use 365.25 days				
	per year				
1,000	= Wh to kWh con	version factor			

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta k = \Delta kWh - x CF$$

Where:

CF

 $\Delta kWh = Electric energy savings, calculated above$

= Summer peak coincidence demand (kW) to annual energy (kWh) factor $= 0.0001998949^{114}$

2025_MEEIA_4_2019-21_Plan

Revision 56.0

Page 56

Formatted Table

Formatted: Footnotes Char, Font: 12 pt

Formatted: Footnotes Char, Font: 12 pt Formatted: Footnotes Char, Font: 12 pt, Not

Formatted: Footnotes Char, Font: 12 pt

Formatted: Footnotes Char, Font: 12 pt, Not Italic

Formatted: Footnotes Char

Formatted: Footnotes Char

Formatted: Footnotes Char

Formatted: Footnotes Char

Superscript/ Subscript

¹¹³ ENERGY STAR®, "Results Detail" worksheet, Commercial Kitchen Equipment Savings Calculator, (March 2024), Source of algorithms and assumptions for savings, https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsxAlgorithms and assumptions derived from Commercial Kitchen Equipment Calculator. ¹¹⁴ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"2016 Am

reference "Ameren Missouri 2016 Appendix E - End Use Shapes and Coincident Factors.pdf."

NATURAL GAS ENERGY SAVINGS N/A WATER IMPACT DESCRIPTIONS AND CALCULATION N/A DEEMED O&M COST ADJUSTMENT CALCULATION N/A MEASURE CODE:

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Appendix H - TRM – Vol. 2: C&I Measures

Ameren Missouri

2.3.8 Pre-Rinse Spray Valve

DESCRIPTION

Pre-rinse valves use a spray of water to remove food waste from dishes prior to cleaning in a dishwasher. More efficient spray valves use less water, thereby reducing water consumption, water heating cost, and waste water (sewer) charges. Pre-rinse spray valves include a nozzle, squeeze lever, and dish guard bumper. The primary impacts of this measure are water savings. Reduced hot water consumption saves either natural gas or electricity, depending on the type of energy the hot water heater uses.

This measure was developed to be applicable to the following program types: TOS, RF, and DI.

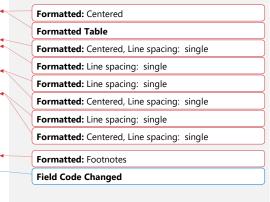
If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the new or replacement pre-rinse spray nozzle must use less than 1.6 gallons per minute. the maximum flow for the product class, as listed by the DOE Energy ConservationEfficiency Standards, effective January 2019.

Product Class (spray force, ozf)	Maximum Flow Rate
<u>Class 1, \leq 5.0 ozf</u>	<u><1.00 gpm</u>
Class 2, >5.0 ozf to ≤ 8.0 ozf	<u><1.20 gpm</u>
<u>Class 3, >8.0 ozf</u>	<u><1.28 gpm</u>

DEFINITION OF BASELINE EQUIPMENT


The baseline equipment will vary based on the delivery method with the maximum flow rate from the Code of Federal RegulationsDOE Energy ConservationEfficiency-Conservation Standards¹¹⁵and is defined below: . The current eodestandard, effective January 2019 is the baseline for TOS, the previous eodestandard, effective January 2006, the baseline for retrofits and direct install.

Product Class (spray force, <u>ozf)</u>	Time of Sale <u>Flow</u> <u>Rate</u>	Retrofit, Direct Install <u>, Flow Rate</u>
<u>Class 1, \leq 5.0 ozf</u>	1. <u>6.00 gpm</u> gallons per minute	<u>1.6 gpm</u>
Class 2, >5.0 ozf to ≤ 8.0 ozf	<u>1.20 gpm</u>	<u>1.6 gpm</u>
<u>Class 3, >8.0 ozf</u>	<u>1.28 gpm</u>	<u>1.6 gpm</u>

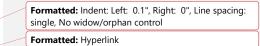
¹¹⁵ US Energy Policy and Conservation Act, "Commercial Prerinse spray Valves, (January 2019), <u>https://www.ecfr.gov/current/itile-10/chapter-II/subchapter-D/part-431/subpart-0#431.266DOE Energy Conservat</u> <u>StandardsiPart 4311 https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431/subpart-0#431.266</u> <u>https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431/subpart-0#431.266</u>

2025 MEEIA <u>4 2019-21</u> Plan

Revision <u>56</u>.0

Formatted Table

Page 58


Appendix H - TRM – Vol. 2: C&I Measures

	,
The baseline	Actual existing flow
equipment is assumed	rates should be used
to be 1.6 gallons per	when possible. If
minute. The Energy	unknown, baseline can
Policy Act of 2005	be assumed to be 2.23
sets the maximum	gallons per minute.116
flow rate for pre-rinse	If existing pre-rinse
spray valves at 1.6	spray valve flow rate is
gallons per minute at	unknown, then
60 pounds per square	existing pre-rinse
inch of water pressure	spray valve must have
when tested in	been installed prior to
accordance with	2006. The Energy
ASTM F2324-03. This	Policy Act of 2005 sets
performance standard	the maximum flow
went into effect	rate for pre-rinse spray
January 1, 2006.	valves at 1.6 gallons
	per minute at 60
	pounds per square inch
	of water pressure when
	tested in accordance
	with ASTM F2324-03.
	This performance
	standard went into
	effect January 1, 2006.
	However, field data
	shows that not all
	nozzles in use have
	been replaced with the
	newer flow rate
	nozzle. Products
	predating this standard
	can use up to five
	gallons per minute.
	Sunons per minute.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 5 years.¹¹⁷

Formatted: Indent: Left: 0.1", Line spacing: single, No widow/orphan control

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

 ¹¹⁶ Verification measurements taken at 195 installations showed average pre flowrates of 2.23 gallons per minute. IMPACT
 AND
 PROCESS EVALUATION FINAL REPORT for CALIFORNIA URBAN WATER CONSERVATION COUNCIL 2004-5

PRERINSE SPRAY VALVE INSTALLATION PROGRAM (PHASE 2) (PG&E Program # 1198-04; SoCalGas Program 1200-04) ("CUWCC Report," Feb 2007). 117 Consistent with Ameren Missouri MEEIA 2016-18 and KCPL TRM assumptions. <u>Also consistent with DOE Final</u>

Determination Technical Support Document: Commercial Pre-Rinse Spray Valves. https://www.regulations.gov/document/EERE-2019-BT-STD-0034-0020.

DEEMED MEASURE COST

When available, the actual cost of the measure should be used. If unknown, a default value of $$92.90^{118}$ may be assumed.

LOADSHAPE

Cooking BUS

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS (NOTE WATER SAVINGS MUST FIRST BE CALCULATED)

 $\Delta kWH = \Delta Gallons + x 8.33 + x 1 + x (T_{out}Tout - T_{in}Tin) + x (1/EFF_{Elec}EFFElec) / 3,413$

Where:

∆Gallons	= amount of water saved as calculated below in Water Impact Calculation
8.33	= specific mass in pounds of one gallon of water (lbm/gal)
1	= Specific heat of water: 1 Btu/lbm/°F
Tout	= Water Heater Outlet Water Temperature
	= Custom, otherwise assume $Tin + 70^{\circ}F$ temperature rise from Tin^{119}
T_{in}	= Inlet Water Temperature
	= Custom, otherwise assume $\frac{58.47.9F59.3F^{120}}{59.3F^{120}}$
EFF_{Elec}	= Efficiency of electric water heater supplying hot water to pre-rinse spray
	valve
	=CustomActual, otherwise assume 97% ¹²¹

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh - x CF$

Where:

 $\Delta kWh = Electric energy savings, calculated above$

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

¹¹⁹ If unknown, assume a 70 degree temperature rise from Tin per Food Service Technology Center calculator assumptions to account for variations in mixing and water heater efficiencies.
 ¹²⁰ National Weather Service. Average soil temperature at 40" depth during 2015 - 2023 data of six stations in Ameren

Missouri service territory. https://www.weather.gov/ncrfc/LMI_SoilTemperatureDepthMaps._Using 40" deep soil temp as a proxy at Powell Gardens SCAN site. Average by month of available data from 3/28/02 -10/11/14: 12 month average is 57.898. http://www.wec.nrcs.usda.gov/nwcc/site?sitenum=2061.

2025 MEEIA 4 2019-21 Plan

Revision 56.0

Page 60

Formatted: Indent: Left: 0.1"

Formatted: Indent: Left: 0.1", Space After: 0 pt, Line spacing: single

¹¹⁸Average of costs recognized by Ameren Missouri (\$85.8) and KCPL (\$100).

http://www.wce.nrcs.usda.gov/nwce/site?sitenum=2061. ¹²¹ This efficiency value is based on IECC 2012/2015 performance requirement for electric resistant water heaters rounded without the slight adjustment allowing for reduction based on size of storage tank.

Appendix H - TRM – Vol. 2: C&I Measures

Ameren Missouri

 $= 0.0001998949^{122}$

NATURAL GAS ENERGY SAVINGS

	Δ Therms =	$\Delta Gallons \underline{*_{X}} 8.33 \underline{*_{X}} 1 \underline{*_{X}} (T_{out} - T_{in}) \underline{*_{X}} (1/EFF_{Gas}) / 100,000$	Formatted: Fo	ont: Times New Roman, Not Italic
Where	:			
	EFF _{Gas}	 = Efficiency of gas water heater supplying hot water to pre-rinse spray valve = CustomActual, otherwise assume 80%¹²³ 	I	
	Other varia	bles as described above.		

WATER IMPACT CALCULATION

 $\Delta Gallons = (FLO_{base} FLO_{base} - FLO_{eff} FLO_{eff}) *x 60 * x HOURS_{day} HOURS_{day} *x DAYS_{year} DAYS_{year}$ Where:

FLObase

= Base case flow in gallons per minute (gal/min). Use actual when appropriate if available, otherwise use values in table below.¹²⁴w

<u>Product Class</u> (spray force, ozf)	<u>Time of Sale Flow</u> <u>Rate(gpm)</u>	<u>Retrofit, Direct</u> <u>Install, Flow Rate</u>
<u>Class 1, \leq 5.0 ozf</u>	<u>1.00 gpm</u>	<u>1.6 gpm</u>
Class 2, ≥ 5.0 ozf to ≤ 8.0 ozf	<u>1.20 gpm</u>	<u>1.6 gpm</u>
<u>Class 3, >8.0 ozf</u>	<u>1.28 gpm</u>	<u>1.6 gpm</u>

FLO_{eff} = Efficient case flow in gallons per minute (gal/min). Use actual flow rate if known, otherwise use values in table below.

<u>Product Class</u> (spray force, ozf)	<u>Time of</u> <u>SaleMaximum Flow</u> <u>Rate</u>	
<u>Class 1, \leq 5.0 ozf</u>	<u>1.00 gpm</u>	

¹²² Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"2016 Ameren Missouri Coincident Peak Demand Factor for Commercial Electric Cooking. See reference "Ameren Missouri

2016 Appendix E - End Use Shapes and Coincident Factors.pdf."

¹²³ IECC 2012/2015, Table C404.2, Minimum Performance of Water-Heating Equipment.

¹²⁴ EPA, https://www.epa.gov/watersense/pre-rinse-spray-valves

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted: Indent: Left: -0.01", Right: 0", Line

Formatted: Indent: Left: 0", First line: 0"

spacing: single

Formatted Table

Formatted: Font: 9 pt

Formatted: Font: 9 pt

Formatted: Hyperlink

Formatted: Font: 9 pt

Formatted: Indent: Left: 0"

Appendix H - TRM – Vol. 2: C&I Measures

Class 2, >5.0 ozf to ≤ 8.0 ozf	<u>1.20 gpm</u>
<u>Class 3, >8.0 ozf</u>	<u>1.28 gpm</u>

60

= Minutes per hour

HOURS_{day}

= Hours per day that the pre-rinse spray valve is used at the site, custom, otherwise use values in the table below.¹²⁵

<u>Application</u>	HOURS _{day}
Small, quick- service restaurants	<u>1</u>
Medium-sized casual dining restaurants	1.5
Large institutional establishments with cafeteria	<u>3</u>

Parameter	Time of Sale	Retrofit, Direct Install
FLO _{base}	1.6 gal/min ¹²⁶	2.23 gal/min ¹²⁷
FLO eff	1.06 gal/min¹²⁸	1.06 gal/min

Application	HOURS day
Small, quick service restaurants	4
Medium-sized casual dining restaurants	1.5
Large institutional establishments with cafeteria	3

MEASURE CODE:

2025 MEEIA 4 2019-21 Plan

Revision 56.0

Page 62

Formatted Table

Formatted: Footnotes, Line spacing: single

Formatted: Footnotes

¹²⁵ Hours primarily based on PG& E savings estimates, algorithms, sources (2005), Food Service Pre-Rinse Spray Valves.
¹²⁶ The baseline equipment is assumed to be 1.6 gallons per minute. The Energy Policy Act (EPAct) of 2005 sets the maximum flow rate for pre-rinse spray valves at 1.6 gallons per minute at 60 pounds per square inch of water pressure when tested in accordance with ASTM F2224 03. This performance standard went into effect January 1, 2006.

www.Leere.energy.gov/femp/pdfs/spec_prerinsesprayvavles.pdf. ¹²⁷ Verification measurements taken at 195 installations showed average pre-flowrates of 2.23 gallons per minute. IMPACT AND PROCESS EVALUATION FINAL REPORT for CALIFORNIA URBAN WATER CONSERVATION COUNCIL 2004-5 PRERINSE SPRAY VALVE INSTALLATION PROGRAM (PHASE 2) (PG&E Program # 1198-04; SoCalGas Program 1200-04) ("CUWCC Report," Feb 2007).

¹²⁸ 1.6 gallons per minute used to be the high efficiency flow, but more efficient spray valves are available ranging down to 0.64 gallons per minute per Federal Energy Management Program which references the Food Services Technology Center web site with the added note that even more efficient models may be available since publishing the data. The average of the nozzles listed on the FSTC website is 1.06.

Formatted: Footnotes, Space After: 0 pt

Appendix H - TRM - Vol. 2: C&I Measures

2.4 Hot Water

2.4.1 Low Flow Faucet Aerator

DESCRIPTION

This measure relates to the direct installation of a low flow faucet aerator or low flow faucet in a commercial building. Expected applications include small business, office, restaurant, or motel. For multifamily or senior housing, the residential low flow faucet aerator should be used.

This measure was developed to be applicable to the following program type: DI, RF, TOS-

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

Efficient-Low flow faucets or aerators for bathroomssinks meetmeeting the EPA WaterSense flow rate of ≤ 1.5 gpm.¹²⁹nce

Efficient flow faucets Faucets or aerators for kitchen sinks exceeding the DOE Federal Regulations values in the Code of Federal Regulations listed for maximum allowable water flow at of ≤ 2.2 gpm.¹³⁰ the DOE F

Faucets or aerators for public lavatories exceeding the IPC Plumbing Code of <2.20.5 gpm.¹³¹ Efficient water flow bathroom equipmentlavatory faucets labeled with WaterSensemeeting EPA WaterSense requirements are eligible for private use, such as private restrooms in hospit and hotels. Efficient lavatory faucets exceeding the flow requirements of the local plumbing co installed in public areas are eligible.. Lavatory faucets To qualify for this measure the installe equipment must be an energy efficient faucet aerator or faucet, exceeding the DOE Energy Standards for a private lavatory, at 1.5 gpm or less, and a kitchen faucet at 2.2 gpm or less. For public lavatory, exceedingmust exceed the applicable code version of the IPC Internation Plumbing Code (IPC)., of 0.5 gpm. for bathrooms rated at 1.5 gallons per minute (GPM) or least or for kitchens rated at 2.2 GPM or less. Where a local building code is not stated, the 2015 IP maximum flow rate of 0.5 gpm is the baseline. Savings are calculated on an average savings faucet fixture basis.

Water Sense Faucet Requirements (Effective October 2007)¹³²

Product-Class (spray force, ozf)Fixture	<u>Maximum Flow</u> <u>Ratee, gpm</u>
<u>Class 1, ≤ 5.0 ozfLavatory,</u> private Bathroom faucet,	<u>≤</u> 1.5 <1.002.21.5 gpm
private	

¹²⁹ US EPA, "High Efficiency Lavatory Faucet Specification", (October 2007), US EPA|Bathroom faucet|https://www.epa.gov/watersense/bathroom-faucetshttps://www.epa.gov/watersense/bathroom-faucets ³⁰ CFR:: 10 Part 430, Kitchen faucet maximum flow rate, "Energy Conservation Program For Consumer Products", https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-430DOE/Kitchen faucet|https://www.epa.gov/system/files/documents/2023-08/ws-homes-TRM-5-KitchenFaucetsTechSheet_0.pdf ¹³¹ ICC Plumbing Code, Maximum flow rate table, "Chapter 6 – Water Supply and Distribution", 2021 ICC|Plumbing|https://codes.iccsafe.org/content/IPC2021P3/chapter-6-water-supply-anddistributionhttps://codes.iccsafe.org/content/IPC2021P3/chapter-6-water-supply-and-distribution (see table 604.4) ³²-Bathroom Faucets | US EPAUS EPA|Bathroom Faucets | https://www.epa.gov/watersense/bathroom-faucets

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted: Indent: Left: 0", Right: 0", Space After: 0 pt, Line spacing: single

Formatted: Font color: Accent 1 **Field Code Changed** Formatted: Font: 9 pt, Font color: Accent 1 Formatted: Font: 9 pt Formatted: Font: 9 pt, Font color: Accent 1 **Field Code Changed** Formatted: Font: 9 pt

Formatted: Centered, Line spacing: single

Formatted Table Formatted: Font: 11 pt

Appendix H - TRM – Vol. 2: C&I Measures

<u>Class 2, >5.0 ozf to ≤8.0</u>	
ozfLavatory, publicKitchen	<u><1.200.5</u> 2.2 gpm
faucetsink	
<u>Class 3, >8.0</u>	
ozfKitchen, Lavatory faucet,	< <u>1.282.2</u> 0.5 gpmm
public	

DEFINITION OF BASELINE EQUIPMENT

The baseline condition for a private lavatory faucet (non-metering) and kitchen faucet is assumed to be a standard bathroom faucet aeratorflow faucet rated at 2.2 gpm5 GPM, which has been the DOE Energy Standard since 1998¹³³. or more, or a standard kitchen faucet aerator rated at 2.75 GPM or more, flow rate faucet or aerator is the maximum flow requirement by the DOE Federal Regulations¹³⁴inimum

	Maximum-Flow Rate <u>r gpm</u> <u>TOS</u>
Lavatory , faucet or aerator y, private	<u>2.2</u>
Kitchen faucet or aerator	2.2
Lavatory faucet, public	<u><0.5</u>
Kitchen faucet or aerator,	<u><2.2 gpm2.2</u>

Form	atted: Centered, Line spacing: single
Form	atted: Centered, Line spacing: single
Form	atted Table
Form	atted: Centered
Form	atted: Font: 11 pt
Form	atted: Font: 11 pt
Form	atted: Centered
Form	atted: Centered

Product Class (spray force, ozf)	Maximum Flow Rate
<u>Class 1, ≤ 5.0 ozf</u>	<u> </u>
<u>Class 2, >5.0 ozf to ≤8.0 ozf</u>	<u> </u>
<u>Class 3, >8.0 ozf</u>	<u>≺1.28 gpm</u>

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

¹³³-WaterSense at Work Section 3.3: Faucets (epa.gov)
¹³⁴ IBID 130130126DOE/Energy Standard/https://www.ecfr.gov/current/title_10/chapter_II/subchapter_D/part_ 430#430.32

<u>2025</u>MEEIA<u>4</u>2019-21-Plan

Revision <u>56</u>.0

Ameren Missouri	Appendix H - TRM – Vol. 2: C&I Measu	res	
•	is assumed to be 10 years. ¹³⁵ 9 years. ¹³⁶		Formatted: Font: Times New Roman
DEEMED MEASURE COST The incremental cost for the for kitchen swivel low flow	is measure is \$ 8.00 9.40 ¹³⁷ for faucet low flow aerator and \$44.40 ¹³⁸	1	
LOADSHAPE	_or program actual <u>cost</u> .		
Water Heating BUS			
water freating DOS			
	Algorithm	_	
CALCULATION OF SAVINGS			
ELECTRIC ENERGY SAVING	S		
Note these savingsSavings	are <i>per</i> faucet retrofitted. ¹³⁹	1	
$\Delta kWh = \%h$	ElectricDHW - * - x ((GPM _{base} GPMbase – GPM _{low} GPMlow) / GPM _{base} GPMbase) *-x Usage	4	Formatted: CambriaTextFormula, Indent: Left: 0", Right: 0", Space After: 0 pt, Line spacing: single
Where:	*-x EPG _{electric} EPGelectric *-x ISR		
%ElectricDHW = Act	nal		
	the state in the state of the s		Formatted Table
table l	below ¹⁴⁰ proportion of water heating supplied by electric		
resista	ance heating (see values in table below)		
	DHW fuel %Electric_DHW Electric 10037.5%		Formatted Table
	Fossil Fuel 962.0%		
		1	
135 Navigant Consulting, "-ComEd E	ffective Useful Life Research Report", page 20 (May 14, 2018).		Formatted: Footnotes Char
https://www.icc.illinois.gov/docket/l Effective Useful Life Research Repo	P2017-0312/documents/287811/files/501915.pdfAs recommended in Navigant 'ComEd		Formatted: Footnotes Char
¹³⁶ Table C-6, Measure Life Report,	Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, EMV% 20Forum/EMV%20Studies/measure_life_GDS%5B1%5D.pdf."		Formatted: Footnotes Char
137 Direct-install price per faucet ass	sumes cost of aerator and install time. (2011, Market research average of \$3 and assess		Formatted: Footnotes Char
install time of \$5 (20min @ \$15/hr). faucet aerator costs MFLI 2022 to 20	-Ameren MFLI direct install costs, Program years 2022 to 2023. Local file: "2.4.1 Low 023.xlsx"	flow	Field Code Changed
¹³⁸ IBID	pount of energy saved per aerator by determining the fraction of water consumption saving	, •	Formatted: Footnotes
for the upgraded fixture. Due to the	distribution of water consumption by fixture type, as well as the different number of fixtu		
	eren MO C&I program participants (2014 to 2024), self-reported water heating fuel source		Formatted: Footnotes
Local file: "2.4.1. C&I water heat so	purce 2014 to 2024"		Formatted: Font: Not Italic

2025 MEEIA 4 Plan MEEIA 2019-21 Plan-Revision 56.0

Appendix H - TRM – Vol. 2: C&I Measures

Formatted: Centered

0.04"

Formatted: Indent: Left: -0.09", First line: 0.09", Right:

	<u>Unknown-Other</u> <u>430.5%⁺⁴⁺</u>						
GPM _{base}	= Average flow rate, in gallons per minute, of the baseline faucet						
	"as used" Flow rate in gallons per minute, actual, or sourced from						
	baseline equipment table.						
	$= 1.2^{142}$ or custom based on metering studies ¹⁴³						
GPM _{low}	= Average flow rate, in gallons per minute, of the low-flow faucet						
	erator "as-used" Flow rate in gallons per minute, actual or certified						
	<u>quipment rate.</u>						
	$= 0.94^{144}$ or custom based on metering studies ¹⁴⁵						
Usage	= Estimated usage of mixed water (mixture of hot water from water						
	heater line and cold-water line) per faucet (gallons per year)						
	= If data is available to provide a reasonable custom estimate it						
	should be used, if not use the defaults in the table below (or						
	substitute custom information into the calculation):						

2025 MEEIA 4 2019-21 Plan

Revision 56.0

¹⁴¹-Default assumption for unknown fuel is based on EIA Commercial Building Energy Consumption Survey (CBECS) 2012 for Midwest North Central Region (see 'HC8.9 Water Heating in Midwest Region.xls'). If utilities have specific evaluation results providing a more appropriate assumption for buildings in a particular market or geographical area, then they should be used. ¹⁰¹ Representative baseline flow rate for kitchen and bathroom faucet aerators from sources 1, 2, 3, and 4. This accounts for all throttling and differences from rated flow rates. The most comprehensive available studies did not disaggregate kitchen use from bathroom use, but instead looked at total flow and length of use for all faucets. This makes it difficult to reliably separate kitchen water use from bathroom water use.

¹⁴² Representative baseline flow rate for kitchen and bathroom faucet aerators from sources 1, 2, 3, and 4. This accounts for all throttling and differences from rated flow rates. The most comprehensive available studies did not disaggregate kitchen use from bathroom use, but instead looked at total flow and length of use for all faucets. This makes it difficult to reliably separate kitchen water use from bathroom water use.

¹⁴³-Measurement should be based on actual average flow consumed over a period of time rather than a onetime spot measurement for maximum flow. Studies have shown maximum flow rates do not correspond well to average flow rate due to occupant behavior which does not always use maximum flow.

¹⁴⁴ Average retrofit flow rate for kitchen and bahroom faucet aerators from sources 1, 2, 3, and 4. This accounts for all throttling and differences from rated flow rates. Assumes all kitchen aerators at 2.2 gpm or less and all bahroom aerators at 1.5 gpm or less. The most comprehensive available studies did not disaggregate kitchen use from bahroom use, but instead looked at total flow and length of use for all faucets. This makes it difficult to reliably separate kitchen water use from bahroom water use. It is possible that programs installing low-flow aerators lower than the 2.2 gpm for kitchens and 1.5 gpm for bahrooms will see a lower overall average retrofit flow rate.

⁴⁴⁵ Measurement should be based on actual average flow consumed over a period of time rather than a onetime spot measurement for maximum flow. Studies have shown maximum flow rates do not correspond well to average flow rate due to occupant behavior which does not always use maximum flow.

Appendix H - TRM - Vol. 2: C&I Measures

	<u>Gallons HW</u>		Estimated	Maltin			Annual gallons		-{	Formatted: Font: 9 pt
Building	<u>per unit</u>	<u>Unit</u>	<u>% HW</u> <u>from</u>		<u>Unit</u>	Days per	mixed water		Ì	Formatted: Font: 9 pt
<u>Type</u>	<u>per day¹⁴⁶ (A)</u>		Faucets ¹⁴⁷			<u>year (D)</u>	<u>per faucet</u> (<u>A*xB*xC*xD</u>)	 -	-(Formatted: Font: 9 pt
	(23)		<u>(B)</u>		employees			/	$\langle \langle$	Formatted: Font: 9 pt
Small Office	1	person	100%	<u>10</u>	per faucet	250	2,500		Ì	Formatted: Indent: Left: 0"
Large Office	<u>1</u>	person	<u>100%</u>	<u>45</u>	employees per faucet	250	<u>11,250</u>		\backslash	Formatted: Font: 9 pt
Fast Food	0.7	meal/day	50%	<u>75</u>	meals per	365	<u>9,581</u>		\neg	Formatted: Font: 9 pt
Restaurant Sit-Down					faucet meals per					Formatted: Font: 9 pt
Restaurant	<u>2.4</u>	meal/day	50%	<u>36</u>	faucet	<u>365</u>	<u>15,768</u>		-(Formatted: Font: 9 pt
Retail	2	employee	100%	5	employees per faucet	365	<u>3,650</u>	 	-(Formatted: Font: 9 pt
Grocery	2	employee	100%	5	employees per faucet	<u>365</u>	<u>3,650</u>	 	-(Formatted: Font: 9 pt
Warehouse	2	employee	<u>100%</u>	<u>5</u>	employees per faucet	250	<u>2,500</u>		-{	Formatted: Font: 9 pt
Elementary School	<u>0.6</u>	person	<u>50%</u>	<u>50</u>	students per faucet	200	<u>3,000</u>		-(Formatted: Font: 9 pt
Jr-High /High School	<u>1.8</u>	person	<u>50%</u>	<u>50</u>	students per faucet	200	<u>9,000</u>		-(Formatted: Font: 9 pt
Health	<u>90</u>	patient	<u>25%</u>	2	Ppatients per faucet	<u>365</u>	<u>16,425</u>	 	-(Formatted: Font: 9 pt
Matal	20		250/	1	faucet per	365	1,825		-(Formatted: Font: 9 pt
Motel	20	room	25%	<u> </u>	room	303	1,823		-(Formatted: Font: 9 pt
<u>Hotel</u>	<u>14</u>	room	25%	1	faucet per room	<u>365</u>	<u>1,278</u>		-(Formatted: Font: 9 pt
Other	1	employee	100%	20	employees per faucet	250	5,000	 	-{	Formatted: Font: 9 pt
EPG _{electric}	= E	nergy per g	gallon of m	ixed water	used by fa	ucet (elect	ric water		-	Formatted: Font: 10 pt
	hear	,		_ ~				1		
							_{ic} <u>*x</u> 3412)			
8.33			$\underline{*} \underline{\mathbf{x}} (90 - 5)$ ght of wate			= 0.0800	kwh/gal			
		•	0		<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
1.0		•	ty of water							
WaterTem	p = A	ssumed ter	nperature o	of mixed w	ater					

¹⁴⁶ ASHRAE, "Table 2-45 Chapter 49, Chapter 51: Service Water Heating", Table 6: Hot Water Demands and Use for Various Types of Buildings, 20072023 ASHRAE Handbook, HVAC HVAC Applications Handbook (2023).

¹⁴⁷ Pacific Institute, Eestimated based on data provided in <u>Appendix E</u>, "Appendix E: Waste Not, Want Not: The Potential for <u>Urban Water Conservation in California</u>Details of <u>Commercial Water Use</u> and Potential Savings, by Sector," (2003, <u>https://pacinst.org/wp-content/uploads/2013/02/appendix e3.pdf, https://pacinst.org/publication/waste not want not/</u>
 ¹⁴⁸ Based on review of the Illinois plumbing code (Employees and students per faucet). Retail, grocery, warehouse and health are estimates. Meals per faucet estimated as 4 bathroom and 3 kitchen faucets and average meals per day of 250 (based on California study above Waste Not, Want Not: The Potential for Urban Water Conservation in California - Pacific Institute (pacinst.org)) = 250/7 = 36. Fast food assumption estimated.

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Underline

Formatted: Font: 9 pt, Underline, Font color: Text 1

Formatted: Font: 9 pt, Font color: Text 1

Appendix H - TRM - Vol. 2: C&I Measures

	$=\frac{90}{91}F^{149}$
SupplyTemp	= Assumed temperature of water entering building
	= 57.9<u>59.8632</u>59.3<u>58.4</u> F ¹⁵⁰
RE _{electric}	= Recovery efficiency of electric water heater
	=98% ¹⁵¹
3412	= Converts Btu to kWh (Btu/kWh)
ISR	= In service rate of faucet aerators
	= Assumed to be 1.0

<u>Building</u> <u>Type</u>	Gallons HW per unit per day ⁴⁵² (A)	<u>Unit</u>	Estimated % HW from Faucets ¹⁵³ (B)	<u>Multiplier</u> 154 (C)	<u>Unit</u>	Days per year (D)	Annual gallons mixed water per faucet (A*B*C*D)	
Small Office	<u>1</u>	person	<u>100%</u>	<u>+0</u>	employees per faucet	<u>250</u>	<u>2,500</u>	 Formatted: Underline
Large Office	1	person	100%	<u>45</u>	employees per faucet	<u>250</u>	<u>11,250</u>	 Formatted: Underline
Fast Food Restaurant	<u>0.7</u>	<u>meal/day</u>	<u>50%</u>	<u>75</u>	meals per faucet	<u>365</u>	<u>9,581</u>	 Formatted: Underline
<u>Sit-Down</u> Restaurant	<u>2.4</u>	meal/day	<u>50%</u>	<u>36</u>	meals per faucet	<u>365</u>	<u>15,768</u>	 Formatted: Underline
<u>Retail</u>	2	employee	<u>100%</u>	<u>5</u>	employees per faucet	<u>365</u>	<u>3,650</u>	Formatted: Underline

¹⁴⁹ Cadmus and Opinion Dynamics Showerhead and Faucet Aerator Meter Study Memorandum dated June 2013, directed to Michigan Evaluation Working Group. If the aerator location is unknown an average of 91% should be used which is based on the assumption that 70% of household water runs through the kitchen faucet and 30% through the bathroom

150Nat ce|MO soil temp 40"|6 stations|2015 to

http://www.wcc.nrcs.usda.gov/nwcc/site?sitenum=2061USDA NR|Air Water|Missouri|2019-

153 Estimated based on data provided in Appendix E, "Waste Not, Want Not: The Potential for Urban Water Conservation in California," http://www.pacinst.org/reports/urban_usage/appendix_e.pdf.

2025_MEEIA_4_2019-21_Plan

Revision 56.0

Page 68

Field Code Changed

Formatted: Underline

Formatted: Indent: Left: 0.01"

Formatted: Left, Indent: Left: 0.01"

 $[\]underline{(0.7 \pm x93) + (0.3 \pm x86) = 0.91} Temperature cited from SBW Consulting, Evaluation for the Bonneville Power Authority, 1994, 19$ https://www.efis.psc.mo.gov/Document/Display/34102http://www.bpa.gov/energy/n/reports/evaluation/residential/faucet_aerator .cfm. This is a variable that would benefit from further evaluation.

^{2023/}https://www.weather.gov/nerfc/LMI_SoilTemperatureDepthMaps National Weather Service. Average soil temperature at 40" depth during 2015 - 2023 data of six stations in Ameren Missouri service territory.

https://www.weather.gov/ncrfc/LMI_SoilTemperatureDepthMaps National Weather Service|MO soil temp 40"|6 stations|2015 to 2023/https://www.weather.gov/nerfe/LMI_SoilTemperatureDepthMa Using 40" deep soil temp as a proxy at Powell Gardens SCAN site. Average by month of available data from 3/28/02 10/11/14: 12 month average is 57.898.

^{2023.40&}quot;.http://www.wcc.nrcs.usda.gov/nwcc/site?sitenum=2061 ¹⁵¹ Electric water heater have recovery efficiency of 98%, as sourced from available products on the AHRI Certification Directory: https://beta.ahridirectory.org/search/24http://www.ahrinet.org/ARI/util/showdoc.aspx?doc

⁵² Table 2-45 Chapter 49, Service Water Heating, 2007 ASHRAE Handbook, HVAC Applications.

¹⁵⁴Based on review of the Illinois plumbing code (Employees and students per faucet). Retail, grocery, warehouse and health are estimates. Meals per faucet estimated as 4 bathroom and 3 kitchen faucets and average meals per day of 250 (based on California study above) - 250/7 = 36. Fast food assumption estimated.

Appendix H - TRM – Vol. 2: C&I Measures

Grocery	2	<u>employee</u>	<u>-100%</u>	<u>5</u>	employees per faucet	<u>365</u>	<u>3,650</u>	Formatted: Underline
Warehouse	2	employee	<u>100%</u>	<u>5</u>	employees per faucet	<u>250</u>	<u>2,500</u>	Formatted: Underline
Elementary School	<u>0.6</u>	person	50%	<u>50</u>	students per faucet	<u>200</u>	<u>3,000</u>	Formatted: Underline
Jr High/High School	<u>1.8</u>	person	<u>50%</u>	<u>50</u>	<u>students per</u> faucet	<u>200</u>	<u>9,000</u>	Formatted: Underline
Health	<u>90</u>	patient	<u>25%</u>	2	Patients per faucet	<u>365</u>	<u>16,425</u>	Formatted: Underline
Motel	<u>20</u>	room	<u>25%</u>	<u>1</u>	faucet per room	<u>365</u>	<u>1,825</u>	Formatted: Underline
Hotel	<u>14</u>	room	<u>25%</u>	<u>1</u>	faucet per room	<u>365</u>	<u>1,278</u>	Formatted: Underline
Other	<u>1</u>	employee	<u>100%</u>	<u>20</u>	employees per faucet	<u>250</u>	<u>5,000</u>	Formatted: Underline

1

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh \stackrel{*}{\underline{\times}} CF$

Where:

 $\Delta kWh = calculated value above on a per faucet basis$

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor = 0.0001811545^{155}

FOSSIL FUEL IMPACT DESCRIPTIONS AND CALCULATION

 $\Delta \text{Therms} = \% \text{FossilDHW} \underline{*_{\underline{X}}} ((\text{GPM}_{\text{base}} - \text{GPM}_{\text{low}}) / \text{GPM}_{\text{base}}) \underline{*_{\underline{X}}} \text{ Usage } \underline{*_{\underline{X}}} \text{ EPG}_{\text{gas}} \underline{*_{\underline{X}}} \text{ ISR}$ Where:

%FossilDHW	= proportion of water heating supplied by fossil fuel heating (see
	table below)
EPG_gas	= Energy per gallon of mixed water used by faucet (gas water
	heater)
	= (8.33 <u>*x</u> 1.0 <u>*x</u> (WaterTemp - SupplyTemp)) / (RE_gas <u>*x</u>
	100,000) = 0.00772 Therm/gal
RE_gas	= Recovery efficiency of gas water heater
	$=67\%^{115}$
100,000	= Converts Btus to Therms (Btu/Therm)

Other variables as defined above.

	DHW fuel Electric	%Fossil_DHW 0%		4	Formatted Table
¹⁵⁵ Ameren Missouri TRM Volume and Coincident Peak Factors"	1 - Appendix G: "Table 2 – Con	nmercial and Industrial End	Use Category Monthly Shapes		Formatted: Left, Indent: Left: 0", Don't keep lines together
2025 MEEIA 4 Plan ME	EIA 2019-21 Plan Rev	ision <mark>5<u>6</u>.0</mark>	Page 6)	

Appendix H - TRM – Vol. 2: C&I Measures

Fossil Fuel	100%
Unknown	57% ¹⁵⁶

WATER IMPACT DESCRIPTIONS AND CALCULATION

 Δ gallons = ((GPM_{base} - GPM_{low}) / GPM_{base}) *<u>x</u> Usage *<u>x</u> ISR

Variables as defined above

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

SOURCES USED FOR GPM ASSUMPTIONS

Reference
2000, Mayer, Peter, William DeOreo, and David Lewis. Seattle Home Water Conservation
Study. December 2000.
2003, Mayer, Peter, William DeOreo. Residential Indoor Water Conservation Study.
Aquacraft, Inc. Water Engineering and Management. Prepared for East Bay Municipal Utility
District and the US EPA. July 2003.
2011, DeOreo, William. Analysis of Water Use in New Single Family Homes. By Aquacraft.
For Salt Lake City Corporation and US EPA. July 20, 2011.
2008, Schultdt, Mare, and Debra Tachibana. Energy related Water Fixture Measurements:
Securing the Baseline for Northwest Single Family Homes. 2008 ACEEE Summer Study on
Energy Efficiency in Buildings.

MEASURE CODE:

2025 MEEIA 4 2019-21 Plan

Revision <u>56</u>.0

¹⁵⁶ Default assumption for unknown fuel is based on EIA Commercial Building Energy Consumption Survey (CBECS) 2012 for Midwest North Central Region (see 'HC8.9 Water Heating in Midwest Region.xls'). If utilities have specific evaluation results providing a more appropriate assumption for buildings in a particular market or geographical area, then they should be used. ¹¹⁵ Review of AHRI Directory suggests range of recovery efficiency ratings for new Gas DHW units of 70-87%. Average of existing units is estimated at 75%. Commercial properties are more similar to MF homes than SF homes. MF hot water is often provided by a larger commercial boiler. This suggests that the average recovery efficiency is somewhere between a typical central boiler efficiency of .59 and the .75 for single family home. An average is used for this analysis by default.

Appendix H - TRM - Vol. 2: C&I Measures

2.4.2 Circulator Pump

DESCRIPTION

Demand control recirculation pumps seek to reduce inefficiency by combining control via temperature and demand inputs, whereby the controller will not activate the recirculation pump unless both (a) the recirculation loop return water has dropped below a prescribed temperature (e.g. 100°F) and (b) a CDHW demand is sensed as water flow through the CDHW system.

This measure was developed to be applicable to the following program types: TOS, RF, and NC.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

Re-circulating pump shall cycle on based on (a) the recirculation loop return water dropping below a prescribed temperature (e.g. 100°F) and (b) a CDHW demand is sensed as water flow through the CDHW system.

DEFINITION OF BASELINE EQUIPMENT

The base case for this measure category is an existing, un-controlled recirculation pump on a gasfired Central Domestic Hot Water System.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The effective useful life is 15 years.¹⁵⁷

DEEMED MEASURE COST

The assumed measure cost is \$1,200 per pump.¹⁵⁸

LOADSHAPE

Miscellaneous BUS

Algorithm

157 Benningfield Group. (2009). PY 2009 Monitoring Report: Demand Control for Multifamily Central Domestic Hot Water.

www.ilsag.info/w

158 Gas Technology Institute. (2014). 1003: Demand-based domestic hot water recirculation Public project report. Des

CALCULATION OF ENERGY SAVINGS

Savings shown are per pump.

ELECTRIC ENERGY SAVINGS

_/	Formatted: Font: Not Italic					
//	Formatted: Font: Not Italic					
	Formatted: Footnotes, Left, Line spacing: single					
//	Formatted: Font color: Blue					
Δ	Formatted: Underline, Font color: Blue					
-	Field Code Changed					
-	Formatted: Font color: Blue					

2025 MEEIA 4 Plan MEEIA 2019-21 Plan-Revision 56.0

Plaines, IL: Prepared for Nicor Gas, January 7, 2014 (see page 5https://

content/uploads/SAG files/Portfolio Planning Process/Small Group Follow

Folsom, CA: Prepared for Southern California Gas Company, October 30, 2009 (see page 11).

up_Calls/Grundfos/1003_Demand_CDHW_Public_Project_Report_REVISED_FINAL_08-06-2014.pdf

I

Appendix H - TRM - Vol. 2: C&I Measures

Deemed at 651 kWh <u>per pump</u> . ¹⁵⁹	
SUMMER COINCIDENT PEAK DEMAND SAVINGS	
$\Delta kW = \Delta kWh + x CF$	Formatted: Font: Cambria
Where:	Formatted: Cambria12
ΔkWh = calculated value above on a per faucet basis CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor =0.0001379439 ¹⁶⁰	
NATURAL GAS SAVINGS	
Δ Therms = 55.9 * x number of dwelling units ¹⁶¹	
WATER IMPACT DESCRIPTIONS AND CALCULATION N/A	
DEEMED O&M COST ADJUSTMENT CALCULATION N/A	
Measure Code:	
 ¹⁵⁹ Gas Technology Institute. (2014). 1003: Demand-based domestic hot water recirculation public project report. Des Plaines. IL: Prepared for Nicor Gas, January 7, 2014. Average of 725 kWh and 578 kWh reported savings per pump, page 9. Value is pump only savings and not water heater savings. (https://www.ilsag.info/wp- 	Formatted: Footnotes, Left, Line spacing: single, No widow/orphan control
<u>content/uploads/SAG_files/Portfolio_Planning_Process/Small_Group_Follow-up_Calls/Grundfos/1003_Demand_CDHW_Public_Project_Report_REVISED_FINAL_08-06-2014.pdf)Based on results from the Nicor Gas Emerging Technology Program study_1003: Demand-based domestic hot water recirculation Public project report. Des Plaines, IL: Prepared for Nicor Gas, January 7, 2014, this value is the average (725 & 578) kWh saved per pump. Note this</u>	
value does not reflect savings from electric units but electrical savings from gas-fired units (see page 9). ¹⁶⁰ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes	Formatted: Footnotes
and Coincident Peak Factors". ¹⁶¹ IBID 159159155, AverageBased on results from the Nicor Gas Emerging Technology Program study, this value is the average	Formatted: Font color: Accent 1
therms saved per dwelling unit for water heating.	

2025 MEEIA <u>4</u> 2019-21 Plan

Revision 56.0

2.4.3 Heat Pump Water Heater

DESCRIPTION

This measure applies to the installation of a heat pump water heater (HPWH) in place of a standard electric <u>storage</u> water heater in a commercial building. Savings are presented dependent on the heating system installed in the building due to the impact of the heat pump water heater on the heating and cooling loads.

This measure was developed to be applicable to the following program types: TOS, NC.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be a heat pump water heater meeting program efficiency requirements.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is assumed to be a new, electric storage water heater meeting federal minimum efficiency standards.¹⁶² <u>Residential storage water heaters greater than 55 gallons may</u> not be eligible as the baseline is near that of a heat pump water heater.

Equipment	Size	Draw	Efficiency, UEF	-
Residential duty commercial		All	0.80 UEF	•
$>12kW and \leq 58.6 kW$		7111	0.80 CEF	•
Residential storage, ≤75				4
kBTUhResidential storage	≤55 gal	Very small	.8808(0.0008 x V _{rated})	
<u>≤75 kBTUh</u>				
<u>Residential storage, ≤75</u>				4
kBTUhResidential storage	≤55 gal	Low	.9254(0.0003 x V_rated))
<u>≤75 kBTUh</u>				4
<u>Residential storage, ≤75</u>				•
kBTUhResidential storage	≤55 gal	Medium	.9307 _ (0.0002 x V _{rated})	4
<u>≤75 kBTUh</u>				4
<u>Residential storage, ≤75</u>	≤55 gal	High	.9349 <u>- (0.0011-0001</u> x	4
kBTUhResidential storage	_55 gai	Ingii	V _{rated})	
Residential storage, ≤75 kBTUh	>55 gal and	Very small	1.9236 - (0.0011 x V _{rated})	*
Residential storage, 275 KDTOI	≤120 gal gal	very sman	1.7250 0.0011 X V rated)	-
Residential storage, ≤75 kBTUh	>55 gal and	Low	2.0440 - (0.0011 x V _{rated})	•
Residential storage, 575 KB10h	≤120 gal gal	LOW	2.0440 - 10.0011 X V rated)	

¹⁶² CFR:: 10 Part 430, Electric storage water heater efficiency, "Energy Conservation Program For Consumer Products", <u>https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-430/subpart-C#p-430.32(d)(1) for residential water heaters</u> and CFR:: 10 Part 430, Electric storage water heater efficiency, "Energy Conservation Program For Industrial Products", for <u>commercial water heaters</u>.

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

	Formatted: Font: 11 pt, Bold, Font color: Background 1
	Formatted: Font: 11 pt, Bold, Font color: Background 1
	Formatted: Font: 11 pt, Bold, Font color: Background 1
	Formatted: Centered, Space After: 0 pt
	Formatted Table
	Formatted: Font: 11 pt
///	Formatted: Space After: 0 pt
$\ $	Formatted: Left, Space After: 0 pt
///	Formatted: Space After: 0 pt
//	Formatted: Font: 11 pt, Subscript
//	Formatted: Space After: 0 pt
//	Formatted: Font: 11 pt, Subscript
///	Formatted: Left, Space After: 0 pt
//	Formatted: Space After: 0 pt
//	Formatted
	Formatted: Centered, Space After: 0 pt
Ŋ	Formatted: Left, Space After: 0 pt
1	Formatted
Ιλ	Formatted: Left, Space After: 0 pt
Λ	Formatted: Centered, Space After: 0 pt
Λ	Formatted: Centered, Space After: 0 pt
	Formatted: Font: 11 pt
-	Formatted: Font: 11 pt
	Formatted
	Formatted: Left, Space After: 0 pt
	Formatted: Font: 11 pt
	Formatted
	Formatted: Centered, Space After: 0 pt
	Formatted
	Formatted: Footnotes, Left, Right: 0", Space After: 0 pt, Line spacing: single
1	Formatted

Federal standards for ≤55 gallon and ≤12 kW storage water heaters are from <u>10 CFR §430.32(d)</u>. Federal standards for >120 gallo and>12 kW storage water heaters are from 10 CFR §431.110. Since the federal standard effectively requires a heat pump wate heater for residential electric storage water heaters >55 gallons and ≤120 gallons, this measure excludes those units.

Appendix H - TRM – Vol. 2: C&I Measures

Residential storage, ≤75 kBTUh	>55 gal and	Medium	2.1171 - (0.0011 x V _{rated})	1
	≤120 gal gal	Medium		
Residential storage, ≤75 kBTUh	>55 gal and	High	2.2418 - (0.0001x V _{rated})	
	≤120 gal gal	High		1
Commercial storage, all	All	Medium	<u>0.98</u>	
				•

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 13-15 years.¹⁶³

DEEMED MEASURE COST

Actual costs should be used where available. Incremental capital costs are presented in the table below for heat pump water heaters with energy factors (EF) of 2.0 and 2.4 and rated<u>from 40</u> gallons to 80 gallons of storage volume.¹⁶⁴s of 40 gallons and 50 gallons, respectively.¹⁶⁵

EF Type	Rated Volume (gal)	Incremental Cost
2.0Heat Pump	40-40 to 50	\$1, 340.30<u>154</u>
2.4Heat Pump	50- 55 to 65	\$1, 187.58 269
Heat Pump	<u>66 to 80</u>	<u>\$1,646</u>

For larger HPWHs, incremental capital costs are presented below based on heating capacity.¹⁶⁶

Heating Capacity (MBtu/hr)	Incremental Cost
10-50	\$4,000 .00
>50-100	\$7,000 .00
>100-300	\$10,000 .00
>300-500	\$14,000 .00
>500	\$18,000 .00

LOADSHAPE

Water Heating BUS

¹⁶³DOE, Table I.2, lifetime of storage water heaters, "Energy Conservation Program: Energy Conservation Standards for Consumer Water Heaters", <u>https://www.federalregister.gov/documents/2024/05/06/2024-09209/energy-conservation-programenergy-conservation-standards-for-consumer-water-heaters 2010 Residential Heating Products Final Rule Technical Support Document, U.S. DOE, Table 8.7.2.</u>

¹⁶⁴ Big box retail online pricing (August 2024), Comparison of electric resistance to heat pump water heater for three manufacturer's with the same model series, Local file: "2.4.3 Electric water heater retail cost August 2024 data.tlsx".
¹⁶⁵ Cost information is based upon data from "2010-2012 WA017 Ex Ante Measure Cost Study Draft Report," Itron, February ²⁶³ 2020 (2017), 202

28, 2014. See "NR HW Heater_WA017_MCS Results Matrix - Volume I_August2016.xls" for more information <u>(See Equipment Results Matrix tab cells Z862:Z863)</u>.

166 <u>MEMD</u>, Commercial heat pump water heater incremental costs, "Commercial" worksheet, Cell range <u>0332</u>;0336, 2024 <u>MEMD Master Database</u>, <u>https://www.michigan.gov/mpsc/regulatory/ewr/michigan-energy-measures-database</u> <u>Costs for larger</u> heat pump water heaters are from 2017 Michigan Energy <u>Measures Database.xlsx</u> and are based on heat pump water heaters with a COP ≥3.0 (See Commercial tab cells <u>0239</u>;0243).

2025 MEEIA 4 2019-21 Plan

Revision 56.0

Format	ted: Font: 11 pt
Format	ted: Font: 11 pt
Format	ted: Font: 11 pt
Format	ted: Font: 11 pt, Subscript
Format	ted: Font: 11 pt
Format	ted: Space After: 0 pt
Format	ted: Space After: 0 pt
Format	ted: Centered, Space After: 0 pt
Format	ted: Font: 11 pt
Format	ted: Font: 11 pt
Format	ted: Font: 11 pt
Format	ted: Font: 11 pt, Subscript
Format	ted: Font: 11 pt
Format	ted: Space After: 0 pt
Format	ted: Space After: 0 pt
Format	ted: Centered, Space After: 0 pt
Format	ted Table
Format	ted Table

Formatted Table

	Formatted: Left, No widow/orphan control, Don't keep lines together
\neg	Formatted: No underline
	Field Code Changed
Π	Formatted: Footnotes
Χ	Formatted: Font: Italic
-1	Formatted: Footnotes, Line spacing: single
-1	Formatted: Font: 9 pt, Font color: Accent 1
	Formatted: Font color: Accent 1

Appendix H - TRM – Vol. 2: C&I Measures

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = ((1/\underline{U}EF_{BASE} - 1/\underline{U}EF_{EE}) \underline{*_{X}}HWU_{GAL} \underline{*_{X}}\gamma Water \underline{*_{X}}(T_{out} - T_{in}) \underline{*_{X}}1.0 \underline{*_{X}}3,412) + kWh_{COO}$ $- kWh_{HEAT}$

$kWh_{COOL} = ((1-1/\underline{U}EF_{EE}) \stackrel{*}{} HWU_{GAL} \stackrel{*}{} \gamma Water \stackrel{*}{} (T_{out} - T_{in}) \stackrel{*}{} 1.0 \stackrel{*}{} LF \stackrel{*}{} 53\% \stackrel{*}{}$	LM) /
(COPcool * 3,412) * % Cool	

kWh_{HEAT} = ((1-1/<u>U</u>EF_{EE}) *<u>x</u> HWU_{GAL} *<u>x</u> γWater *<u>x</u> (T_{out} – T_{in}) *<u>x</u> 1.0) *<u>x</u> LF *<u>x</u> 43%) / (СОР_{НЕАТ} *<u>x</u> 3,412) *<u>x</u> %ElectricHeat

Where:

kWh_cool	= Cooling savings from conversion of heat in building to water heat ¹⁶⁷
kWh_heat	= Heating cost from conversion of heat in building to water heat
	(dependent on heating fuel)
<u>U</u> EF _{BASE}	= Efficiency of baseline water heater according to federal standards,
	expressed as Uniform Energy Factor (EF) or Thermal Efficiency (Et)
	= See table below
<u>U</u> EFee	= <u>U</u> EF of heat pump water heater
	= Actual
HWUGAL	= Estimated annual hot water consumption (gallons)
	= Actual if possible to provide reasonable custom estimate. If not, two
	methodologies are provided below to develop an estimate.
γWater	= Specific weight of water
	= 8.33 pounds per gallon
Tout	= Tank temperature
	= Actual, if unknown assume 125 °F ¹⁶⁸
T _{IN}	= Incoming water temperature from well or municipal system
	= 57.898 59.38.4 °F ¹⁶⁹
1.0	= Heat capacity of water (1 Btu/lb $\underline{*x}^{\circ}F$)

¹⁶⁷ This algorithm calculates the heat removed from the air by subtracting the heat pump water heater electric consumption from the total water heating energy delivered. This is then adjusted to account for location of the heat pump unit and the coincidence of the waste heat with cooling requirements, the efficiency of the central cooling, and latent cooling demands. ¹⁶⁸ Ideally, the actual set point of the water heater should be used. If not available, 125 degrees is provided as an estimate of

¹⁶⁸ Ideally, the actual set point of the water heater should be used. If not available, 125 degrees is provided as an estimate of unmixed output temperature. While plumbing code generally limits temperatures at the end use, it typically does not limit the water heater system, which can be anywhere in the range 120 -201 degrees. For applications such as laundry and dishwashing, health and safety regulations may require water to be initially heated to higher temperatures. Since temperature set points can vary widely, market, program, or site-specific data should be used whenever possible.

¹⁶⁹ National Weather Service. Average soil temperature at 40" depth during 2015 - 2023 data of six stations in Ameren Missouri service territory. https://www.weather.gov/ncrfc/LMI_SoilTemperatureDepthMaps_National Weather Service|MO soil temp 40"|6 stations|2015 to 2023|https://www.weather.gov/ncrfc/LMI_SoilTemperatureDepthMaps_Using 40" deep soil temp as a proxy at Powell Gardens SCAN site. Average by month of available data from 3/28/02_10/11/14: 12 month average is 57.898. http://www.wec.nrcs.usda.gov/nwcc/site?sitenum=2061.

Formatted:	Font: Cambria, Italic
Formatted:	Font: Cambria, Italic

Formatted: Font: 9 pt

Formatted: Left

Appendix H - TRM - Vol. 2: C&I Measures

3,412	= Conversion factor from Btu to kWh
LF	= Location Factor
	= 1.0 for HPWH installation in a conditioned space
	= 0.5 for HPWH installation in an unknown location ¹⁷⁰
	= 0.0 for installation in an unconditioned space
53%	= Portion of reduced waste heat that results in cooling savings ¹⁷¹
43%	= Portion of reduced waste heat that results in increased heating load ¹⁷²
LM	= Latent multiplier to account for latent cooling demand ¹⁷³
	= 3.0 for St. Louis, MO
COPCOOL	= COP of central air conditioner
	= Actual
COPHEAT	= Actual. Note: electric resistance heating and heat pumps will have an
	efficiency greater than or equal to 100%
%Cool	= Percentage of buildings with central cooling
	= 100% for cooling in the home and 0% for no cooling in the home
%ElectricHeat	= Percentage of buildings with electric heat
	= 100% for electric heating fuel and 0% for gas heating fuel

Equipment Type	Size Category	Federal Standard Minimum Efficiency
HPWH ≤12 kW	≤55 gallon	EF: $0.96 - (0.0003 \times x rated volume in gallons)$
HPWH >12 kW	>120 gallon	Et: 98% ¹⁷⁴

Method 1 to estimate HWU_{GAL} - Consumption per water heater capacity

HWUHWUGAL = Consumption/cap - x Capacity

Formatted: Font: Not Italic

Revision 56.0

¹⁷⁰ Professional judgment.

¹⁷¹ Based on 193 days where CDD 65>0, divided by 365.25. CDD days determined from TMY data with a base temp of 65°F.

¹⁷² Based on 157 days where HDD 60>0, divided by 365.25. HDD days determined from TMY data with a base temp of 60°F. ¹⁷³ The Latent Multiplier is used to convert the sensible cooling savings calculated to a value representing sensible and latent cooling loads. The values are derived from the methodology outlined in Infiltration Factor Calculation Methodology by Bruce Harley, Senior Manager, Applied Building Science, CLEAResult 11/18/2015 and is based upon an 8760 analysis of sensible and total heat loads using hourly climate data.

AHRI directory.

Appendix H - TRM – Vol. 2: C&I Measures

Where:

Consumption/cap

ion/cap = Estimate of consumption per gallon of tank capacity, dependent on Building Type (see table below)¹⁷⁵

Capacity

= Capacity of hot water heater in gallons = Actual

Building Type	Consumption/cap
Grocery, Convenience Store, and Restaurant	803
Lodging, Hospital, and Multifamily	630
Health Clinic, Church, Warehouse	433
Education, Office, and Retail	594
Industrial	558
Agriculture	558
Average Non Residential	558

Method 2 to estimate HWUGAL - Consumption by facility size176

Building Type	Gallons HW per unit per day	Unit	Units/1000 ft ²	Days per year	Gallons / 1000 ft² floor area
Small Office	1	person	2.3	250	575
Large Office	1	person	2.3	250	575
Fast Food Restaurant	0.7	meal/day	784.6	365	200, <mark>458<u>465</u></mark>
Sit-Down Restaurant	2.4	meal/day	340	365	297,840
Retail	2	employee	1	365	730
Grocery	2	employee	1.1	365	803
Warehouse	2	employee	0.5	250	250
Elementary School	0.6	person	9.5	200	1,140
Jr High/High School	1.8	person	9.5	200	3,420
Health	90	patient	3.8	365	124,830
Motel	20	room	5	365	36,500
Hotel	14	room	2.2	365	11,242
Other	1	employee	0.7	250	175

SUMMER COINCIDENT PEAK DEMAND SAVINGS

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted: Font: Not Italic

Multiple 1.08 li

Formatted: Keep with next, Keep lines together
Formatted: Keep with next, Keep lines together
Formatted: Keep with next, Keep lines together
Formatted: Keep with next, Keep lines together
Formatted: Keep with next, Keep lines together
Formatted: Keep with next, Keep lines together
Formatted: Keep with next, Keep lines together
Formatted: Keep with next, Keep lines together
Formatted: Keep with next, Keep lines together
Formatted: Keep with next, Keep lines together
Formatted: Keep with next, Keep lines together
Formatted: Keep with next, Keep lines together

Formatted: Normal, Space After: 8 pt, Line spacing:

Formatted: Font color: Auto

¹⁷⁵ Based on Cadmus analysis. Annual hot water usage in gallons based on CBECS (2003) consumption data for West North Central (removed outliers of 1,000 kBtu/hr or less) to calculate hot water usage. Annual hot water gallons per tank size gallons based on the tank sizing methodology found in ASHRAE 2011 HVAC Applications. Chapter 50 Service Water Heating. Demand assumptions (gallons per day) for each Building Type based on ASHRAE Chapter 50 and "Technology Data Characterizing Water Heating in Commercial Buildings: Application to End Use Forecasting," Lawrence Berkeley National Library, December 1995. VEIC considers these values to be relatively conservative estimates that may benefit from future evaluation.

The Technology Data Characterizing Water Heating in Commercial Buildings: Application to End Use Forecasting," Lawrence Berkeley National Library, December 1995 (See Table 2, page 6).

Appendix H - TRM - Vol. 2: C&I Measures

 $\Delta kW = \Delta kWh x h + CF$

Formatted: Font: Cambria Math, Italic

Where:

 $\Delta kWh = Electric energy savings, as calculated above$

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor $= 0.0001811545^{177}$

NATURAL GAS SAVINGS

 $\frac{\text{Atherms} = \left[((1-1/\text{EF}_{\text{EE}}) * \text{HWU}_{\text{GAL}} * \gamma \text{Water} * T_{\text{out}} - T_{\text{in}}) * 1.0 \right] * \text{LF} * 53\% \right] / (\eta \text{Heat} * 100,000) * \% \text{GasHeat}$

Where:

ATherms	= Heating cost from conversion of heat in building to water heat
	for buildings with natural gas heat ¹⁷⁸
100,000	= Conversion factor from Btu to therms
ηHeat	= Efficiency of heating system
	= Actual
%GasHeat	= Percentage of buildings with gas heat
	= 0% for Electric Heating Fuel
	=100% for Gas Heating Fuel

Other variables as defined above.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED~O&M~COST~ADJUSTMEN~CALCULATION

N/A

MEASURE CODE:

Formatted: Font color: Text 1

2025_MEEIA_4_2019-21_Plan

Revision 56.0

¹⁷⁷ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"2016 Ameren Missouri Coincident Peak Demand Factor for Commercial Water Heating. See reference "Ameren Missouri 2016 Appendix E - End Use Shapes and Coincident Factors.pdf." ¹⁷⁸ This is the additional energy consumption required to replace the heat removed from the building during the heating season by

¹⁷⁸ This is the additional energy consumption required to replace the heat removed from the building during the heating season by the heat pump water heater. The variable kWh_heating (electric resistance) is that additional heating energy for a building with electric resistance heat (COP 1.0). This formula converts the additional heating kWh for an electric resistance building to the MMBtu required in a natural gas heated building, applying the relative efficiencies.

Appendix H - TRM - Vol. 2: C&I Measures

2.4.14 Low Flow Showerheads				Formatted: Font color: Text 1	
DESCRIPTION	DESCRIPTION				
This measure relates to the direct installation of	a low flow faucet aerator or low	flowshowerhead	1		
faucet in a commercial building or common are	as in other building types. Expe	cted applications		Formatted: Font color: Text 1	
include small business, office, restaurant, or			£		
housingliving units, the residential low flow fau					
This measure was developed to be applicable to	the following program type: DI,	<u>RF,TOS</u>			
If applied to other program types, the measure s	avings should be verified.				
DEFINITION OF EFFICIENT EQUIPMENT					
Low flow faucets or aerators for bathrooms show	verheads meeting the EPA Water	Sense flow rate			
of ≤ 1.5 2.0 gpm. ¹⁷⁹⁴⁸⁰	-			Formatted: Font color: Text 1	
Faucets or aerators for kitchen sinks exceeding t				Formatted: Font color: Text 1	
Faucets or aerators for public lavatories exceedi	ng the IPC Plumbing Code of <u>≤</u> ().5 gpm. ¹⁰²			
<u>Fixture</u> Bathroom faucet,	Maximum Flow Rate, gpm		\checkmark	Formatted: Font color: Background 1	
private Showerhead	<u>≤1.52.0</u>		_/ /	Formatted: Centered	
Kitchen faucet	<2.2			Formatted Table	
				Formatted: Font color: Text 1	
Lavatory faucet, public	<u><0.5</u>			Formatted: Font color: Text 1	
<u>ــــــــــــــــــــــــــــــــــــ</u>				Formatted: Font color: Text 1	
DEFINITION OF BASELINE EQUIPMENT				Formatted: Font color: Red	
The baseline condition flow rate faucet or aerate	r showerhead is the maximum fl	ow requirement		Formatted: Font color: Text 1	
by the DOE Federal Regulations ¹⁸³ 2.5 gpm.				Formatted: Font color: Text 1	
<u>,Fixture</u>	Flow Rate, gpm		•	Formatted: Font color: Background 1	
Lavatory faucet or	2.52			Formatted Table	
aeratorShowerhead				Formatted: Font color: Text 1	
_				Formatted: Font color: Text 1	
¹⁷⁹ DOE, Showerhead regulations,		20-11101/20	-	Formatted: Font: 9 pt	
DOE Showerheads https://www.epa.gov/watersense/showerheads#:~:text=Did%20you%20that%20standard,no%20me re%20than%202.0%20gpm.https://www.epa.gov/watersense/showerheads#:~:text=Did%20you%20know%20that%20standard,no%				Formatted: Font: 9 pt	
0%20more%20than%202.0%20gpm. ¹⁸⁹ US EPA Bathroom faucet https://www.epa.gov/watersense/bathroom-faucets				Formatted: Left, Indent: Left: 0", First line: 0"	
 ¹⁸¹ DOE/Kitchen faucet/https://www.epa.gov/system/files/documents/2023-08/ws-homes-TRM-5- 				Field Code Changed	

KitchenFaucetsTechSheet_0.pdf 182-2021-ICC|Plumbing|https://cod fe.org/content/IPC2021P3/chapter 6 water supply and distribution ¹⁸³ DOE/Energy Standard/https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-430#430.32

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Field Code Changed

Formatted: Footnote

Appendix H - TRM – Vol. 2: C&I Measures

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 9 years.¹⁸⁴10 years. ¹⁸⁵

DEEMED MEASURE COST

The incremental cost for this measure is \$12.008.00186 or program actual.-.187

LOADSHAPE

Water Heating BUS, or Water Heating RES if installed in the common area of multi-family housing.

<u>Algorithm</u>

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Note these savings are per faucetshowerhead retrofitted.188

<u> AkWh = %ElectricDHW *x { (GPMbase*x Lbase - GPMlow*xLlow) / GPMbase) *x Usage-NSPD*x 365.25*x EPGelectric *x ISR</u>

Where:

<u>%ElectricDHW</u> = proportion of water heating supplied by electric resistance heating (see values in table below)

DHW fuel	%Electric_DHW
Electric	<u>100%</u>
Fossil Fuel	<u>0%</u>
Unknown	43% ¹⁸⁹

 ¹⁴⁴-Table C-6, Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007. "http://neep.org/uploads/EMV%20Forum/EMV%20Studies/measure_life_GDS%5B1%5D.pdf."
 ¹⁸⁵ GDS Associates, Page C-14, Table C-6, "Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures", (GDS Associates, June 2007). (page C-14). Evaluations indicate that consumer dissatisfaction may lead to reductions in persistence, particularly in Multi-Family.

¹⁸⁶ Direct install price per faucet assumes cost of aerator and install time. (2011, Market research average of \$3 and assess and install time of \$5 (20min @ \$15/hr).

¹⁸⁷ Direct-install price per showerhead assumes cost of showerhead (Market research average of \$7 and assess and install time of \$5 (20min @ \$15/hr).

¹⁴⁸ This algorithm calculates the amount of energy saved per aerator by determining the fraction of water consumption savings for the upgraded fixture. Due to the distribution of water consumption by fixture type, as well as the different number of fixtures in a building, several variables must be incorporated.

¹³⁹ Default assumption for unknown fuel is based on EIA Commercial Building Energy Consumption Survey (CBECS) 2012 for Midwest North Central Region (see 'HC8.9 Water Heating in Midwest Region.xls'). If utilities have specific evaluation results

2025 MEEIA 4 2019-21 Plan

Revision 56.0

Page 80

Formatted: Font color: Text 1 Formatted: Font: Cambria, Italic, Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font c		
Formatted: Font color: Text 1 Formatted: Font: Cambria, Italic, Font color: Text 1 Formatted: Font: Color: Text 1 Formatted: Font color: Auto Formatted: Font: (Default) Times New Roman Formatted: Font: (Default) Times New Roman	/	Formatted: Font color: Text 1
Formatted: Font color: Text 1 Formatted: Font: Cambria, Italic, Font color: Text 1 Formatted: Font: Color: Text 1 Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Text 1	/	Formatted: Font color: Text 1
Formatted: Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font: Cambria, Italic, Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Fo	/	Formatted: Font color: Text 1
Formatted: Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font: Cambria, Italic, Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Text 1	/	Formatted: Font color: Text 1
Formatted: Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font: Cambria, Italic, Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font: (Default) Times New Roman Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Auto	/	Formatted: Font color: Text 1
Formatted: Font color: Text 1 Formatted: Font: Cambria, Italic, Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font		Formatted: Font color: Text 1
Formatted: Font: Cambria, Italic, Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font color: Auto	/	Formatted: Font color: Text 1
Formatted: Font: Cambria, Italic, Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font: (Default) Times New Roman Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Auto		Formatted: Font color: Text 1
Formatted: Font: Cambria, Italic, Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font: (Default) Times New Roman Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Text 1	, 	Formatted: Font: Cambria, Italic, Font color: Text 1
Formatted: Font: Cambria, Italic, Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font color: Background 1 Formatted: Centered Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Text 1	$\ $	Formatted: Font: Cambria, Italic, Font color: Text 1
Formatted: Font: Cambria, Italic, Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font color: Background 1 Formatted: Centered Formatted: Centered Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Text 1	\parallel	Formatted: Font: Cambria, Italic, Font color: Text 1
Formatted: Font: Cambria, Italic, Font color: Text 1 Formatted: Font: Cambria, Italic, Font color: Text 1 Formatted: Font: Cambria, Italic, Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font color: Text 1 Formatted: Centered Formatted Table Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Text 1	1	Formatted: Font: Cambria, Italic, Font color: Text 1
Formatted: Font: Cambria, Italic, Font color: Text 1 Formatted: Font: Cambria, Italic, Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font color: Text 1 Formatted: Centered Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font: (Default) Times New Roman Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Text 1		Formatted: Font: Cambria, Italic, Font color: Text 1
Formatted: Font: Cambria, Italic, Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font color: Background 1 Formatted: Centered Formatted Table Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Font: (Default) Times New Roman Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font color: Text 1	/	Formatted: Font: Cambria, Italic, Font color: Text 1
Formatted: Font color: Text 1 Formatted: Font color: Background 1 Formatted: Centered Formatted Table Formatted Table Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font color: Text 1	/	Formatted: Font: Cambria, Italic, Font color: Text 1
Formatted: Font color: Background 1 Formatted: Centered Formatted Table Formatted Table Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font color: Text 1	/	Formatted: Font: Cambria, Italic, Font color: Text 1
Formatted: Centered Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Font: (Default) Times New Roman Formatted: Font color: Auto Formatted: Font color: Text 1	/	Formatted: Font color: Text 1
Formatted Table Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Formatted: Font color: Text 1 Formatted: Formatted: Formatted: Formatted: Formatted: Formatted: Formatted: Formatted: Formatt	/	Formatted: Font color: Background 1
Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Text 1	/	Formatted: Centered
Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font: (Default) Times New Roman Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Text 1		Formatted Table
Formatted: Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font: (Default) Times New Roman Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Text 1 Formatted: Font color: Text 1		Formatted: Font color: Text 1
Formatted: Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font: (Default) Times New Roman Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font: (Default) Times New Roman Formatted: Font color: Text 1 Formatted: Font color: Text 1		Formatted: Font color: Text 1
Formatted: Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font: (Default) Times New Roman Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font: (Default) Times New Roman Formatted: Font: (Default) Times New Roman Formatted: Font color: Text 1 Formatted: Font color: Text 1		Formatted: Font color: Text 1
Formatted: Font color: Text 1 Formatted: Font color: Auto Formatted: Footnote, Line spacing: single Formatted: Font: (Default) Times New Roman Formatted: Font color: Auto Formatted: Footnote, Left, Line spacing: single Formatted: Font: (Default) Times New Roman Formatted: Font: (Default) Times New Roman Formatted: Font: (Default) Times New Roman Formatted: Font color: Text 1 Formatted: Font color: Text 1		Formatted: Font color: Text 1
Formatted: Font color: Auto Formatted: Footnote, Line spacing: single Formatted: Font: (Default) Times New Roman Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Footnote, Left, Line spacing: single Formatted: Font: (Default) Times New Roman Formatted: Font: (Default) Times New Roman Formatted: Font color: Text 1 Formatted: Font color: Text 1	/	Formatted: Font color: Text 1
Formatted: Footnote, Line spacing: single Formatted: Font: (Default) Times New Roman Formatted: Font color: Auto Formatted: Footnote, Left, Line spacing: single Formatted: Font: (Default) Times New Roman Formatted: Font: (Default) Times New Roman Formatted: Font: (Default) Times New Roman Formatted: Font color: Text 1 Formatted: Font color: Text 1	,	Formatted: Font color: Text 1
Formatted: Font: (Default) Times New Roman Formatted: Font color: Auto Formatted: Footnote, Left, Line spacing: single Formatted: Font: (Default) Times New Roman Formatted: Font: (Default) Times New Roman Formatted: Font color: Text 1 Formatted: Font color: Text 1	1	Formatted: Font color: Auto
Formatted: Font color: Auto Formatted: Fontote, Left, Line spacing: single Formatted: Font: (Default) Times New Roman Formatted: Font color: Text 1 Formatted: Font color: Text 1		Formatted: Footnote, Line spacing: single
Formatted: Footnote, Left, Line spacing: single Formatted: Font: (Default) Times New Roman Formatted: Font color: Text 1 Formatted: Font color: Text 1		· · · ·
Formatted: Font: (Default) Times New Roman Formatted: Font color: Text 1 Formatted: Font color: Text 1	1	
Formatted: Font color: Text 1 Formatted: Font color: Text 1		Formatted: Footnote, Left, Line spacing: single
Formatted: Font color: Text 1		Formatted: Font: (Default) Times New Roman
		Formatted: Font color: Text 1
Formatted: Font color: Text 1		
	-	

Appendix H - TRM – Vol. 2: C&I Measures

CDM	= Flow rate in gallons per minute, actual, or sourced from baseline	i l	
<u>GPM_{base}</u>			Formatted: Font color: Text 1
L.	equipment table. 2.675 gpm if unknown.		
<u>base</u>	<u>=Shower length in minutes with baseline showerhead</u> =8.20 minutes		Formatted: Font color: Text 1
GPM _{low}			Formatted: Font color: Text 1, Subscript
OFMIOW	= Flow rate in gallons per minute, actual or certified equipment rate.		Formatted: Font color: Text 1
Llow	=Shower length in minutes with low flow showerhead		Formatted: Font color: Text 1
MODD	=8.20 minutes	\backslash	Formatted: Font color: Text 1
NSPD	=Estimated showers per day per showerhead	\neg	Formatted: Font color: Text 1, Subscript
EDC	=Actual. If unknown, apply 1.0 conservative assumption.		Formatted: Font color: Text 1
<u>EPG</u> _{electric}	Energy per gallon of hot water supplied by electric		
_	=(8.33 lbs/gallon x 1BTU/lb-F* x1.0 <u>*x(ShowerTemp-</u>	///	Formatted: Font color: Text 1
	upplyTemp)/(RE _{electric} <u>*x3412)</u>		Formatted: Font color: Text 1
_	=0.125 kWh/gallon		Formatted: Font color: Text 1
<u>8.33</u>	=Specific weight of water (lbs/gallon)		Formatted: Font color: Text 1, Subscript
<u>.1.0</u>	<u>=Heat capacity of water (BTU/lb-°F)</u>		Formatted: Font color: Text 1
ShowerTemp	=Assumed mixed water temperature		Formatted: Font color: Text 1
	=105.0 F ¹⁹⁰ 101°F		Formatted: Font color: Text 1
SupplyTemp	=Assumed water temperature entering water heater		Formatted: Font color: Text 1
	$=61.59.33 \text{ F}^{191}58.4^{492}$		Formatted: Font color: Text 1
▲	= Estimated usage of mixed water (mixture of hot water from water	7/////	Formatted: Font color: Text 1
Usuge	heater line and cold-water line) per faucet (gallons per year)		Formatted: Font color: Text 1
	= If data is available to provide a reasonable custom estimate it		Formatted: Font color: Text 1
	should be used, if not use the defaults in the table below (or		Formatted: Font color: Text 1
	substitute custom information into the calculation):		Formatted: Font color: Text 1
			Formatted: Font color: Text 1

<u>192 National Weather Service|MO soil temp 40"|6 stations|201</u>

2023|https://www.weather.gov/ncrfc/LMI_SoilTemperatureDepthMaps

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted: Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font color: Red

Formatted: Not Superscript/ Subscript

providing a more appropriate assumption for buildings in a particular market or geographical area, then they should be used. ⁴⁴ Representative baseline flow rate for kitchen and bathroom faucet aerators from sources 1, 2, 3, and 4. This accounts for al throttling and differences from rated flow rates. The most comprehensive available studies did not disaggregate kitchen use fror bathroom use, but instead looked at total flow and length of use for all faucets. This makes it difficult to reliably separate kitche water use from bathroom water use.

¹⁹⁰ Ameren Missouri Efficient Kits Evaluation: PY2018, https://www.efis.psc.mo.gov/Document/Display/15870, page 32.
¹⁹¹ National Weather Service. Average soil temperature at 40° depth during 2015 - 2023 data of six stations in Ameren Missouri service territory. https://www.weather.gov/ncrfc/LMI_SoilTemperatureDepthMaps Based on the DOE's Building America Standard DHW Event Schedule calculator. Average annual water main temperatures were determined for each defined weather zone in Missouri. The overall average of 60.83 is taken to represent the statewide average input water temperature.

Appendix H - TRM – Vol. 2: C&I Measures

<u>Building</u> <u>Type</u>	Callons HW_per unit per day ¹⁹³	<u>Unit</u>	Estimated % HW from Faucets ¹⁹⁴ (B)	Multiplier 195 (<u>C)</u>	<u>Unit</u>	Days per year (D)	Annual gallons mixed water per faucet			Formatted: Font color: Text 1
Small Office	(<u>A)</u> <u>1</u>	person	<u> </u>	<u>10</u>	employees	<u></u>	(<u>A*B*C*D</u>) 2,500			Formatted: Font color: Text 1
Large Office	<u>1</u>	person	<u>100%</u>	<u>45</u>	employees per faucet	<u>250</u>	<u>11,250</u>			Formatted: Font color: Text 1
Fast Food Restaurant	<u>0.7</u>	meal/day	<u>50%</u>	<u>75</u>	meals per faucet	<u>365</u>	<u>9,581</u>			Formatted: Font color: Text 1
Sit-Down Restaurant	<u>2.4</u>	meal/day	<u>50%</u>	<u></u>	meals per faucet	<u>365</u>	<u>15,768</u>			Formatted: Font color: Text 1
<u>Retail</u>	<u>2</u>	employee	<u>100%</u>	<u>5</u>	employees per faucet	<u>365</u>	<u>3,650</u>			Formatted: Font color: Text 1
Grocery	2	employee	<u>100%</u>	<u>5</u>	employees per faucet	<u>365</u>	<u>3,650</u>			Formatted: Font color: Text 1
Warehouse	<u>2</u>	employee	<u>100%</u>	<u>5</u>	employees per faucet	<u>250</u>	<u>2,500</u>			Formatted: Font color: Text 1
<u>Elementary</u> School	<u>0.6</u>	person	<u>50%</u>	<u>50</u>	students per faucet	<u>200</u>	<u>3,000</u>			Formatted: Font color: Text 1
Jr High/High School	<u>1.8</u>	person	<u>50%</u>	<u>50</u>	students per faucet	<u>200</u>	<u>9,000</u>			Formatted: Font color: Text 1
Health	<u>90</u>	patient	25%	2	Patients per faucet	<u>365</u>	<u>16,425</u>			Formatted: Font color: Text 1
Motel	<u>20</u>	room	25%	<u>+</u>	faucet per room	365	<u>1,825</u>			Formatted: Font color: Text 1
Hotel	<u>14</u>	room	25%	<u>1</u>	faucet per room	<u>365</u>	<u>1,278</u>			Formatted: Font color: Text 1
Other	<u>1</u>	employee	<u>100%</u>	<u>20</u>	employees	<u>250</u>	<u>5,000</u>			Formatted: Font color: Text 1
EPG _{electric}	<u>= Energ</u>	= Energy per gallon of mixed water used by faucet (electric water								Formatted: Font color: Text 1
	heater)									Formatted: Font color: Text 1
	$= (8.33 \pm x 1.0 \pm x (WaterTemp - SupplyTemp)) / (RE_{electric} \pm x 3412),$								Formatted: Font: Cambria, Italic, Font color: Text 1	
<u>8.33</u>		$= (8.33 \pm x_1.0 \pm x_2(90 - 57.9)) / (0.98 \pm x_3.3412) = 0.0800 \text{ kWh/gal}$ = Specific weight of water (lbs/gallon)								Formatted: Font: Cambria, Italic, Font color: Text 1
1.0									$\left(\left(\right) \right)$	Formatted: Font: Cambria, Italic, Font color: Text 1
1.0	<u>= Heat Capacity of water (btu/lb-F)</u>								$ \rangle$	Formatted: Font: Cambria, Italic, Font color: Text 1
Water Temp	<u>= Assumed temperature of mixed water</u>								Formatted: Font color: Text 1	
								Formatted: Font color: Text 1		
									11111	

¹⁹³-Table 2-45 Chapter 49, Service Water Heating, 2007 ASHRAE Handbook, HVAC Applications.

¹⁴⁴ Estimated based on data provided in Appendix E, "Waste Not, Want Not: The Potential for Urban Water Conservation in California," http://www.pacinst.org/reports/urban_usage/appendix_e.pdf.

<u>2025</u>MEEIA<u>4</u>2019-21-Plan

Revision 56.0

Formatted: Font color: Text 1 Formatted: Font color: Text 1

Formatted: Font color: Red

Formatted: Font color: Red

Formatted: Font color: Red

¹⁹⁵-Based on review of the Illinois plumbing code (Employees and students per faucet). Retail, grocery, warehouse and health are estimates. Meals per faucet estimated as 4 bathroom and 3 kitchen faucets and average meals per day of 250 (based on California study above) - 250/7 = 36. Fast food assumption estimated.

Appendix H - TRM – Vol. 2: C&I Measures

$= 90 F^{+96}$	
SupplyTemp = Assumed temperature of water entering building	Formatted: Font color: Red
= 58.4 F ¹⁹⁷	
$\underline{RE}_{electric} = \underline{Recovery efficiency of electric water heater}$	Formatted: Font color: Text 1
$\frac{=98\%^{198}}{(2412)}$	Formatted: Font color: Text 1
<u>3412 = Converts Btu to kWh (Btu/kWh)</u>	Formatted: Font color: Text 1
$\underline{ISR} = In \text{ service rate of faucet aerators}$	Formatted: Font color: Text 1
= Assumed to be 1.0	Formatted: Font color: Text 1
Summer Coincident Peak Demand Savings	Formatted: Font color: Text 1
$\Delta kW = \Delta kWh \stackrel{*}{=} \Delta F_{\bullet}$	Formatted: Font color: Text 1
Where:	Formatted: CambriaTextFormula
ΔkWh = calculated value above on a per showerhead faucet basis	
<u>CF</u> = Summer peak coincidence demand (kW) to annual energy (kWh) facto	
$= 0.0001811545^{199}, \text{-unless}, \text{ installed in the common area of multi-family housing}.$	Y Formatted: Font color: Text 1
= 0.0000887318^{200} if installed in the common arealiving area of multi-	
family housing.	Formatted: Font color: Text 1
FOSSIL FUEL IMPACT DESCRIPTIONS AND CALCULATION	Formatted: Font color: Text 1
$\Delta Therms = \% FossilDHW - x (GPM_{base}GPM base - x L_{base}base - GPM_{low}G + x L_{low}Llow) + x NSPD - x 365.25 + x EPG_{gas}EPG gas + x ISR$	GPMlow Formatted: Space After: 0 pt, Line spacing: single
$\frac{4}{3} L_{low} \frac{1}{10} 1$	Formatted: Font color: Text 1
	Formatted, Font Color, Text T
Where:	
<u>%FossilDHW</u> = proportion of water heating supplied by fossil fuel heating (see table below)	<u>e</u>
DHW fuel %Fossil DHW	Formatted: Font color: Background 1
Electric 0%	Formatted: Font color: Background 1
Fossil Fuel 100%	Formatted: Font color. Text 1
	Formatted: Fort Color. Text 1

¹⁹⁶ Temperature cited from SBW Consulting, Evaluation for the Bonneville Power Authority, 1994, http://www.bpa.gov/energy/n/reports/evaluation/residential/faucet_aerator.cfm. This is a variable that would benefit from further

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted: Left, Indent: Left: 0", Don't keep lines together

Formatted: Font: 9 pt

evaluation.

¹⁹⁷National Weather Service|MO soil temp 40"|6 stations|2015 to

^{2023|}https://www.weather.gov/ncrfc/LMI_SoilTemperatureDepthMaps

¹⁹⁸ Electric water heater have recovery efficiency of 98%: http://www.ahrinet.org/ARI/util/showdoc.aspx?doc=576

 ¹⁹⁹ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"
 ²⁰⁰ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes

²⁰⁰ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"Residential program end-use category load shape: Water heating, "2016 Appendix E – End Use Shapes and Coincident Factors.pdf", AmerenMissouriEnd-UseEnergyLoadshape and CoincidentPeakFactor 2016-01-12.xlsx (mo.gov)

Appendix H - TRM – Vol. 2: C&I Measures

A	<u>Unknown</u>	<u>57%²⁰¹</u>		Formatted: Font color: Text 1
<u>EPG_gas</u>		ed water used by showerheadfaucet		Formatted: Font color: Text 1
	(gas water heater) = (8.22 *x 1.0 *x (WaterTe	emp - SupplyTemp)) / (RE_gas *x		Formatted: Font color: Text 1
	$\frac{-(8.53 - \chi_1 \cdot 0) - \chi_1(\text{water re})}{100,000) = 0.00772 \text{ Therm}$			Formatted: Font color: Text 1
<u>RE_gas</u>	= Recovery efficiency of g			Formatted: Font color: Text 1
100.000	$= 67\%^{+15}$			Formatted: Font color: Text 1
100,000	= Converts Btus to Therms	(Btu/Therm))	Formatted: Font color: Text 1
Other variabl	es as defined above.			Formatted: Font color: Text 1
				Formatted: Font color: Text 1
DHW fuel	%Fossil_DHW			Formatted: Font color: Text 1
ic Fuel	<u>0%</u> 100%			Formatted: Font color: Text 1
own	<u>570/202</u>			Formatted: Font color: Text 1

WATER IMPACT DESCRIPTIONS AND CALCULATION

 $\underline{Agallons} = \underline{*}x \quad (GPM_{base} \underline{*}x \underline{L}_{base} - GPM_{low} \underline{*}x \underline{L}_{low}) \quad \underline{*}x \text{ NSPD} \underline{*}x \quad 365.25 \underline{*}x ISR$

((GPM_{base} - GPM_{low}) / GPM_{base}) * Usage * ISR

Variables as defined above

DEEMED O&M COST ADJUSTMENT CALCULATION

<u>N/A</u>

Ele

MEASURE CODE:

2025 MEEIA 4 2019-21 Plan

Revision 56.0

Page 84

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

²⁰¹ Default assumption for unknown fuel is based on EIA Commercial Building Energy Consumption Survey (CBECS) 2012 for Midwest North Central Region (see 'HC8.9 Water Heating in Midwest Region.xls'). If utilities have specific evaluation results providing a more appropriate assumption for buildings in a particular market or geographical area, then they should be used...⁴¹⁵ Review of AHRI Directory suggests range of recovery efficiency ratings for new Gas DHW units of 70-87%. Average of existing units is estimated at 75%. Commercial properties are more similar to MF homes than SF homes. MF hot water is often provided by a larger commercial boiler. This suggests that the average recovery efficiency is somewhere between a typical central boiler efficiency of .59 and the .75 for single family home. An average is used for this analysis by default.

²⁰² Default assumption for unknown fuel is based on EIA Commercial Building Energy Consumption Survey (CBECS) 2012 for Midwest North Central Region (see 'HC8.9 Water Heating in Midwest Region.xls'). If utilities have specific evaluation results providing a more appropriate assumption for buildings in a particular market or geographical area, then they should be used.⁴⁴⁵ Review of AHRI Directory suggests range of recovery efficiency ratings for new Gas DHW units of 70-87%. Average of existing units is estimated at 75%. Commercial properties are more similar to MF homes than SF homes. MF hot water is often provided by a larger commercial boiler. This suggests that the average recovery efficiency is somewhere between a typical central boiler efficiency of .59 and the .75 for single family home. An average is used for this analysis by default.

Appendix H - TRM – Vol. 2: C&I Measures

Appendix H - TRM – Vol. 2: C&I Measures

2.5 HVAC

Table: Table 1 Effective Full Load Heating and Cooling Hours, by Building Type

		an AFB vg)		ln, NE W)		dison, IA (E)	Kai (S ^v	iser W)		rardeau E)	St Louis	s Metro	Kansa	s City
Building Type	Heating EFLH	Cooling EFLH	Heating EFLH	Cooling EFLH	Heating EFLH	Cooling EFLH	Heating EFLH	Cooling EFLH	Heating EFLH	Cooling EFLH	Heating EFLH	Cooling EFLH	Heating EFLH	Cooling EFLH
Large Office	1039	1846	1141	1756	1088	1539	997	1918	861	1784	988	1869	1056	1792
Medium Office	649	1350	740	1245	728	1146	567	1412	528	1323	645	1386	708	1325
Small Office	946	1114	1030	1041	1029	975	926	1165	769	1082	893	1159	989	1097
Warehouse	991	415	1201	380	1227	357	1189	457	851	391	1059	433	1207	400
Stand-alone Retail	1012	1000	1125	903	1139	808	968	1076	891	965	994	986	1036	946
Strip Mall	1030	970	1124	884	1148	794	984	1044	905	944	1001	956	1039	916
Primary School	806	1019	892	958	898	852	798	1155	666	1016	785	1195	840	971
Secondary School	719	812	803	724	867	677	754	911	603	800	712	873	779	779
Supermarket	1279	875	1367	800	1405	672	1330	902	1120	837	1248	846	1344	820
Quick Service Restaurant	1233	1013	1414	916	1513	819	1316	1127	1025	973	1262	1035	1387	970
Full Service Restaurant	1367	1119	1499	1014	1655	952	1442	1234	1156	1114	1380	1124	1473	1059
Hospital	3388	3318	3205	3055	3467	2733	3891	3448	2913	3312	3170	3413	3372	3215
Outpatient Health Care	3203	3113	3261	2834	3150	2627	3128	3217	3001	3109	3013	3265	3164	2994
Small Hotel - Building	602	2247	697	2097	760	1914	620	2386	436	2304	575	2277	669	2207
Large Hotel - Building	1656	2148	1472	2016	1980	1916	1943	2369	1202	2186	1551	2363	1692	2155
Midrise Apartment - Building	1462	1132	1599	1028	1710	901	1590	1214	1208	1085	1433	1171	1580	1090
C&I Average ²⁰³	1067	1018	1196	937	1217	865	1118	1085	910	996	1060	1053	1164	986

Formatted: Font: 12 pt, Font color: Text 1

Formatted: Font color: Text 1

Formatted: Caption, Right: 0", Space After: 0 pt

²⁰³ See Volume 1 for details on modeling calculations and assumptions.

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 5.0

Page 86

2.5.1 Small Commercial Learning Thermostats

DESCRIPTION

This measure characterizes the energy savings from the installation of a new programmable learning thermostat for reduced cooling and heating energy consumption through temperature setback during unoccupied or reduced demand times as well as automatic adjustments based on occupancy patterns and various independent variables such as weather. This measure is limited to small businesses as defined by programs,²⁰⁴ as they have smaller HVAC systems that are similar to residential HVAC systems and may be controlled by a simple manual adjustment thermostat. Mid- to large-sized businesses will typically have a building automation system or some other form of automated HVAC controls. This measure is only appropriate for single zone heating systems. Custom calculations are required for savings for learning thermostats installed in multi-zone systems.

This measure was developed to be applicable to the following program types: RF, DI, and TOS.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The criteria for this measure are established by replacement of a manual-only temperature control with one that has the capability to adjust temperature set-points according to various independent variables without manual intervention.

DEFINITION OF BASELINE EQUIPMENT

For new thermostats the baseline is a non-programmable thermostat requiring manual intervention to change the temperature set-point.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life of a learning thermostat is assumed to be <u>10-9</u> years²⁰⁵ based upon equipment life only.³⁰⁶ a residential EUL analysis.

DEEMED MEASURE COST

Actual material and labor costs should be used if the implementation method allows. If unknown, the capital cost for this measure is assumed to be 264224.²⁰⁷

LOADSHAPE

Cooling BUS

²⁰⁴ The square footage of the small office prototype building modeled in is 7,500 sf.

205 Table 1, HVAC Controls, Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, 2007.CADMUS, "EUL analysis of residential smart communicating thermostat – Vendor A and B", Memorandum for Southern California Edison, (February 2019), for the California ETRM, Residential Smart Thermostat Measure, https://www.caetrm.com/measure/SWHC039/08/.

HYPERLINK "https://www.caetrm.com/measure/SWHC039/08/" Smart Thermostat, Residential | ETRM (caetrm.com)

rm the persistence of savings to further refine measure life assumption. As this characterization depends heavily upon a large scale but only 2-year study of the energy impacts of programmable thermostats, the longer-term impacts should be assessed. ²⁰⁷ Ameren Missouri Technical Resource Manual Effective January 1, 2018. This current value was reviewed and confirmed using PY20 program data.DSM Business Program participants, 1/2019 through 7/2024, includes equipment-eost and labor eost_Local file: "2.5.1 Measure Cost.xlsx"

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted: Not Superscript/ Subscript Formatted: Font: Not Italic Formatted: Font: Not Italic Formatted: Font: Not Italic Formatted: Hyperlink, Font: 9 pt, No underline, Font color: Black Field Code Changed Formatted: Font: 9 pt

Page 87

Appendix H - TRM - Vol. 2: C&I Measures

Heating BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

```
\Delta AkWh = \Delta AkWh_{cooling} AkWhcooling + \Delta AkWh_{heating} AkWhheating
\Delta kWhcooling_{cooling} AkWhcooling
= \frac{1}{eff} EFF * EFLHCOOL} EFLH_{cool} x
* kBtuh_{cool} BtuhCOOL / 1000 x (1/SEER2) * x ESF_{cool} ESFCOOL
\Delta kWh_{heating} = EFLH_{HEAT} x kBTUh_{HEAT} x (1/HSPF2) x ESF_{HEAT}
Formatted: CambriaTextFormula, Right: 0", Space
```

Where:

off <u>EFF</u>SEER2 HSPF2	 = Efficiency of HVAC unitSeasonal Energy Efficiency Ratio for cooling = Actual; If not available, assume 10 SEER or if unknown, assume 13.4 SEER2. =Heating Seasonal Performance Factor 		Formatted Table
	= Actual; or if unknown, assume 8.2 HSPF2.		
<u>EFLH_{COOL}</u>	= Effective Full Load Cooling Hours		
	= Actual; or if unknown, refer to <u>Table 1 Table 1</u>	<	Formatted: Font: Italic, Font color: Text 1
	Table 1 Table 1 by building type.		Formatted: Font: Italic
EFLH _{COOL}	= Effective Full Load Cooling <u>H</u> Hours		Formatted: Font: Italic, Font color: Text 1
<u>EFLH_{HEAT}</u>	= Actual; or if unknown, Actual; If not available, refer to		Formatted Table
	<u>Table 1 Table 1 Table</u>		Formatted: Font: Italic, Font color: Text 1
	type, socion 2.7 mme	$\langle \rangle$	Formatted: Font: Italic
Btuh _{COOL}	= Cooling System system Capacity capacity; 1,000 Btu/h		Formatted: Font: Italic, Font color: Text 1
kBTUh _{COOL}	= Actual		
kBTUh _{HEAT}	=Heating system capacity: 1,000 Btuh/h		Formatted: Subscript
	=Actual		
-ESF _{COOL}	= Cooling energy savings factor		

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 5.0

After: 0 pt, Line spacing: single

Appendix H - TRM - Vol. 2: C&I Measures

= Ass	sume 0.139 ²⁰⁸		Formatted: Font: 12 pt
	ting energy savings factor		Formatted: Font: (Default) Times New Roman
=Ass	ume 0.125 ²⁰⁹	$\mathcal{A}_{\mathcal{P}}$	Formatted: Font: (Default) Times New Roman
Summer Coincident Peak D	IEMAND SAVINGS		Formatted: Font: (Default) Times New Roman, Subscript
	$\Delta kW = \Delta kW h_{cool} \Delta kW - x CF$		Formatted: Font: (Default) Times New Roman
Where:			Formatted: Font: (Default) Times New Roman
	bling electric energy savings, as calculated above		Formatted: Font: Cambria Math
CF = Summer pea = 0.00091068	ak coincidence demand (kW) to annual energy (kWh) factor 340^{210}	I	Formatted: CambriaTextFormula, Right: 0", Space After: 0 pt, Line spacing: single
NATURAL GAS ENERGY SAVING	SS		
ATherms = SQFT * Saving kBTUh _{GAS} x (1/AFUE) x ES	'sFactor * PF / (100 * AFUE_{EXIST}) <u>ΔThermsheating = EFLHheat x</u> Fheat	1	
A			Formatted: Font: Cambria Math, Italic
Where:		1	
SQFT	= Square footage of building controlled by thermostat	1	
EFLH _{HEAT} SavingsFacto	or<u>=</u> Effective Full Load Heating Hours		
_	= Actual; or if unknown, refer to <i>Table 17able 17able 1</i> Table		Formatted: Font: Italic, Font color: Text 1
	<u>1Table 1by</u> building type= 9.940 kBtu/sf-yr ²¹¹	\sim	Formatted: Font: Italic
AFUE _{EXIST} <u>kBTUh_{Gas}</u>	= <u>Heating system capacity: 1,000 Btuh/h</u>		Formatted: Font: Italic, Font color: Text 1
	<u>=Actual</u>		
100 AFUE	= Converts kBtu to therms, 1 therm = 100 kBtuAnnual Fuel		
	<u>Utilization Efficiency</u> =Actual, or if unknown, assume 0.80.		
ESF _{HEAT}	=Heating energy savings factor		Formatted: Subscript
	=Assume 0.125 ²¹²		
		/	Formatted: Footnotes, Left, Line spacing: single, No widow/orphan control
			Formatted: Font: Not Italic
²⁰⁸ Cadmus (Aarish, C., M. Perussi, A. R	ietz, and D. Korn). Evaluation of the 2013–2014 Programmable and Smart Thermosta	ut 🔹 🦯	Field Code Changed
Program, page 41 Prepared for Norther 41)http://www.cadmusgroup.com/wp-	n Indiana Public Service Company and Vectren Corporation. 2015(January 2015)-, (Pe		Formatted: Footnotes
content/uploads/2015/06/Cadmus_Vectro 2b13f74c4e52%20%20.	en_Nest_Report_Jan2015.pdf?submissionGuid=7cbc76e9-41bf-459a-94f5-		Formatted: Left, Indent: Left: 0", First line: 0", Don't keep lines together
²⁰⁹ IBID ²¹⁰ Ameren Missouri TRM Volume 1 - A	Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shape	s 🔹 /	Formatted: Footnotes, Left, Line spacing: single
and Coincident Peak Factors" 211 Heating Savings Factors for the programmable thermosta	r recelculated as the savings in annual building load divided by the square footage of the prototype building (5.500 st) and		Formatted: Font: Not Italic
converted to kBtu.			Formatted: Footnotes
	ietz, and D. Korn). Evaluation of the 2013–2014 Programmable and Smart Thermosta Indiana Public Service Company and Vectren Corporation. (January 2015)		Formatted: Font: Not Italic
http://www.cadmusgroup.com/wp-	en_Nest_Report_Jan2015.pdf?submissionGuid=7cbc76e9-41bf-459a-94f5-		Formatted: Underline, Font color: Blue
<u>2b13f74c4e52%20%20</u>	an		Formatted: Font color: Accent 1

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Page 89

Appendix H - TRM - Vol. 2: C&I Measures

WATER IMPACT DESCRIPTIONS AND CALCULATION N/A Deemed O&M Cost Adjustment Calculation

N/A

MEASURE CODE:

Formatted: Space After: 4.9 pt

Appendix H - TRM - Vol. 2: C&I Measures

2.5.2 Small Commercial Programmable Thermostats

DESCRIPTION

This measure characterizes the energy savings from the installation of a new programmable thermostat for reduced heating and cooling energy consumption through temperature set back during unoccupied or reduced demand times. This measure is limited to small businesses as defined by programs,²¹⁴ as they have smaller HVAC systems that are similar to residential HVAC systems and may be controlled by a simple manual adjustment thermostat. Mid- to large sized businesses will typically have a building automation system or some other form of automated HVAC controls. This measure is only appropriate for single zone heating systems. Custom calculations are required for savings for programmable thermostats installed in multi-zone systems.

This measure was developed to be applicable to the following program types: RF and DI.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The criteria for this measure are established by replacement of a manual only temperature control with one that has the capability to adjust temperature set points according to a schedule without manual intervention.

DEFINITION OF BASELINE EQUIPMENT

For new thermostats the baseline is a non-programmable thermostat requiring manual intervention to change the temperature set point.

Deemed Lifetime of Efficient Equipment

The expected measure life of a programmable thermostat is assumed to be 8 years²¹⁴ based upon equipment life only.²¹⁵

DEEMED MEASURE COST

Actual material and labor costs should be used if the implementation method allows. If unknown, the capital cost for this measure is assumed to be \$181160.216

LOADSHAPE

Cooling BUS

 $[\]frac{213}{10}$ The square footage of the small office prototype building modeled in is 7.500 sf.

²¹⁴ Table 1, HVAC Controls, Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, 2007.
²¹⁵ Future evaluation is strongly encouraged to inform the persistence of savings to further refine measure life assumption. As this

characterization depends heavily encounaged to morin the perstence of savings to further refine inclusion in a samption. As the longer-term impacts should be assessed.

²¹⁶-Based upon Nicor, <u>https://www.ilsag.info/wp-content/uploads/Nicor-Gas-2022-2025-EE-Plan_filed-March-2021.pdf (see measure#239 pg 141, \$84 measure cost + \$56 labor + \$28 material)Illinois Rider 30 Business EER Program Database, Paid Rebates with Programmable Thermostat Installation Costs, Program to Date as of January 11, 2013. If Missouri average costs are available, they should be used.</u>

Appendix H - TRM - Vol. 2: C&I Measures

	Algorithm	
CALCULATION OF SAVI	INGS	
ELECTRIC ENERGY SA	VINGS	
4kWh -	<i>= SQFTft * x SavingsFactor * x PF / EER_{EXIST}EEREXIST</i>	Formatted: Cambria12, Right: 0", Space After: 0 p Line spacing: single
Sqft	= Square footage of building controlled by thermostat	
SavingsFactor	$= 0.578 \text{ kWh/sf yr}^{217}$	
PF	 = Persistence Factor to account for thermostat being placed on hold, reset or-bypassed. = Actual if provided in program evaluation, else assume 50%²¹⁸ 	
EER	= Efficiency rating of existing cooling equipment EER (btu hr/W)	
SUMMER COINCIDENT	PEAK-DEMAND SAVINGS	
	$\frac{\Delta kW = \Delta kW + x CF}{4}$	Formatted: Cambria12
$\frac{AkWh}{Elec}$	tric energy savings, as calculated above mer peak coincidence demand (kW) to annual energy (kWh) factor	
AkWh = Elect CF = Sum = 0.000 NATURAL GAS ENERGY AThorms = St	mer peak coincidence demand (kW) to annual energy (kWh) factor 09106840 ²¹⁹	
CF = Sum = 0.000 NATURAL GAS ENERGY ATherms = So Where:	mer peak coincidence demand (kW) to annual energy (kWh) factor 09106840 ²¹⁹ Y S AVINGS	Formatted: Cambria12, Right: 0", Space After: 0 p Line spacing: single
AkWh = Elect CF = Sum = 0.000 NATURAL GAS ENERGY ATherms = Sum Where: SQFT SQft = Squ *** Cooling savings factors for square footage of the small of Programmable Thermostats, " that ended up using thermostat attps://www.nrel.gov/docs/fyl al_thermostats.patfw20, and M National Laboratory, March 2 The majority of occupants op espondents reported that they	mer peak coincidence demand (kW) to annual energy (kWh) factor 09106840 ²¹⁹ X SAVINGS <i>QFTft * x SavingsFactor * x PF /</i> (100 <i>* x AFUE_{EXIST}AFUEEXIST</i>) * there footage of building controlled by thermostat r the programmable thermostat are calculated as the savings in annual building load divided by the fice prototype building (5,500 sf). Isideration of the findings from a number of evaluations, including Sachs et al., <i>"Field Evaluation of</i> 'US DOE Building Technologies Program, December 2012, p35; "low proportion of households t enabled energy saving settings" 13osti/56637.pdfhttp://apps1.cere.energy.gov/buildings/publications/pdfs/building_america/field_ev <i>A</i> eier et al., <i>"Usability of residential thermostats: Preliminary investigations,"</i> Lawrence Berkeley 1011, p1; perated thermostats manually, rather than relying on their programmable features and almost 90% of rarely or never adjusted the thermostat to set a weekend or weekday program. Photographs of	
AkWh = Elect CF = Sum = 0.000 NATURAL GAS ENERGY ATherms = Sum Mhere: SQFT SQft = Squ H ⁴⁷ Cooling savings factors for square footage of the small of H ⁴⁸ This factor is based on con Programmable Thermostat inte ended up using thermostats, hat ended up using thermostats, that ended up using thermostats, that ended up using thermostats, that ended up using thermostats, thermostats.pdf%20, and M National Laboratory, March 2 The majority of occupants of espondents reported that they hermostats were collected in 4	mer peak coincidence demand (kW) to annual energy (kWh) factor 09106840 ²¹⁹ x SAVINGS <i>QFTft * x SavingsFactor * x PF /</i> (100 * <i>x AFUE_{EXIST}AFUEEXIST</i>) mare footage of building controlled by thermostat r the programmable thermostat are calculated as the savings in annual building load divided by the fice prototype building (5,500 sf). usideration of the findings from a number of evaluations, including Sachs et al., <i>"Field Evaluation of</i> 'US DOE Building Technologies Program, December 2012, p35; "low proportion of households t enabled energy saving settings" 13osti/56637.pdfhtp://apps1.cerc.energy.gov/buildings/publications/pdfs/building_america/field_ev Action of the findings from a relation of the findings of the energy saving settings" 13osti/56637.pdfhttp://apps1.cerc.energy.gov/buildings/publications/pdfs/building_america/field_ev factor et al., <i>"Usability of residential thermostats: Preliminary investigations,"</i> Lawrence Berkeley 1011, p1; berated thermostats manually, rather than relying on their programmable features and almost 90% of	• • • •
AkWh = Elect CF = Sum = 0.000 NATURAL GAS ENERGY AThorms = Sum AThorms = Sum Where: SQFT SQft = Squ *** Cooling savings factors for square footage of the small of *** This factor is based on con Programmable Thermostats," hat ended up using thermostat https://www.rrel.gov/docs/fy/ al_thermostats.pdf%20, and N National Laboratory, March 2 'The majority of occupants op espondents reported that they hermostats were collected in / hat about 50% of the respond thps://ta.lbl.gov/publications hermostatshttp://eee.ucdavis.	mer peak coincidence demand (kW) to annual energy (kWh) factor 09106840 ²¹⁹ x SAVINGS <i>QFTft * x SavingsFactor * x PF /</i> (100 <i>* x AFUE_{EXIST}AFUEEXIST</i>) • mare footage of building controlled by thermostat r the programmable thermostat are calculated as the savings in annual building load divided by the fice prototype building (5,500 sf). isideration of the findings from a number of evaluations, including Sachs et al, <i>"Field Evaluation of</i> 'US DOE Building Technologies Program, December 2012, p35; "low proportion of households it enabled energy saving settings" 13ost/56637.pdfhttp://apps1.cere.energy.gov/buildings/publications/pdfs/building_america/field_ev Ateier et al., <i>"Usability of residential thermostats: Preliminary investigations,"</i> Lawrence Berkeley 011, p1; perated thermostats manually, rather than relying on their programmable features and almost 90% of 'rarely or never adjusted the thermostat to set a weekend or weekday program. Photographs of one on line survey, which revealed that about 20% of the thermostats displayed the wrong time and ents set their programmable thermostats on "long term hold" (or its equivalent)."	• • • •

Appendix H - TRM - Vol. 2: C&I Measures

Savings Factor= 9.940 kBtu/sf yr220100= Converts kBtu to therms, 1 therm = 100 kBtuAFUE= Efficiency rating of existing heating equipment (AFUE), in decimal form.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

²²⁰ Heating Savings Factors for the programmable thermostat are calculated as the savings in annual building load divided by the square footage of the prototype building (5,500 sf) and converted to kBtu.

2.5.23 Demand Controlled Ventilation

DESCRIPTION

Demand control ventilation (DCV) automatically adjusts building ventilation rates based on occupancy. DCV is part of a building's ventilation system control strategy. It may include hardware, software, and controls as an integral part of a building's ventilation design. Active control of the ventilation system provides the opportunity to reduce heating and & cooling energy use.

The primary component is a control sensor to communicate either directly with the economizer or with a central computer. The component is most typically a carbon dioxide (CO_2) sensor, occupancy sensor, or turnstile counter. This measure is modeled to assume night time set backs are in operation and minimum outside air is being used when the building is unoccupied.

This measure was developed to be applicable to the following program type: RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment condition is defined by new CO_2 sensors installed on return air systems where no other sensors were previously installed. Additionally, commissioned control logic and installed hardware must be capable of reducing ventilation rates based on sensor input. For heating savings, this measure does not apply to any system with terminal reheat (constant volume or variable air volume). For a terminal reheat system, a custom savings calculation should be used to determine the heating savings; cooling savings are still applicable to the measure.⁺

DEFINITION OF BASELINE EQUIPMENT

The base case for this measure is a space with no demand control capability, and is not required by the local building code. The current code minimum for outside-outdoor air (OA) is 17-5 CFM per occupant (ASHRAE 62.1-2022) for office buildings, which is the value assumed in this measure.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The deemed measure life is 10 years.²²¹

DEEMED MEASURE COST

As a retrofit measure, the actual cost of installation should be used for screening. Costs should include the hardware and labor costs to install the sensors. Additional purchase and installation costs for any other component of the DCV system that was not previously existing should also be included.

LOADSHAPE

Cooling BUS

²²¹ Based on CO₂ sensor estimated life, determined through conversations with contractors to have a minimum lifetime of 10 years. It is recommended that they are part of a normal preventive maintenance program, as calibration is an important part of extending useful life. Although they are not subject to mechanical failure, they can fall out of tolerance over time.

Appendix H - TRM - Vol. 2: C&I Measures

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

For facilities heated by natural gas, cooling savings are:

 $\Delta kWh = SQFT_{cond} / 1000 + XSF_{cooling}$ For facilities heated by heat pumps, heating and cooling savings are:

 $\Delta kWh = SQFT_{cond} / 1000 - xSF_{cooling} + SQFT_{cond} / 1000 - xSF_{Heat HP}$ For facilities heated by electric resistance heating and cooling savings are:

 $\Delta kWh = SQFT_{cond} / 1000 - XSF_{cooling} + SQFT_{cond} / 1000 - XSF_{Heat ER}$

Where:

SQFT_cond= Square footage of conditioned space commissioned with DCVSF_cooling= Cooling Savings Factor, including cooling and fan energy savingsSF_Heat HP= Heating Savings factor for facilities heated by Heat Pump (HP)SF_Heat ER= Heating Savings factor for facilities heated by Electric Resistance (ER)

Savings factors are based on Building Type and weather zone - see tables below.222

	SF _{cooling} (kWh/1000 SqFt)								
	North East	North	South East	South	St	Kansa	Average/		
Building Type	(Fort	West	(Cape	West	Louis		Unknown		
	Madison,	(Lincol	Girardeau,	(Kaiser,	Metro,	City,	(Knob		
	IA)	n, NE)	MO)	MO)	MO	MO	Noster, MO)		
Office - Low-rise	475	533	535	634	649	555	579		
Office - Mid-rise	448	502	504	597	611	523	545		
Office - High-rise	468	525	527	624	639	547	570		
Religious Building	567	635	639	756	774	662	690		
Restaurant	561	629	632	748	765	655	683		
Retail - Department Store	654	734	737	873	893	764	797		
Retail - Strip Mall	399	447	449	532	544	466	486		
Convenience Store	631	708	711	842	862	737	769		
Elementary School	353	395	397	470	481	412	430		
High School	340	382	384	454	465	398	415		
College/University	442	495	498	589	603	516	538		
Healthcare Clinic	384	431	433	513	525	449	468		
Lodging	605	679	682	808	827	707	738		
Manufacturing	500	560	563	666	682	584	609		

²²² Energy savings factors were calculated using weather data and methodology consistent with ASHRAE standards. Savings are calculated on an annual basis for each given weather zone in Missouri. Original energy savings for DCV were developed for Illinois utilizing standards, inputs and approaches as set forth by ASHRAE 62.1 and 90.1. These savings factors were then translated into Missouri-specific values using adjustment factors based on differences in heating and cooling degree hours. See DCV savings factors v1.xlsx for derivation.

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

.

.

I

Formatted Table

Formatted: Cambria12, Indent: First line: 0"

Formatted: Cambria12, Indent: First line: 0"

Formatted: Cambria12, Indent: First line: 0"

Appendix H - TRM - Vol. 2: C&I Measures

Special Assembly Auditorium	476	534	536	635	650	556	580
			SE (1-3371-/1000	S ~E4)		
Building Type	North East (Fort Madison, IA)	North West (Lincoln, NE)	SF Heat HP (South East (Cape Girardeau, MO)	South West (Kaiser, MO)	Sqrt) St Louis Metro, MO	Kansas City, MO	Average/ Unknown (Knob Noster, MO)
Office - Low-rise	171	191	145	151	156	176	159
Office - Mid-rise	114	128	97	100	104	117	106
Office - High-rise	154	172	130	135	140	158	143
Religious Building	1,118	1,248	945	983	1,018	1,149	1,036
Restaurant	799	892	675	702	727	821	740
Retail - Department Store	277	310	234	244	252	285	257
Retail - Strip Mall	184	205	155	161	167	189	170
Convenience Store	134	150	114	118	122	138	125
Elementary School	475	531	402	418	433	488	440
High School	465	519	393	409	423	478	431
College/University	923	1,031	780	812	840	949	856
Healthcare Clinic	331	370	280	291	301	340	307
Lodging	157	175	132	138	143	161	145
Manufacturing	122	136	103	107	111	125	113
Special Assembly Auditorium	1,335	1,490	1,128	1,173	1,215	1,371	1,236

Formatted Table

	SF Heat ER (kWh/1000 SqFt)								
Building Type	North East (Fort Madison, IA)	North West (Lincoln, NE)	South East (Cape Girardeau, MO)	South West (Kaiser, MO)	St Louis Metro, MO	Kansas City, MO	Average/ Unknown (Knob Noster, MO)		
Office - Low-rise	514	574	434	452	468	528	476		
Office - Mid-rise	343	383	290	301	312	352	318		
Office - High-rise	461	515	390	406	420	474	428		
Religious Building	3,354	3,744	2,835	2,948	3,053	3,446	3,108		
Restaurant	2,396	2,675	2,025	2,106	2,181	2,462	2,220		
Retail - Department Store	832	929	703	731	757	855	771		
Retail - Strip Mall	551	615	465	484	501	566	510		
Convenience Store	403	450	341	354	367	414	374		
Elementary School	1,426	1,592	1,205	1,253	1,298	1,465	1,321		
High School	1,395	1,557	1,179	1,226	1,270	1,433	1,292		
College/University	2,770	3,093	2,341	2,435	2,521	2,846	2,567		
Healthcare Clinic	993	1,109	839	873	904	1,020	920		
lodging	470	525	397	413	428	483	436		
Manufacturing	365	408	309	321	332	375	338		
Special Assembly Auditorium	4,004	4,470	3,384	3,519	3,644	4,114	3,709		

Formatted Table

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 5.0

Page 96

Appendix H - TRM - Vol. 2: C&I Measures

$SUMMER\ COINCIDENT\ PEAK\ DEMAND\ SAVINGS$

 $\Delta kW = \Delta kWh cooling x + CF$

Where:

 $\begin{array}{ll} \Delta \ kWh_{cooling} & = Electric \ energy \ savings, \ as \ calculated \ above \\ CF & = Summer \ peak \ coincidence \ demand \ (kW) \ to \ annual \ energy \ (kWh) \ factor \end{array}$

 $= 0.0009106840^{223}$

NATURAL GAS SAVINGS

$$\Delta Therms = SQFT_{cond} / 1000 - XSF_{Heat Gas}$$

Where:

SF Heat Gas Savings factor for facilities heated by natural gas - see table below

			(1000 sq ft)				
Building Type	North East (Fort Madison, IA)	North West (Lincoln, NE)	South East (Cape Girardeau, MO)	South West (Kaiser, MO)	St Louis Metro, MO	Kansas City, MO	Average/ Unknown (Knob Noster, MO)
Office - Low-rise	22	24	19	19	20	23	20
Office - Mid-rise	15	16	12	13	13	15	14
Office - High-rise	20	22	17	17	18	20	18
Religious Building	143	160	121	126	130	147	133
Restaurant	102	114	86	90	93	105	95
Retail - Department Store	35	40	30	31	32	36	33
Retail - Strip Mall	23	26	20	21	21	24	22
Convenience Store	17	19	15	15	16	18	16
Elementary School	61	68	51	53	55	62	56
High School	60	66	50	52	54	61	55
College/University	118	132	100	104	108	121	109
Healthcare Clinic	42	47	36	37	39	44	39
lodging	20	22	17	18	18	21	19
Manufacturing	16	17	13	14	14	16	14
Special Assembly Auditorium	171	191	144	150	155	175	158

Formatted Table

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

²²³ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

Appendix H - TRM - Vol. 2: C&I Measures

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

Formatted: Indent: Left: -0", Right: 3.12", Space After: 5 pt

Appendix H - TRM – Vol. 2: C&I Measures

2.5.34 Advanced Roof Top Unit (RTU) Controls

DESCRIPTION

Ameren Missouri

A traditional packaged HVAC rooftop unit uses a zone thermostat to control the operation of the compressor or the gas furnace, depending on whether the zone thermostat is calling for cooling or heating. Under a conventional control scheme, the compressor or furnace is cycled on or off to maintain the zone thermostat set point with the supply fan operating continuously (when the building is occupied) to provide sufficient ventilation air and provide comfort heating and cooling for the space. The supply-fan speed is typically not capable of modulation, so it supplies constant air volume under all modes of operations.

Modulating the supply fan in conjunction with demand-controlled ventilation (DCV) can reduce both heating/cooling energy and fan energy requirements. This measure describes the energy savings realized by retrofitting traditional RTUs with advanced controllers that enable integrated air-side economization, supply-fan speed control (by installing a variable speed drive), and demand-controlled ventilation.

This measure is applicable to the following program type: RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

A traditional RTU retrofitted and commissioned with advanced controls that allow for modulation of supply fan speed in conjunction with demand-controlled ventilation (DCV).

DEFINITION OF BASELINE EQUIPMENT

Packaged heating and cooling equipment with constant speed supply fans providing ventilation at the design rate at all times when the fan is operating and when the building is occupied.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life for HVAC application is 15 years.²²⁴

DEEMED MEASURE COST

As a retrofit measure, actual costs should be specified when available. Default measure costs are listed below based on RTU supply fan horsepower rating:²²⁵

Supply Fan Size <u>(226-(</u> hp)	Controller	Installation Labor	Total Retrofit Cost
1	\$2,200	\$750	\$2,950
2	\$2,600	\$750	\$3,350
3	\$3,500	\$750	\$4,250
5	\$4,000	\$750	\$4,750
7.5	\$4,142	\$750	\$4,892
			T T

²²⁴ ASHRAE, Chapter 38: Owning and Operating Costs, Table 4, "Heating, Ventilating and Air Conditioning Applications",

(2023 edition) for electronic building controls. Consistent with other HVAC variable speed drive lifetimes. ²²⁵ Advanced Rooftop Control (ARC) Retrofit: Field-Test Results, PNNL-22656. U.S. Department of Energy, (July 2013).

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted Table

Formatted: Indent: Left: 0"

²²⁶ Interpolation may be used to estimate controller cost for motor sizes not listed.

Appendix H - TRM – Vol. 2: C&I Measures

LOADSHAPE

HVAC BUS

Algorithm

CALCULATION OF SAVINGS

Although advanced RTUs controls can enable operating strategies that result in heating and cooling savings, field testing has shown variable results (in some instances increased heating/cooling energy consumption has been observed). Field testing has suggested that upwards of 90% of total energy savings can be attributed to reduced fan energy requirements, and therefore the following savings estimates are limited to those relating to fan energy consumption.

ELECTRIC ENERGY SAVINGS

$\Delta kWh = P_{sf} \frac{P_{sf}}{+} x SF + x Hours_{fan} \frac{Hoursfan}{+}$

Where:

- = Nominal horsepower of supply fan motor P_{sf} = Fan energy savings factor_²²⁷-(kWh/hour/horsepower) SF
- $= 0.558^{228}$
- = Annual operating hours for fan motor based on Building Type. Default hours Hoursfan are provided for HVAC applications by Building Type.²²⁹ When available, actual hours should be used, especially in instances where RTU operation is seasonal.

Formatted: Cambria12

Formatted: Font: 9 pt, Underline, Font color: Accent 1

Field Code Changed

- 228 US Department of Energy, "Advanced Rooftop Control (ARC) Retrofit: Field-Test Results, PNNL-22656.", page 86, (July 2013). https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-
- 22656.pdf? hstc=249664665.3c4d37ff926a6dcbd64478550ad8ba16.1723665944789.1723665944789.1723665944789.1 c=249664665.1.1723665944789&__hsfp=2087961721. Savings factors were consistent across the capacity range. See "RTU ontrol Savings.xlsx" for additional details.

²²⁷ Based on average field testing results outlined in Advanced Rooftop Control (ARC) Retrofit: Field-Test Results, PNNL-Formatted: Footnotes, Indent: Left: 0" 22656. U.S. Department of Energy, July 2013. Savings factors were consistent across the capacity range. See "RTU Control Savings.xlsx" for additional details. Formatted: Footnotes

²²⁹ Hours per year are estimated using the modeling results and represent the total number of hours the fans are operating for heating, cooling and ventilation for each Building Type.

Appendix H - TRM – Vol. 2: C&I Measures

Building Type	Total -Fan Run
Dunung Type	Hours
Large Office	6753
Medium Office	6968
Small Office	6626
Warehouse	6263
Stand-alone Retail	6679
Strip Mall	6687
Primary School	5906
Secondary School	6702
Supermarket	6900
Quick Service Restaurant	7679
Full Service Restaurant	7664
Hospital	8760
Outpatient Health Care	8760
Small Hotel - Building	8760
Large Hotel - Building	8760
Midrise Apartment Building	8728
Nonresidential Average	6773

SUMMER COINCIDENT PEAK DEMAND SAVINGS

Where:

 $\Delta kW = \Delta kWh - x CF$

 $\Delta kWh = As$ calculated above.

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor = 0.0004439830^{230}

NATURAL GAS ENERGY SAVINGS

If fossil fuel impacts are expected, a custom analysis should be used to support them.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

•

Format	t ed: Keep with next	
Format	t ed: Keep with next	
Format	ted Table	
Format	t ed: Keep with next	
Format	t ed: Keep with next	
Format	t ed: Keep with next	
Format	t ed: Keep with next	
Format	t ed: Keep with next	
Format	t ed: Keep with next	
Format	t ed: Keep with next	
Format	t ed: Keep with next	
Format	t ed: Keep with next	
Format	t ed: Keep with next	
Format	t ed: Keep with next	
Format	t ed: Keep with next	
Format	t ed: Keep with next	
Format	t ed: Keep with next	
Format	t ed: Keep with next	
Format	t ed: Keep with next	
Format	t ed: Cambria12	

²³⁰ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

Appendix H - TRM – Vol. 2: C&I Measures

2.5.45 Electric Chiller

DESCRIPTION

This measure involves the installation of a new electric chiller meeting the efficiency standards presented below. This measure could relate to the replacement of an existing unit at the end of its useful life or the installation of a new system in an existing building (i.e., time of sale). Only single-chiller applications should be assessed with this methodology. For multiple chiller projects, a custom analysis should be used to establish savings.

This measure was developed to be applicable to the following program types: TOS and NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to exceed the efficiency requirements defined by the program.

DEFINITION OF BASELINE EQUIPMENT

In order for this characterization to apply, the baseline equipment is assumed to meet the 2015 IECC energy efficiency requirements. Chillers are rated for both the full load efficiency and the integrated part load efficiency. Chiller efficiency can be sourced by either Path A when the system is designed for full load efficiency, or Path B when designed for part load efficiency., effective January 1, 2024.

Prior to January 1, 2024, the applicable baseline is assumed to meet the efficiency requirements set forth by local jurisdictions. When local code does not exist, use of IECC 2012 is defined as the building code baseline. In most cases, this will be some version of IECC. Depending on the version, this will correspond to the requirements defined within Table 503.2.3(7) in the case of IECC 2009, Table 403.2.3(7) in the case of either IECC 2012 or the IECC 2015, or Table C403.3.2(7) in the case of IECC 2018.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 20-23 years.²³¹

DEEMED MEASURE COST

The incremental capital cost for this measure is \$106.23 per ton.²³²measure is based on the IPLV efficiency improvement over a code based minimum efficient chiller. The cost is per 0.01 IPLV improvement over code, per ton. A 150 ton screw chiller with an IPLV of 0.374, has an incremental cost of \$27,834, when the minimum code based efficiency is 0.44.

Water cooled, cleetrically operated, positive displacement (rotary screw and scroll) (\$/ton)									
Capacity (tons)	<mark>≻0.72 kW/ton</mark>	< 0.72 and	< 0.68 and	0.64 kW/ton and					
		> 0.68 kW/ton	<mark>≻ 0.64 kW/ton</mark>						

²³¹ 2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05, "Effective/Remaining Useful Life Values," California Public Utilities Commission, December 16, 2008.(Cell D85 "Updated 2014 EUL table" sheet), ASHRAE, Chapter 38: Owning and Operating Costs, Table 4, "Heating, Ventilating and Air Conditioning Applications", (2023 edition) for centrifugal chillers (page 38.3).

³² Ameren Missouri Technical Resource Manual Effective January 1, 2018.

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 5.0

Formatted: Font: 12 pt

Formatted: Footnotes, Indent: Left: 0"

Appendix H - TRM – Vol. 2: C&I Measures

< 50	\$76	\$126	n/a	n/a
>= 50 and <100	\$38	\$63	n/a	n/a
>= 100 and <150	\$25	\$42	n/a	n/a
>= 150 and <200	\$0	\$61	\$122	\$183
>= 200	\$0	\$31	\$61	\$92

Equipment	Incremental Cost ²³³ \$/0.01 IPLV above code/ton	Base IPLV
Water cooled screw chiller	<u>\$28</u>	2015 IECC or better
Water cooled centrifugal chiller	<u>\$35</u>	2015 IECC or better

Water cooled, electrically operated, positive displacement (reciprocating) (\$/ton)							
	≻0.60	< 0.60	0.58				
Capacity	kW/ton	and>	kw/ton				
(tons)		0.58	and				
		kW/ton	less				
< 100	\$73	\$110	\$183				
>= 100	\$49	\$73	\$122				
and <150							
>= 150	\$37	\$55	\$92				
and <200							
>= 200	\$61	\$91	\$152				
and <300							
>= 300	\$30	\$46	\$76				

LOADSHAPE

Cooling BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

For a chiller operating primarily at full load, (Path A compliance).

 $\Delta kWh = TONS - x (IPLV_{BASE} + IPLV_{EE} - IPLV_{EE} + x EFLH$

For a chiller operating primarily at part load, (Path B compliance).

²³³ Incremental cost aggregated from Southern California Edison data in the California eTRM, "Water Cooled Chiller" measure incremental cost data (November 2020), https://www.caetrm.com/measure/SWHC005/03/ Aggregated data in file "SWHC005_Water-Cooled_Chiller_Cost_Data_2020Q3_aggregated by 0.01 IPLV per ton.xlsx"

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Page 103

Formatted: Font: 11 pt, Bold, Font color: Background 1
Formatted: Font: 11 pt, Bold, Font color: Background 1
Formatted: Centered
Formatted Table
Formatted: Font: 11 pt, Bold, Font color: Background 1
Formatted: Font: 11 pt
Formatted: Centered
Formatted: Font: 11 pt
Formatted: Centered
Formatted: Font: 11 pt
Formatted Table

Formatted: Indent: Left: 0", Right: 0.1"

Formatted: Font: 9 pt, Font color: Blue

Italic

Formatted: Footnotes

Formatted: Font: 9 pt

Formatted: Font: 9 pt

Formatted: Font: (Default) Times New Roman, Not

Formatted: Cambria12, Space Before: 4 pt, After: 4 pt, Line spacing: single, Tab stops: Not at 3.01" + 4.8"

Appendix H - TRM – Vol. 2: C&I Measures

$\Delta kWh = TONS x (FL_{BASE} - FL_{EE}) x EFLH$

Where:

TONS	= Chiller nominal cooling capacity in tons (note: 1 ton = 12,000 Btu/hr) = Actual installed	+	Formatted Table
IPLV _{BASE}	= Fictual instance =Efficiency of baseline equipment expressed as Integrated Part Load Value (kW/ton). Chiller units are dependent on chiller type. See 'Chiller Units, Conversion Values' and 'Baseline Efficiency Values by Chiller Type' and Capacity in the Reference Tables section.		
	=Code based minimum <u>part load</u> efficiency for same type, capacity <u>installed</u>		
FL _{BASE}	= Efficiency of baseline equipment expressed as Full Load (kW/ton).		Formatted: Subscript
IPLVEE ²³⁴	=Code based minimum part load efficiency for same type, capacity installed = Efficiency of high efficiency equipment expressed as Integrated Part Load Value (kW/ton) ²³⁵		
	= Actual installed		
FL _{EE}	= Efficiency of high efficiency equipment expressed as Full Load (kW/ton)		Formatted: Subscript
EFLH	<u>=Actual installed</u> = Equivalent Full Load Hours for cooling are provided in <u>Table 1</u> <u>1Table 1. section 2.7 HVAC</u>		Formatted: Font color: Text 1
SUMMER COINCID	ENT PEAK DEMAND SAVINGS		
Where:	$\Delta kW = \Delta kWH - x CF$	4	Formatted: Cambria12
ΔkWh	= Annual electricity savings, as calculated above	•	Formatted Table

_= Summer peak coincidence demand (kW) to annual energy (kWh) factorr for CF Cooling $= 0.0009106840^{236}$

NATURAL GAS ENERGY SAVINGS

N/A

²³⁴ Integrated Part Load Value is a seasonal average efficiency rating calculated in accordance with ARI Standard 550/590. It may be calculated using any measure of efficiency (EER, kW/ton, COP), but for consistency, it is expressed in terms of IPLV here. o IDL V fr

AHRnetLorg. http://www.ahrinet.org/.

236 Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 5.0

Formatted: Line spacing: single

Formatted: Line spacing: single

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

REFERENCE TABLES

Chillers Ratings - Chillers are rated with different units based on equipment type as shown below

Equipment Type	Unit
Air cooled, electrically operated	EER
Water cooled, electrically operated, positive displacement (reciprocating)	kW/ton
Water cooled, electrically operated, positive displacement (rotary screw and scroll)	kW/ton

In order to convert chiller equipment ratings to IPLV the following relationships are provided

kW/ton	= 12 / EER
kW/ton	= 12 / (COP x 3.412)
COP	= EER / 3.412
COP	= 12 / (kW/ton) / 3.412
EER	= 12 / kW/ton
EER	= COP x 3.412

Baseline Efficiency Values by Chiller Type and Capacity:

Note: Efficiency requirements depend on the path (Path A or Path B) that the building owner has chosen to meet compliance requirements. For air cooled and absorption chillers, Path A should be assumed. For water cooled chillers, the building owner should be consulted and the relevant path used for calculations. When unknown, Path A should be used.

Appendix H - TRM - Vol. 2: C&I Measures

2009 IECC Baseline Efficiency Values by Chiller Type and Capacity

			BEFORE	1/1/2010		AS OF 1/1/2	010			
					PAT	на	PAT	H B		
EQUIPMENT TYPE	SIZE	UNITS	FULL LOAD	IPLV	FULL LOAD	IPLV	FULL	IPLV	TEST	
	< 150 tons	EER		101001000	≥ 9.562	≥ 12.500	NAd	NAd		
Air-cooled chillers	\geq 150 tons	EER	≥ 9,562	≥ 10.416	≥ 9.562	≥ 12.750	NAd	NAd		
Air cooled without condenser, electrical operated	All capacities	EER	≥ 10.586	≥ 11.782	be rated with	Air-cooled chillers without condensers must be rated with matching condensers and comply with the air-cooled chiller efficiency requirements				
Water cooled, electrically operated, reciprocating	All capacities	kW/ton	≤0.837	≤ 0.696	Reciprocating cooled positiv requirements	units must e e displaceme	omply with nt efficien	h water cy		
	< 75 tons	kW/ton			≤ 0.780	≤ 0.630	≤0.800	≤ 0.600		
Water cooled, electrically operated, positive displacement	≥ 75 tons and < 150 tons	kW/ton	≤ 0. 7 90	≤ 0.676	≤ 0.775	≤ 0.615	≤ 0.790	≤ 0.586	AHRI	
	≥ 150 tons and < 300 tons	kW/ton	≤0.717	≤ 0.627	≤ 0.680	≤ 0.580	≤0.718	≤ 0.540	-	
	\geq 300 tons	kW/ton	≤ 0.639	≤ 0.571	≤ 0.620	≤ 0.540	≤0.639	≤ 0.490		
	< 150 tons	kW/ton	≤ 0.703	≤ 0.669						
Water cooled,	≥ 150 tons and < 300 tons	kW/ton	≤ 0.63 4	≤ 0.596	≤ 0.634	≤ 0.596	≤0.639	≤ 0.450		
electrically operated, centrifugal	≥ 300 tons and < 600 tons	kW/ton	≤ 0.5 7 6	≤ 0,549	≤ 0.576	≤ 0.549	≤0.600	≤ 0.400		
	≥ 600 tons	kW/ton	≤ 0.576	≤ 0.549	≤ 0.570	≤ 0 .539	≤0.590	≤ 0.400		
Air cooled, absorption single effect	All capacities	COP	≥ 0.600	NRe	≥ 0.600	NRe	NAd	NAd		
Water-cooled, absorption single effect	All capacities	COP	≥ 0.700	NRe	≥ 0.700	NRe NAd NAd	AHRI560			
Absorption double effect, indirect-fired	All capacities	COP	≥ 1.000	≥ 1.050	≥ 1.000	≥ 1.050	NAd	NAd		
Absorption double effect, direct fired	All capacities	COP	≥ 1.000	≥ 1.000	≥ 1.000	≥ 1.000	NAd	NAd		

For SI: 1 ton = 907 kg, 1 British thermal unit per hour =0.2931 W a. The chiller equipment requirements do not apply for chillers used in ICMT-temperature applications where the design leaving fluid temperature is < 40°F. b. Section 12 contains a complete specification of the referenced test procedure, induding the referenced year VerSiDn of the test procedure, c. Compliance with this standard can be obtained by meeting the minimum requirements of Path A or B. However, both the full load and IPLV must be met to fulfill the requirements of Path A or B. d. NA means that this requirement is not applicable and cannot be used for compliance.

Appendix H - TRM – Vol. 2: C&I Measures

2012 IECC Baseline Efficiency Values by Chiller Type and Capacity

			BEFORE 1/1/2010							
					PAT	HA	PATH B		1	
EQUIPMENT TYPE	SIZE CATEGORY	UNITS	FULL	IPLV	FULL	IPLV	FULL	IPLV	TEST PROCEDURE	
Air-cooled chillers	< 150 tons	EER	> 9.562	≥10.4	≥ 9.562	≥ 12.500	NA	NA	1	
Air-cooled chillers	≥ 150 tons	EER	29.502	16	≥ 9.562	≥ 12.750	NA	NA	1	
Air cooled without condenser, electrical operated	All capacities	EER	≥ 10.586	≥ 11.782	ers shall h densers a	d chillers be rated wind comply ficiency re	ith matchi with the a	ng con- tir-cooled		
Water cooled, electrically operated, reciprocating	All capacities	kW/ton	≤ 0.837	≤ 0.696	Reciprocating units shall comply with water cooled positive displacement efficiency requirements					
Water cooled, electrically operated, posi- tive displacement	< 75 tons kW/ton ≥ 75 tons and kW/ton < 150 tons			≤ 0.780	≤ 0.630	≤ 0.800	≤ 0.600	1		
		kW/ton	≤ 0.790	≤ 0.676	≤ 0.775	≤ 0.615	≤ 0.790	≤ 0.586	AHRI 550/590	
	≥ 150 tons and < 300 tons	kW/ton	≤ 0.717	≤ 0.627	≤ 0.680	≤ 0.580	≤0.7 1 8	≤ 0.540	220/280	
	≥ 300 tons	kW/ton	≤ 0.639	≤ 0.571	≤ 0.620	≤ 0.540	≤ 0.639	≤ 0.490		
	< 150 tons	kW/ton	≤ 0.703	≤ 0.669						
Water cooled, electrically operated,	≥ 150 tons and < 300 tons	kW/ton	≤ 0.63 <mark>4</mark>	≤ 0.596	≤ 0.6 34	≤ 0.596	≤ 0.639	≤ 0.450		
centrifugal	≥ 300 tons and < 600 tons	kW/ton	≤ 0 <mark>.</mark> 576	≤ 0.549	≤ 0.576	≤ 0.549	≤ 0.600	≤ 0.400		
	≥ 600 tons	kW/ton	≤ 0.576	≤ 0.549	≤ 0.570	≤ 0.539	≤ 0.590	≤ 0.400	1	
Air cooled, absorption single effect	All capacities	COP	≥ 0.600	NR	≥0.600	NR	NA	NA		
Water cooled, absorption single effect	All capacities	COP	≥ 0.700	NR	≥ 0.700	NR	NA	NA		
Absorption double effect, indirect fired	All capacities	COP	≥ 1.000	≥ 1.050	≥ 1.000	≥ 1.050	NA	NA	AHRI 560	
Absorption double effect, direct fired	All	COP	≥ 1.000	≥ 1.000	≥ 1.000	≥ 1.000	NA	NA]	

Capacities Capacities

Formatted: Space After: 8 pt

Formatted: Indent: Left: 0", Space After: 8 pt, Line

Formatted: Left, Right: 0", Space After: 8 pt

spacing: Multiple 1.08 li

Appendix H - TRM - Vol. 2: C&I Measures

2015 IECC Baseline Efficiency Values by Chiller Type and Capacity

EQUIPMENT TYPE	SIZE CATEGORY	UNITS	BEFORE	1/1/2015	AS OF	TEST	
EQUIPMENT TYPE	SIZE CATEGORY		Path A	Path B	Path A	Path B	PROCEDURE*
	< 150 Tons		≥ 9.562 FL	NA	≥ 10.100 FL	≥ 9.700 FL	
Air-cooled chillers	< 150 100s	EER	≥ 12.500 IPLV	NA-	≥ 13.700 IPLV	≥ 15,800 IPLV	t
Air-cooled chillers	> 160 T	(Btu/W)	≥ 9.562 FL	NA	≥ 10.100 FL	≥ 9.700 FL	t
	≥ 150 Tons		≥ 12.500 IPLV	NA-	≥ 14.000 IPLV	≥ 16.100 IPLV	t
Air cooled without condenser, electrically operated	All capacities	EER (Btu/W)	Air-cooled chillers without condenser shall be rated with matching condensers and complying with air-cooled chiller efficiency requirements.				
	< 75 Tons		≤ 0.780 FL	≤0.800 FL	≤ 0.750 FL	≤ 0.780 FL	1
	< /5 10ns		≤0.630 IPLV	≤ 0.600 IPLV	≤ 0.600 IPLV	≤ 0.500 IPLV	1
	≥ 75 tons and ≤ 150 tons		≤0.775 FL	≤ 0.790 FL	≤ 0.720 FL	≤ 0.750 FL	t
			≤0.615 IPLV	≤ 0.586 IPLV	≤0.560 IPLV	$\leq 0.490 \text{IPLV}$	t
Water cooled, electrically	\ge 150 tons and < 300 tons		≤ 0.680 FL	≤0.718 FL	≤0.660 FL	≤0.680 FL	t
operated positive displacement		kW/ton	≤0.580 IPLV	≤0.540 IPLV	≤0.540 IPLV	≤0.440 IPLV	AHRI 550/ 590
100	\geq 300 tons and $<$ 600 tons		≤ 0.620 FL	≤0.639 FL	≤0.610 FL	≤ 0.625 FL	
			≤0.540 IPLV	≤ 0.490 IPLV	≤ 0.520 IPLV	$\leq 0.410 \text{IPLV}$	
	≥ 600 tons		≤ 0.620 FL	≤0.639 FL	≤ 0.560 FL	≤0.585 FL	
			≤ 0.540 IPLV	≤ 0.490 IPLV	≤0.500 IPLV	≤ 0.380 IPLV	
		kW/ton	≤ 0.634 FL	≤0.639 FL	≤0.610 FL	≤ 0.695 FL	
	< 150 Tons		≤ 0.596 IPLV	≤ 0.450 IPLV	≤ 0.550 IPLV	$\leq 0.440 \text{IPLV}$	
	≥ 150 tons and ≤ 300 tons		≤ 0.634 FL	≤0.639 FL	≤0.610 FL	≤ 0.635 FL	
			≤ 0.596 IPLV	≤ 0.450 IPLV	≤ 0.550 IPLV	$\leq 0.400 \text{IPLV}$	
Water cooled, electrically			≤ 0.576 FL	≤0.600 FL	≤0.560 FL	≤ 0.595 FL	
operated centrifugal	\geq 300 tons and < 400 tons	KW/ton	≤0.549 IPLV	$\leq 0.400 \text{ IPLV}$	≤0.520 IPLV	≤ 0.390 IPLV	t
	\geq 400 tons and < 600 tons		≤ 0.576 FL	≤0.600 FL	≤ 0.560 FL	≤0.585 FL	t
	\geq 400 tons and < 000 tons		≤0.549 IPLV	≤ 0.400 IPLV	≤0.500 IPLV	≤0.380 IPLV	t
	≥ 600 Tons		≤ 0.570 FL	≤0.590 FL	≤ 0.560 FL	≤ 0.585 FL	t
	2 000 1 ons		≤0.539 IPLV	$\leq 0.400 \text{ IPLV}$	$\leq 0.500 \text{ IPLV}$	≤ 0.380 IPLV	1
Air cooled, absorption, single effect	All capacities	COP	≥ 0.600 FL	NA°	≥ 0.600 FL	NA°	
Water cooled absorption, single effect	All capacities	COP	≥ 0.700 FL	NA®	≥ 0.700 FL	NA°	
Absorption, double effect, indirect fired	All capacities	COP	≥ 1.000 FL ≥ 1.050 IPLV	NA	≥ 1.000 FL ≥ 1.050 IPLV	NA°	AHRI 560
Absorption double effect direct fired	All capacities	COP	≥ 1.000 FL ≥ 1.000 IPLV	NA¢	≥ 1.000 FL ≥ 1.050 TPLV	NA"	1

a. The requirements for centrifugal chiller shall be adjusted for nonstandard rating conditions in accordance with Section C403.2.3.1 and are only applicable for the range of conditions listed in Section C403.2.3.1. The requirements for air-cooled, water-cooled positive displacement and absorption chillers are at standard rating conditions defined in the reference test procedure.
b. Both the full-load and IPLV requirements shall be met or exceeded to comply with this standard. Where there is a Path B, compliance can be with either Path A or Path B for any applicable for Path B and only Path A can be used for compliance.
c. NA means are not applicable for Path B and only Path A can be used for compliance.
d. FL represents the full-load performance requirements and IPLV the part-load performance requirements.

Appendix H - TRM - Vol. 2: C&I Measures

2018 IECC Baseline Efficiency Values by Chiller Type and Capacity

TABLE C403.3.2(7) WATER CHILLING PACKAGES — EFFICIENCY REQUIREMENT S ^{a, b, d}								
			BEFORE	1/1/2015	ASOF	1/1/2015	TEST	
EQUIPMENT TYPE	SIZE CATEGORY	UNITS	Path A	Path B	Path A	Path B	PROCEDURE®	
			≥ 9.562 FL		≥ 10.100 FL	≥ 9.700 FL		
Air-cooled chillers	< 150 Tons	EER	≥ 12.500 IPLV	NAª	≥ 13.700 IPLV	≥ 15,800 IPLV		
Air-cooled chillers		(Btu/W)	≥ 9.562 FL		≥ 10.100 FL	≥ 9.700 FL		
	≥ 150 Tons		≥ 12.500 IPLV	NAª	≥ 14.000 IPLV	≥ 16.100 IPLV		
Air cooled without condenser, electrically operated	All capacities	EER (Btu/W)		ndensers and c	condenser shall b omplying with air- equirements.			
	< 75 Tons		≤ 0.780 FL	≤ 0.800 FL	≤ 0.750 FL	≤ 0.780 FL		
	s /b ions		≤ 0.630 IPLV	≤ 0.600 IPLV	≤ 0.600 IPLV	≤ 0.500 IPLV	1	
	≥ 75 tons and < 150 tons	1	≤ 0.775 FL	≤ 0.790 FL	≤ 0.720 FL	≤ 0.750 FL		
	2 /o tons and < 100 tons		≤ 0.615 IPLV	≤ 0.586 IPLV	≤ 0.560 IPLV	≤ 0.490 IPLV	1	
Water cooled, electrically operated positive	≥ 150 tons and < 300 tons	kW/ton	≥ 0.680 FL	≥ 0.718 FL	≥ 0.660 FL	≥ 0.680 FL	AHRI 550/590	
displacement		Keenon	≥ 0.580 IPLV	≥ 0.540 IPLV	≥ 0.540 IPLV	≥ 0.440 IPLV		
	≥ 300 tons and < 600 tons	-	≤ 0.620 FL	≤ 0.639 FL	≤ 0.610 FL	≤ 0.625 FL		
			≤ 0.540 IPLV	≤ 0.490 IPLV	≤ 0.520 IPLV	≤ 0.410 IPLV		
	≥ 600 tons		≤ 0.620 FL	≤ 0.639 FL	≤ 0.560 FL	≤ 0.585 FL		
			≤ 0.540 IPLV	≤ 0.490 IPLV	≤ 0.500 IPLV	≤ 0.380 IPLV		
	< 150 Tons	_	≤ 0.634 FL	≤ 0.639 FL	≤ 0.610 FL	≤ 0.695 FL		
			≤ 0.596 IPLV	≤ 0.450 IPLV	≤ 0.550 IPLV	≤ 0.440 IPLV		
	> 150 tons and < 300 tons		≤ 0.634 FL	≤ 0.639 FL	≤ 0.610 FL	≤ 0.635 FL		
	2 100 tons and < 500 tons		≤ 0.596 IPLV	≤ 0.450 IPLV	≤ 0.550 IPLV	≤ 0.400 IPLV		
Water cooled, electrically	> 300 tons and < 400 tons	kW/ton	≤ 0.576 FL	≤ 0.600 FL	≤ 0.560 FL	≤ 0.595 FL		
operated centrifugal	2 300 tons and < 400 tons	Krwiton	≤ 0.549 IPLV	≤ 0.400 IPLV	≤ 0.520 IPLV	≤ 0.390 IPLV		
	≥ 400 tons and < 600 tons]	≤ 0.576 FL	≤ 0.600 FL	≤ 0.560 FL	≤ 0.585 FL		
	2 400 tons and < 000 tons		≤ 0.549 IPLV	≤ 0.400 IPLV	≤ 0.500 IPLV	≤ 0.380 IPLV		
	> 600 Tons	1	≤ 0.570 FL	≤ 0.590 FL	≤ 0.560 FL	≤ 0.585 FL		
	2 000 10115		≤ 0.539 IPLV	≤ 0.400 IPLV	≤ 0.500 IPLV	≤ 0.380 IPLV		
Air cooled, absorption, single effect	All capacities	COP	≥ 0.600 FL	NAª	≥ 0.600 FL	NAc		
Water cooled absorption, single effect	All capacities	COP	≥ 0.700 FL	NAª	≥ 0.700 FL	NAc		
Absorption, double effect, indirect fired	All capacities	COP	≥ 1.000 FL ≥ 1.050 IPLV	NAª	≥ 1.000 FL ≥ 1.050 IPLV	NAc	AHRI 560	
Absorption double effect direct fired	All capacities	COP	≥ 1.000 FL ≥ 1.000 IPLV	NAª	≥ 1.000 FL ≥ 1.050 IPLV	NAc		

a. The requirements for centrifugal chiler shall be adjusted for nonstandard rating conditions in accordance with Section C403.3.2.1 and are only applicable for the range of conditions listed in Section C403.3.2.1. The requirements for air-cooled, water-cooled positive displacement and absorption chilers are at standard rating conditions defined in the reference test procedure.
b. Both the full-load and IPLV requirements shall be met or exceeded to comply with this standard. Where there is a Path B, compliance can be with either Path A or Path B for any application.
c. NA means the requirements are not applicable for Path B and only Path A can be used for compliance.
d. FL represents the full-load performance requirements and IPLV the part-load performance requirements.

MEASURE CODE:

Appendix H - TRM - Vol. 2: C&I Measures

2.5.<u>56</u> Heat Pump Systems

DESCRIPTION

This measure applies to the installation of high efficiency air-cooled, water source, ground water source, and ground source heat pump systems. This measure could apply to replacing an existing unit at the end of its useful life, or installation of a new unit in a new or existing building.

This measure was developed to be applicable to the following program types: TOS<u></u>. <u>RetrofitEREP</u> and NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

For this characterization to apply, the efficient equipment is assumed to be a high-efficiency aircooled, water source, ground water source, or ground source heat pump system that exceeds both the full load and part load efficiencies associated with the applicable code described in the Definition of Baseline Equipment...the heating and cooling efficiency listed in Federal Energy ConservationEfficiency Standards.

Federal Energy Conservation Efficiency Standards (effective January 20123)²³⁷

Formatted: Font: Not Bold

Formatted: Font: Not Bold

	/	Formatted: Font: 9 pt
		Formatted: Font: 9 pt
		Formatted: Font: 9 pt, Font color: Black
²³⁷ DOE/https://www.ecfr.gov/current/title_10/chapter_II/subchapter_D/part_431DOE/Title10.Part_		Field Code Changed
431[https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431		Formatted: Font: 9 pt

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 5.0

Page 110

Appendix H - TRM – Vol. 2: C&I Measures

Heat	Capacity	ER heat or No	Supplemental Heat Source				
<u>Heat</u> Rejection		heat Type	<u>ER heat or No</u>	<u>All other heat</u> 0.58	Ē		
<u>Arcitetton</u>		<u>Inter Type</u>	<u>heat</u> All other heat	kw/ton and less			
		13.4	<u>\$11013.4 SEER2</u>	<u>13.4 SEER2</u>			
	< 100- 65	SEER2Packaged\$73	<u>6.7 HSPF2</u>	6.7 HSPF2 \$183			
		1 or 3 phase					
	<65	Split	14.3 SEER2	14.3 SEER2			
	<05	<u>1 or 3 phase</u>	7.5 HSPF2	7.5 HSPF2			
	≥ 65 and		<u>\$7314.1 IEER</u>	\$12213.9 IEER	4		
	<135 >= 100	\$49Packaged	<u>3.4 COP</u>	<u>3.4 COP</u>			
Air Source	and <150						
	≥ 135 and		<u>\$5513.5 IEER</u>	\$9213.3 IEER	4		
	< <u>≤</u> 240 >= 150	\$37Packaged	<u>3.3 COP</u>	<u>3.3 COP</u>			
	and <200						
	≥240 <u>and</u>		\$91 12.5 IEER	\$15212.3 IEER			
	<u><760</u> and<	\$61 Packaged	<u>3.2 COP</u>	<u>3.2 COP</u>			
	≤760>= 200	φ01 <u>1 dekageu</u>					
	and <300						
	<17	Packaged	<u>12.2 H</u>				
		<u>I dokugod</u>	<u>4.3 C</u>	<u>OP</u>	-		
Water Source	≥ 17 and < 65	Packaged	<u>13.0 E</u>	EER			
<u>Water Bource</u>		<u>I dekuged</u>	<u>4.3 C</u>	<u>OP</u>	-		
	≥ 65 and < 135	Packaged	<u>13.0 F</u>				
	<u>_00 und <100</u>	<u>r uonugou</u>	<u>4.3 C</u>	<u>OP</u>			
					-		
	≥>760= 300	\$30Packaged	<mark>\$46</mark>	<mark>\$76</mark>			

For VRF Heat pumps, heat pumps, vertical heat pumps, and other heat pumps, refer to the tables within the Federal Energy ConservationEfficiency Standards.

DEFINITION OF BASELINE EQUIPMENT

<u>Time of Sale, New Construction:</u> For this characterization to apply, the baseline equipment is assumed to be a standard-efficiency air- cooled, water source, ground water source, or ground source heat pump system that meets the 2015 IECC energy efficiency requirements, effective January 1, 2024. Federal Energy Conservation Efficiency Standards.

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted: Font: Bold
Formatted: Font: Bold, Font color: Background 1
Formatted: Font: Bold, Font color: Background 1
Formatted: Centered, Indent: Left: 0.03"
Formatted: Font: 11 pt, Bold, Font color: Background 1
Formatted: Font: 11 pt, Bold, Font color: Background 1
Formatted: Font: Bold, Font color: Background 1
Formatted: Font: Bold, Font color: Background 1
Formatted: Font color: Text 1
Formatted: Font: Not Bold, Font color: Text 1
Formatted: Font: Not Bold, Font color: Text 1
Formatted: Font: Not Bold, Font color: Auto
Formatted: Font color: Text 1
Formatted: Font color: Text 1
Formatted: Centered
Formatted: Font color: Text 1
Formatted: Font color: Text 1
Formatted: Font: Not Bold, Font color: Text 1
Formatted: Font: Not Bold, Font color: Text 1
Formatted: Font color: Text 1
Formatted: Font color: Text 1
Formatted: Centered
Formatted: Font: Not Bold, Font color: Text 1
Formatted: Font: Not Bold, Font color: Text 1
Formatted: Font: Not Bold, Font color: Auto
Formatted: Font color: Text 1
Formatted: Font color: Text 1
Formatted: Font: Not Bold, Font color: Text 1
Formatted: Font: Not Bold, Font color: Text 1
Formatted Table
Formatted: Font color: Text 1

Formatted: Centered

Formatted: Font color: Text 1

Page 111

Appendix H - TRM – Vol. 2: C&I Measures

Retrofit, Early Replacement: For this characterization to apply, the existing equipment is working with a remaining useful life. After, remaining useful life period, the baseline is the Time of Sale baseline meeting the Federal Energy Conservation Efficiency Standards.

For unit with a capacity less than 65 kBTUh, the baseline efficiency may be converted to the newer ratings expressed by SEER2 and HSPF2.

Prior to January 1, 2024, the applicable baseline is assumed to be similar equipment meeting the energy efficiency requirements of local building code. When local code does not exist, use of IECC 2012 is defined as the building code baseline.

The rating conditions for the baseline and efficient equipment efficiencies must be equivalent. Equipment capacities less than 65 kBtu/hr may be rated with the SEER2 efficiency (single phase, residential units), while larger units rated with EER or IEER.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 15 years.²³⁸

DEEMED MEASURE COST

For analysis purposes, the incremental capital cost for this measure is assumed as \$100-104 per ton per SEER or IEER unit increase over the base case efficiency for air-cooled units.²³⁹ The incremental cost for all other equipment types should be determined on a site-specific basis.

For a 120,000 BTUh, 16.1 IEER air cooled heat pump without auxiliary heat, the incremental cost is:

10 tons x (16.1 IEER - 14.1 IEER) x \$104 = \$2,080

LOADSHAPE

Cooling BUS Heating BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

For units with cooling capacities less than 65 kBtu/hr:

²³⁸ ASHRAE, Chapter 38: Owning and Operating Costs, Table 4, "Heating, Ventilating and Air Conditioning Applications", (2023 edition) for commercial air to air heat pumps (pg 651 or 38.3), Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, Inc., June 2007 (Page C-13).

²³⁹ Based on a review of TRM incremental cost assumptions from Vermont, Wisconsin, and California. AESC Inc. ASK Energy Inc, SDGE, "Industry Standard Practice Study of Commercial Unitary Air Conditioning and Heat Pumps Systems", page 36 (September 2021) https://www.caetrm.com/media/reference-documents/Unitary_HVAC_ISP_Report_Final.pdf. Formatted: Space After: Auto

Formatted: Footnotes Char, Font: 10 pt

Formatted: Footnotes Char, Font: 10 pt, Underline, Font color: Blue

Formatted: Font color: Accent 1

Ameren Missouri	Appendix H - TRM – Vol. 2: C&I Measure	s		
	nual kWh Savings _{cool} Annual kWh Savingscool + avings _{heat} Annual kWh Savingsheat			
		•		ed: CambriaTextFormula, Space After: Auto, 5: Not at 0.5" + 2.84"
Annual kW	h Savings _{cool} = <u>Annual kWh Savingscool</u>	•	Formatte	ed: Font: Cambria
(kBt	u/hr _{cool} kBtu/hrcool)-	•	Formatte	ed: Indent: Left: 0.2", Line spacing: 1.5 lines
	$x x [(1/SEER2_{base} SEER2base) - (1/SEER2_{EE} SEER2ee)]$		Space Aft	ed: CambriaTextFormula, Indent: Left: 0.61", ter: 0 pt, Line spacing: 1.5 lines, Tab stops:
	*-x EFLH _{cool} EFLHcool		Not at 1.	74" + 6.54"
Annual kWl	n Savings _{heat} Annual kWh Savingsheat =		Formatte	ed: Font: Cambria
(kBt	u/hr _{heat} k Btu/hrheat) *x [(1/HSPF2 _{base} HSPF2base) - (1/HSPF2 _{EE} HSPF2ee)] *x EFLH _{heat} EFLHheat			
For units with cooli	ng capacities equal to or greater than 65 kBtu/hr:			
$\Delta kWh = Annuc$	ıl kWh Savings _{cool} + Annual kWh Savings _{heat}			
Annual kV	$Vh Savings_{cool} =$	•	Formatte	ed: Font: (Default) Calibri
			Formatte	ed: Indent: Left: 0.3", Space After: Auto
	$kBtu/hr_{cool} x [(1/IEER_{base}) - (1/IEER_{EE})] x EFLH_{cool}$		Formatte	ed: Space After: Auto
Annual kWh	Savings _{heat} =	•	Formatte	ed: Indent: Left: 0.3", First line: 0"
kB — <u>AkWh = Anr</u>	$tu/hr_{heat} x \left[\frac{1}{(COP_{base}x \ 3.412)} - \frac{1}{(COP_{EE} x \ 3.412)}\right] x EFLH_{heat}$ nual kWh Savingscool + Annual kWh Savingsheat			
Annual HATA C	avingscool = (kBtu/hrcool) * [(1/IEERbase) – (1/IEERee)] * EFLHcool	•		ed: CambriaTextFormula, Space After: 0 pt, 5: Not at 0.5" + 0.69"
<u> </u>	avingscool = (KBta/mccool) = [[1/16EKbase] = [1/16EKbes] = BrEitcool 1 Savingsheat = (kBtu/hrheat)/3.412 * [[1/COPbase] = [1/COPce]] * EFLH		<u> </u>	ed: Font: (Default) Cambria
heat Where:			Tormatte	
kBtu/hr _{cool}	 = Capacity of the cooling equipment in kBtu per hour (1 ton of cooling capacity equals 12 kBtu/hr). = Actual installed 			
SEER _{base}	 Seasonal Energy Efficiency Ratio of the baseline equipment SEER from tables below, based on current DOE energy efficiency standards for TOS,NCthe applicable IECC. SEER based on existing efficiency for Retrofit 			

meren Missouri	Appendix H - TRM – Vol. 2: C&I Measures	
	= For units with cooling capacity <65kbtu/hr and efficient unit is measured in terms of SEER2, convert SEER _{base} to SEER2 _{base} . ²⁴⁰	
SEERee	 Seasonal Energy Efficiency Ratio of the energy efficient equipment. Actual installed 	
EFLH _{cool}	= Equivalent Full Load Hours for cooling are provided in <u>Table 1. Effective</u>	Formatted: Font color: Text 1
	Full Load Heating and Cooling Hours, by Building Type Table 1 Effective	Formatted: Font color: Text 1
	Full Load Heating and Cooling Hours, by Building TypeTable 1 Effective	
	<u>Full Load Heating and Cooling Hours, by Building Typesection 2.7 HVAC</u> End Use.	
HSPF _{base}	= Heating Seasonal Performance Factor of the baseline equipment	
	= HSPF from tables below, based on the applicable IECC. For units with	
	cooling capacity <65kbtu/hr and efficient unit is measured in terms of	
	HSPF2, convert HSPF _{base} to HSPF2 _{base} . ²⁴¹	
HSPF _{ee}	= Heating Seasonal Performance Factor of the energy efficient equipment.	
	= Actual installed. If rating is COP, HSPF = COP $\underline{*x}$ 3.413	
EFLHheat	= Heating mode equivalent full load hours are provided in <u>Table 1. Effective</u>	Formatted: Font color: Text 1
	Full Load Heating and Cooling Hours, by Building Type Table 1 Effective	Formatted: Font color: Text 1
	Full Load Heating and Cooling Hours, by Building TypeTable 1 Effective	
	Full Load Heating and Cooling Hours, by Building Type section 2.7 HVAC	
	End Use.	
IEER _{base}	= Integrated Energy Efficiency Ratio of the baseline equipment	
	= IEER from tables below, based on the applicable IECC.	
IEER _{ee}	= Integrated Energy Efficiency Ratio of the energy efficient equipment.= Actual installed	
kBtu/hr _{heat}	= Capacity of the heating equipment in kBtu per hour.= Actual installed	
3.412	= Btu per Wh.	
COP _{base}	= Coefficient of performance of the baseline equipment	
	= COP from tables below, based on the applicable IECC. If rating is HSPF,	
	$COP = HSPF / 3.413412.$ If rating is HSPF2, COP2 = HSPF $\underline{*x}$ 87% /	
	3. <u>413412</u>	
COPee	= Coefficient of performance of the energy efficient equipment.	
	= Actual installed	

 $^{^{240}}$ SEER to SEER2 conversion factor: SEER2 = SEER x 96%. Conversion factor for SEER to SEER2 is used when converting an existing system that is rated in SEER to SEER2. This is to meet the DOE M1 CFR Standard beginning January 1, 2023. The efficiency levels of the existing, baseline, and efficient case must be expressed in the same metrics (e.g., both SEER or SEER2) before applying formulas.

²⁴¹ HSPF to HSPF2 conversion factor: HSPF2 = HSPF x 87%. Conversion factor for HSPF to HSPF2 is used when converting an existing system that is rated in HSPF to HSPF2. This is to meet the DOE M1 CFR Standard beginning January 1, 2023. The efficiency levels of the existing, baseline, and efficient case must be expressed in the same metrics (e.g., both HSPF or HSPF2) before applying formulas.

Appendix H - TRM - Vol. 2: C&I Measures

Minimum Efficiency Requirements: 2009 IECC

UNITARY AIR CONDITI	ONERS AND CONDENSI	TABLE 503.2.3(2) NG UNITS, ELECTRICALLY OPE	RATED, MINIMUM EFFICI	IENCY REQUIREMENTS	
EQUIPMENT TYPE	SIZE CATEGORY	SUBCATEGORY OR RATING CONDITION	MINIMUM EFFICIENCyb	TEST PROCEDURE ³	
		Split system	13.0 SEER	-	
	< 65,000 Bhi/h ^a	Single package	13.0 SEER		
	≥ 65,000 Btu/h and < 135,000 Btu/h	Split system and single package	10.1 EERc (before Jan 1, 2010) 11.0 EERc (as of Jan 1, 2010)	AHRI210/240	
Air cooled, (Cooling mode)	≥ 135,000 Btu/h and < 240,000 Btu/h	9.3 EERc Split system and single package 10.6 EERc (as of Jan 1, 2010)			
			9.0 EERc	AHRI 340/360	
	≥ 240,000 Bnu/h	Split system and single package	(before Jan 1, 2010) 9.5 EERc 9.2 IPLYc (as of Jan 1, 2010)		
Through-the-Wall (Air cooled, cooling mode)	< 30,000 Btu/hª	Split system	10.9 SEER (before Jan 23, 2010) 12.0 SEER (as of Jan 23,2010)	- AHRI210/240	
		Single package	10.6 SEER (before Jan 23, 2010) 12.0 SEER (as of Jan 23,2010)		
	< 17,000 Btu/h	86°F entering water	11.2 EER	AHRI/ASHRAE 13256-	
Water Source (Cooling mode)	≥ 17,000 Bhu/h and < 135,000 Btu/h	86°F entering water	12.0 EER	AHRIASHRAE 13256-1	
Groundwater Source (Cooling mode)	< 135,000 Btu/h	59°F entering water	16.2 EER	AHRI/ASHRAE 13256-	
Ground source (Cooling mode)	< 135,000 Btu/h	77°F entering water	13.4 EER	AHRI/ASHRAE 13256-	
	< 65.000 Btu/h ^a	Split system	7.7 HSPF		
	(Cooling capacity)	Single package	7.7 HSPF		
Air cooled (Heating mode)	≥ 65,000 Btu/h and < 135,000 Btu/h (Cooling capacity)	47°F db/43°F wb Outdoor air	3.2 COP (before Jan 1, 2010) 3.3 COP (as of Jan 1, 2010)	AHRI210/240	
	≥ 135,000 Btu/h (Cooling capacity)	47°F db/43°F wb Outdoor air	3.1 COP (before Jan 1, 2010) 3.2 COP (as of Jan 1, 2010)	AHRI 340/360	

Formatted: Indent: Left: 0"

-

Appendix H - TRM - Vol. 2: C&I Measures

SIZE CATEGORY	SUBCATEGORY OR RATING CONDITION	MINIMUM EFFICIENCy ^b	TEST PROCEDURE ⁸	
	Split System	7.1 HSPE (before Jan 23, 2010) 7.4 HSPF (as of Jan 23,2010)		
<30,000 Btu/h	Single package	7.0 HSPF (before Jan 23, 2010) 7.4 HSPF (as of Jan 23,2010)		
<135,000 Btu/h (Cooling capacity)	68°F entering water	4.2 COP	AHRI/ASHRAE 13256-1	
<135,000 Btu/h (Cooling capacity)	50°F entering water	3.6 COP	AHRI/ASHRAE 13256-1	
< 135,000 Btu/h (Cooling capacity)	32°F entering water	3.1 COP	AHRI/ASHRAE 13256-1	
	< 30,000 Btu/h < 135,000 Btu/h (Cooling capacity) < 135,000 Btu/h (Cooling capacity) < 135,000 Btu/h	SIZE CATEGORY RATING CONDITION Split System Split System < 30,000 Btu/h	SIZE CATEGORY RATING CONDITION MINIMUM EFFICIENCy ^b Split System 7.1 HSPE (before Jan 23, 2010) 7.4 HSPF (as of Jan 23, 2010) < 30,000 Btu/h	

For SI: "C = [(OF) - 32]/1.8, 1 British thermal unit per hour = 0.2931 W
 db = dry-bub be temperature, of, dw = wer-bub be temperature, of.
 a. Chapter 6 contains a complete specification of the referenced test procedure, including the referenced year wrision of the test procedure.
 b. IPLVs and Part load rating conditions are only applicable to equipment with capacity modulation.
 c. Deduct 0.2 from the required EERs and IPLVs for units with a heating section other than electric resistance heat.
 d. Single-phase air-cooled heatpumps < 65,000 Btu/h are regulated by the National Appliance Energy Conservation Act of 1987 (NAECA), SEER and HSPF values are those set by NAECA.

Appendix H - TRM – Vol. 2: C&I Measures

	ELECTRICALLY C	TABLE C403.2.3(2) MUM EFFICIENCY REQUI	APPLIED HEAT PUMPS			
EQUIPMENT TYPE	SIZE CATEGORY	HEATING SECTION TYPE	SUBCATEGORY OR RATING CONDITION	MINIMUM	TEST PROCEDU	
Air cooled		NO.45	Split System	13.0 SEER		
(cooling mode)	< 65,000 Btu/h ^a	All	Single Packaged	13.0 SEER	1	
Through-the-wall,	≤ 30.000 Btu/h ^b	All	Split System	13.0 SEER	AHRI 210/240	
air cooled	3.50,000 10010		Single Packaged	13.0 SEER		
Single-duct high-velocity air cooled	< 65,000 Btu/h ^b	All	Split System	10.0 SEER	1	
	≥ 65.000 Btu/h and	Electric Resistance (or None)	Split System and Single Package	11.0 EER 11.2 IEER	8	
	< 135,000 Btu/h	All other	Split System and Single Package	10.8 EER 11.0 IEER	1	
Air cooled	≥ 135.000 Btu/h and	Electric Resistance (or None)	Split System and Single Package	10.6 EER 10.7 IEER	AHRI	
(cooling mode)	< 240,000 Btu/h	All other	Split System and Single Package	10.4 EER 10.5 IEER	340/360	
		Electric Resistance (or None)	Split System and Single Package	9.5 EER 9.6 IEER		
	≥ 240,000 Btu/h	All other	Split System and Single Package	9.3 EER 9.4 IEER		
	< 17,000 Btu/h	All	86°F entering water	11.2 EER		
Water source (cooling mode)	≥ 17,000 Btu/h and < 65,000 Btu/h	All	86°F entering water	12.0 EER		
	≥ 65,000 Btu/h and < 135,000 Btu/h	All	86°F entering water	12.0 EER	ISO 13256	
Ground water source	- 125 000 Du./h	All	59°F entering water	16.2 EER	1	
(cooling mode)	< 135,000 Btu/h	All	77°F entering water	13.4 EER	1	
Water-source water to water	< 135,000 Btu/h	All	86°F entering water	10.6 EER	0	
(cooling mode)	< 155,000 Entri		59°F entering water	16.3 EER	ISO 13250	
Ground water source Brine to water (cooling mode)	< 135,000 Btu/h	All	77°F entering fluid	12.1 EER	130 13230-2	
Air cooled	< 65 000 Rtu ^{3Lb}		Split System	7.7 HSPF		
(heating mode)	< 65,000 Btu/h ^b	-	Single Package	7.7 HSPF		
Through-the-wall,	≤ 30,000 Btu/h ^b (cooling capacity)		Split System	7.4 HSPF	AHRI 210/240	
(air cooled, heating mode)		-	Single Package	7.4 HSPF		
Small-duct high velocity (air cooled, heating mode)	< 65,000 Btu/h ^b		Split System	6.8 HSPF		

Formatted: Indent: Left: 0", Space After: 0 pt Formatted: Right: 0", Space After: 1.9 pt

Appendix H - TRM - Vol. 2: C&I Measures

EQUIPMENT TYPE	SIZE CATEGORY	HEATING SECTION TYPE	SUB-CATEGORY OR RATING CONDITION	MINIMUM	TEST
	≥ 65,000 Btu/h and		47°F db/43°F wb Outdoor Air 3.3 C		1
Air cooled	< 135,000 Btu/h (cooling capacity)	_	17°F db/15°F wb Outdoor Air	2.25 COP	AHRI 340/360
(heating mode)	≥ 135,000 Btu/h		47°F db/43°F wb Outdoor Air	3.2 COP	
	(cooling capacity)	_	17°F db/15°F wb Outdoor Air	2.05 COP	
Water source (heating mode)	< 135,000 Btu/h (cooling capacity)		68°F entering water	4.2 COP	
Ground water source (heating mode)	< 135,000 Btu/h (cooling capacity)		50°F entering water	3.6 COP	ISO 13256-1
Ground source (heating mode)	< 135,000 Btu/h (cooling capacity)	-	32°F entering fluid	3.1 COP	1
Water-source water to water	< 135,000 Btu/h		68°F entering water	3.7 COP	
(heating mode)	(cooling capacity)		50°F entering water	3.1 COP	ISO 13256-2
Ground source brine to water (heating mode)	< 135,000 Btu/h (cooling capacity)	-	32°F entering fluid	2.5 COP	1

For SI: 1 British thermal unit per hour = 0.2931 W, "C = [(^{+}F) - 32]/1.8. a. Chapter 6 of the referenced standard contains a complete specification of the referenced test procedure, including the reference year version of the test procedure, b. Single-phase, air-cooled air conditioners less than 65,000 Bru/h are regulated by NAECA. SEER values are those set by NAECA.

Appendix H - TRM - Vol. 2: C&I Measures

Minimum Efficiency Requirements: 2015 IECC

EQUIPMENT TYPE	SIZE CATEGORY	HEATING SECTION TYPE	SUBCATEGORY OR RATING CONDITION	MINIMUM EFFICIENCY		TEST	
				Before 1/1/2016	As of 1/1/2016	PROCEDURE	
Air cooled	< 65,000 Btu/h ^b	A11 -	Split System	13.0 SEER ^c	14.0 SEER ^c	AHRI 210/240	
(cooling mode)			Single Package	13.0 SEER ^c	14.0 SEER ^c		
Through-the-wall,	< 20.000 D: 4b		Split System	12.0 SEER	12.0 SEER		
air cooled	\leq 30,000 Btu/h ^b	A11	Single Package	12.0 SEER	12.0 SEER		
Single-duct high-velocity air cooled	< 65,000 Btu/h ^b	A11	Split System	11.0 SEER	11.0 SEER		
0 ,	≥ 65.000 Btu/h and	Electric Resistance (or None)	Split System and Single Package	11.0 EER 11.2 IEER	11.0 EER 12.0 IEER	AHRI 340/360	
	<135,000 Btu/h	All other	Split System and Single Package	10.8 EER 11.0 IEER	10.8 EER 11.8 IEER		
Air cooled	≥ 135,000 Btu/h and < 240,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	10.6 EER 10.7 IEER	10.6 EER 11.6 IEER		
(cooling mode)		All other	Split System and Single Package	10.4 EER 10.5 IEER	10.4 EER 11.4 IEER		
	≥ 240,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	9.5 EER 9.6 IEER	9.5 EER 10.6 IEER		
		All other	Split System and Single Package	9.3 EER 9.4 IEER	9.3 EER 9.4 IEER		
	<17,000 Btu/h	All	86°F entering water	12.2 EER	12.2 EER	ISO 13256-1	
Water to Air: Water Loop (cooling mode)	≥ 17,000 Btu/h and < 65,000 Btu/h	All	86°F entering water	13.0 EER	13.0 EER		
(cooring mood)	≥ 65,000 Btu/h and <135,000 Btu/h	All	86°F entering water	13.0 EER	13.0 EER		
Water to Air: Ground Water (cooling mode)	<135,000 Btu/h	A11	59°F entering water	18.0 EER	18.0 EER	ISO 13256-	
Brine to Air: Ground Loop (cooling mode)	<135,000 Btu/h	All	77°F entering water	14.1 EER	14.1 EER	ISO 13256-	
Water to Water: WaterLoop (cooling mode)	<135,000 Btu/h	All	86°F entering water	10.6 EER	10.6 EER		
Water to Water: Ground Water (cooling mode)	<135,000 Btu/h	A11	59°F entering water	16.3 EER	16.3 EER	ISO 13256-2	
Brine to Water: Ground Loop (cooling mode)	< 135,000 Btu/h	A11	77°F entering fluid	12.1 EER	12.1 EER		

Appendix H - TRM - Vol. 2: C&I Measures

EQUIPMENT TYPE	SIZE CATEGORY	HEATING SECTION TYPE	SUBCATEGORY OR RATING CONDITION	MINIMUM EFFICIENCY		TEST PROCEDURE*
				Before 1/1/2016	As of 1/1/2016	PROCEDORE
Air cooled (heating mode)	< 65,000 Btu/h ^b	-	Split System	7.7 HSPF ^c	8.2 HSPF	
		(<u>2—1</u> 13	Single Package	7.7 HSPF ^c	8.0 HSPF	
Through-the-wall, (air cooled, heating mode)	≤ 30,000 Btu/h ^b	—	Split System	7.4 HSPF	7.4 HSPF	AHRI 210/240
	(cooling capacity)	-	Single Package	7.4 HSPF	7.4 HSPF	210,210
Small-duct high velocity (air cooled, heating mode)	< 65,000 Btu/h ^b	-	Split System	6.8 HSPF	6.8 HSPF	
Air cooled (heating mode)	≥ 65,000 Btu/h and <135,000 Btu/h (cooling capacity)		47°F db/43°F wb outdoor air	3.3 COP	3.3 COP	AHRI 340/360
			17°F db/15°F wb outdoor air	2.25 COP	2.25 COP	
	≥ 135,000 Btu/h (cooling capacity)	_	47°F db/43°F wb outdoor air	3.2 COP	3.2 COP	
			17°F db/15°F wb outdoor air	2.05 COP	2.05 COP	
Water to Air: Water Loop (heating mode)	< 135,000 Btu/h (cooling capacity)	(5-3 0)	68°F entering water	4.3 COP	4.3 COP	
Water to Air: Ground Water (heating mode)	< 135,000 Btu/h (cooling capacity)		50°F entering water	3.7 COP	3.7 COP	ISO 13256-1
Brine to Air: Ground Loop (heating mode)	<135,000 Btu/h (cooling capacity)	-	32°F entering fluid	3.2 COP	3.2 COP	
Water to Water: Water Loop (heating mode)	< 135,000 Btu/h (cooling capacity)	<u>19</u> 17	68°F entering water	3.7 COP	3.7 COP	
Water to Water: Ground Water (heating mode)	< 135,000 Btu/h (cooling capacity)		50°F entering water	3.1 COP	3.1 COP	ISO 13256-2
Brine to Water: Ground Loop (heating mode)	<135,000 Btu/h (cooling capacity)	(3-3 5)	— 32°F entering fluid 2.		2.5 COP	

TABLE C403.2.3(2)—continued MINIMUM EFFICIENCY REQUIREMENTS:

For SI: 1 British thermal unit per hour = 0.2931 W, $^{\circ}$ C = [($^{\circ}$ F) - 32]/1.8. a. Chapter 6 contains a complete specification of the referenced test procedure, including the reference year version of the test procedure. b. Single-phase, air-cooled air conditioners less than 65,000 Btu/h are regulated by NAECA. SEER values are those set by NAECA. c. Minimum efficiency as of January 1, 2015.

1

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWH_{Cool} * CF$

Where:

 $\Delta kWH =$ Annual cooling electricity savings, as calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor = 0.0009106840^{242}

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

²⁴² Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

2.5.67 Packaged Terminal Air Conditioner (PTAC) - Packaged Terminal Heat Pump (PTHP)

DESCRIPTION

A PTAC is a packaged terminal air conditioner that cools and provides heat through an electric resistance heater (heat strip). A PTHP is a packaged terminal heat pump. A PTHP uses its compressor year-round to heat or cool. In warm weather, it efficiently captures heat from inside a space and pumps it outside for cooling. In cool weather, it captures heat from outdoor air and pumps it into a space, adding heat from electric heat strips as necessary to provide heat.

This measure characterizes:

- 1) Time of Sale: the purchase and installation of a new efficient PTAC or PTHP.
- 2) Early Replacement: the early removal of an existing PTAC or PTHP from service, prior to its natural end of life, and replacement with a new efficient PTAC or PTHP unit. Savings are calculated between existing unit and efficient unit consumption during the remaining life of the existing unit, and between new baseline unit and efficient unit consumption for the remainder of the measure life. The measure is only valid for non-fuel switching installations for example replacing a cooling only PTAC with a PTHP can currently not use the TRM.

This measure was developed to be applicable to the following program types: TOS, NC, and EREP.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to be PTACs or PTHPs that exceed the Federal Energy Efficiency Standards.²⁴³ The non-standard size equipement type applies to installations with wall openings less than 16" high or less than 42" wide, and only for retrofit applications.

Equipment Type	Capacity	Minimum Efficiency (Cap= Btuh)	•//
PTAC Standard Size	<7 kBtuh	<u>11.9 EER</u>	·]/ /
PTAC Standard Size	<u>7kBtuh≥Cap≤15 kBtuh</u>	<u>14.0-(0.3 x Cap) EER</u>	·] /
PTAC Standard Size	<u>>15 kBtuh</u>	<u>9.5 EER</u>	1/
PTAC Non-Standard Size	<7 kBtuh	<u>9.4 EER</u>	1
PTAC Non-Standard Size	<u>7kBtuh≥Cap≤15 kBtuh</u>	<u>10.9-(0.213xCap) EER</u>	•/
PTAC Non-Standard Size	>15 kBtuh	7.7 EER	•
PTHP Standard Size	<7 kBtuh	11.9 EER 3.3 COP	ł
PTHP Standard Size	<u>7kBtuh≥Cap≤15 kBtuh</u>	<u>14.0-(0.3 x Cap) EER</u> <u>3.7-(0.052 x Cap) COP</u>	·/

²⁴³ DOE, <u>DOE|Commercial Air Conditioners and Heat Pumps|https://www.cefr.gov/current/title-10/chapter-II/subchapter-D/part-431#431.97Commercial Air Conditioners and Heat Pumps|https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431#431.97</u>

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 5.0

Formatted: Centered, Space After: 2 pt
Formatted Table
Formatted: Font: 10 pt
Formatted: Space Before: 2 pt, After: 2 pt
Formatted: Font: 10 pt
Formatted: Space Before: 2 pt, After: 2 pt
Formatted: Font: 10 pt
Formatted: Space Before: 2 pt, After: 2 pt
Formatted: Font: 10 pt
Formatted: Space Before: 2 pt, After: 2 pt
Formatted: Font: 10 pt
Formatted: Space Before: 2 pt, After: 2 pt
Formatted: Font: 10 pt
Formatted: Space Before: 2 pt, After: 2 pt
Formatted: Font: 10 pt
Formatted: Space Before: 2 pt, After: 2 pt
Formatted: Font: 10 pt
Formatted: Space Before: 2 pt, After: 2 pt
Formatted: Hyperlink
Field Code Changed

Formatted: Font: 10 pt, Font color: Background 1

Page 122

Appendix H - TRM - Vol. 2: C&I Measures

ot
2

DEFINITION OF BASELINE EQUIPMENT

TOS: the baseline conditions is the minimum efficiency that meets listed for the equipment type in the Federal Energy Efficiency Standards by size and type.

EREP: the baseline is the existing PTAC or PTHP for the assumed remaining useful life of the unit and the new baseline as defined above for the remainder of the measure life. When the existing model data is not available, the baseline efficiency is the federal standard in effect when installed.

In order for this characterization to apply, the efficient equipment is assumed to be PTACs or PTHPs that exceed baseline efficiencies.

DEFINITION OF BASELINE EQUIPMENT

TOS: the baseline conditions is in the 2015 IECC building code, which is summarized in the baseline reference table provided below.

EREP: the baseline is the existing PTAC or PTHP for the assumed remaining useful life of the unit and the new baseline as defined above for the remainder of the measure life.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 15 years.²⁴⁴

Remaining life of existing equipment is assumed to be 5 years.²⁴⁵

DEEMED MEASURE COST

TOS: The incremental capital cost for this equipment is estimated to be \$84/ton.246

EREP: The measure cost is the full cost of removing the existing unit and installing a new one. The actual program cost should be used. If unknown assume \$1,047 per ton.²⁴⁷

²⁴⁴ ASHRAE, Chapter 38: Owning and Operating Costs, Table 4, "Heating, Ventilating and Air Conditioning Applications", (2023 edition) for commercial through-the-wall air conditioners.<u>Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, Inc., June 2007 (Page C 16)</u>

²⁴⁵ Standard assumption of one third of effective useful life.

²⁴⁶ DEER 2008. This assumes that baseline shifts between IECC versions carries the same incremental costs. Values should be verified during evaluation

²⁴⁷ Based on DCEO - IL PHA Efficient Living Program data.

The assumed deferred cost (after 5 years) of replacing existing equipment with new baseline unit is assumed to be \$1,039 per ton.²⁴⁸ This cost should be discounted to present value using the utilities' discount rate.

LOADSHAPE

Cooling BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Electric savings for PTACs and PTHPs should be calculated using the following algorithms

ENERGY SAVINGS

TOS:

$PTAC \Delta kWh^{249}$	$= \Delta k W h_{cool}$
$PTHP \Delta kWh$	$= \Delta kWh_{cool} + \Delta kWh_{heat}$
ΔkWh_{cool}	= kBtu/hr _{cool} * <u>x</u> (1/EER _{base} – 1/EER _{ee}) * <u>x</u> EFLH _{cool}
ΔkWh_{heat}	= $kBtu/hr_{heat} / 3.412 \stackrel{*}{\simeq} (1/COP_{base} - 1/COP_{ee}) \stackrel{*}{\simeq} EFLH_{heat}$

EREP:

 Δ kWh for remaining life of existing unit (1st 5years)

 $\begin{array}{lll} \Delta kWh &= \Delta kWh_{cool} + \Delta kWh_{heat} \\ \Delta kWh_{cool} &= kBtu/hr_{cool} \stackrel{*}{\searrow} (1/EER_{exist} - 1/EER_{ee}) \stackrel{*}{\searrow} EFLH_{cool} \\ \Delta kWh_{heat} &= kBtu/hr_{heat} / 3.412 \stackrel{*}{\searrow} (1/COP_{exist} - 1/COP_{ee}) \stackrel{*}{\implies} EFLH_{heat} \\ \Delta kWh for remaining measure life (next 10 years) \end{array}$

∆kWh	$= \Delta k W h_{cool} + \Delta k W h_{heat}$
ΔkWh_{cool}	= kBtu/hr _{cool}
ΔkWh_{heat}	= kBtu/hr _{heat} / 3.412 * <u>x</u> (1/COP _{base} – 1/COP _{ee}) * <u>x</u> EFLH _{heat}

Where:

kBtu/hr _{cool}	= Capacity of the cooling equipment in kBtu per hour (1 ton of cooling
	capacity equals 12 kBtu/hr).
	= Actual installed
EFLH _{cool}	= Equivalent Full Load Hours for cooling are provided in section
	2.7 <u>Table 1</u> HVAC End Use
EFLH _{heat}	= Equivalent Full Load Hours for heating are provided in Table
	1section 2.7 HVAC End Use

²⁴⁸ Based on subtracting TOS incremental cost from the DCEO data and incorporating inflation rate of 1.91%.
²⁴⁹ There are no heating efficiency improvements for PTACs since although some do provide heating, it is always through electric resistance and therefore the COPbase and COPee would be 1.0.

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 5.0

Formatted: CambriaTextFormula Formatted: CambriaTextFormula

Formatted: CambriaTextFormula Formatted: CambriaTextFormula

Formatted: CambriaTextFormula

Formatted: CambriaTextFormula

Formatted: CambriaTextFormula

Formatted: CambriaTextFormula

Formatted: Font: Not Italic Formatted: CambriaTextFormula Formatted: CambriaTextFormula

Formatted: Font: Not Italic

250

2.6.

Appendix H - TRM - Vol. 2: C&I Measures

EER _{exist}	– Energy Efficier	ory Ratio of the	existing equipment	actual	1	Formattade Fords 11 at
LERexist			by federal efficier			Formatted: Font: 11 pt
				eline efficiency for		Farmette di Farrie 12 at
			l in the following t			Formatted: Font: 12 pt
	<u>a standard size, i</u>	ton unit is listed	i ili the following t	<u>abic.</u>		Formatted: Font: 11 pt
	1					
	Manufactured	<u>1/1/2017 -</u>	<u>1/8/2012-</u>	Prior to	•	Formatted Table
	<u>Date</u>	<u>Current</u>	<u>12/31/2016</u>	1/8/2012	K	Formatted: Font: 11 pt, Bold, Font color: Background 1
	PTAC	<u>10.4 EER</u>	<u>10.2 EER</u>	8.1 EER	••	Formatted: Font: Bold, Font color: Background 1
	PTHP	<u>10.4 EER</u>	<u>10.4 EER</u>	<u>8.1 EER</u>		Formatted: Centered
EER _{base}	= Energy Efficier	L CV Ratio of the	baseline equipmen	t		Formatted: Font: 11 pt, Bold, Font color: Background 1
LINDase			r requirements bas			Formatted: Font: 11 pt
	Energy Efficiency	y Standard. Stand	lardsSee the table	below for		Formatted Table
	requirements base					
EER _{ee}	= Energy Efficier	ncy Ratio of the	energy efficient eq	uipment. For air-		Formatted: Font: 11 pt
				known, assume the		Formatted: Font: 11 pt
			to EER for calculate			Formatted: Font: 11 pt
	savings:251 EER =	= (-0.02 <u>≭x</u> SEEF	R ²) + (1.12 <u>≭x</u> SEE	R)		
	= Actual installed	-				
kBtu/hr _{heat}	· ·	U	ent in kBtu per ho	ır.		
	= Actual installed	1				
3.412	= Btu per Wh.					
COPexist	-		he existing equipm			
				ard in effect when		
				d size, 1 ton unit is		
	PTAC units and 2		l. If unknown assu	me 1.0 COP for		
	Manufactured	1/1/2017 -	1/8/2012-	Prior to		Formattade Canton Declarge and 1
	Date	Current	12/31/2016	1/8/2012		Formatted: Font color: Background 1
	PTAC	10.4 EER	10.2 EER	8.1 EER		Formatted: Centered
	<u>PTAC</u>	<u>1.0 COP</u>	<u>1.0 COP</u>	<u>1.0 COP</u>		Formatted Table
	PTHP	3.1 COP	3.1 COP	2.6 COP		
COP _{base}			he baseline equipn			
			rdsee table below			
	values. Coefficient		e of the baseline ec	luipment; see table		
COPee			he energy efficient	aquinmont	1	
COFee	= Actual installed		ne energy erriclent	equipilient.		
	– Actual Installed	1				

ing the IECC I 2003 (p107; ²⁵¹ Based on Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder. Note this is appropriate for single speed units only.
 ²⁵² Estimated using the IECC building energy code up until year 2003 (p107; https://law.resource.org/pub/us/code/ibr/iec.iecc.2000.pdf) and assuming a 1 ton unit; COP = 2.9 (0.026 * 12,000/1,000) =

Appendix H - TRM - Vol. 2: C&I Measures

2015 IECC Building Code Baseline Efficiencies

Equipment Type	Category	Efficiency Level*
DTAC	New Construction	$EER = 14 - (0.3 \times Cap/1000)$
PTAC	Replacements ^b	$EER = 10.9 - (0.213 \times Cap/1000)$
PTHP	New Construction	EER = 14.0 0.3 × Cap/1000)
		$COP = 3.7 (0.052 \times Cap/1000)$
	Replacements ^b	EER = 10.8 - (0.213 × Cap/1000)
		$COP = 2.9 (0.026 \times Cap/1000)$

^a"Cap" = The rated cooling capacity of the project in Btu/hr. If the unit's capacity is less than 7000 Btu/hr, use 7,000 Btu/hr in the calculation. If the unit's capacity is greater than 15,000 Btu/hr, use 15,000 Btu/hr in the calculations.

^b-Replacement unit shall be factory labeled as follows "MANUFACTURED FOR REPLACEMENT APPLICATIONS ONLY; NOT TO BE INSTALLED IN NEW CONSTRUCTION PROJECTS". Replacement efficiencies apply only to units with existing sleeves less than 16 inches (406mm) in height and less than 42 inches (1067 mm) in width.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

TOS:

EREP:

$\Delta kW = \Delta kWH_{cool} - x CF$

 ΔkW for remaining life of existing unit (1st 5years)

 $\Delta kW = \Delta kW (1st \, 5 \, years) + \chi \, CF$

 ΔkW for remaining measure life (next 10 years)

 $\Delta kW = \Delta kW$ (next 10 years) * χCF

Where:

 ΔkWH_{cool}
 = Annual cooling electricity savings, as calculated above

 CF
 = Summer peak coincidence demand (kW) to annual energy (kWh)

 factor for cooling
 = 0.0009106840

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 5.0

Formatted: Cambria12, Indent: First line: 0"

Formatted: Cambria12, Indent: Left: 0"

Formatted: Cambria12, Indent: Left: 0"

Appendix H - TRM – Vol. 2: C&I Measures

MEASURE CODE:

2.5.78 Single-Package and Split System Unitary Air Conditioner

DESCRIPTION

This measure promotes the installation of high-efficiency unitary air-, water-, and evaporatively cooled air conditioning equipment, both single-package and split systems. Air conditioning (AC) systems are a major consumer of electricity and systems that exceed baseline efficiencies can save considerable amounts of energy. This measure could apply to the replacement of an existing unit at the end of its useful life or the installation of a new unit in a new or existing building.

This measure was developed to be applicable to the following program types: TOS and NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to be a highefficiency air-, water-, or evaporatively cooled air conditioner that exceeds both the full load and part load efficiencies associated with the applicable code described in the Definition of Baseline Equipment.Federal Energy Conservation Efficiency Standards.

Federal Energy Conservation Efficiencyci Standards (effective January 2013/2023)²⁵³

Heat Rejection	Capacity, kBTUh	Туре	<u>ER-Electric</u> resistance or heat or No heat	All other heat	
	< 65	Packaged,-Split	13.4 SI 6.7 H		
	≥ 65 and < 135	Packaged	14. <u>8</u> 4 IEER 3.4 COP	<u>,14.6 IEER</u>	
Air Source	\geq 135 and $<$ 240	Packaged	13.5<u>14.2</u> IEER <u>3.3 COP</u>	<u>14.0 IEER</u>	
	≥240 <u>and <760</u>	Packaged	12.5<u>13.23</u> IEER <u>3.2 COP</u>	<u>13.0 IEER</u>	
	<u>< 65</u>	Packaged,Split	<u>12.1 I</u>	EER	
Watan Carrier	$\geq 65 \text{ and } < 135$	Packaged	<u>12.1 EER</u>	<u>11.9 EER</u>	
Water Source	\geq 135 and \leq 240	Packaged	<u>12.5 EER</u>	<u>12.3 EER</u>	
	$\geq 240 \text{ and } < 760$	Packaged	<u>12.4 EER</u>	<u>12.2 EER</u>	

Formatted: Font: Not Bold
Formatted: Font: Not Bold
Formatted: Font: Not Bold
Formatted: Font: 11 pt, Bold
Formatted: Font: Bold
Formatted: Font: Bold
Formatted: Centered, Line spacing: single, No widow/orphan control, Don't keep with next, Don't keep lines together
Formatted: Line spacing: single, No widow/orphan control, Don't keep with next, Don't keep lines together
Formatted: Font: Bold
Formatted: Font: 11 pt
Formatted: Line spacing: single, No widow/orphan control, Don't keep with next, Don't keep lines together
Formatted: Font: 11 pt
Formatted: Font: 11 pt

DEFINITION OF BASELINE EQUIPMENT

I

TOS, New Construction: In order for this characterization to apply, the baseline equipment is assumed to be a standard-efficiency air-, water, or evaporatively cooled air conditioner that meets

²⁵³ DOE|Title10,Part 431|https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431

Appendix H - TRM - Vol. 2: C&I Measures

the 2015 IECC energy efficiency requirements, effective January 1, 2024. Federal Energy ConservationEfficiency Standards.

Retrofit, Early Replacement: For this characterization to apply, the existing equipment is working with a -remaining useful life. The efficiency is the actual if known, else the standard efficiency when manufactured. After, remaining useful life period, the baseline is the Time of Sale baseline meeting the Federal Energy ConservationEfficiency Standards.Prior to January 1, 2024, the applicable baseline is assumed be similar equipment meeting the energy efficiency requirements of local building code. When local code does not exist, use of IECC 2012 is defined as the building code baseline

The rating conditions for the baseline and efficient equipment efficiencies must be equivalent.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 15 years.254

DEEMED MEASURE COST

For analysis purposes, the incremental capital cost for this measure is assumed The incremental capital cost for this measure is assumed to be \$100-104 per ton_per SEER or IEER unit increase over the base case efficiency for air-cooled units.²⁵⁵

The incremental cost for all other equipment types should be determined on a site-specific basis.

For a 144,000 BTUh, 16.2 IEER air source packaged air conditoner without heat, the incremental

<u>cost is:</u>

<u>12 tons x (16.2 IEER – 14.2 IEER) x 104 = 2,496</u>

LOADSHAPE

Cooling BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

For units with cooling capacities less than 65 kBtu/hr:

 ²⁵⁴ ASHRAE, Chapter 38: Owning and Operating Costs, Table 4, "Heating, Ventilating and Air Conditioning Applications", (2023 edition) for commercial roof top air conditioners, single zone or multi zone, Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, Inc., June 2007.
 ²⁵⁵ AESC Inc, ASK Energy Inc, SDGE, "Industry Standard Practice Study of Commercial Unitary Air Conditioning and Heat Pumps Systems", page 36 (September 2021) https://www.caetrm.com/media/referencedocuments/Unitary_HVAC_ISP_Report_Final.pdfBased on a review of TRM incremental cost assumptions from

Vermont, Wisconsin, and California. This assumes that baseline shift from between IECC versions carries the same incremental costs. Values should be verified during evaluation.

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted: Underline

Appendix H - TRM – Vol. 2: C&I Measures

$\Delta kWH = kBtu/hr \underline{*_{X}} (1/SEER\underline{2}_{pase} - 1/SEER\underline{2}_{ee}) \underline{*_{X}} EFLH$	 Form
For units with cooling capacities equal to or greater than 65 kBtu/hr:	Form
$\Delta kWH = kBtu/hr \underline{*_{X}} (1/IEER_{base} - 1/IEER_{ge}) \underline{*_{X}} EFLH$	Form
Where:	Form
kBtu/hr = Capacity of the cooling equipment actually installed in kBtu per hour (1 ton of cooling capacity equals 12 kBtu/hr)	
$SEER_{2base}^{2}$ = Seasonal Energy Efficiency Ratio of the baseline equipment	
= SEER values from tables below, based on the applicable IECC.	
= For units with cooling capacity <65kbtu/hr and efficient unit is measured in terms of SEER2, convert SEER _{base} to SEER2 _{base} . ²⁵⁶ .	
SEER ² _{ee} = Seasonal Energy Efficiency Ratio of the energy efficient equipment (actually installed)	
IEER _{base} = Integrated Energy Efficiency Ratio of the baseline equipment = IEER values from tables below, based on the applicable IECC.	
IEER _{ee} = Integrated Energy Efficiency Ratio of the energy efficient equipment (actually installed.)	
EFLH = Equivalent Full Load Hours for cooling are provided in <u>Table 1</u> section 2.7 HVAC End Use	

Formatted: Subscript

 Formatted: Subscript

 Formatted: Subscript

 Formatted: Subscript

 $^{^{256}}$ SEER to SEER2 conversion factor: SEER2 = SEER x 96%. Conversion factor for SEER to SEER2 is used when converting an existing system that is rated in SEER to SEER2. This is to meet the DOE M1 CFR Standard beginning January 1, 2023. The efficiency levels of the existing, baseline, and efficient case must be expressed in the same metrics (e.g., both SEER or SEER2) before applying formulas.

Appendix H - TRM - Vol. 2: C&I Measures

Formatted: Left

2009 IECC Minimum Efficiency Requirements

EQUIPMENT TYPE	SIZE CATEGORY	SUBCATEGORY OR RATING CONDITION	MINIMUM EFFICIENCyb	TEST PROCEDURE*
		Split system	13.0 SEER	
	< 65,000 Btu/h ^d	Single package	13.0 SEER	
	≥ 65,000 Btu/h and < 135,000 Btu/h	Split system and single package	10.3 EERc (before Jan 1, 2010) 11.2 EERc (as of Jan 1, 2010)	AHRI210/240
	≥ 135,000 Btu/h and < 240,000 Btu/h	Split system and single package	9.7 EERc (before Jan 1, 2010) 11.0 EERc (as of Jan 1, 2010)	
Air conditioners, Air cooled	> 240 000 Bbbb		9.5 EERc 9.7 IPLYc	
-	and < 760,000 Btu/h	Split system and single package	(before Jan 1, 2010) 10.0 EERc 9.7 IPLyg (as of Jan 1, 2010)	AHRI 340/360
	≥ 760,000 Btu/h	Split system and single package	9.2 EERc 9.4 IPLYc (before Jan 1, 2010) 9.7 EERc 9.4 IPLYc (as of Jan 1, 2010)	
Through-the-wall, Air cooled	< 30.000 Btu/h ^d	Split system	10.9 SEER (before Jan 23, 2010) 12.0 SEER (as of Jan 23,2010)	AHRI210/240
	- 50,000 Dia 1	Single package	10.6 SEER (before Jan 23, 2010) 12.0 SEER (as of Jan 23,2010)	Andresette
Air conditioners, Water and evaporatively cooled	< 65,000 Btu/h	Split system and single package	12.1 EER	
	≥ 65,000 Btu/h and < 135,000 Btu/h	Split system and single package	11.5 EERe	AHRI210/240
	≥ 135,000 Btu/h and < 240,000 Btu/h	Split system and single package	11.0 EERc	AHRI 340/360
	≥ 240,000 Btu/h	Split system and single package	11.5 EERc	

For SI: 1 British thermal unit per hour = 0.2931 W a. Chapter 6 contains a complete specification of the referenced test procedure, including the referenced year <u>wrking</u> of the test procedure. b. JELVs are only applicable to equipment with capacity modulation. c. Deduct 0.2 from the required EERs and JELVs for units with a heating section other than electric resistance heat.

d. Single-phase air-cooled air conditioners < 65,000 Btulh are regulated by the National Appliance Energy Conservation Act of 1987 (NAECA); SEER values are mose set by NAECA.</p>

Appendix H - TRM – Vol. 2: C&I Measures

2012 IECC Minimum Efficiency Requirements

EQUIPMENT TYPE	SIZE CATEGORY	HEATING	SUBCATEGORY OR	MINIMUM E	FFICIENCY	TEST
EQUIPMENT TYPE	SIZE CATEGORY	SECTION TYPE	RATING CONDITION	Before 6/1/2011	As of 6/1/2011	PROCEDURE
Air conditioners,	< 65.000 Btu/hb	All	Split System	13.0 SEER	13.0 SEER	
air cooled	< 05,000 Bui/II	Ан	Single Package	13.0 SEER	13.0 SEER	
Through-the-wall	< 30.000 Btu/h ^h	All	Split system	12.0 SEER	12.0 SEER	AHRI
(air cooled)	≤ 30,000 Btu/h"	All	Single Package	12.0 SEER	12.0 SEER	210/240
Small-duct high-velocity (air cooled)	< 65,000 Btu/h ^b	All	Split System	10.0 SEER	10.0 SEER	
	≥ 65,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	11.2 EER 11.4 IEER	11.2 EER 11.4 IEER	
	and < 135,000 Btu/h	All other	Split System and Single Package	11.0 EER 11.2 IEER	11.0 EER 11.2 IEER	
	> 105 000 D. A	Elecure Resistance	Spin System and	11.0 EER	11.0 EER	
	≥ 135,000 Btu/h and	(or None)	Single Package	11.2 IEER	11.2 IEER	AHRI 340/360
Air conditioners,	< 240,000 Btu/h	All other	Split System and Single Package	10.8 EER 11.0 IEER	10.8 EER 11.0 IEER	
atr cooled	≥ 240,000 Btu/h and < 760,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	10.0 EER 10.1 IEER	10.0 EER 10.1 IEER	
		All other	Split System and Single Package	9.8 EER 9.9 IEER	9.8 EER 9.9 IEER	
	≥ 760,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	9.7 EER 9.8 IEER	9.7 EER 9.8 IEER	
		All other	Split System and Single Package	9.5 EER 9.6 IEER	9.5 EER 9.6 IEER	
	< 65,000 Btu/h ^b	All	Split System and Single Package	12.1 EER 12.3 IEER	12.1 EER 12.3 IEER	AHRI 210/240
	≥ 65,000 Btu/h and	Electric Resistance (or None)	Split System and Single Package	11.5 EER 11.7 IEER	12.1 EER 12.3 IEER	
	< 135,000 Btu/h	All other	Split System and Single Package	11.3 EER 11.5 IEER	11.9 EER 12.1 IEER	
	≥ 135,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	11.0 EER 11.2 IEER	12.5 EER 12.7 IEER	T
Air conditioners, water cooled	and < 240,000 Btu/h	All other	Split System and Single Package	10.8 EER 11.0 IEER	12.3 EER 12.5 IEER	AHRI
	≥ 240,000 Btu/h and < 760,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	11.0 EER 11.1 IEER	12.4 EER 12.6 IEER	340/360
		All other	Split System and Single Package	10.8 EER 10.9 IEER	12.2 EER 12.4 IEER	
		Electric Resistance (or None)	Split System and Single Package	11.0 EER 11.1 IEER	12.0 EER 12.4 IEER	
	≥ 760,000 Btu/h ·	All other	Split System and Single Package	10.8 EER 10.9 IEER	12.0 EER 12.2 IEER	100

(continued)

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 5.0

Appendix H - TRM - Vol. 2: C&I Measures

EQUIPMENT TYPE	SIZE CATEGORY	HEATING	SUB-CATEGORY OR	MINIMUM E	FFICIENCY	TEST
EQUIPMENT TYPE	SIZE CATEGORY	SECTION TYPE	RATING CONDITION	Before 6/1/2011	As of 6/1/2011	PROCEDURE
	< 65,000 Btu/h ^b	All	Split System and Single Package	12.1 EER 12.3 IEER	12.1 EER 12.3 IEER	AHRI 210/240
	≥ 65,000 Btu/h and	Electric Resistance (or None)	Split System and Single Package	11.5 EER 11.7 IEER	12.1 EER 12.3 IEER	
	< 135,000 Btu/h	All other	Split System and Single Package	11.3 EER 11.5 IEER	11.9 EER 12.1 IEER	
Air conditioners, evaporatively cooled		Electric Resistance (or None)	Split System and Single Package	11.0 EER 11.2 IEER	12.0 EER 12.2 IEER	
		All other	Split System and Single Package	10.8 EER 11.0 IEER	11.8 EER 12.0 IEER	AHRI
	≥ 240,000 Btu/h and < 760,000 Btu/h E	Electric Resistance (or None)	Split System and Single Package	11.0 EER 11.1 IEER	11.9 EER 12.1 IEER	340/360
		All other	Split System and Single Package	10.8 EER 10.9 IEER	12.2 EER 11.9 IEER	
		Electric Resistance (or None)	Split System and Single Package	10.0 EER 11.1 IEER	11.7 EER 11.9 IEER	
	≥ 760,000 Btu/h	All other	Split System and Single Package	10.8 EER 10.9 IEER	11.5 EER 11.7 IEER	
Condensing units, air cooled	≥ 135,000 Btu/h	5		10.1 EER 11.4 IEER	10.5 EER 14.0 IEER	
Condensing units, water cooled	≥ 135,000 Btu/h			13.1 EER 13.6 IEER	13.5 EER 14.0 IEER	AHRI 365
Condensing units, evaporatively cooled	≥ 135,000 Btu/h	8		13.1 EER 13.6 IEER	13.5 EER 14.0 IEER	

For SI: 1 British thermal unit per hour = 0.2931 W. a. Chapter 6 of the referenced standard contains a complete specification of the referenced test procedure, including the reference year version of the test procedure. b. Single-phase, air-cooled air conditioners less than 65,000 Btu/h are regulated by NAECA. SEER values are those set by NAECA.

Formatted: Right, Indent: Left: 0", Right: 0.21"

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted: Right: 0.21", Space After: 0 pt

Appendix H - TRM - Vol. 2: C&I Measures

2015 IECC Minimum Efficiency Requirements

EQUIPMENT TYPE	SIZE CATEGORY	HEATING	SUBCATEGORY OR	MINIMUM E	TEST		
EQUIPMENT TYPE	SIZE CATEGORY	SECTION TYPE	RATING CONDITION	Before 1/1/2016	As of 1/1/2016	PROCEDURE	
Air conditioners,	< 65.000 Btu/h*	All	Split System	13.0 SEER	13.0 SEER		
air cooled	< 05,000 Bm/h	All	Single Package	13.0 SEER	14.0 SEER ^e	1	
Through-the-wall	(20 000 D- 4)	All	Split system	12.0 SEER	12.0 SEER	AHRI	
(air cooled)	≤ 30,000 Btu/h ^b	All	Single Package	12.0 SEER	12.0 SEER	210/240	
Small-duct high-velocity (air cooled)	< 65,000 Btu/h*	All	Split System	11.0 SEER	11.0 SEER	1	
		Electric Resistance	Split System and	11.2 EER	11.2 EER		
	≥ 65,000 Btu/h and	(or None)	Single Package	11.4 IEER	12.8 IEER		
	<135,000 Btu/h	All other	Split System and	11.0 EER	11.0 EER	1	
			Single Package	11.2 IEER	12.6 IEER	1	
A in our distances	≥ 135,000 Btu/h	Electric Resistance	Split System and	11.0 EER	11.0 EER	T	
	and	(or None)	Single Package	11.2 IEER	12.4 IEER	1	
	< 240,000 Btu/h	All other	Split System and Single Package	10.8 EER 11.0 IEER	10.8 EER 12.2 IEER		
Air conditioners, air cooled		Electric Resistance		10.0 EER	12.2 IEER	AHRI 340/360	
	≥240,000 Btu/h	(or None)	Split System and Single Package	10.1 IEER	11.6 IEER	540 500	
	and		Split System and	9 8 FER	9 S FFR	1	
	< 760,000 Btu/h	All other	Single Package	9.9 IEER	11.4 IEER	ł	
	≥ 760,000 Btu/h	Electric Resistance	Split System and	9.7 EER	9.7 EER		
		(or None)	Single Package	9.8 IEER	11.2 IEER		
		All other	Split System and	9.5 EER	9.5 EER	1	
		Alloula	Single Package	9.6 IEER	11.0 IEER		
	< 65.000 Btu/h ^b	A11	Split System and	12.1 EER	12.1 EER	AHRI	
	- 05,000 Dia 1		Single Package	12.3 IEER	12.3 IEER	210/240	
	≥ 65,000 Btu/h	Electric Resistance	Split System and	12.1 EER	12.1 EER		
	and	(or None)	Single Package	12.3 IEER	13.9 IEER	4	
	<135,000 Btu/h	All other	Split System and Single Package	11.9 EER 12.1 IEER	11.9 EER 13.7 IEER		
	-	Electric Resistance	Split System and	12.1 IEER	12.5 EER	4	
	≥ 135,000 Btu/h	(or None)	Single Package	12.5 EER	13.9 IEER		
Air conditioners	and	(Split System and	12.3 EER	12.3 EER	+	
water cooled	< 240,000 Btu/h	All other	Single Package	12.5 IEER	13.7 IEER	AHRI	
	-	Electric Resistance	Split System and	12.4 EER	12.4 EER	340/360	
	≥ 240,000 Btu/h and (or None)	Single Package	12.6 IEER	13.6 IEER			
		All other	Split System and	12.2 EER	12.2 EER	1	
		All other	Single Package	12.4 IEER	13.4 IEER		
		Electric Resistance	Split System and	12.2 EER	12.2 EER	1	
	≥ 760.000 Btu/h	(or None)	Single Package	12.4 IEER	13.5 IEER		
	_ ,00,000 Bitt II	All other	Split System and	12.0 EER	12.0 EER		
			Single Package	12.2 IEER	13.3 IEER	1	

(continued)

Appendix H - TRM – Vol. 2: C&I Measures

EQUIPMENT TYPE	SIZE CATEGORY	HEATING	SUB-CATEGORY OR	MINIMUM E	TEST		
EQUIPMENT TYPE	SIZE CATEGORY	SECTION TYPE	RATING CONDITION	Before 1/1/2016	As of 1/1/2016	PROCEDURE	
	< 65,000 Btu/h ^b	All	Split System and Single Package	12.1 EER 12.3 IEER	12.1 EER 12.3 IEER	AHRI 210/240	
Air conditioners, evaporatively cooled	≥ 65,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	12.1 EER 12.3 IEER	12.1 EER 12.3 IEER		
	<135,000 Btu/h	All other	Split System and Single Package	11.9 EER 12.1 IEER	11.9 EER 12.1 IEER	1	
	≥ 135,000 Btu/h and	Electric Resistance (or None)	Split System and Single Package	12.0 EER 12.2 IEER	12.0 EER 12.2 IEER]	
	<240,000 Btu/h	All other	Split System and Single Package	11.8 EER 12.0 IEER	11.8 EER 12.0 IEER	AHRI	
	≥ 240,000 Btu/h and	Electric Resistance (or None)	Split System and Single Package	11.9 EER 12.1 IEER	11.9 EER 12.1 IEER	340/360	
	<760,000 Btu/h	All other	Split System and Single Package	11.7 EER 11.9 EER	11.7 EER 11.9 IEER	1	
	2 760 000 Dev. b	Electric Resistance (or None)	Split System and Single Package	11.7 EER 11.9 IEER	11.7 EER 11.9 IEER	1	
	≥ 760,000 Btu/h ·	All other	Split System and Single Package	11.5 EER 11.7 IEER	11.5 EER 11.7 IEER	1	
Condensing units, air cooled	≥ 135,000 Btu/h			10.5 EER 11.8 IEER	10.5 EER 11.8 IEER		
Condensing units, water cooled	≥ 135,000 Btu/h			13.5 EER 14.0 IEER	13.5 EER 14.0 IEER	AHRI 365	
Condensing units, evaporatively cooled	≥ 135,000 Btu/h			13.5 EER 14.0 IEER	13.5 EER 14.0 IEER	1	

TABLE C403 2 3(1)-continued

For SI: 1 British thermal unit per hour = 0.2931 W. a. Chapter 6 contains a complete specification of the referenced test procedure, including the reference year version of the test procedure. b. Single-phase, air-cooled air conditioners less than 65,000 Btu h are regulated by NAECA. SEER values are those set by NAECA. c. Minimum efficiency as of Jamary 1, 2015.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWH - xCF$$

Where:

 $\Delta kWH = Annual electricity savings, as calculated above$

CF= Summer peak coincidence demand (kW) to annual energy (kWh) factor for Cooling $= 0.0009106840^{257}$

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A DEEMED O&M COST ADJUSTMENT CALCULATION

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

²⁵⁷ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

Appendix H - TRM – Vol. 2: C&I Measures

N/A

MEASURE CODE:

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 5.0

2.5.89 High Volume Low Speed Fans

DESCRIPTION

The measure applies to $\frac{2016}{2}$ -24 foot diameter horizontally mounted ceiling high volume low speed (HVLS) fans that are replacing multiple non HVLS fans that have reached the end of useful life.

This measure was developed to be applicable to the following program types: TOS and RF_{\perp} if applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to be classified as HVLS and have a VFD. 258

DEFINITION OF BASELINE EQUIPMENT

In order for this characterization to apply, the baseline condition is assumed to be multiple non HVLS existing fans that have reached the end of useful life.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 10 years. 259174

DEEMED MEASURE COSTT

The incremental capital cost for the fans are as follows:-¹⁷⁴

Fan Diameter Size (feet)	Incremental Cost ²⁶⁰
<u>16</u>	<u>\$4,072</u>
<u>18</u>	<u>\$4,110</u>
20	\$4150
22	\$4180
24	\$4225

LOADSHAPE HVAC BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS¹⁷⁴

 ²⁵⁸ "Illinois Statewide Technical Reference Manual for Energy Efficiency Version 8.0, Volume 2: Commercial and Industrial Measures," Section 4.1.2, High Volume Low Speed Fans,
 ²⁵⁹ Michigan Energy Measures Database High Volume
 ⁴⁷⁹ Michigan Energy Measures Database High Volume

Low Speed Fans | https://www.michigan.gov/mpsc/regulatorv/ewr/michigan-energy-measures-databaseMichigan Energy Measures DatabaseMichigan Energy Measures Database | 2024 MEMD Master Database | righ Volume Low Speed Fans |

https://www.michigan.gov/mpsc/regulatory/ewr/michigan-energy-measures-database (See "Commercial" tab rows 426:431) 2⁶⁰ Michigan Energy Measures Database | 2024 MEMD Master Database | High Volume Low Speed Fans |

https://www.michigan.gov/mpsc/regulatory/ewr/michigan-energy-measures-databaseMichigan Energy Measures Database | 202-MEMD Master Database | High Volume Low Speed Fans | https://www.michigan.gov/mpsc/regulatory/ewr/michigan-energymeasures-database (See "Commercial" tab rows 426:431)

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted: Font: 9 pt Formatted: Font: 9 pt Formatted: Font: 9 pt Formatted: Font: 9 pt Formatted: Left, Indent: Left: 0" Formatted: Font: 9 pt Formatted: Font: 9 pt Formatted: Font: 9 pt Formatted: Font color: Auto **Field Code Changed**

Formatted Table

Page 137

-

The annual electric savings from this measure are deemed values depending on fan size and apply to all building types:

Fan Diameter Size (feet)	kWh <u>Energy</u> Savings (kWh)²⁶¹
<u>16</u>	<u>3,218</u>
<u>18</u>	<u>4,938</u>
20	6,577
22	8,543
24	10,018

SUMMER COINCIDENT PEAK DEMAND SAVINGS²⁶²

Where:

 $\Delta kW = \Delta kWh - x CF$

 $\Delta kWh = Electric energy savings, as calculated above$

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor = 0.000443983^{263}

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION N/A

DEEMED O&M COST ADJUSTMENT CALCULATION $N\!/\!A$

Measures," Section 4.1.2, High Volume Low Speed Fans.

MEASURE CODE:

and Coincident Peak Factors"

	Formatted: Indent: Left: 0", Right: 0"							
$\langle \neg \rangle$	Formatted: Centered, Indent: Left: 0", Right: 0"							
\backslash	Formatted Table							
\square	Formatted: Indent: First line: 0", Right: 0", Space Before: 2 pt, After: 2 pt, Line spacing: single							
$\langle \rangle$	Formatted: Indent: Left: -0.01", First line: 0", Space Before: 2 pt, After: 2 pt, Line spacing: single							
$\langle \rangle \rangle$	Formatted: Indent: Left: -0.01", First line: 0", Space Before: 2 pt, After: 2 pt, Line spacing: single							
	Formatted: Indent: Left: -0.01", First line: 0", Space Before: 2 pt, After: 2 pt, Line spacing: single							
	Formatted: Indent: Left: -0.01", First line: 0", Space Before: 2 pt, After: 2 pt, Line spacing: single							
\setminus	Formatted: Indent: Left: -0.01", First line: 0", Space Before: 2 pt, After: 2 pt, Line spacing: single							
	Formatted: CambriaTextFormula							

X	Formatted: Font: 9 pt
λ	Formatted: Normal
/	Formatted: Hyperlink
1	Formatted: Font: 9 pt
1	Formatted: Font: 9 pt
-	Formatted: Font: 9 pt
-	Formatted: Font: 9 pt

2025 MEEIA 4 Plan MEEIA 2019-21 Plan-Revision 5.0

²⁶¹ Michigan Energy Measures Database | 2024 MEMD Master Database | High Volume Low Speed Fans |

https://www.michigan.gov/mpsc/regulatory/ewr/michigan-energy-measures-database (See "Commercial" tab cells M861:M865), 263. "Illinois Statewide Technical Reference Manual for Energy Efficiency Version 8.0, Volume 2: Commercial and Industrial

²⁶³ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes

2.5.<u>910</u> Chiller Tune Up

DESCRIPTION

This measure is the tune-up of an existing air-cooled or water-cooled electric chiller. The tune-up consists of tube cleaning, chilled and condenser water temperature adjustments, and reciprocating compressor unloading switch adjustments.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient condition is an existing chiller post tune-up.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is an existing chiller prior to receiving the tune-up.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected lifetime of the measure is 5 years.

DEEMED MEASURE COST

The incremental cost for this measure varies. Use actual cost.

DEEMED O&M COST ADJUSTMENTS

There are no expected O&M cost adjustments for this measure.

BASELINE EFFICIENCY VALUES BY CHILLER TYPE AND CAPACITY

Refer to 2012 IECC Minimum Efficiency Requirements in Reference Tables section of this measure.

LOADSHAPE

Cooling BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS²⁶⁴

 $\Delta kWh = TONS * IPLV_{Base} + x EFLH + x ESF$

Formatted: Font: Cambria Math, 12 pt Formatted: Cambria12, Indent: First line: 0"

Formatted: Left, Indent: Left: 0", First line: 0", No widow/orphan control, Don't keep lines together

Formatted: Font: 9 pt

Formatted: Font: 9 pt

Where:		l
TONS	= Chiller nominal cooling capacity in tons (= actual; 1 ton = 12,000 Btu/hr)	
IPLV BASE	= Efficiency of baseline equipment expressed as Integrated Part Load Value	
	(kW/ton). Chiller units are dependent on chiller type. See 'Chiller Units,	
	Conversion Values' and 'Baseline Efficiency Values by Chiller Type' and	
	Capacity in the Reference Tables section within this measure section.	λ
EFLH	= Equivalent full load hours (= dependent on location and building type,	/ / /
	see table 2.5 in Appendix H)	
EFLH		

²⁶⁴ "Indiana Technical Reference Manual Version 2.2," New York TRM, Savings factor 5%, page 838 "Tune Up Chiller System" Page 217, prys. trm. v11_filing.pdf thttps://dps.ny.gov/system/files/documents/2023/12/nys-trm.v11_filing.pdf Field Code Changed

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Page 139

Appendix H - TRM – Vol. 2: C&I Measures

ESF = Energy savings factor (= 0.0805)

For example, energy savings for the tune-up of a 350-ton chiller with an IPLV of .540_kW/Ton serving a Medium Office in St Louis is calculated as:

 $\Delta kWh = TONS * IPLV BASE * EFLH * ESF = 350 * .540 * 1386 * 0.08-05 = 2013,956098$ kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS²⁶⁵

 $\Delta kW = \Delta kWh - x CF$

Where:

 $\Delta kWh = Electric energy savings, as calculated above$

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor = for Cooling (0.0009106840²⁶⁶)

For example, demand reduction for the tune-up of the above chiller resulting in 20,956 kWh of energy savings is calculated as:

 $\Delta kW = 20,956 \text{ kWh} \underline{*x} 0.0009106840 = 19.08 \text{ kW}$

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION $N\!/\!A$

DEEMED O&M COST ADJUSTMENT CALCULATION N/A

REFERENCE TABLES

Chillers Ratings - Chillers are rated with different units based on equipment type as shown below

Equipment Type	Unit
Air cooled, electrically operated	EER
Water cooled, electrically operated, positive displacement (reciprocating)	kW/ton
Water cooled, electrically operated, positive displacement (rotary screw and scroll)	kW/ton

In order to convert chiller equipment ratings to IPLV the following relationships are provided:

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 5.0

Formatted: Cambria12

²⁶⁵-Indiana Technical Reference Manual Version 2.2," Page 219.

²⁶⁶ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

Appendix H - TRM – Vol. 2: C&I Measures

= 12 / EER
= 12 / (COP x 3.412)
= EER / 3.412
= 12 / (kW/ton) / 3.412
= 12 / kW/ton
= COP x 3.412

2012 IECC Baseline Efficiency Values by Chiller Type and Capacity²⁶⁷

²⁶⁷ Note: Efficiency requirements depend on the path (Path A or Path B) that the building owner has chosen to meet compliance requirements. For air cooled and absorption chillers, Path A should be assumed. For water cooled chillers, the building owner should be consulted, and the relevant path used for calculations. When unknown, Path A should be used.

Appendix H - TRM – Vol. 2: C&I Measures

			BEFORE 1/			AS OF 1	/1/2010°			
	SIZE CATEGORY	8		100000000000000000000000000000000000000	PAT	TH A	PAT	НВ	1	
EQUIPMENT TYPE		UNITS	FULL	IPLV	FULL	IPLV	FULL	IPLV	TEST	
Air-cooled chillers	< 150 tons	EER	≥ 9.562	≥10.4	≥ 9.562	≥ 12.500	NA	NA		
Air-cooled chillers	≥ 150 tons	EER	29.302	16	≥ 9.562	≥ 12.750	NA	NA]	
Air cooled without condenser, electrical operated	All capacities	EER	≥ 10.586	<mark>≥ 1</mark> 1.782	Air-cooled chillers without condens- ers shall be rated with matching con- densers and comply with the air-cooled chiller efficiency requirements					
Water cooled, electrically operated, reciprocating	All capacities	kW/ton	≤ 0.837	≤ 0.696	Reciprocating units shall comply with water cooled positive displacement efficiency requirements					
	< 75 tons	kW/ton				≤ 0.780	≤ 0.630	≤ 0.800	≤ 0.600	1
Water cooled, electrically operated, post- tive displacement	≥ 75 tons and < 150 tons	kW/ton	≤ 0.790	≤ 0.676	≤ 0.775	≤ <mark>0.6</mark> 15	≤ 0.790	≤ 0.586	AHRI	
	≥ 150 tons and < 300 tons	kW/ton	≤ 0.717	≤ 0.627	≤ 0 .680	≤ 0.580	≤ <mark>0.71</mark> 8	≤ 0.540	550/590	
	≥ 300 tons	kW/ton	≤ 0.639	≤0.571	≤ 0.620	≤ 0.540	≤ 0.639	≤ 0.490		
	< 150 tons	kW/ton	≤ 0.703	≤ 0.669						
Water cooled, electrically operated,	≥ 150 tons and < 300 tons	kW/ton	≤ 0.634	≤ 0.596	≤ 0.634	≤ 0.5 9 6	≤ 0.639	≤ 0.450		
centrifugal	≥ 300 tons and < 600 tons	kW/ton	≤ 0.576	≤ 0.549	≤ 0.576	≤ 0 .549	≤ 0.600	<u>≤ 0.400</u>		
	$\geq 600 \text{ tons}$	kW/ton	≤ 0.576	≤ 0.549	≤ 0.570	≤ 0.539	≤ 0.590	≤ 0.400		
Air cooled, absorption single effect	All capacities	COP	≥ 0.600	NR	≥ 0.600	NR	NA	NA		
Water cooled, absorption single effect	All capacities	COP	≥ 0.700	NR	≥0.700	NR	NA	NA	AHRI 560	
Absorption double effect, indirect fired	All capacities	COP	≥ 1.000	≥ 1.050	≥ 1.000	≥ 1.050	NA	NA		
Absorption double effect, direct fired	All	COP	≥ 1.000	≥ 1.000	≥ 1.000	≥ 1.000	NA	NA		

Competition
 Comparison
 Comparison

aUT.
aUT.
aUT.
b. Compliance with this standard can be obtained by meeting the minimum requirements of Path A or B. However, both the full load and IPLV shall be met to fulfill the requirements of Path A or B.
c. Chapter 6 of the referenced standard contains a complete specification of the referenced test procedure, including the referenced year version of the test procedure.

2015 IECC Baseline Efficiency Values by Chiller Type and Capacity

Appendix H - TRM – Vol. 2: C&I Measures

EQUIPMENT TYPE	SIZE CATEGORY	UNITS	BEFORE 1/1/2015		AS OF	TEST		
EQUIPMENT TYPE	SIZE CATEGORY		Path A	Path B	Path A	Path B	PROCEDURE	
	< 150 Tons		≥ 9.562 FL	NA	≥ 10.100 FL	≥9.700 FL		
Air-cooled chillers	~ 150 1005	EER	≥ 12.500 IPLV		≥ 13.700 IPLV	≥ 15,800 IPLV		
Alf-cooled chillers	≥ 150 Tons	(Btu/W)	≥ 9.562 FL	NA	≥ 10.100 FL	≥ 9.700 FL	İ	
	2 100 10hs		≥ 12.500 IPLV	NA ⁻	≥ 14.000 IPLV	≥ 16.100 IPLV	t	
Air cooled without condenser, electrically operated	All capacities	EER (Btu/W)	Air-cooled c matching con	Air-cooled chillers without condenser shall be rated with matching condensers and complying with air-cooled chiller efficiency reoutrements.				
	< 75 Tons		≤0.780 FL	≤0.800 FL	≤ 0.750 FL	≤ 0.780 FL		
	< /3 Tolls		≤0.630 IPLV	≤ 0.600 IPLV	$\leq 0.600 \text{ IPLV}$	$\leq 0.500 \text{ IPLV}$	t	
	> 75 tons and < 150 tons		≤0.775 FL	≤0.790 FL	≤ 0.720 FL	$\leq 0.750 \text{FL}$	Ī	
	2 /3 tons and < 150 tons		≤0.615 IPLV	≤0.586 IPLV	≤0.560 IPLV	$\leq 0.490 \text{IPLV}$	t	
Water cooled, electrically	100	kW/ton	≤ 0.680 FL	≤0.718 FL	≤ 0.660 FL	≤0.680 FL	AHRI 550/ 590	
operated positive displacement	\geq 150 tons and < 300 tons	kW/ton	≤0.580 IPLV	≤0.540 IPLV	≤ 0.540 IPLV	≤0.440 IPLV		
	\ge 300 tons and < 600 tons		≤ 0.620 FL	≤0.639 FL	≤0.610 FL	≤ 0.625 FL		
			≤0.540 IPLV	≤ 0.490 IPLV	≤ 0.520 IPLV	≤0.410 IPLV		
	\geq 600 tons		≤ 0.620 FL	≤0.639 FL	≤ 0.560 FL	≤0.585 FL		
			≤ 0.540 IPLV	≤0.490 IPLV	≤0.500 IPLV	≤ 0.380 IPLV		
			≤ 0.634 FL	≤0.639 FL	≤0.610 FL	≤ 0.695 FL		
	< 150 Tons		≤ 0.596 IPLV	≤0.450 IPLV	≤ 0.550 IPLV	$\leq 0.440 \text{IPLV}$		
			≤ 0.634 FL	≤0.639 FL	≤0.610 FL	≤ 0.635 FL		
	\geq 150 tons and < 300 tons		≤ 0.596 IPLV	≤0.450 IPLV	≤ 0.550 IPLV	$\leq 0.400 \text{IPLV}$		
Water cooled, electrically	\geq 300 tons and \leq 400 tons	kW/ton	≤0.576 FL	≤0.600 FL	≤0.560 FL	≤ 0.595 FL		
operated centrifugal	\geq 300 tons and < 400 tons	KW/ton	≤0.549 IPLV	≤0.400 IPLV	≤ 0.520 IPLV	≤ 0.390 IPLV		
	\geq 400 tons and < 600 tons		≤ 0.576 FL	≤0.600 FL	≤0.560 FL	≤0.585 FL	İ	
	\geq 400 tons and < 600 tons		≤0.549 IPLV	≤0.400 IPLV	≤ 0.500 IPLV	≤0.380 IPLV	1	
			≤ 0.570 FL	≤0.590 FL	≤0.560 FL	≤0.585 FL	+	
	≥ 600 Tons		≤0.539 IPLV	≤0.400 IPLV	≤ 0.500 IPLV	≤ 0.380 IPLV		
Air cooled, absorption, single effect	All capacities	COP	≥ 0.600 FL	NA¢	≥ 0.600 FL	NA°		
Water cooled absorption, single effect	All capacities	COP	≥ 0.700 FL	NA¢	≥ 0.700 FL	NA°	1000 10433	
Absorption, double effect, indirect fired	All capacities	COP	≥ 1.000 FL ≥ 1.050 IPLV	NA	≥ 1.000 FL ≥ 1.050 IPLV	NA°	AHRI 560	
Absorption double effect direct fired	All capacities	COP	≥ 1.000 FL ≥ 1.000 IPLV	NA¢	≥ 1.000 FL ≥ 1.050 IPLV	NA"		

a. The requirements for centrifugal chiller shall be adjusted for nonstandard rating conditions in accordance with Section C403.2.3.1 and are only applicable for the range of conditions listed in Section C403.2.3.1. The requirements for air-cooled, water-cooled positive displacement and absorption chillers are at standard rating conditions defined in the reference test procedure.
 b. Both the full-load and IPLV requirements shall be met or exceeded to comply with this standard. Where there is a Path B, compliance can be with either Path A or Path For any application.
 c. NA means the requirements are not applicable for Path B and only Path A can be used for compliance.
 d. FL represents the full-load performance requirements.

Appendix H - TRM - Vol. 2: C&I Measures

2018 IECC Baseline Efficiency Values by Chiller Type and Capacity

	WATER CHILLIN		ABLE C403.3.2(GES — EFFICIE		MENT S ^{a, b, d}		
			BEFORE	1/1/2015	ASOF	1/1/2015	TEST
EQUIPMENT TYPE	SIZE CATEGORY	UNITS	Path A	Path B	Path A	Path B	PROCEDURE®
			≥ 9.562 FL		≥ 10.100 FL	≥ 9.700 FL	
	< 150 Tons	EER	≥ 12.500 IPLV	NAª	≥ 13.700 IPLV	≥ 15,800 IPLV	
Air-cooled chillers		(Btu/W)	≥ 9.562 FL		≥ 10.100 FL	≥ 9.700 FL	
	≥ 150 Tons		≥ 12.500 IPLV	NAª	≥ 14.000 IPLV	≥ 16.100 IPLV	
Air cooled without condenser, electrically operated	All capacities	EER (Btu/W)		ndensers and co	condenser shall b omplying with air- equirements.		
			≤ 0.780 FL	≤ 0.800 FL	≤ 0.750 FL	≤ 0.780 FL	
	< 75 Tons		≤ 0.630 IPLV	≤ 0.600 IPLV	≤ 0.600 IPLV	≤ 0.500 IPLV	
		1	≤ 0.775 FL	≤ 0.790 FL	≤ 0.720 FL	≤ 0.750 FL	
	≥ 75 tons and < 150 tons		≤ 0.615 IPLV	≤ 0.586 IPLV	≤ 0.560 IPLV	≤ 0.490 IPLV	AHRI 550/590
Water cooled, electrically operated positive	> 150 terms and < 200 terms	kW/ton	≥ 0.680 FL	≥ 0.718 FL	≥ 0.660 FL	≥ 0.680 FL	
displacement	≥ 150 tons and < 300 tons	KVV/ton	≥ 0.580 IPLV	≥ 0.540 IPLV	≥ 0.540 IPLV	≥ 0.440 IPLV	
	≥ 300 tons and < 600 tons	1	≤ 0.620 FL	≤ 0.639 FL	≤ 0.610 FL	≤ 0.625 FL	
		_	≤ 0.540 IPLV	≤ 0.490 IPLV	≤ 0.520 IPLV	≤ 0.410 IPLV	
	≥ 600 tons		≤ 0.620 FL	≤ 0.639 FL	≤ 0.560 FL	≤ 0.585 FL	
			≤ 0.540 IPLV	≤ 0.490 IPLV	≤ 0.500 IPLV	≤ 0.380 IPLV	
	< 150 Tons		≤ 0.634 FL	≤ 0.639 FL	≤ 0.610 FL	≤ 0.695 FL	
	< 100 Ions		≤ 0.596 IPLV	≤ 0.450 IPLV	≤ 0.550 IPLV	≤ 0.440 IPLV	
	≥ 150 tons and < 300 tons		≤ 0.634 FL	≤ 0.639 FL	≤ 0.610 FL	≤ 0.635 FL	1
	2 100 tons and < 500 tons		≤ 0.596 IPLV	≤ 0.450 IPLV	≤ 0.550 IPLV	≤ 0.400 IPLV	
Water cooled, electrically	> 300 tons and < 400 tons	kW/ton	≤ 0.576 FL	≤ 0.600 FL	≤ 0.560 FL	≤ 0.595 FL	1
operated centrifugal	2 300 tons and < 400 tons	Krynon	≤ 0.549 IPLV	≤ 0.400 IPLV	≤ 0.520 IPLV	≤ 0.390 IPLV	
	≥ 400 tons and < 600 tons	1	≤ 0.576 FL	≤ 0.600 FL	≤ 0.560 FL	≤ 0.585 FL	1
	2 400 tons and < 000 tons		≤ 0.549 IPLV	≤ 0.400 IPLV	≤ 0.500 IPLV	≤ 0.380 IPLV	1
	> 600 Tons	1	≤ 0.570 FL	≤ 0.590 FL	≤ 0.560 FL	≤ 0.585 FL	1
	2000 10115		≤ 0.539 IPLV	≤ 0.400 IPLV	≤ 0.500 IPLV	≤ 0.380 IPLV	1
Air cooled, absorption, single effect	All capacities	COP	≥ 0.600 FL	NAª	≥ 0.600 FL	NAc	
Water cooled absorption, single effect	All capacities	COP	≥ 0.700 FL	NAª	≥ 0.700 FL	NAc	AHRI 560
Absorption, double effect, indirect fired	All capacities	COP	≥ 1.000 FL ≥ 1.050 IPLV	NAc	≥ 1.000 FL ≥ 1.050 IPLV	NAc	
Absorption double effect direct fired	All capacities	COP	≥ 1.000 FL ≥ 1.000 IPLV	NAª	≥ 1.000 FL ≥ 1.050 IPLV	NAc	

a. The requirements for centrifugal chiler shall be adjusted for nonstandard rating conditions in accordance with Section C403.3.2.1 and are only applicable for the range of conditions listed in Section C403.3.2.1. The requirements for air-cooled, water-cooled positive displacement and absorption chilers are at standard rating conditions defined in the reference test procedure.
b. Both the full-load and IPLV requirements shall be met or exceeded to comply with this standard. Where there is a Path B, compliance can be with either Path A or Path B for any application.
c. NA means the requirements are not applicable for Path B and only Path A can be used for compliance.
d. FL represents the full-load performance requirements and IPLV the part-load performance requirements.

MEASURE CODE:

Appendix H - TRM – Vol. 2: C&I Measures

2.5.11 Efficient Heat RejectionCooling Towers

Description

This measure characterizes the replacement of cooling towers used for heat rejection with an efficient cooling tower. The measure is applicable to open circuit, closed circuit cooling towers and fluid coolers.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient condition is an existing chiller post tune up.a replacement cooling tower exceeding the 2021 IECC efficiency for heat rejection equipment, listed in the following table.

EquipmentCooling Tower	Rating Condition	Minimum	•	Formatted: Font: 11 pt, Font color: Background 1
<u>Type</u>		<u>Efficiency</u>		Formatted: Centered
Propeller, or axial fan open	95°F entering water	.>40.2 gpm/hp		Formatted Table
eireuit	85°F leaving water			Formatted: Font: 11 pt
	85°F entering WB			
Centrifugal fan open circuit	95°F entering water			Formatted: Font: 11 pt
	85°F leaving water			
	85°F entering WB			
Propeller, or axial fan closed	102°F entering water	. >16.1 gpm/hp		Formatted: Font: 11 pt
<u>circuit</u>	90°F leaving water			
	75°F entering WB			
Centrifugal fan elosed eireuit	102°F entering water	.>7.0 gpm/hp		Formatted: Font: 11 pt
	90°F leaving water			
	75°F entering WB			
Propeller, or axial fan dry	115°F entering water	>4.5 gpm/hp		Formatted: Font: 11 pt
<u>cooler (fluid cooler)</u>	105°F leaving water			· · · · · · · · · · · · · · · · · · ·
	95°F entering WB			
			-	
			-	
	<u> </u>			

DEFINITION OF BASELINE EQUIPMENT

<u>The baseline condition is an existing chiller prior to receiving the tune-up.a cooling tower</u> meeting the 2021 IECC efficiency for heat rejection equipment.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT The expected lifetime of the measure is 5 years.20 years

<u>DEEMED MEASURE COST</u> The incremental cost for this measure varies. Use actual cost.

Appendix H - TRM – Vol. 2: C&I Measures

DEEMED O&M COST ADJUSTMENTS

There are no expected O&M cost adjustments for this measure.

Formatted: Pattern: Clear (Red) **LOADSHAPE** Cooling BUS Algorithm CALCULATION OF SAVINGS ELECTRIC ENERGY SAVINGS²⁶⁸ Formatted: Font: 12 pt $\Delta kWh = Tons \ x \ 3 \ x$ x 0.7457*x EFLH*AkWh = (GPM/HP)base (GPM/HP)eff hp TONS * IPLVBASE 3* EFLH * ESF Where: TONS -= Chiller nominal cooling capacity in tons (= actual; 1 ton = 12,000 Btu/hr)tons required on design day for HVAC space cooling = Average chillers tons required for process heat rejection = Assumed condenser water gpm/ton, use actual if known IPLVBASE GPM/HP_{base}M = 2021 Efficiency of baseline equipment expressed as Integrated Part Formatted: Font: 11 pt Load Value (kW/ton). Chiller units are dependent on chiller type. See 'Chiller Units, Conversion Values' and 'Baseline Efficiency Values by Chiller Type' and Capacity in the Reference Tables section within this measure section. IECC heat rejection efficiency GPM/HP_{eff} = Installed cooling tower heat rejection efficiency, use weighted values for multiple cooling towers 0.7457 =kW/hp; cConvert horsepower to kilowatt EFLH = Equivalent full load hours (= dependent on location and building type, see table 2.5 in Appendix H) ESF = Energy savings factor (= 0.08) Formatted: Indent: First line: 0" For example, energy savings for thea three chiller plant, 200 Tons, with two required on design day for a medium office building in St Louis, when efficient axial fan open circuit cooling towers (580 gpm/hp) replace the existing towersa tune up of a 350 ton chiller with an IPLV of .540kW/Ton serving a Medium Office in St Louis is calculated as:

^{268 &}quot;Indiana Technical Reference Manual Version 2.2," Page 217.

Ameren Missouri	Appendix H - TRM – Vol. 2: C&I Measure	s
$\Delta kWh = (200x2)Tons \ x \ 3 \ x \ \left(\frac{4}{40.2} - \frac{4}{580}\right) x$ EFLH * ESF = 350 * .540 * 1386 * 0.08 = 20,950	: 0.7457 	
$\Delta kWh = 15,348 kWh$		Formatted: Body Text
SUMMER-COINCIDENT PEAK DEMAND SAVINGS ²⁶⁹		
<u> AkW = AkWh * CF</u>		Formatted: Cambria12
Where: <u>AkWh</u> = Electric energy savings, as calc <u>CF</u> = Summer peak coincidence dem for Cooling (0.0009106840)	rulated above n and (kW) to annual energy (kWh) factor	
For example, demand reduction for the tune up of tower replacement with 15,348 20,956 kWh of eromagnetic structure $\Delta kW = 20,95615,348$ kWh * 0.	nergy savings is calculated as:	
NATURAL GAS ENERGY SAVINGS		
<u>N/A</u>		
WATER IMPACT DESCRIPTIONS AND CALCULATIONS	<u>M</u>	
DEEMED O&M Cost Adjustment Calculation	<u>N</u>	
REFERENCE TABLES Chillers Ratings - Chillers are rated with differen	t units based on equipment type as shown below	Ť
Equipment Type Air cooled, electrically operated	Unit EER	
Water cooled, electrically operated, positive displ		
Water cooled, electrically operated, positive disp In order to convert chiller equipment ratings to II		
kW/ton $= 12 / EER$ kW/ton $= 12 / (COP x)$ COP $= EER / 3.412$ COP $= 12 / (kW/tor)$	<u>3.412)</u>	
²⁶⁹ Indiana Technical Reference Manual Version 2.2," Page 219.		I
2025 MEEIA 4 Plan MEEIA 2019-21 Plan R	evision 5 6.0 Page 14	P

Appendix H - TRM – Vol. 2: C&I Measures

Ameren Missouri

EER= 12 / kW/tonEER= COP x 3.4122.5.1011 Efficient Cooling Towers

DESCRIPTION

This measure characterizes the replacement of cooling towers used for heat rejection with an efficient cooling tower. The measure is applicable to open circuit, closed circuit cooling towers and fluid coolers.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient condition is a replacement cooling tower exceeding the 2021 IECC efficiency for heat rejection equipment, listed in the following table.

Cooling Tower Type	Rating Condition	<u>Minimum</u> Efficiency
Propeller, or axial fan open	95°F entering water	<u>.>40.2 gpm/hp</u>
<u>circuit</u>	85°F leaving water	
	85°F entering WB	
Centrifugal fan open circuit	95°F entering water	<u>.>20.0 gpm/hp</u>
	85°F leaving water	
	85°F entering WB	
Propeller, or axial fan closed	102°F entering water	.>16.1 gpm/hp
<u>circuit</u>	90°F leaving water	
	75°F entering WB	
Centrifugal fan closed circuit	102°F entering water	.>7.0 gpm/hp
	90°F leaving water	
	75°F entering WB	
Propeller, or axial fan dry	115°F entering water	<u>.>4.5 gpm/hp</u>
<u>cooler (fluid cooler)</u>	105°F leaving water	
	95°F entering WB	

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is a cooling tower meeting the 2021 IECC efficiency for heat rejection equipment.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT The expected lifetime of the measure is 20 years²⁷⁰

²⁷⁰ ASHRAE, Chapter 38: Owning and Operating Costs, Table 4, "Heating, Ventilating and Air Conditioning Applications", (2023 edition) for galvanized metal cooling towers.

Appendix H - TRM – Vol. 2: C&I Measures

DEEMED MEASURE CO

The incremental cost for this measure varies. Use actual cost.

DEEMED O&M COST ADJUSTMENTS

There are no expected O&M cost adjustments for this measure.

LOADSHAPE

Cooling BUS

<u>Algorithm</u>

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS²⁷¹

$$\Delta kWh = Tons \ x \ 3 \ x \ \left(\frac{1}{(GPM/HP)_{base}} - \frac{1}{(GPM/HP)_{eff}}\right) \ x \ 0.7457x \ EFLH$$

Where:

TONS	= Chiller tons required on design day for HVAC space cooling
	= Average chillers tons required for process heat rejection
3	= Assumed condenser water gpm/ton, use actual if known
GPM/HP _{base}	= 2021 IECC heat rejection efficiency
GPM/HP _{eff}	= Installed cooling tower heat rejection efficiency, use weighted values for
	multiple cooling towers
0.7457	=kW/hp; convert horsepower to kilowatt
EFLH	= Equivalent full load hours (= dependent on location and building type, see table
	2.5 in Appendix H)

For example, energy savings for a three chiller plant, 200 Tons, with two required on design day for a medium office building in St Louis, when efficient axial fan open circuit cooling towers (80 gpm/hp) replace the existing towers is calculated as:

$$\Delta kWh = (200x2)Tons \ x \ 3 \ x \ \left(\frac{1}{40.2} - \frac{1}{80}\right) \ x \ 0.7457 \ x 1386 \ hours$$

 $\Delta kWh = 15,348 \, kWh$

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWh \ x \ CF$$

Where:

²⁷¹ Standard condenser water flow sizing of 3 gpm/ton with flow efficiency of two pumps

1

Appendix H - TRM - Vol. 2: C&I Measures

- $\Delta kWh = Electric energy savings, as calculated above$
- <u>CF</u> = Summer peak coincidence demand (kW) to annual energy (kWh) factor = 0.0009106840^{272}

For example, demand reduction for the above cooling tower replacement with 15,348 kWh of energy savings is calculated as: $\Delta kW = 15,348 \text{ kWh x } 0.0009106840 = 13.98 \text{ kW}$

NATURAL GAS ENERGY SAVINGS

<u>N/A</u>

WATER IMPACT DESCRIPTIONS AND CALCULATION N/A DEEMED O&M COST ADJUSTMENT CALCULATION N/A

REFERENCE TABLES

²⁷² Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

Appendix H - TRM - Vol. 2: C&I Measures

2.5.112 Dedicated Outdoor Systems (DOAS)

DESCRIPTION

This measure promotes the installation of high-efficiency dedicated outdoor systems (DOAS) utilizing direct expansion (DX) cooling (DOAS) to precondition the outside air brought into a building for ventilation.

This measure was developed to be applicable to the following program types: TOS, EREP, RF and NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to be a highefficiency dedicated outdoor air system that exceeds Federal Energy Efficiency Standards. The efficiency ratings are assumed to be based on the AHRI920-2020 testing method for ISMRE2 and ISCOP2.

ISMRE2 is the integrated seasonal moisture removal efficiency, pounds of moisture per kilowatthour. ISCOP2 is the integrated seasonal coefficient of performance for heating efficiency. The measure is applicable to DOAS equipment with and without ventilation recovery systems (VERS) with a capacity less than 324 lb of moisture/hour.

Federal Energy Efficiency Standards (effective May 2024) for direct expansion dedicated outdoor air systems.²⁷³

<u>Category</u>	<u>Ventilation</u> <u>Recovery System</u>	Efficiency
Air Conditioning	No	3.8 ISMRE2
Air Conditioning	VERS	5.0 ISMRE2
Air source heat pump	No	<u>3.8 ISMRE2</u> 2.05 ISCOP2
Air source heat pump	VERS	5.0 ISMRE2 3.2 ISCOP2
Water cooled	<u>No</u>	<u>4.7 ISMRE2</u>
Water cooled	VERS	5.1 ISMRE2
Water source heat pump	No	<u>3.8 ISMRE2</u> 2.13 ISCOP2
Water source heat pump	VERS	4.6 ISMRE2 4.04 ISCOP2

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment for all program types is assumed to be a standard-efficiency DOAS, without a ventilation.

²⁷³ DOE CFR::429,431, Effective May 2024, https://www.federalregister.gov/documents/2022/11/01/2022-23185/energy conservation-program-energy-conservation-standards-for-direct-expansion-dedicated-outdoor-air Formatted: Font color: Text 1
Formatted: Font: 9 pt
Formatted: Footnotes
Field Code Changed

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Page 151

Formatted: Font: (Default) Times New Roman

Appendix H - TRM - Vol. 2: C&I Measures

The rating conditions for the baseline and efficient equipment efficiencies must be equivalent.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 20 years²⁷⁴

DEEMED MEASURE COST

For analysis purposes, the incremental equipment \cos^{275} for this measure is assumed to \$2.00 per CFM for DOAS without VERS, and \$4.6 per CFM for DOAS with VERS.

LOADSHAPE

Cooling BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = \Delta kWh_{dehumidification, cooling} + \Delta kWh_{heating}$

For dehumidification energy savings or dehumidification with cooling:

 $\Delta kWh = MRC x (1/ISMRE2_{base} - 1/ISMRE2_{EE}) x EFLH_{DOAS}$

For units with heat pump heating:

 $\Delta kWh = KBTU/hr x (1/(ISCOP_{base} x 3.412) - 1/(ISCOP_{EE} x 3.412) x EFLH_{DOAS})$ Where:

MRC

<u>MRC</u>	= Moisture removal capacity, lb/hour	+
	=AHRI rating or manufacturer specification if installed system	
ISMRE2 _{base}	= Integrated seasonal moisture removal efficiency of the baseline equipment	
	=Federal code compliant system of same category, capacity without VERS	
ISMRE2 _{EE}	= Integrated seasonal moisture removal efficiency of the efficient equipment	
	<u>=Actual</u>	
EFLH _{DOAS}	= Effective full load hours for dehumidification or dehumidify with cooling	
	= Actual, or from table below by city, and operating schedule	

274 REDCAR Analytics, Page 32 DOAS lifetime, "Economic Analysis of Heat Recovery Equipment in Commercial Dedicated Outside Air Systems" (2019),https://betterbricks.com/uploads/resources/NEEA-DOAS-Analysis-Report_Red-Car_Final.pdf 275 REDCAR Analytics, Page 19 cost per CFM for mid tier and high tier DOAS compared to low tier, "Economic Analysis of

Formatted: Hyperlink, Font: 9 pt, No underline, Font color: Black Field Code Changed

Formatted: Font: Cambria Math, Italic

Formatted: Font: Cambria Math, Italic Formatted: Indent: Left: 0", Right: 0"

Formatted: Font: Cambria Math, Italic

Formatted: Font: Cambria Math, Italic

Formatted: Indent: First line: 0"

Formatted Table

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 5.0

(2019).https://betterbricks.com/uploads/resources/NEEA-DOAS-Analysis-Report_Red-Car_Final.pdf

Heat Recovery Equipment in Commercial Dedicated Outside Air Systems"

Appendix H - TRM – Vol. 2: C&I Measures

<u>kBTU/hr</u>	<u>=Heat pump heating capacity at 47F</u> <u>=Actual installed</u>
ISCOP2 _{base}	= Integrated seasonal coefficient of performance of the baseline equipment
	=Federal code compliant system of same category, capacity without VERS
ISCOP2 _{ee}	= integrated seasonal coefficient of performance of the efficient equipment
	<u>=Actual</u>
3.412	<u>=Convert COP to BTU/watt</u>
EFLH DOAS	<u>= Effective full load hours at 32F or cold climate heat pump at 17F</u>
	= Actual, or from table below by city and operating schedule

Area	<u>Building or</u> <u>Schedule</u>	<u>EFLH</u> Dehumidify	<u>EFLH</u> Latent,Sensible <u>Cooling</u>	EFLH Heat pump 17F rated	EFLH Heat Pump 47F rated	
St Louis	24/7	<u>1,213</u>	<u>1,611</u>	<u>1,976</u>	<u>1,544</u>	•
St Louis	Food service	1,026	<u>1,423</u>	<u>1,585</u>	<u>1,260</u>	•
St Louis	Big Box	<u>668</u>	<u>1,035</u>	<u>957</u>	<u>785</u>	-
St Louis	School/Office	<u>512</u>	<u>787</u>	<u>764</u>	<u>633</u>	
Kirksville	24/7	<u>1,051</u>	<u>1,270</u>	2,059	<u>1,406</u>	-
Kirksville	Food service	<u>912</u>	<u>1,132</u>	1,656	<u>1,129</u>	-
Kirksville	Big Box	<u>660</u>	<u>871</u>	<u>977</u>	<u>671</u>	-
Kirksville	School/Office	<u>526</u>	<u>679</u>	<u>769</u>	<u>520</u>	-
Jefferson City	24/7	<u>1,035</u>	<u>1,410</u>	2,026	<u>1,512</u>	-
Jefferson City	Food service	<u>881</u>	<u>1,255</u>	<u>1,611</u>	1,203	-
Jefferson City	Big Box	<u>572</u>	<u>926</u>	<u>948</u>	<u>713</u>	-
Jefferson City	School/Office	<u>441</u>	<u>694</u>	<u>754</u>	<u>562</u>	-
Liberty,KC	24/7	<u>1,035</u>	<u>1,410</u>	<u>1,912</u>	<u>1,427</u>	-
Liberty,KC	Food service	<u>881</u>	<u>1,255</u>	<u>1,521</u>	<u>1,136</u>	-
Liberty,KC	Big Box	<u>572</u>	<u>926</u>	<u>894</u>	<u>673</u>	-
Liberty,KC	School/Office	441	<u>694</u>	<u>711</u>	<u>531</u>	•
Cape Girardeau	24/7	1,515	1,803	<u>1,918</u>	<u>1,593</u>	-
Cape Girardeau	Food service	1,279	1,567	1,543	1,287	•
Cape Girardeau	Big Box	<u>837</u>	1,117	<u>922</u>	781	•
Cape Girardeau	School/Office	<u>632</u>	<u>839</u>	<u>735</u>	<u>628</u>	•

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh_{cooling} \ x \ CF$

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Page 153

	Formatted	
//	Formatted	
/	Formatted	
	Formatted)
	Formatted Table	
	Formatted	
	Formatted	
1	Formatted	
	Formatted	
	Formatted	
	Formatted	
$\langle \rangle$	Formatted	
	Formatted)
	Formatted	
	Formatted	
	Formatted	
	Formatted)
	Formatted)
	Formatted	
	Formatted	
	Formatted)
	Formatted)
	Formatted)
	Formatted	
	Formatted	
	Formatted	
	Formatted	
(industrial	Formatted	
	Formatted	
	Formatted)
	Formatted	
	Formatted	
	Formatted	
	Formatted	
	Formatted	
	Formatted	
	Formatted)
	Formatted	
	Formatted	
	Formatted	
	Formatted	
	Formatted	
	Formatted	
	Formatted	
	Formatted	
	Formatted	
	Formatted	

Appendix H - TRM - Vol. 2: C&I Measures

Where:

- $\Delta kWh = Electric energy savings from dehumidification or dehumidify with$ cooling
- <u>CF</u> = <u>Summer peak coincidence demand (kW) to annual energy (kWh) factor</u> = 0.0009106840^{276}

2012 IECC Baseline Efficiency Values by Chiller Type and Capacity²⁷⁷

²⁷⁷-Note: Efficiency requirements depend on the path (Path A or Path B) that the building owner has chosen to meet compliance requirements. For air cooled and absorption chillers, Path A should be assumed. For water cooled chillers, the building owner should be consulted, and the relevant path used for calculations. When unknown, Path A should be used.

Formatted: Footnote

²⁷⁶ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

Appendix H - TRM – Vol. 2: C&I Measures

2.6 Lighting

C&I Lighting Deemed Hours and Waste Heat Factors by Building Type

Building Type <u>- Space Type</u>	Fixture Annual Operating Hours ²⁷⁸ (<u>Annual</u> Hours)	Waste Heat Cooling Energy Factor ²⁷⁹ (WHFe)	Waste Heat Electric Resistance Heating ²⁸⁰ (IFkWh)	Waste Heat Electric Heat Pump Heating (IFkWh)	Waste Heat Gas Heating ²⁸¹ (IFTherms)
Automotive Services	<u>3,010</u>	1.04	0.26	0.11	<u>0.011</u>
Education - Primary School	<u>2772</u>	1.08	0.28	0.12	0.012
Education - Secondary School	<u>2772</u>	1.14	0.30	0.13	0.013
Entertainment/Recreation	<u>3858</u>	1.07	0.26	0.11	0.011
Large Office - Large	3170 <u>3220</u>	1.06	0.32	0.14	0.014
Medium Office - Medium	3170 <u>3220</u>	1.14	0.19	0.08	0.008
Small Office - Small	2884<u>3220</u>	1.11	0.21	0.09	0.009
Government - offices	<u>3788</u>	1.14	0.19	0.08	0.008
Grocery/Convenience Store	<u>5646</u>	1.07	0.26	0.11	0.011
Hotel/Motel - Guest rooms	<u>2390</u> 2827	<u>1.21</u> 1.04	<u>0.22</u> 0.26	<u>0.09</u> 0.11	<u>0.009</u> 0.011
Hotel/Motel – Common area	<u>6138</u>	1.24	0.01	0.00	0.000
Hospital/Senior Living - Corridors	<u>8608</u>	1.11	0.34	0.15	0.015
Hospital/Senior Living – Guest rooms	<u>995</u>	1.11	0.34	0.15	0.015

²⁷⁸ Fixtures hours of use are based upon schedule assumptions used in the computer models. Nonresidential Average is a weighted average of indoor spaces using the relative are of each Building Type in the region (CBECS). These values are references in cases where the project specific hours are unknown. TRC; applicant self reported lighting hours by measure, participants from 2014 through June 2024, Local file: "2024 C&I Lighting Hours Review.xlsx"

Formatted: Font: 11 pt	
Formatted: Font: 11 pt	
Formatted: Font: 10 pt	
Formatted: Font: 10 pt	
Formatted: Font: 10 pt	
Formatted: Font: 10 pt	
Formatted: Font: 11 pt	
Formatted: Font: 11 pt	
Formatted Table	
Formatted: Font: 11 pt	
Formatted: Font: 11 pt	
Formatted: Font: 11 pt	
Formatted: Font: 11 pt	
Formatted: Font: 11 pt	
Formatted Table	
Formatted: Font: 11 pt	
Formatted: Font: 11 pt	
Formatted: Font: 11 pt	

measure, participants from 2014 through June 2024, Local file: "2024 C&I Lighting Hours Review.xlsx" ²⁷⁹ The Waste Heat Factor for Energy is developed using computer models for the various Building Types. <u>Exterior and garage values are 1, unknown is a weighted average of</u> ether Building Types. Similar building types aggregated. Indoor agriculture waste heat effects to be determined by building modeling by application.

²⁸⁰ Electric heat penalty assumptions are based on converting the IFTherm multiplier value into kWh and then applying relative heating system efficiencies. The gas efficiency was assumed to be 80% AFUE, electric resistance is assumed to be 100%, Heat Pump is assumed to be 2.3 COP.

²⁸¹ IFTherms value is developed using computer models consistent with methodology for Waste Heat Factor for Energy.

Appendix H - TRM – Vol. 2: C&I Measures

Building Type <u>- Space Type</u>	Fixture Annual Operating Hours ²⁷⁸ (<u>Annual</u> Hours)	Waste Heat Cooling Energy Factor ²⁷⁹ (WHFe)	Waste Heat Electric Resistance Heating ²⁸⁰ (IFkWh)	Waste Heat Electric Heat Pump Heating (IFkWh)	Waste Heat Gas Heating ²⁸¹ (IFTherms)
Hospital/Outpatient – Treatment areas	<u>3189</u>	<u>1.21</u>	0.28	0.12	0.012
Industrial/Manufacturing	<u>3831</u>	<u>1.04</u>	<u>0.26</u>	<u>0.22</u>	<u>0.011</u>
Indoor Horticulture	<u>4818</u>	Custom	Custom	Custom	Custom
Midrise Apartment Building - Common area	<u>6138</u>	<u>1.14</u>	0.44	0.19	<u>0.019</u>
eStand-alone Retail	3421	1.08	0.21	0.09	0.009
Strip Mall	369 4	1.08	0.22	0.10	0.009
Parking GaragePrimary School	<u>3465</u> 3466	<u>1.00</u> 1.08	<u>0.00</u> 0.28	<u>0.00</u> 0.12	0.0000.012
Parking Garage – 24/7 Secondary School	<u>8760</u> 3466	<u>1.00</u> 1.14	<u>0.00</u> 0.30	<u>0.00</u> 0.13	<u>0.00</u> 0.013
Public Order & SafetySupermarket	<u>6812</u> 3765	<u>,1.06</u> 1.07	<u>0.32</u> 0.26	<u>0.14</u> 0.11	<u>0.014</u> 0.011
Quick Service Restaurant - Fast Service	<u>64434235</u>	1.12	0.27	0.12	0.012
Full Service RestaurantRestaurant – Full Service	<u>64434235</u>	1.11	0.22	0.10	0.009
<u>,Retail – Big box</u>	<u>5367</u>	<u>1.08</u>	<u>0.21</u>	0.09	<u>0.009</u>
<u>Retail - Small</u>	<u>3156</u>	<u>1.08</u>	0.22	0.10	0.009
Hospital	3812	1.11	0.34	0.15	0.015
Outpatient Health Care	3898	1.21	0.28	0.12	0.012
Small Hotel Building	3713	1.21	0.22	0.09	0.009
Large Hotel - Building	3713	1.24	0.01	0.00	0.000
Midrise Apartment - Building	2876	1.14	0.44	0.19	0.019
Warehouse	<u>3127</u>	<u>1.04</u>	<u>0.26</u>	<u>0.11</u>	<u>0.011</u>
C&I Weighted Average	3351<u>3636</u>	1.09	0.24	0.10	0.010

C&I Lighting Effective Useful Life (EUL) by Equipment Category

Measure Category	Lighting Type [1]	Effective Useful Life (EUL) [2]
2.6.3 LED Bulbs and Fixtures	Fixture	15

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 5.0

Page 156

	Formatted	
	Formatted	
///	Formatted	
//	Formatted	
//	Formatted	()
Ŋ	Formatted	
λ	Formatted	
Ϊ	Formatted	
	Formatted	
Χ	Formatted	
λ	Formatted	
	Formatted	
-	Formatted	
	Formatted	
$\langle \rangle$	Formatted	
$\langle \rangle$	Formatted	
	Formatted Table	
$\langle \rangle$	Formatted	
$\left(\right)$	Formatted	
$\langle \rangle \rangle$	Formatted	
$\left(\right)$	Formatted	
	Formatted	

Appendix H - TRM – Vol. 2: C&I Measures

Measure Category	Lighting Type [1]	Effective Useful Life (EUL) [2]
2.6.4 LED Screw Based Omnidirectional Bulb	Type A & Hybrid	10
2.6.7 LED Specialty Lamp	Туре В	15
	Type C	11
	Retrofit Kit	15
	HID Replacement	15
	Lamp Replacement	10
2.6.6 LED Exit Sign	Exit Signs	7
2.6.8 Lighting Power Density	Lighting Power Density	15

Notes:

[1] Ameren Missouri maintains a table that "maps" each lighting measure code to the appropriate Lighting Type.

[2] These effective useful lives were researched by Opinion Dynamics as part of the PY19/PY20 Ameren Missouri Evaluation efforts. EUL

values for each measure group were developed through a benchmarking review of TRMs and analysis of equipment specifications (e.g., lamp life) and annual operating hours from PY19/PY20 project tracking data. See Memorandum: Recommended EUL Values for Ameren Missouri Business Lighting Measures, January 6, 2021.

Formatted: Indent: First line: 0"

Appendix H - TRM - Vol. 2: C&I Measures

2.6.1 Fluorescent Delamping

DESCRIPTION

This measure entails the permanent removal of an existing 4 foot or 8 foot T8 lamp and the associated lamp holders and ballasts from the fixture. Customers are responsible for determining whether or not to use reflectors in combination with lamp removal in order to maintain adequate lighting levels. Lighting levels are expected to meet the Illuminating Engineering Society of North America (IESNA) recommended light levels. Unused lamps, lamp holders, and ballasts must be permanently removed from the fixture and disposed of in accordance with local regulations.

This measure was developed to be applicable to RF.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient condition will vary depending on the existing fixture and number of lamps removed, however for the purposes of this measure, savings are defined on a per removed lamp basis. The retrofit wattage (efficient condition) is therefore assumed to be zero. <u>It is assumed that this measure is completed with the installation of LED lamps or LED kits.</u>

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is a T8 lamp with default wattages provided below.

Deemed Lifetime of Efficient Equipment

The measure life is assumed to be 11 years.²⁸²

DEEMED MEASURE COST

Actual incremental costs should be used if available. For default values, see table below.

Measure	Cost
8-Foot Lamp Removal	\$16.00
4 Foot Lamp Removal	\$12.00
8 Foot Lamp Removal with reflector	\$30.00
4 Foot Lame Removal with reflector	\$25.00

LOADSHAPE

Lighting BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS²⁸³

²⁸³ <u>Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, Inc., June 2007</u> (<u>Page C-11)</u>KCP&L measure life assumption.

283- The savings numbers are for the straight lamp removal measures, as well as the lamp removal and install reflector measures.

Appendix H - TRM – Vol. 2: C&I Measures

$\Delta kWh =$	<u>Watts_{base} – Watts_{EE} * Hours * ISR * WHFe 1000</u>
Where:	
Watts _{Base}	= Wattage reduction of lamp removed. Custom input; otherwise, use values in the table below.
Watts _{EE}	=0
Hours	= Average annual lighting hours of use as provided by the customer.
	If unknown, the default value based on Building Type may be selected from the Lighting Reference Table in Section 2.6.
₩HF _e	— Waste heat factor for energy to account for cooling energy savings from light removal is selected from the Lighting Reference Table in Section 2.6 for each Building Type. If building is un-cooled, the
ISR	value is 1.0 and if unknown use C&I Average value. = In Service Rate, 100% since permanent removal is assumed.

T8 Lamp Size	Wattage ²⁸⁴
8-ft T8	38.6
4-ft T8	19.4

Heating Penalty

If electrically heated building:285

$$\Delta kWh_{neatpenalty} = \frac{Watts_{Base} - Watts_{EE}}{1000} * Hours * ISR * (-IF_{kWH})$$

Where:

IF_{kWh} = Lighting HVAC Interaction Factor for electric heating impacts; this factor represents the increased electric space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Lighting Reference Table in Section 2.6. If unknown, use the C&I Average value.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

Where:

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

²⁴⁴ Default wattage reduction is based on averaging the savings from moving from a 2 to 1, 3 to 2 and 4 to 3 lamp fixture, as provided in the Standard Performance Contract Procedures Manual: Appendix B: Table of Standard Fixture Wattages (https://www.sdge.com/sites/default/files/SDG%_2520B%_2520B%_2520B%_2520B%_2520Fixture%2520Watts_0.pdf http://www.sdge.com/sites/default/files/SDG%_2520Fixture%2520Fixture

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Page 159

Formatted: Cambria12, Right: 0", Space After: 0 pt, Line spacing: single

 $= 0.0001899635^{286}$

NATURAL GAS ENERGY SAVINGS

Heating Penalty if fossil fuel heated building (or if heating fuel is unknown):287

 $\Delta Therms = \frac{Watts_{Base} - Watts_{EE}}{1000} * Hours * ISR * (-IF_{therms})$

Where:

IF_{Therms} = Lighting HVAC Interaction Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Lighting Reference Table in Section 2.6. If unknown, use the C&I Average value.

Other factors as defined above.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

²⁸⁶ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

²⁸⁷ Negative value because this is an increase in heating consumption due to the efficient lighting.

Appendix H - TRM – Vol. 2: C&I Measures

2.6.2 High Performance and Reduced Wattage T8 Fixtures and Lamps (Retired, effective)

DESCRIPTION

This measure applies to High Performance T8 (HPT8) lamp/ballast systems that have higher lumens per watt than standard T8 systems. This measure applies to the installation of new equipment with efficiencies that exceed that of the equipment that would have been installed following standard market practices and is applicable to time of sale as well as retrofit measures. Retrofit measures may include new fixtures or relamp/reballast measures. In addition, options have been provided to allow for the "Reduced Wattage T8 lamps" or RWT8 lamps that result in relamping opportunities that produce equal or greater light levels than standard T8 lamps while using fewer watts.

This measure was developed to be applicable to the following program types: TOS, RF, and DI. If applied to other program types, the measure savings should be verified.

The measure applies to all commercial HPT8 installations excluding new construction and major renovation or change of use measures (see lighting power density measure). Lookup tables have been provided to account for the different types of installations. Whenever possible, actual costs and hours of use should be utilized for savings calculations. Default new and baseline assumptions have been provided in the reference tables. Default component costs and lifetimes have been provided for O&M calculations. Please see the Definition Table to determine applicability for each program. HPT8 configurations not included in the TRM may be included in custom program design using the provided algorithms as long as energy savings is achieved.

The following table defines the applicability for different programs:

Time of Sale (TOS)	Retrofit (RF) and Direct Install (DI)	
This measure relates to the installation of new	This measure relates to the replacement of existing	Form
equipment with efficiency that exceeds that of	equipment with new equipment with efficiency that	
equipment that would have been installed	exceeds that of the existing equipment. In general, the	
following standard market practices. In general,	retrofit will include qualifying high efficiency low-	
the measure will include qualifying high-	ballast factor ballasts paired with high efficiency long	
efficiency, low ballast-factor ballasts paired	life lamps as detailed in the attached tables. Custom	
with high efficiency, long life lamps as	lighting designs can use qualifying low, normal or	
detailed in the attached tables. High bay	high ballast factor ballasts and qualifying lamps in	
applications use this system paired with	lumen equivalent applications where total system	
qualifying high ballast factor ballasts and high	wattage is reduced when calculated using the	
performance 32 w lamps. Custom lighting	calculation of savings algorithms.	
designs can use qualifying low, normal or high ballast-factor ballasts and qualifying lamps in lumen equivalent applications where total system wattage is reduced when calculated using the calculation of savings algorithms.	High efficiency troffers (new/or retrofit) utilizing HPT8 technology can provide even greater savings. When used in a high-bay application, high performance T8 fixtures can provide equal light to HID high-bay fixtures, while using fewer watts; these systems typically utilize high ballast factor ballasts, but qualifying low and normal ballast factor ballasts may be used when appropriate light levels are provided and overall wattage is reduced.	
	r	

Formatted: Font color: Text 1, Highlight

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Appendix H - TRM – Vol. 2: C&I Measures

DEFINITION OF EFFICIENT EQUIPMENT

This characterization assumes the efficient condition for all applications are qualifying HP or RWT8 fixture and lamp/ballast combinations listed on the CEE website under qualifying HP T8 products²⁸⁸ and qualifying RWT8 products.²⁸⁰

The definition of efficient equipment varies based on the program and is defined below:

Time of Sale (TOS)	Retrofit (RF) and Direct Install (DI)	
High efficiency troffers combined with high	High efficiency troffers (new or retrofit kits)	Formatted: Font color: Background 2
efficiency lamps and ballasts allow for fewer	combined with high efficiency lamps and ballasts	
lamps to be used to provide a given lumen output.	allow for fewer lamps to be used to provide a given	
High efficiency troffers must have a fixture	lumen output. High efficiency troffers must have a	
efficiency of 80% or greater to qualify.	fixture efficiency of 80% or greater to qualify.	
High bay fixtures must have fixture efficiencies	High bay fixtures will have fixture efficiencies of	
of 85% or greater.	85% or greater.	
		 Formatted: Font color: Background 2

DEFINITION OF BASELINE EQUIPMENT

The definition of baseline equipment varies based on the program and is defined below:

Time of Sale (TOS)	Retrofit (RF) and Direct Install (DI)	
The baseline is standard efficiency T8	The baseline is the existing system.	 Formatted: Font color: Background 2
systems that would have been	In July 14, 2012, federal standards were enacted that were	
installed. The baseline for high bay	expected to eliminate T12s as an option for linear fluorescent	
fixtures is pulse start metal halide	fixtures. However, due to significant loopholes in the	
fixtures.	legislation, T12 compliant product is still freely available.	

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The deemed lifetime of efficient equipment varies based on the program and is defined below:

Time of Sale (TOS)	Retrofit (RF) and Direct Install	
	(DI)	
Fixture lifetime is 15 years. ²⁹⁰	Fixture lifetime is 15 years.	Formatted: Font color: Background 2
Fixture retrofits which utilize RWT8 lamps have a lifetime	Note, since the fixture lifetime is	
equivalent to the life of the lamp, capped at 15 years. There is	deemed at 15 years, the replacement	
no guarantee that a reduced wattage lamp will be installed at	cost of both the lamp and ballast	
time of burnout, but if one is, savings will be captured in the	should be incorporated into the O&M	
RWT8 measure below.	calculation.	

https://ceel.org/images/pdf/CEE_CommercialLighting_T8ReplacementLampSpecification_effective08302018.pdfhttp://library.e eel.org/content/cee_high-performance-t8-specification_ 280

https://cee1.org/images/pdf/CEE_CommercialLighting_T8ReplacementLampSpecification_effective08302018.pdfhttp://library.c

²⁹⁰ 15 years from GDS Measure Life Report, June 2007 (Page C 8).

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 5.0

Formatted: Font color: Background 2

Formatted: Font color: Background 1

Appendix H - TRM - Vol. 2: C&I Measures

operating hours (lar	ne life of the product, at mp life in hours divided ence table "RWT8 Con at 15 years. ²⁹¹	by operating hours			
DEEMED MEASURE	Cost				Formatted: Font color: Background 2
	costs should be used	if available. For def	fault values, see the referen	ce table at	
LOADSHAPE Lighting BUS					
		Algorithm			
CALCULATION OF S Electric Energy					
<u>AkWh = (Watts</u> , Where:	_{BASE} – Watts _{ee}) * <u>x</u> Ho	ur * <u>x</u> WHF _e * <u>x</u> ISR		4	Formatted: CambriaTextFormula, Indent: Left: 0", Right: 0", Space After: 0 pt, Line spacing: single
Watts_{BASE}	fixture configuratio Value can be select below, or a custom	n (number and type ed from the appropri	which depends on the basel of lamp) and number of fiv iate reference table as show I if the configurations in th ng system.	tures. m	
Watts _{EE}	configuration (num fixtures. Value can	ber of lamps) and ba be selected from the e entered if the confi	A depends on new fixture allast factor and number of a appropriate reference tab igurations in the tables is n		Formatted: Font color: Background 2
Hours	- Average hours of	use per year as prov Table in Section 2.8	rided by the customer or se 3. If hours or Building Typ		Formatted: Font color: Background 2
WHF.	= Waste heat factor from efficient light	for energy to account of the selected from the s	nt for cooling energy savin the Reference Table in Sec is un-cooled, the value is 1	tion	Formatted: Font color: Background 2
ISR		assumed to be 1009			Formatted: Font color: Background 2
•					Formatted: Font color: Background 2
Program		Reference Table			
Time of Sale			T8 New and Baseline Assum		Formatted: Font color: Background 2
Retrofit			T8 New and Baseline Assum		Formatted: Font color: Background 2
High Bay T8 Time	e of Sale and Retrofit	A 3: High Bay T8 N	Iew and Baseline Assumption	5	Formatted: Font color: Background 2
²⁹¹ -15 years from GDS M	leasure Life Report, June 200) 7 <u>(Page C-8)</u>.			Formatted: Font color: Background 1

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Appendix H - TRM - Vol. 2: C&I Measures

A		Formatted: Font color: Background 2
Heating Penalty	202	
If electrically he	ated building: ²⁹²	
A] 147].	$\frac{Watts_{Hase} - Watts_{He}}{1000} * Hours * ISR * (-IF_{RWH})$	
$\Delta kWh_{heatpenalt}$	$\frac{y}{1000} = \frac{1000}{1000} * Hours * ISR * (-IF_{RWH})$	
Where:		
HF _{kWh}	= Lighting HVAC Interaction Factor for electric heating impacts; this	
	factor represents the increased electric space heating requirements due	
	to the reduction of waste heat rejected by the efficient lighting. Values	
	are provided in the Reference Table in Section 2.8. If unknown, use the	
	C&I Average value.	
SUMMER COINCH	DENT DEMAND SAVINGS	Formatted: Font color: Background 2
$\frac{AkW = AkW}{W}$	<u>h *x CF</u>	Formatted: CambriaTextFormula, Right: 0", Line
Where:		spacing: single
CF	= Summer peak coincidence demand (kW) to annual energy (kWh)	
	factor	
	$= 0.0001899635^{293}$	
NATURAL GAS S	A VINIOS	Formatted: Font color: Background 2
Heating Penalty	if fossil fuel heated building (or if heating fuel is unknown): ¹⁹²	
W.	$atts_{Base} - Watts_{EE} + Hours + ISP + (-IE)$	
$\Delta Therms = -$	atts_{Base} – Watts_{EE} * Hours * ISR * (–IF _{therms}) 1000	
Where:		
₽	= Lighting HVAC Interaction Factor for gas heating impacts; this factor	
- montas	represents the increased gas space heating requirements due to the	
	reduction of waste heat rejected by the efficient lighting. Please select	
	from the Reference Table in Section 2.8 for each Building Type.	
A. The second second		Formatted: Font color: Background 2
	DESCRIPTIONS AND CALCULATION	
N/A		
DEEMED O&M	Cost Adjustment Calculation	
DEFAILE CALLS	COST ADJUSTMENT CALCULATION	
292 Nagative value bec	cause this is an increase in heating consumption due to the efficient lighting.	
	TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes	Formatted: Font color: Background 1
and Coincident Peak I		

Appendix H - TRM – Vol. 2: C&I Measures

Actual operation and maintenance costs will vary by specific equipment installed/replaced. See Reference Tables for O&M values:

Program	Reference Table
TOS	B-1: HPT8 and RWT8 New and Baseline Assumptions
RF	B-2: HPT8 and RWT8 New and Baseline Assumptions
High Bay T8 Time of Sale and Retrofit	B 3: High Bay T8 New and Baseline Assumptions

REFERENCE TABLES

A-1: Time of Sale: HPT8 and RWT8 New and Baseline Assumptions²⁹⁴

EE Measure Description	Watts_{EE}	Baseline Description	Watts _{BASE}	Incremental Cost
<mark>↓ Lamp 32w HPT8 (BF < 0.79)</mark>	24.0	Standard T8	29.1	\$15.00
2 Lamp 32w HPT8 (BF < 0.77)	48.0	Standard T8	57.0	\$17.50
<mark>₄ Lamp 32w HPT8 (BF < 0.76)</mark>	71.0	Standard T8	84.5	\$20.00
4-Lamp 32w HPT8 (BF < 0.78)	98.0	Standard T8	112.6	\$22.50
<mark>€ Lamp 32w HPT8 (BF < 0.76)</mark>	142.0	Standard T8	169.0	\$40.00
<u>↓ Lamp 28w RWT8 (BF < 0.76)</u>	21.3	Standard T8	29.1	\$15.00
2-Lamp 28w RWT8 (BF < 0.76)	42.6	Standard T8	57.0	\$17.50
3 Lamp 28w RWT8 (BF < 0.77)	63.0	Standard T8	84.5	\$20.00
4 Lamp 28w RWT8 (BF < 0.79)	88.5	Standard T8	112.6	\$22.50
<mark>€-Lamp 28w RWT8 (BF < 0.77)</mark>	126.0	Standard T8	169.0	\$40.00

A-2: Retrofit: HPT8 and RWT8 New and Baseline Assumptions

EE Measure Description	Watts_{EE}	Baseline Description	Watts_{BASE}	Full Cost	Mid Life Savings Adjustmer (2020)
¹ Lamp Relamp/Reballast T12 to HPT8	24.0	1-Lamp 40w T12	31.0	\$50.00	N/A
2 Lamp Relamp/Reballast T12 to HPT8	48.0	2 Lamp 40w T12	62.0	\$55.00	N/A
3-Lamp Relamp/Reballast T12 to HPT8	71.0	3-Lamp 40w T12	108.0	\$60.00	N/A
4 Lamp Relamp/Reballast T12 to HPT8	98.0	4 Lamp 40w T12	144.0	\$65.00	N/A
6 Lamp Relamp/Reballast T12 to HPT8	142.0	6 Lamp 40w T12	216.0	\$75.00	N/A
	21.3	1-Lamp 40w T12	31.0	\$50.00	N/A
2 Lamp Relamp/Reballast T12 to RWT8	42.6	2 Lamp 40w T12	62.0	\$55.00	N/A
3 Lamp Relamp/Reballast T12 to RWT8	63.0	3 Lamp 40w T12	108.0	\$60.00	N/A

²⁹⁴ Watt, lumen, lamp life, and ballast factor assumptions for efficient measures are based upon Consortium for Energy. Efficiency (CEE) Commercial Lighting Qualifying Product Lists. Watt, lumen, lamp life, and ballast factor assumptions for baseline fixtures are based upon manufacturer specification sheets. Baseline and efficient measure cost data comes from lighting suppliers, past Efficiency Vermont projects, and professional judgment. See "HPT8 TRM Reference Tables.xlsx" for more information and specific product links. Currently, 25WT8 are not considered under this measure as their lower light trade off and limitations on temperature and dimming have caused most distributers/contractors to use 28W almost exclusively in other markate.

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

1	Formatted: Font color: Background 2
-{	Formatted: Font color: Background 2
-{	Formatted: Font color: Background 2
-{	Formatted: Font color: Background 2

Formatted: Font color: Background 2
Formatted: Font color: Background 2

Formatted: Font color: Background 2	
Formatted: Font color: Background 2	
Formatted: Font color: Background 2	
Formatted: Font color: Background 2	
Formatted: Font color: Background 2	
Formatted: Font color: Background 2	
Formatted: Font color: Background 2	
Formatted: Font color: Background 2	

Formatted: Font color: Background 2

Appendix H - TRM – Vol. 2: C&I Measures

4 Lamp Relamp/Reballast T12 to RWT8	88.5	4 Lamp 40w T12	144.0	\$65.00	N/A
6-Lamp Relamp/Reballast T12 to RWT8	126.0	6-Lamp 40w T12	216.0	\$75.00	N/A
1 Lamp Relamp/Reballast T8 to HPT8	24.0	1 Lamp 32w T8	29.1	\$50.00	N/A
2 Lamp Relamp/Reballast T8 to HPT8	48.0	2 Lamp 32w T8	57.0	\$55.00	N/A
3-Lamp Relamp/Reballast T8 to HPT8	71.0	3-Lamp 32w T8	84.5	\$60.00	N/A
4 Lamp Relamp/Reballast T8 to HPT8	98.0	4 Lamp 32w T8	112.6	\$65.00	N/A
6 Lamp Relamp/Reballast T8 to HPT8	142.0	6 Lamp 32w T8	169.0	\$75.00	N/A
1-Lamp Relamp/Reballast T8 to RWT8	21.3	1-Lamp 32w T8	29.1	\$50.00	N/A
2 Lamp Relamp/Reballast T8 to RWT8	42.6	2 Lamp 32w T8	57.0	\$55.00	N/A
3 Lamp Relamp/Reballast T8 to RWT8	63.0	3 Lamp 32w T8	84.5	\$60.00	N/A
4-Lamp Relamp/Reballast T8 to RWT8	88.5	4-Lamp 32w T8	112.6	\$65.00	N/A
6 Lamp Relamp/Reballast T8 to RWT8	126.0	6 Lamp 32w T8	169.0	\$75.00	N/A
*x New T12s that meeting FISA efficacy stands	rds changed	from 34w to 40w to r	neet the lume	n/ner watt	

*x New T12s that meeting EISA efficacy standards changed from 34w to 40w to meet the lumen/per watt requirement.

A 3: Time of Sale/Retrofit: High Bay T8 New and Baseline Assumptions

1	Formatted: Font color: Background 2
-	Formatted: Font color: Background 2
-	Formatted: Font color: Background 2
-	Formatted: Font color: Background 2
-	Formatted: Font color: Background 2
	Formatted: Font color: Background 2
	Formatted: Font color: Background 2
	Formatted: Font color: Background 2
	Formatted: Font color: Background 2
	Formatted: Font color: Background 2
	Formatted: Font color: Background 2
	Formatted: Font color: Background 2
	Formatted: Font color: Background 2

EE Measure Description	Watts_{EE}	Baseline Description	Watts _{BASE}	Incremental Cost	Full Cost	
<mark>,4-Lamp HPT8 w∕ High-</mark> BF Ballast High Bay	218.5	200 Watt Pulse Start Metal Halide	232.0	\$75	\$200	Formatted: Font color: Background 2
<mark>4-Lamp HPT8 w/ High-</mark> BF Ballast High Bay	218.5	250 Watt Metal Halide	295.0	\$75	\$200	Formatted: Font color: Background 2
<mark>∱ Lamp HPT8 w∕ High</mark> BF Ballast High Bay	330.1	320 Watt Pulse Start Metal Halide	348.8	\$75	\$225	Formatted: Font color: Background 2
<mark>,6 Lamp HPT8 w∕ High</mark> BF Ballast High Bay	330.1	400 Watt Pulse Start Metal Halide	455.0	\$75	\$225	Formatted: Font color: Background 2
<mark>& Lamp HPT8 w/ High- BF Ballast High-Bay</mark>	4 <u>18.6</u>	Proportionally Adjusted according to 6 Lamp HPT8 Equivalent to 320 PSMH	476.0	\$75	\$250	Formatted: Font color: Background 2
<mark>& Lamp HPT8 w/ High- BF Ballast High-Bay</mark>	4 <u>18.6</u>	Proportionally Adjusted according to 6 Lamp HPT8 Equivalent to 400 W Metal Halide	618.0	\$75	\$250	Formatted: Font color: Background 2
A						Formatted: Font color: Background 2

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 5.0

B 1: Time of Sale: HPT8 and RWT8 Component Costs and Lifetime

	Î		FF N	leasure			Rose	line		1
	_	Lamp	Total Lamp	Ballast	Total Ballast	Lamp	Total Lamp	Ballast	Total Ballast	-
EE Measure Description	Lamp Orcentites	Life	Replacement	Life	Replacement	Life	Replacement	Life	Replacement	Formatted: Font color: Background 2
_	Quantity	(hrs)	Cost	(hrs)	Cost	(hrs)	Cost	(hrs)	Cost	
<mark>↓1-Lamp 32w HPT8 (BF < 0.79)</mark>	1	24,000	\$8.17	70,000	\$52.50	20,000	\$5.67	70,000	\$35.00	Formatted: Font color: Background 2
2 Lamp 32w HPT8 (BF < 0.77)	2	24,000	\$16.34	70,000	\$52.50	20,000	<u>\$11.34</u>	70,000	\$35.00	Formatted: Font color: Background 2
<mark>₄3-Lamp 32w HPT8 (BF < 0.76)</mark>	3	24,000	\$24.51	70,000	\$52.50	20,000	\$17.01	70,000	\$35.00	Formatted: Font color: Background 2
<u> 4 Lamp 32w HPT8 (BF < 0.78)</u>	4	24,000	\$32.68	70,000	\$52.50	20,000	\$22.68	70,000	\$35.00	>
6 Lamp 32w HPT8 (BF < 0.76)	6	24,000	\$49.02	70,000	\$105.00	20,000	\$34.02	70,000	\$35.00	Formatted: Font color: Background 2
<mark>₄1-Lamp 28w RWT8 (BF < 0.76)</mark>	4	18,000	\$8.17	70,000	\$52.50	20,000	\$5.67	70,000	\$35.00	Formatted: Font color: Background 2
2-Lamp 28w RWT8 (BF < 0.76)	2	18,000	\$16.34	70,000	\$52.50	20,000	\$11.34	70,000	\$35.00	Formatted: Font color: Background 2
<mark>3-Lamp 28w RWT8 (BF < 0.77)</mark>	3	18,000	\$24.51	70,000	\$52.50	20,000	\$17.01	70,000	\$35.00	Formatted: Font color: Background 2
4 Lamp 28w RWT8 (BF < 0.79)	4	18,000	\$32.68	70,000	\$52.50	20,000	\$22.68	70,000	\$35.00	Formatted: Font color: Background 2
<mark>€-Lamp 28w RWT8 (BF < 0.77)</mark>	6	18,000	\$49.02	70,000	\$105.00	20,000	\$34.02	70,000	\$35.00	>
A										Formatted: Font color: Background 2
B 2: Retrofit: HPT8 and RWT8 Con	iponent Co	osts and I	lifetime							Formatted: Font color: Background 2
			PE	Measure			Ba	seline		Formatted: Font color: Background 2
		Lan	p Total La		st Total Balla	st Lamp	Total Lamp	Ballast	Total Rallast	
EE Measure Description	Lamp	Life	*	-	Replacemen	-	Replacement	Life	Replacement	Formatted: Font color: Background 2
· · · · · · · · · · · · · · · · · · ·	Quantit	y (hrs	·····	(hrs)	······	(hrs)	Cost	(hrs)	Cost	Formatted: Font color: Background 2
1 Lamp Relamp/Reballast T12 to HPT8	+ 1	24,000	\$8.17	70,00	0	20,000	\$5.87	4 0,000	\$35.00	Formatted: Font color: Background 2
2 Lamp Relamp/Reballast T12 to HPT8	2	24,000	\$16.34	70,00	0	20,000	\$11.74	40,000	\$35.00	Formatted: Font color: Background 2
3 Lamp Relamp/Reballast T12 to HPT8		24,000	\$24.51	70,00	0 \$52.50	20,000	\$17.61	4 0,000	\$35.00	Formatted: Font color: Background 2
4 Lamp Relamp/Reballast T12 to HPT8		24,000		70,00		20,000	\$23.48	40,000	\$35.00	Formatted: Font color: Background 2
6-Lamp Relamp/Reballast T12 to HPT8		24,000		70,00		20,000	\$35.22	40,000	\$35.00	>
1 Lamp Relamp/Reballast T12 to RWT	8 1	18,000	\$8.17	70,00	0	20,000	\$5.87	40,000	\$35.00	Formatted: Font color: Background 2

70.000

70,000

70,000

70,000

70,000

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

2 Lamp Relamp/Reballast T12 to RWT8

3-Lamp Relamp/Reballast T12 to RWT8

4-Lamp Relamp/Reballast T12 to RWT8

6-Lamp Relamp/Reballast T12 to RWT8

1-Lamp Relamp/Reballast T8 to HPT8

2

3

4

6

4

18,000

18,000

18,000

18,000

24,000

\$16.34

<u>\$24.51</u>

\$32.68

\$49.02

<u>\$8.17</u>

\$52.50

\$52.50

\$52.50

\$105.00

\$52.50

20,000

20,000

20,000

20,000

20,000

\$11.74

\$17.61

\$23.48

\$35.22

\$5.67

40,000

40,000

40,000

40,000

70,000

\$35.00

\$35.00

\$35.00

\$35.00

\$35.00

Formatted: Font color: Background 2

Appendix H - TRM – Vol. 2: C&I Measures

A												Formatted: Font color: Background 2
					EE Measure Baseline							
			Lamp	Lamp	Total Lamp	Ballast	Total Ballast	Lamp	Total Lamp	Ballast	Total Ballast	
EE Measur	EE Measure Description		Quantity	Life		Life	Replacement	Life	Replacement	Life		Formatted: Font color: Background 2
				(hrs)	Cost	(hrs)	Cost	(hrs)	Cost	(hrs)	Cost	
2-Lamp Relamp/Rel			2	24,000	\$16.34	70,000	\$52.50	20,000	\$11.34	70,000	\$35.00	Formatted: Font color: Background 2
3 Lamp Relamp/Rel			3	24,000	\$24.51	70,000	\$52.50	20,000	\$17.01	70,000	\$35.00	Formatted: Font color: Background 2
4 Lamp Relamp/Rel			4	24,000	\$32.68	70,000	\$52.50	20,000	\$22.68	70,000	\$35.00	Formatted: Font color: Background 2
6-Lamp Relamp/Rel			6	24,000	\$49.02	70,000	\$105.00	20,000	\$34.02	70,000	\$35.00	·
1-Lamp Relamp/Rel			1	18,000	\$8.17	70,000	\$52.50	20,000	\$5.67	70,000	\$35.00	Formatted: Font color: Background 2
2-Lamp Relamp/Rel			2	18,000	\$16.34	70,000	\$52.50	20,000	\$11.34	70,000	\$35.00	Formatted: Font color: Background 2
3-Lamp Relamp/Rel			3	18,000	\$24.51	70,000	\$52.50	20,000	\$17.01	70,000	\$35.00	Formatted: Font color: Background 2
4 Lamp Relamp/Rel			4	18,000	\$32.68	70,000 70,000	\$52.50	20,000	<u>\$22.68</u>	70,000	\$35.00	Formatted: Font color: Background 2
6 Lamp Relamp/Rel	ballast T	s to RWT8	6	18,000 \$49.02 70			\$105.00	20,000	\$34.02	70,000	<u>\$35.00</u>	Formatted: Font color: Background 2
▲ B-3: High Bay HP	T8 Com	nonent Costs	and Lifeti	me								Formatted: Font color: Background 2
D 5. Ingli Duy III		•						Rase	Han a			Formatted: Font color: Background 2
	*	E <mark>E Measure</mark>	1 1		,			Buse	Hne	1		
DD Magazza	Lamp	Total Lamp	Ballast	Tota Della				Lamp	Total Lamp	Ballast	Total Ballast	
EE Measure	Life	Replacement	t Life		Ba			Life	Replacement	Life		Formatted: Font color: Background 2
Description	(hrs)	Cost	(hrs)	Cos	meme			(hrs)	Cost	(hrs)	Cost	
4 Lamp HPT8 w/						Pulse Sta	urt Metal Halide	12000	\$35.67	40000	\$110.25	Formatted: Font color: Background 2
High-BF Ballast	24000	\$46.68	70000	\$47.5	0 250 Watt	Metal Ha	lide	10000	\$27.67	40000	\$114.50	
High-Bay												
6 Lamp HPT8 w/					320 Watt	Pulse Sta	urt Metal-Halide	20000	\$78.67	40000	<u>\$131.85</u>	Formatted: Font color: Background 2
High BF Ballast	24000	\$70.02	70000	\$47.5	400 Watt	Hetal Ha	alide	20000	\$23.67	40000	\$136.50	
High Bay												
8-Lamp HPT8 w/							usted according					Formatted: Font color: Background 2
High-BF Ballast	24000	\$93.36	70000	\$47.5			Equivalent to	20000	\$23.67	40000	\$131.85	
High Bay					320 PSM	H						1
A												Formatted: Font color: Background 2

MEASURE CODE:

2.6.<u>1</u>³ LED Bulbs and Fixtures (<u>Available for Income Eligible and BSS programs</u>)

DESCRIPTION

The installation of Light Emitting Diode (LED) lighting systems have comparable luminosity to incandescent bulbs and equivalent fluorescent lamps at significantly less wattage, lower heat, and with significantly longer lifetimes.

This measure provides savings assumptions for a variety of <u>light emitting diode (LED)</u> -efficient lighting <u>fixtures</u>-including <u>lamps</u>, <u>bulbs</u>, <u>fixtures</u>, and <u>retrofit kits</u> <u>internal and ext</u>. The effective <u>useful life varies dependent on the lighting category</u> ernal LED fixtures, recess (troffer), canopy, and pole fixtures as well as refrigerator and display case lighting.

This measure was developed to be applicable to the following program types: TOS<u>, EREP, and</u> RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, all LED <u>bulbs</u>, <u>lamps</u>, <u>fixtures</u>, <u>retrofit kits</u> <u>fixtures</u> are <u>assumed</u> to be certified or registered with <u>a at least one</u> recognized <u>independent</u> agency. The following tables lists the requirements for <u>two-three of those</u> agencies.

Agency	Requirement	Version	Lighting Types	-
Design Lights Consortium designlightsDesignlights.org	DLC Listed	Technical requirement versions: 4.0 to current Premium or Standard classification	Lamps <u>lamps</u> , fixtures, retrofit kits, LLLC	
Design Lights Consortium designlightsDesignlights.org	DLC Hort	Technical requirement versions: 1.0 to current	Agricultural horticulturallighting	•
ENERGYSTAR EnergystarEnergystar.gov	Certified	Version 2.1 to current	Lampslamps, fixtures	4
<u>UL Solutions</u> <u>Ul.com</u>	<u>Certified</u>	<u>UL Mark</u>	<u>lamps, fixtures,</u> <u>retrofit kits,</u> <u>horticultural, LLLC</u>	•

Formatted: Font: Bold, Font color: Background 1
Formatted: Font: Bold, Font color: Background 1
Formatted: Centered
Formatted Table
Formatted: Centered, Space After: 2 pt
Formatted: Centered Space After: 2 nt

Formatted: Space After: 2 pt

Formatted: Space After: 2 pt

ENERGY STAR[®] labeled or on the Design Light Consortium qualifying fixture list.²⁹⁵

LED Fixtures and Retrofit Kits with Network Controls achieve additional savings similar to the savings described in the Occupancy Controls section.

DEFINITION OF **BASELINE EQUIPMENT**

For TOS and RF and EREP installations, the baselines efficiency case is project specific and is determined using actual fixture types and counts from the existing space baseline is the lamp or fixture being replaced. The existingFor linear fluorescent fixtures, the end connectors and ballasts

²⁹⁵ Design Lights Consortium Qualified Products Lis <u>https://www.designlights.org/qpl</u> t http://www.designlights.org/qpl.

Appendix H - TRM – Vol. 2: C&I Measures

must be completely removed to qualify when retrofitting. A midlife baseline adjustment occurs at the end of the remaining useful life, approximated at 1/3 of the EUL. For

Where the installation technology is not known, the assumed baselines condition for an outdoor pole/arm, wall-mounted, garage/canopy fixture and high-bay luminaire with a high intensity discharge light source is a metal halide fixture. Deemed fixture wattages are provided in-<u>Table 2</u>, <u>LED New and Baseline AssumptionsTable 2 LED New and Baseline AssumptionsTable 2 LED New and Baseline Assumptions: reference tables at the end of this characterization.</u>

For TOS installations, the baseline is determined by the Federal Energy-Conservation Efficiency Standards, expressed in minimum lumens per watt.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

See Lighting EUL Reference Table for EUL values by Lighting Measure Group.

DEEMED MEASURE COST

Actual incremental costs should be used if available. For default values, refer to the reference tables below.

LOADSHAPE

Lighting BUS Ext Lighting BUS Miscellaneous BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = \frac{Watts_{Base} - Watts_{EE}}{1000} + x Hours + x WHF_e + x ISR$

Where:

Watts _{Base}	= Actual wattage of the existing or baseline system. Reference the
	"LED New and Baseline Assumptions" table for default values.
Watts _{EE}	= Actual wattage of LED fixture purchased / installed. If unknown,
	use default provided in "LED New and Baseline Assumptions."
Hours	= Average annual lighting hours of use as provided by the customer
	or selected from the Lighting Reference Table in Section 2.6 by
	Building Type. If hours or Building Type are unknown, use the C&I
	Average value.
WHFe	= Waste heat factor for energy to account for cooling energy savings
	from efficient lighting is selected from the Lighting Reference Table

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 5.0

Page 170

Formatted: Font color: Text 1
Formatted: Font color: Text 1

ISR

Appendix H - TRM – Vol. 2: C&I Measures

in Section 2.6 for each Building Type. If building is un-cooled, the value is 1.0.

= In Service Rate represents the percentage of reported lamps or fixtures that is installed and operating and varies with the program delivery approach. Use 100% for programs with direct installation and/or installation verification procedures (e.g., verification inspections for a sample of projects); use 98.7% for program delivery without installation verification.²⁹⁶ The ISR may also be set to 100% if the installation verification is embedded in other evaluation adjustments.

seeNote that LED Fixtures and Retrofit Kits with Network Controls achieve additional savings similar to the savings described in the Occupancy Controls section.

Heating Penalty:

If electrically heated building:297

 $\Delta kWh_{heatpenalty} = \frac{Watts_{Base} - Watts_{EE}}{1000} + X Hours + X ISR * (-IF_{kWH})$ Where:

 $IF_{kWh} = Lighting-HVAC Interaction Factor for electric heating impacts; this factor represents the increased electric space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Lighting Reference Table in Section 2.6. If unknown, use the C&I Average value.$

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

CF

= Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001899635^{298}$ for indoor lighting

= 0.0000056160 for exterior lighting

= 0.0001379439 for exterior 24/7 lighting

NATURAL GAS ENERGY SAVINGS

Heating penalty if fossil fuel heated building (or if heating fuel is unknown):

Formatted: Left, Indent: Left: 0", Don't keep lines together

²⁹⁶ ISR is based on results presented in Ameren Missouri Lighting Impact and Process Evaluation: Program Year 2015 and consistent with other program ISR in neighboring states (Illinois and Iowa). These evaluation results are from a retail based lighting program with multiple delivery channels including point-of-sale markdown, online website, coupons, and social marketing distribution.

²⁹⁷ Negative value because this is an increase in heating consumption due to the efficient lighting.

²⁹⁸ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

Appendix H - TRM - Vol. 2: C&I Measures

 $\Delta Therms = \frac{Watts_{Base} - Watts_{EE}}{1000} * Hours * ISR * (-IF_{therms})$

Where:

IF_{Therms} = Lighting-HVAC Interaction Factor for gas heating impacts.²⁹⁹ This factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Lighting Reference Table in Section 2.6. If unknown, use the C&I Average value.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

See Reference Tables below for default assumptions.

²⁹⁹ Negative value because this is an increase in heating consumption due to the efficient lighting.

Ameren Missouri REFERENCE TABLES ³⁰⁰ <u>301</u>

Appendix H - TRM – Vol. 2: C&I Measures

<u>Table 222</u> LED New and Baseline Assumptions:

LED Cotogowy	EE Measure	Baseline	Incremental		
LED Category	Description	Wattsee	Description	Wattsbase	Cost
LED Downlight Fixtures	LED Recessed, Surface, Pendant Downlights	17.6	40% CFL 26W Pin Based & 60% PAR30/38	54.3	\$27
LED Interior	LED Track Lighting	12.2	10% CMH PAR38 & 90% Halogen PAR38	60.4	\$59
Directional	LED Wall-Wash Fixtures	8.3	40% CFL 42W Pin Base & 60% Halogen PAR38	17.7	\$59
	LED Display Case Light Fixture	7.1<u>4.0</u> / ft	50% 2'T5 Linear & 50% 50W Halogen	36.2 / ft	\$11/ft
LED Display Case	LED Undercabinet Shelf-Mounted Task Light Fixtures	7.1<u>4.0</u> / ft	50% 2'T5 Linear & 50% 50W Halogen	36.2 / ft	\$11/ft
LED Display Case	LED Refrigerated Case Light, Horizontal or Vertical	7.6<u>4.0</u> / ft	5'T8	15.2 / ft	\$11/ft
	LED Freezer Case Light, Horizontal or Vertical	7.7<u>4.0</u> / ft	6'T12HO	18.7 / ft	\$11/ft
LED Linear	LED 4' Linear Replacement Lamp, <2400 lumens	18.7<u>13.7</u>	Lamp Only 32w T8	32.0 28.0	\$ 24<u>15</u>
Replacement	LED 2' Linear Replacement Lamp	<u>9.78.6</u>	Lamp Only 17w T8	<u>1715</u> .0	\$13
Lamps	LED 4' Linear Replacement Lamp, >2400 lumens	<u>24.7</u>	<u>40WT8HO</u>	<u>41.8</u>	<u>\$13</u>
	LED 2x2 Recessed Light Fixture, 2000-3500 lumens	34.1<u>22.4</u>	2-Lamp 32w T8 (BF < 0.89)	57.0	\$ <u>53</u> 48
	LED 2x2 Recessed Light Fixture, 3501-5000 lumens	4 2.8 <u>34.2</u>	3-Lamp 32w T8 (BF < 0.88)	84.5	\$ 91<u>69</u>
	LED 2x4 Recessed Light Fixture, 3000-4500 lumens	37.9 29.9	2-Lamp 32w T8 (BF < 0.89)	57.0	\$ 62<u>55</u>
LED Troffers	LED 2x4 Recessed Light Fixture, 4501-6000 lumens	<u>54.342.1</u>	3-Lamp 32w T8 (BF < 0.88)	84.5	\$ 99<u>76</u>
LED Hollers	LED 2x4 Recessed Light Fixture, 6001-7500 lumens	72.7<u>51.5</u>	4-Lamp 32w T8 (BF < 0.88)	112.6	\$ 150<u>104</u>
	LED 1x4 Recessed Light Fixture, 1500-3000 lumens	18.1 19.2	1-Lamp 32w T8 (BF < 0.91)	29.1	\$ 36 22
	LED 1x4 Recessed Light Fixture, 3001-4500 lumens	3 <u>0.8</u> 9.6	2-Lamp 32w T8 (BF < 0.89)	57.0	\$ 76<u>75</u>
	LED 1x4 Recessed Light Fixture, 4501-6000 lumens	<u>53.140.2</u>	3-Lamp 32w T8 (BF < 0.88)	84.5	\$ 130<u>83</u>
LEDLinger	LED Surface & Suspended Linear Fixture, ≤ 3000 lumens	<u> 19.717.6</u>	1-Lamp 32w T8 (BF <0.91)	29.1	\$ <u>10</u> 54
LED Linear Ambient Fixtures	LED Surface & Suspended Linear Fixture, 3001-4500 lumens	37.8 28.0	2-Lamp 32w T8 (BF < 0.89)	57.0	<u>\$10452</u>

Formatted: Font: 12 pt, Font color: Text 1

Formatted: Font color: Text 1

Formatted: Caption

Formatted Table

Formatted Table

³⁰¹ IL TRM V13, Measure 4.5.4 LED Fixture Wattage, TOS Baseline and Incremental Cost Assumptions", which aggregated data from CLEAResults, DLC, VEIC and others

2025 MEEIA 4 Plan MEEIA 2019-21 Plan-Revision 56.0

³⁰⁰ Watt, lumen, lamp life, and ballast factor assumptions for efficient measures are based upon Consortium for Energy Efficiency (CEE) Commercial Lighting Qualifying Product Lists alongside past Efficiency Vermont projects and PGE refrigerated case study. Watt, lumen, lamp life, and ballast factor assumptions for baseline fixtures are based upon manufacturer specification sheets. Baseline cost data comes from lighting suppliers, past Efficiency Vermont projects, and professional judgment. Efficient cost data comes from 2012 DOE "Energy Savings Potential of Solid State Lighting in General Illumination Applications," Table A.1. See "LED Lighting Systems TRM Reference Tables.xlsx" for more information and specific product links.

Appendix H - TRM – Vol. 2: C&I Measures

LED Category	EE Measure	Baseline	Incremental		
LED Category	Description	Wattsee	Description	Wattsbase	Cost
	LED Surface & Suspended Linear Fixture, 4501-6000 lumens		3-Lamp 32w T8 (BF < 0.88)	84.5	\$ 158<u>78</u>
	LED Surface & Suspended Linear Fixture, 6001-7500 lumens	62.6 49.9	T5HO 2L-F54T5HO - 4'	120.0	\$ 215<u>131</u>
	LED Surface & Suspended Linear Fixture, > 7500 lumens	95.4<u>90.6</u>	T5HO 3L-F54T5HO - 4'	180.0	\$ 374<u>173</u>
	LED Low-Bay Fixtures, ≤ 10,000 lumens	90.3<u>51.8</u>	3-Lamp T8HO Low-Bay	157.0	\$ 191<u>43</u>
	LED High-Bay Fixtures, 10,001-15,000 lumens	127.5 89.2	4-Lamp T8HO High-Bay	196.0	\$ 331<u>32</u>
	LED High-Bay Fixtures, 15,001-20,000 lumens	191.0<u>118.5</u>	6-Lamp T8HO High-Bay	294.0	\$4 <u>8262</u>
LED High & Low Bay Fixtures	LED High-Bay Fixtures, > 20,000 lumens	249.7<u>171.4</u>	8-Lamp T8HO High-Bay	392.0	\$ 818<u>51</u>
Day Fixtures	LED High-Bay Fixtures, 20,001-30,000 lumens	<u>230.5</u>	750 Watt Metal Halide	<u>850</u>	<u>\$114</u>
	LED High-Bay Fixtures, 40,001-50,000 lumens	<u>306.2</u>	1000 Watt Metal Halide	1080	<u>\$166</u>
	LED High-Bay Fixtures, >50,000 lumens	<u>443.7</u>	1500 Watt Metal Halide	<u>1610</u>	<u>\$284</u>
	LED Ag Interior Fixtures, ≤ 2,000 lumens	17.0<u>12.9</u>	25% 73 Watt EISA Inc, 75%-1L T8	4 <u>2.0</u> 29.1	\$ 33<u>18</u>
	LED Ag Interior Fixtures, 2,001-4,000 lumens	27.8<u>45.1</u>29.7	25% 146 Watt EISA Inc, 75% 2L T8	81.0 57.0	\$ <u>54<u>57</u>48</u>
	LED Ag Interior Fixtures, 4,001-6,000 lumens	<u>51.245.1</u>	25% 217 Watt EISA Inc, 75% 3L T8	121.0	\$ <u>8812557</u>
LED Agricultural	LED Ag Interior Fixtures, 6,001-8,000 lumens	71.7<u>59.7</u>	25% 292 Watt EISA Inc, 75% 4L T8	159.0	\$ <u>88</u> 190
Interior Fixtures	LED Ag Interior Fixtures, 8,001-12,000 lumens	103.5<u>84.9</u>	200W Pulse Start Metal Halide	227.3	\$ <u>168</u> 298
	LED Ag Interior Fixtures, 12,001-16,000 lumens	143.8<u>113.9</u>	320W Pulse Start Metal Halide	363.6	\$ <u>151</u> 450
	LED Ag Interior Fixtures, 16,001-20,000 lumens	183.3<u>143.7</u>	350W Pulse Start Metal Halide	397.7	\$ <u>205</u> 595
	LED Ag Interior Fixtures, > 20,000 lumens	305.0<u>193.8</u>	(2) 320W Pulse Start Metal Halide	727.3	\$ <u>356</u> 998
	LED Exterior Fixtures, ≤ 5,000 lumens	4 2.6<u>27.5</u>31.0	100W Metal Halide	113.6	\$ 190<u>68</u>
LED Exterior	LED Exterior Fixtures, 5,001-10,000 lumens	68.2<u>57.6</u>64.0	175W Pulse Start Metal Halide	198.9	\$ 287<u>60</u>
Fixtures	LED Exterior Fixtures, 10,001-15,000 lumens	<u>122.594.9101.0</u>	250W Pulse Start Metal Halide	284.1	\$ 391<u>129</u>
	LED Exterior Fixtures, ≻15,00 <u>1-30,000</u> lumens	215.0<u>141.0</u>	400W Pulse Start Metal Halide	454.5	\$ 793<u>156</u>
	LED Exterior Fixtures, 30,001-40,000 lumens	<u>236.0</u>	750W Metal Halide	<u>850</u>	<u>\$446</u>
	LED Exterior Fixtures, >40,000 lumens	295.0	1000W Metal Halide	<u>1080</u>	<u>\$629</u>

Formatted Table

Formatted Table

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 5.0

Ameren Missouri LED Component Costs and Lifetimes:³⁰² Appendix H - TRM – Vol. 2: C&I Measures

A			EE M	easure			Base	line		
LED Category	EE Measure Description	Lamp Life (hrs)	Total Lamp Replace Cost	LED Driver Life (hrs)	Total LED Driver Replace Cost	Lamp Life (hrs)	Total Lamp Replace Cost	Ballast Life (hrs)	Total Ballast Replace Cost	
LED Downlight	LED Recessed, Surface, Pendant	<u>50,000</u> \$62.50	<u>\$30.75 15,000</u>	<u>70,000</u> \$58.00	<u>\$47.50</u> 40,000	<u>2,500</u> \$102.50	\$8.86	40,00015,000	\$14.40	
Fixtures	Downlights						\$62.50		\$58.00	
	LED Track Lighting	<u>50,000</u> \$62.50	<u>\$39.00 15,000</u>	<u>70,000</u> \$58.00	<u>\$47.50</u> 40,000	<u>2,500</u> \$102.50	\$12.71	<u>40,000</u> 15,000	\$11.00	
LED Interior Directional	LED Hack Lighting						\$62.50		\$58.00	
	LED Wall-Wash Fixtures	<u>50,000</u> \$62.50	<u>\$30.75 15,000</u>	<u>70,000</u> \$58.00	<u>\$47.50</u> 40,000	<u>2,500</u> \$102.50	\$8.86	<u>40,00015,000</u>	\$14.40	
	LED waii-wasii l'ixtures						\$62.50		\$58.00	
	LED Display Case Light Fixture	<u>50,000</u> \$62.50	<u>\$9.75/ft</u> 15,000	<u>70,000</u> \$58.00	<u>\$11.88/ft40,000</u>	<u>2,500\$102.50</u>	<u>\$6.70</u>	<u>40,00015,000</u>	\$5.63	\mathbb{L}
LED Display							\$62.50		\$58.00	
Case	LED Undercabinet Shelf-	<u>50,000</u> \$62.50	<u>\$9.75/ft</u> 15,000	<u>70,000</u> \$58.00	<u>\$11.88/ft</u> 40,000	<u>2,500</u> \$102.50	<u>\$6.70</u>	<u>40,000</u> 15,000	\$5.63	
	Mounted Task Light Fixtures						\$62.50		\$58.00	
	LED Refrigerated Case Light,	<u>50,000</u> \$62.50	<u>\$8.63/ft</u> 15,000	<u>70,000</u> \$58.00	<u>\$9.50/ft</u> 40,000	<u>15,000</u> <u>\$102.50</u>	<u>\$1.13</u>	<u>40,000</u> 15,000	\$8.00	
LED Display	Horizontal or Vertical						\$62.50		\$58.00	1000000
Case	LED Freezer Case Light,	<u>50,000</u> \$62.50	<u>\$7.88/ft</u> 15,000	<u>70,000</u> \$58.00	<u>\$7.92/ft</u> 40,000	<u>12,000</u> \$102.50	\$0.94	40,00015,000	\$6.67	
	Horizontal or Vertical						\$62.50		\$58.00	22012222
LED Linear	LED 4'-2' Linear Replacement	<u>50,000</u> \$62.50	<u>\$5.76</u> 15,000	70,000\$58.00	<u>\$13.67</u> 40,000	<u>30,000</u> \$102.50	\$6.17	40,00015,000	\$11.96	
Replacement	Lamp						\$62.50		\$58.00	Libblest.

³⁰² Costs are based on actual costs, and measure lives are based on analysis of actual lamp life and hours of use. Costs for baseline and LED lamps sourced from Illinois TRM V13, which aggregated data from the Design Light Consortium (DLC) Qualifying Product Lists, Efficiency Vermont projects, PGE refrigerated case study. Ists

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted Formatted Formatted Table Formatted Formatted Formatted Formatted Formatted Formatted	
Formatted Table	
Formatted	
Formatted	
Tormattea	<u> </u>
Formatted	
Formatted	
Formatted]
Formatted]
Formatted)
Formatted	
Formatted	
Formatted)
Formatted)
Formatted)
Formatted	
Formatted)
Formatted]
Formatted	
Formatted	
Formatted	
Formatted)
Formatted	
Formatted	
Formatted	
Formatted	3

Appendix H - TRM – Vol. 2: C&I Measures

		EE Measure Baseline					•		
LED Category	EE Measure Description	Lamp Life (hrs)	Total Lamp Replace Cost	LED Driver Life (hrs)	Total LED Driver Replace Cost	Lamp Life (hrs)	Total Lamp Replace Cost	Ballast Life (hrs)	Total Ballast Replace Cost
Lamps	LED <u>2'-4'</u> Linear Replacement	<u>50,000</u> \$62.50	<u>\$8.57</u> 15,000	<u>,70,000</u> \$58.00	<u>\$13.67</u> 40,000	<u>24,000</u> \$102.50	<u>\$6.17</u>	<u>40,000</u> 15,000	<u>\$11.96</u>
Replacement	Lamp,<2400 lumens						\$62.50		\$58.00
	LED 4' Linear Replacement Lamp, 22400 lumensLED 4' Linear Replacement Lamp,>2400 lumens	<u>50,000</u>	<u>\$8.57</u>	70,000	<u>\$13.67</u>	<u>,18,000</u>	<u>\$6.17</u>	<u>40,000</u>	<u>\$11.96</u>
	LED 2x2 Recessed Light Fixture,	50,000 \$62.50	\$78.07 15,000	,70,000 \$58.00	\$40.00 40,000	24,000 \$102.50	\$26.33	40,00015,000	\$35.00
	2000-3500 lumens	<u>50,000</u> ¢02.50	<u>\$70.07</u> 15,000	<u>10,000</u> 000 000 000 000 000 000 00	\$10.00 +0,000	24,000,0102.50	\$62.50	<u>H0,000</u> 15,000	\$58.00
	LED 2x2 Recessed Light Fixture,	50,000 \$62.50	\$89.23 15,000	,70,000 \$58.00	\$40.00 40,000	24,000 \$102.50	\$39.50	40,000 15,000	\$35.00
	3501-5000 lumens						\$62.50		\$58.00
	LED 2x4 Recessed Light Fixture,	50,000 \$62.50	\$96.10 15,000	70,000 \$58.00	\$40.00 40,000	24,000 \$102.50	\$12.33	40,000 15,000	\$35.00
	3000-4500 lumens						\$62.50		\$58.00
	LED 2x4 Recessed Light Fixture,	<u>50,000</u> \$62.50	<u>\$114.37</u>	<u>70,000</u> \$58.00	\$40.00 40,000	<u>24,000</u> \$102.50	\$18.50	40,00015,000	\$35.00
LED Troffers	4501-6000 lumens		15,000				\$62.50		\$58.00
LED Troffers	LED 2x4 Recessed Light Fixture,	<u>50,000</u> \$62.50	<u>\$137.43</u>	<u>70,000</u> \$58.00	<u>\$40.00</u> 40,000	<u>24,000</u> \$102.50	\$24.67	<u>40,000</u> 15,000	\$35.00
	6001-7500 lumens		15,000				\$62.50		\$58.00
	LED 1x4 Recessed Light Fixture,	<u>50,000</u> \$62.50	<u>\$65.43 15,000</u>	<u>70,000</u> \$58.00	<u>\$40.00</u> 40,000	<u>24,000</u> \$102.50	\$6.17	<u>40,000</u> 15,000	\$35.00
	1500-3000 lumens						\$62.50		\$58.00
	LED 1x4 Recessed Light Fixture,	<u>50,000</u> \$62.50	<u>\$100.44</u>	<u>70,000</u> \$58.00	<u>\$40.00</u> 40,000	<u>24,000</u> \$102.50	\$12.33	<u>40,000</u> 15,000	\$35.00
	3001-4500 lumens		15,000				\$62.50		\$58.00
	LED 1x4 Recessed Light Fixture,	<u>50,000</u> \$62.50	<u>\$108.28</u>	<u>70,000</u> \$58.00	<u>\$40.00</u> 40,000	<u>24,000</u> \$102.50	\$18.50	40,000	\$35.00
	4501-6000 lumens		15,000				\$62.50		\$58.00
	LED Surface & Suspended Linear	<u>50,000</u> \$62.50	<u>\$62.21 15,000</u>	<u>70,000</u> \$58.00	<u>\$40.00</u> 40,000	<u>24,000</u> \$102.50	\$6.17	<u>40,000</u> 15,000	\$35.00
	Fixture, ≤ 3000 lumens						\$62.50		\$58.00
LED Linear	LED Surface & Suspended Linear	<u>50,000</u> \$62.50	<u>\$93.22 15,000</u>	<u>,70,000</u> \$58.00	\$40.00 40,000	<u>24,000</u> \$102.50	\$12.33	40,00015,000	\$35.00
Ambient	Fixture, 3001-4500 lumens						\$62.50		\$58.00
Fixtures	LED Surface & Suspended Linear	<u>50,000</u> \$62.50	<u>\$114.06</u>	<u>70,000</u> \$58.00	<u>\$40.00</u> 40,000	<u>24,000</u> \$102.50	\$18.50	40,00015,000	\$35.00
1 IAUICS	Fixture, 4501-6000 lumens		15,000				\$62.50		\$58.00
	LED Surface & Suspended Linear	<u>50,000</u> \$62.50	\$152.32	70,000 \$58.00	<u>\$40.00</u> 40,000	<u>30,000</u> \$102.50	\$26.33	40,000	\$60.00
	Fixture, 6001-7500 lumens		15,000				\$62.50		\$58.00

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 5.0

Formatted	
Formatted	
Formatted Table	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	

Ameren Misso	ouri	Append	ix H - TRM –		Measures				
۸		EE Measure Baseline							
LED Category	EE Measure Description	Lamp Life (hrs)	Total Lamp Replace Cost	LED Driver Life (hrs)	Total LED Driver Replace Cost	Lamp Life (hrs)	Total Lamp Replace Cost	Ballast Life (hrs)	Total Ballast Replace Cost
	LED Surface & Suspended Linear	<u>50,000</u> \$62.50	<u>\$183.78</u>	70,000\$58.00	\$40.00 40,000	<u>30,000</u> \$102.50	\$39.50	40,000	\$60.00
	Fixture, > 7500 lumens		15,000				\$62.50		\$58.00
	LED Low-Bay Fixtures, ≤ 10,000	<u>50,000</u> \$62.50	<u>\$90.03</u> 15,000	<u>70,000</u> \$58.00	<u>\$62.50</u> 40,000	<u>18,000</u> \$102.50	<u>\$64.50</u>	<u>40,000</u> 15,000	<u>\$92.50</u>
	<u>lumens</u> LED Low Bay Fixtures, ≤ 10,000 lumens						\$62.50		\$58.00
	LED High-Bay Fixtures, 10,001-	<u>50,000</u> \$62.50	<u>\$122.59</u>	<u>70,000</u> \$58.00	<u>\$62.50</u> 40,000	18,000 \$102.50	<u>\$86.00</u>	<u>40,000</u> 15,000	<u>\$92.50</u>
	15,000 lumens LED High-Bay Fixtures, 10,001-15,000 lumens		15,000				\$62.50		\$58.00
	LED High-Bay Fixtures, 15,001-	<u>50,000</u> \$62.50	\$157.22	70,000\$58.00	<u>\$62.50</u> 40,000	18,000 \$102.50	\$129.00	40,000 15,000	\$117.50
LED High &	20,000 lumens LED High Bay Fixtures, 15,001–20,000 lumens		15,000				\$62.50		\$58.00
Low Bay Fixtures	LED High-Bay Fixtures, > 20,000	<u>50,000</u> \$62.50	<u>\$228.52</u>	<u>70,000</u> \$58.00	<u>\$62.50</u> 40,000	18,000 \$102.50	\$172.00	40,00015,000	\$142.50
Fixtures	<u>lumens</u> LED High-Bay Fixtures, > 20,000 lumens		15,000				\$62.50		\$58.00
	LED High-Bay Fixtures, 20,001- 30,000 lumens	50,000	\$294.00	70,000	\$62.50	15,000	\$82.00	40,000	\$143.00
	LED High-Bay Fixtures, 40,001-	50,000	\$324.00	70,000	\$62.50	15,000	\$88.00	40,000	\$149.00
	50,000 lumens								
	LED High-Bay Fixtures, >50,000 lumens	50,000	\$382.00	70,000	\$62.50	15,000	<u>\$96.00</u>	40,000	\$200.00
	LED Ag Interior Fixtures, ≤ 2,000 lumens	<u>50,000</u> \$62.50	<u>\$41.20</u> 15,000	<u>70,000</u> \$58.00	<u>\$40.00</u> 40,000	<u>1,000</u> \$102.50	<u>\$1.23</u> \$62.50	<u>40,000</u> 15,000	<u>\$26.25</u> \$58.00
	LED Ag Interior Fixtures, 2,001-	<u>50,000</u> \$62.50	<u>\$65.97</u> 15,000	<u>70,000</u> \$58.00	<u>\$40.00</u> 40,000	<u>1,000</u> \$102.50	\$1.43	40,00015,000	\$26.25
	4,000 lumens						\$62.50		\$58.00
LED	LED Ag Interior Fixtures, 4,001-	<u>50,000</u> \$62.50	<u>\$80.08 15,000</u>	<u>70,000</u> \$58.00	<u>\$40.00</u> 40,000	1,000\$102.50	\$1.62	40,000 15,000	\$26.25
Agricultural Interior Fixtures	6,000 lumens						\$62.50		\$58.00
Interior Fixtures	LED Ag Interior Fixtures, 6,001-	<u>50,000</u> \$62.50	<u>\$105.54</u>	<u>70,000</u> \$58.00	<u>\$40.00</u> 40,000	1,000\$102.50	<u>\$1.81</u>	40,00015,000	\$26.25
	8,000 lumens		15,000				\$62.50		\$58.00
	LED Ag Interior Fixtures, 8,001-	<u>50,000</u> \$62.50	<u>\$179.81</u>	<u>70,000</u> \$58.00	<u>\$62.50 40,000</u>	<u>15,000</u> \$102.50	<u>\$63.00</u>	40,000 15,000	\$112.50
	12,000 lumens		15,000				\$62.50		\$58.00

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

/	Formatted	
	Formatted	
/	Formatted Table	
/	Formatted	
/	Formatted	
	Formatted	
/	Formatted	
	Formatted	
$\overline{)}$	Formatted	
$\langle \rangle$	Formatted	
/,	Formatted	
$\langle \rangle$	Formatted	
()	Formatted	
	Formatted	

Appendix H - TRM – Vol. 2: C&I Measures

			EE M	leasure			Basel	line	
LED Category	EE Measure Description	Lamp Life (hrs)	Total Lamp Replace Cost	LED Driver Life (hrs)	Total LED Driver Replace Cost	Lamp Life (hrs)	Total Lamp Replace Cost	Ballast Life (hrs)	Total Ballast Replace Cost
	LED Ag Interior Fixtures, 12,001-	<u>50,000</u> \$62.50	<u>\$190.86</u>	<u>70,000</u> \$58.00	<u>\$62.50</u> 40,000	<u>15,000</u> \$102.50	\$68.00	<u>40,000</u> 15,000	\$122.50
l	16,000 lumens		15,000	1			\$62.50		\$58.00
l	LED Ag Interior Fixtures, 16,001-	<u>50,000</u> \$62.50	<u>\$237.71</u>	<u>70,000</u> \$58.00	<u>\$62.50</u> 40,000	<u>15,000</u> \$102.50	\$73.00	40,00015,000	\$132.50
l	20,000 lumens		15,000				\$62.50		\$58.00
l	LED Ag Interior Fixtures, >	<u>50,000</u> \$62.50	<u>\$331.73</u>	<u>70,000</u> \$58.00	<u>\$62.50</u> 40,000	<u>15,000</u> \$102.50	\$136.00	40,00015,000	\$202.50
	20,000 lumens	'	15,000	l	I		\$62.50		\$58.00
	<u>LED Exterior Fixtures, $\leq 5,000$</u>	<u>50,000</u> <u>\$62.50</u>	<u>\$73.80 15,000</u>	70,000\$58.00	<u>\$62.50</u> 40,000	<u>15,000</u> \$102.50	\$58.00	40,000	\$102.50
	<u>lumens</u> LED Exterior Fixtures, ≤ 5,000 lumens						\$62.50		\$58.00
l	LED Exterior Fixtures, 5,001-	<u>50,000</u> \$62.50	<u>\$124.89</u>	70,000\$58.00	<u>\$62.50 40,000</u>	<u>15,000</u> \$102.50	\$63.00	40,00015,000	\$112.50
LED Exterior	10,000 lumens LED Exterior Fixtures, 5,001-10,000 lumens		15,000				\$62.50		\$58.00
Fixtures	LED Exterior Fixtures, 10,001-	<u>50,000</u> \$62.50	<u>\$214.95</u>	<u>70,000</u> \$58.00	<u>\$62.50</u> 40,000	<u>15,000</u> \$102.50	\$68.00	40,00015,000	\$122.50
	<u>15,000 lumens</u> LED Exterior Fixtures, 10,001-15,000 lumens		15,000				\$62.50		\$58.00
l	LED Exterior Fixtures, 15,001-	<u>50,000</u> \$62.50	\$321.06	<u>70,000</u> \$58.00	<u>\$62.50</u> 40,000	<u>15,000</u> \$102.50	\$73.00	40,00015,000	\$132.50
	<u>30,000 lumens</u> LED Exterior Fixtures, > 15,000 lumens		15,000				\$62.50		\$58.00
	LED Exterior Fixtures, 30,001- 40,000 lumens	<u>50,000</u>	\$546.00	70,000	<u>\$62.50</u>	15,000	\$82.00	40,000	<u>\$143.00</u>
	LED Exterior Fixtures, >40,000	50,000	\$722.00	70,000	\$62.50	15,000	\$88.00	40,000	\$149.00
·	lumens		!		I				l
	<u>LED Exterior Fixtures, ≤ 5,000</u> lumens	50,000	<u>\$870.00</u>	70,000	<u>\$62.50</u>	,15,000	\$96.00	40,000	\$200.00
	LED Exterior Fixtures, 5,001-	50,000	\$73.80	,70,000	\$62.50	,15,000	\$58.00	40,000	\$102.50
	<u>10,000 lumens</u>			A				A	<u> </u>

MEASURE CODE:

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 5.0

Formatted	
Formatted	
Formatted Table	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	

2.6.24 LED Screw Based Omnidirectional Bulb (Retired Available for Income Eligible and BSS programs, effective 8/1/2023).³⁰³

DESCRIPTION

LEDs lighting systems convert electricity to light and emit more lumens per watt when compared to baseline EISA incandescent, halogen, or compact fluorescent lamps.

This specific characterization provides savings assumptions for LED lamps that replace standard screw-in connections (e.g., A-Type lamp) such as interior/exterior omnidirectional bulb options.

This characterization assumes that the LED is installed in a commercial location. This is, therefore, appropriate for commercially targeted programs, or, if the implementation strategy does not allow for the installation location to be known (e.g., an upstream retail program), utilities should develop an assumption of the residential versus nonresidential split and apply the relevant assumptions to each portion.

Federal legislation stemming from the Energy Independence and Security Act of 2007 (EISA) requires all general-purpose light bulbs between 40W and 100W to be approximately 30% more energy efficient than standard incandescent bulbs. Production of 100W, standard efficacy incandescent lamps ended in 2012, followed by restrictions on 75W in 2013 and 60W and 40W in 2014. The baseline for this measure has therefore become bulbs (improved incandescent or halogen) that meet the new standard.

This measure was developed to be applicable to the following program types: TOS and RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, new LED screw-based lamps must be ENERGY STAR[®] qualified based upon the ENERGY STAR[®] specification v2.0 which will become effective on 1/2/2017 (https://www.energystar.gov/sites/default/files/Luminaires%20V2%200%20Final.pdf).

Qualification could also be based or on the Design Light Consortium's qualified product list.304

DEFINITION OF BASELINE EQUIPMENT

The baseline condition for this measure is assumed to be an EISA-qualified halogen or incandescent.³⁰⁵ A midlife adjustment example is provided but not applied to measures installed prior to 2022.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

See Lighting EUL Reference Table for EUL values by Lighting Measure Group.

⁴⁰⁴ "Retire" indicates that the measure is not anticipated to be offered through an Ameren Missouri-administered demand-side program during the period of TRM effectiveness.
 ³⁰⁴ <u>https://www.designlights.org/QPL</u>

Formatted: Font color: Blue

Formatted: Font color: Background 2

³⁰⁵ A provision in the EISA regulations requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the baseline equivalent to a current day CFL. However, in 2019, the Department of Energy issued two final rules and clarified that a) the EISA backstop provision had not been triggered and therefore b) the efficiency standard would not change in 2020. As of 10/15/2020, the 45 lumen per watt EISA standard is not effective.

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted: Not Highlight

Appendix H - TRM - Vol. 2: C&I Measures

DEEMED MEASURE COST

Actual incremental costs should be used if available. If unavailable, assume 3.26 (baseline cost of 1.80 and efficient cost of 5.06).

LOADSHAPE

Lighting BUS Ext Lighting BUS Miscellaneous BUS

Algorithm

Formatted: Font color: Auto

Formatted: Underline, Font color: Blue Formatted: Underline, Font color: Blue Formatted: Underline, Font color: Blue Formatted: Underline, Font color: Blue Formatted: Underline, Font color: Blue Formatted: Underline, Font color: Blue Formatted: Underline, Font color: Blue Formatted: Underline, Font color: Blue Formatted: Underline, Font color: Blue Formatted: Underline, Font color: Blue Formatted: Underline, Font color: Blue Formatted: Underline, Font color: Blue Formatted: Underline, Font color: Blue

Formatted: Underline, Font color: Blue

Formatted: Underline, Font color: Blue

Formatted: Underline, Font color: Blue

Formatted: Underline, Font color: Blue Formatted: Underline, Font color: Blue

Formatted: Font color: Auto

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

$\Delta kWh =$	$Watts_{Base} - Watts_{EE}$	* Hours * WHF _e * ISR
	1000	* 110013 * W111 _e * 15K

Where:

Watts _{Base}	= Based on lumens of LED bulb installed
Watts _{EE}	= Actual wattage of LED purchased/installed. If unknown, use
	default provided below. ³⁰⁷
Hours	= Average hours of use per year as provided by the customer or
	selected from the Lighting Reference Table in Section 2.6 and based
	upon Building Type. If unknown, use the C&I Average value.
WHFe	= Waste heat factors for energy to account for cooling energy savings
	from efficient lighting are provided for each Building Type in the
	Lighting Reference Table in Section 2.6. If unknown, use the C&I
	Average value.
ISR	= In-Service Rate represents the percentage of reported lamps or
	fixtures that is installed and operating and varies with the program
	delivery approach. Use 100% for programs with direct installation
	and/or installation verification procedures (e.g., verification
	inspections for a sample of projects); use 98.7% for program delivery

 $\begin{array}{l} (\mbox{http://macgeac.org/wordpress/wpcontent/uploads/MAcTask_5bgLED_Incremental_Cost_Study_FINAL_01FEB2016.pdf), p.19. \\ \end{tabular} \end{tabula$

³⁰⁶ Incandescent/halogen and LED cost assumptions based on Cadmus "LED Incremental Cost Study: Overall Final Report," February 2016

Appendix H - TRM – Vol. 2: C&I Measures

Lower Lumen **Upper Lumen** Watts_{EE} LED **Delta Watts** WattsBase Range Range 250 309 25 4.0 21 310 749 29 6.7 22.3 750 1,049 43 10.1 32.9 1,050 1,489 53 12.8 40.2 1,490 2,600 72 17.4 54.6 2,601 3,000 150 43.1 106.9 3,001 3,999 200 53.8 146.2 4,000 6,000 300 76.9 223.1

without installation verification.³⁰⁸ The ISR may also be set to 100% if the installation verification is embedded in other evaluation adjustments.

Mid-Life	Baseline	Ad	ustment	Example

During the lifetime of a standard omnidirectional LED, the baseline incandescent/halogen bulb would need to be replaced multiple times. Since the baseline bulb changes to a CFL equivalent in 2020 due to the EISA backstop provision (except for <310 and 2600+ lumen lamps), the annual savings claim must be reduced within the life of the measure to account for this baseline shift. This reduced annual savings will need to be incorporated in to cost effectiveness screening calculations. The baseline adjustment also impacts the O&M schedule. However, in 2019, the Department of Energy issued two final rules and clarified that a) the EISA backstop provision had not been triggered and therefore b) the efficiency standard would not change in 2020. As of 10/15/2020, the 45 lumen per watt EISA standard is not effective.

For example, for 43W equivalent LED lamp installed in 2016, the full savings (as calculated above in the Algorithm) should be claimed for the first four years, but a reduced annual savings (calculated energy savings above multiplied by the adjustment factor in the table below) should be claimed for the remainder of the measure life.^{309&310}

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted: Font color: Auto

³⁰⁸ ISR is based on results presented in Ameren Missouri Lighting Impact and Process Evaluation: Program Year 2015. This value takes into account the time-delay of when bulbs are installed over subsequent program years. The reported ISR is based on the net present value (NPV) of the savings over 4 year installation period from the PY15 bulbs, discounted back to Year 1 at 6.95% (utility discount rate). These evaluation results are from a retail-based lighting program with multiple delivery channels including point-of-sale markdown, online website, coupons, and social marketing distribution.

³⁰⁹ These adjustments should be applied to kW and gas impacts as well.

³¹⁰ Calculated with EISA requirement of 45lumens/watt.

Appendix H - TRM – Vol. 2: C&I Measures

Lower Lumen Range	Upper Lumen Range	Mid Lumen Range	Watts EE	WattsBase before EISA 2020	Delta Watts before EISA 2020	WattsBase after EISA 2020 ²⁰⁸	Delta Watts after EISA 2020	Mid Life adjustment (in 2020) to first year savings
250	309	280	4.0	25	21	25	21	100.0%
310	749	530	6.7	29	22.3	9.4	2.7	12.1%
750	1049	900	10.1	43	32.9	13.4	3.3	10.0%
1050	1489	1270	12.8	53	40.2	18.9	6.1	15.2%
1490	2600	2045	17.4	72	54.6	24.8	7.4	13.6%
2,550	3,000	2,775	43.1	150	106.9	150	106.9	100.0%
3,001	3,999	3,500	53.8	200	146.2	200	146.2	100.0%
4,000	6,000	5,000	76.9	300	223.1	300	223.1	100.0%

Heating Penalty:

If electrically heated building:311

$$\Delta kWh_{heatpenalty} = \frac{Watts_{Base} - Watts_{EE}}{1000} * Hours * ISR * (-IF_{kWH})$$

Where:

IF_{kWh} = Lighting-HVAC Interaction Factor for electric heating impacts; this factor represents the increased electric space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Lighting Reference Table in Section 2.6 and based upon Building Type. If unknown, use the C&I Average value.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta k W = \Delta k W h * CF$ Where:

CF

= Summer peak coincidence demand (kW) to annual energy (kWh) factor $= 0.0001899635^{312}$ for indoor lighting = 0.0000056160 for exterior lighting

= 0.0001379439 for exterior 24/7 lighting

NATURAL GAS ENERGY SAVINGS

Heating penalty if fossil fuel heated building (or if heating fuel is unknown): 311341207

$$\Delta Therms = \frac{Watts_{Base} - Watts_{EE}}{1000} * Hours * ISR * (-IF_{therms})$$

³¹¹ Results in a negative value because this is an increase in heating consumption due to the efficient lighting. ³¹² Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

Formatted: Left, Indent: Left: 0", Don't keep lines together

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 5.0

Formattee	1: Font color: Auto
Formattee	1: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: CambriaTextFormula, Indent: Left: 0",

Right: 0", Space After: 0 pt, Line spacing: single

Where:

IF_{Therms} = Lighting-HVAC Interaction Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Lighting Reference Table in Section 2.6 and based upon Building Type. If unknown, use the C&I Average value.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

In order to account for the falling EISA-Qualified backdrop provision, an equivalent annual levelized baseline replacement cost over the lifetime of the LED bulb is calculated. The key assumptions used in this calculation are documented below:³¹³

ļ	Incandescent / Halogen	CFL	LED ALamp
	¢1.90	\$2.20	\$5.06
	\$1.80	\$2.20	\$5.06

The present value of replacement lamps and annual levelized replacement costs using utilities' average real discount rate of 6.91% are presented below:

Location	PV of repl	acement costs	for period	Levelized ann	ual replaceme	replacement cost savings				
Location	2016 - 2017	2017 - 2018	2018 - 2019	2016 - 2017	2017 - 2018	2018 - 2019				
C&I Average	\$18.66	\$14.70	\$10.46	\$2.04	\$1.60	\$1.14				

Note: incandescent lamps in lumen range <310 and >2600 are exempt from EISA. For these bulb types, an O&M cost should be applied as follows. If unknown Building Type, assume C&I Average:

³¹³ All cost assumptions based on Cadmus "LED Incremental Cost Study: Overall Final Report," February 2016 page 19, https://ma-eeac.org/wordpress/wp-content/uploads/MA-Task-5b-LED-Incremental-Cost-Study_FINAL_01FEB2016.pdf (http://ma.eeac.org/wordpress/wp-content/uploads/MA-Task-5b-LED-Incremental-Cost-Study_FINAL_01FEB2016.pdfeeac.org/wordpress/wp_content/uploads/MA_Task_5b_LED_Incremental_Cost-Study_FINAL_01FEB2016.pdf, p.19.

	Formatted: Font color: Auto
//	Formatted: Font color: Auto
λ	Formatted: Font color: Auto
	Formatted: Font color: Auto
$\ $	Formatted: Font color: Auto
//	Formatted: Font color: Auto
//	Formatted: Font color: Auto
Ŋ	Formatted: Font color: Auto
λ	Formatted: Font color: Auto
	Formatted: Font color: Auto
-	Formatted: Font color: Auto
1	Formatted: Font color: Auto
	Formatted: Font: 9 pt
	Field Code Changed
$\left \right $	Field Code Changed
\parallel	Field Code Changed
//	Field Code Changed
Ŋ	Field Code Changed
X	Field Code Changed
/	Field Code Changed
1	Field Code Changed
-	Field Code Changed

Appendix H - TRM - Vol. 2: C&I Measures

Ruilding Type	Replacement Period	Replacement Cost
Building Type	(years) ³¹⁴	
Large Office	0.32	
Medium Office	0.32	
Small Office	0.35	
Warehouse	0.35	
Stand-alone Retail	0.29	
Strip Mall	0.27	
Primary School	0.29	
Secondary School	0.29	
Supermarket	0.27	\$1.80 ³¹⁵
Quick Service Restaurant	0.16	
Full Service Restaurant	0.16	
Hospital	0.26	
Outpatient Health Care	0.26	
Small Hotel - Building	0.27	
Large Hotel - Building	0.27	
Midrise Apartment - Building	0.35	
C&I Average	0.30	

MEASURE CODE:

Formatted: Font color: Background 2

³¹⁴ Calculated by dividing assumed rated life of baseline bulb by hours of use. Assumed lifetime of EISA-qualified halogen/incandescent is 1000 hours (manufacturers are simply using a regular incandescent lamp with halogen fill gas rather Halogen Infrared to meet the standard (as provided by G. Arnold, NEEP and confirmed by N. Horowitz at NRDC)).
³¹⁵ Incandescent/halogen cost assumptions based on Cadmus "LED Incremental Cost Study: Overall Final Report," February 2016 (http://ma-eeac.org/wordpress/wp-content/uploads/MA-Task-5b-LED-Incremental-Cost-Study_FINAL_01FEB2016.pdf), p.19.

Appendix H - TRM – Vol. 2: C&I Measures

2.6.5 T5 Fixtures and Lamps (Retired, effective xxx)-316

DESCRIPTION

T5 HO lamp/ballast systems have greater lumens per watt than a typical T8 system. The smaller lamp diameter of the T5HO also increases optical control efficiency and allows for more precise control and directional distribution of lighting. These characteristics make it easier to design light fixtures that can produce equal or greater light than standard T8 or T12 systems, while using fewer watts. In addition, when lighting designers specify T5 HO lamps/ballasts, they can use fewer luminaries per project, especially for large commercial projects, thus increasing energy savings further.³⁴⁷

The main markets served by T5 HO fixtures and lamps include retrofit in the commercial and nonresidential sector, specifically industrial, warehouse, and grocery facilities with higher ceiling heights that require maximum light output.

This measure was developed to be applicable to the following program types: TOS and RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The definition of the efficient equipment is T5 HO high bay (>15ft mounting height) fixtures with 3, 4, 6, or 8 lamp configurations.

DEFINITION OF BASELINE EQUIPMENT

The definition of baseline equipment varies based on number of lamps in a fixture and is defined in the baseline reference table at the end of this characterization. The default baseline is assumed to be a PulseStart Metal Halide fixture.

Deemed Lifetime of Efficient Equipment

The deemed lifetime of the efficient equipment fixture is 15 years.³¹⁸

DEEMED MEASURE COST

Actual costs should be used if available. If not available, \$10/lamp and \$37.50/ballast can be used to account for installation labor costs.

LOADSHAPE

Lighting BUS Ext Lighting BUS Miscellaneous BUS

316	6 <u>"Reti</u>	re"	indica	t es t	hat	the	mea	sure	i s not	antic	ipated	l to	be offe	ered	throu	gh a i	1 Am	ere	n N	Aissouri	-admi	nistere	ed d	lemai	id-si	de
рт	ogran	uui	mg m	e pe	rioc	101	TIXIN	I CIII	CUM	11035.																

¹¹⁷Lighting Research Center. T5 Fluorescent Systems. (See page 16 of 28 bottom of third paragraph) https://www.lrc.rpi.edu/programs/NLPIP/lightingAnswers/pdf/print/LAT5.pdfhttp://www.lrc.rpi.edu/programs/nlpip/lightingAn

wers/lat5/abstract.asp

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted: Font color: Background 2

Formatted: Font color: Background 1
Formatted: Font color: Background 1
Formatted: Left

³¹⁸ Focus on Energy Evaluation "Business Programs: Measure Life Study" Final Report, August 9, 2009, prepared by PA Consulti Group.

Appendix H - TRM - Vol. 2: C&I Measures

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\frac{Watts_{wase} - Watts_{wase}}{1000} * Hours * WHF_e * ISR$ <u>Ak₩h</u> :

	<u>1000</u>	
Vhere:		
-Watts _{Base}	= Custom input. If unknown, input wattage of the baseline system is dependent on	
	new fixture configuration and found in the 'T5HO Efficient and Baseline Wattage	
	and Cost Assumptions' reference table below.	
Watts _{EE}	= Custom Input. If unknown, input wattage depends on new fixture configuration	Formatted: Font color: Background 2
	(number of lamps) and ballast factor and number of fixtures. Value can be selected	
	from the 'T5HO Efficient and Baseline Wattage and Cost Assumptions' reference	
	table below.	
Hours	= Average annual lighting hours of use as provided by the customer or selected from	Formatted: Font color: Background 2
	the Lighting Reference Table in Section 2.6 as annual operating hours, by Building	
	Type. If hours or Building Type are unknown, use the C&I Average value.	
WHF _e	= Waste heat factor for energy to account for cooling energy savings from efficient	Formatted: Font color: Background 2
	lighting is selected from the Lighting Reference Table in Section 2.6 for each	
	Building Type. If building is un-cooled, the value is 1.0.	
-ISR	= In Service Rate represents the percentage of reported lamps or fixtures that is	Formatted: Font color: Background 2
	installed and operating and varies with the program delivery approach. Use 100% for	
	programs with direct installation and/or installation verification procedures (e.g.,	
	verification inspections for a sample of projects); use 98% for program delivery	
	without installation verification. ³¹⁹ The ISR may also be set to 100% if the installation	
	verification is embedded in other evaluation adjustments.	
		Formatted: Font color: Background 2
leating Penalty:	<u>+</u>	

If electrically heated building:³²⁰

Watts_{EE} * Hours * ISR * (–IF_{kWH}) Watts_{Base} $\Delta kWh_{heatpenalty}$ 1000

Where:

 $\frac{1}{1}$ = Lighting-HVAC Interaction Factor for electric heating impacts; this factor represents the increased electric space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Lighting Reference Table in Section 2.6. If unknown, use the C&I Average value.

Formatted: Font color: Background 2

Formatted: Font color: Background 1

²¹⁹-Based upon review of PY5-6 evaluations from ComEd, IL commercial lighting program (BILD).
 ³²⁰-Negative value because this is an increase in heating consumption due to the efficient lighting.

Appendix H - TRM - Vol. 2: C&I Measures

SUMMER COINCIDENT DEMAND SAVINGS

$\Delta k = \Delta k W h * CF$

Where:

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor = 0.0001899635³²¹ for indoor lighting = 0.0000056160 for exterior lighting

-= 0.0001379439 for exterior 24/7 lighting

NATURAL GAS ENERGY SAVINGS

Heating penalty if fossil fuel heated building (or if heating fuel is unknown):³²²

$$\Delta Therms = \frac{Watts_{wase} - Watts_{wase}}{1000} * Hours * ISR * (-IF_{therms})$$

Where:

IF_{Therms} = Lighting HVAC Interaction Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Lighting Reference Table in Section 2.6. If unknown, use the C&I Average value.

DEEMED O&M COST ADJUSTMENT CALCULATION

See reference tables for different cost assumptions for lamps and ballasts. When available, actual costs and hours of use should be used.

REFERENCE TABLES

T5HO Efficient and Baseline Wattage and Cost Assumptions³²³&³²⁴

	Watts _{EE}	Baseline Description	Watts _{BASE}	Incremental Cost	
A Lamp T5 High Bay	176	200 Watt Pulse Start Metal Halide	227	\$100.00	Formatted: Font color: Background 2
4-Lamp T5 High-Bay	235	320 Watt Pulse Start Metal-Halide	364	\$100.00	Formatted: Font color: Background 2
6 Lamp T5 High Bay	352	400 Watt Pulse Start Metal Halide	455	\$100.00	Formatted: Font color: Background 2
<u>8 Lamp T5 High Bay</u>	470	750 Watt Pulse Start Metal Halide	<u>825</u>	\$100.00	<u>_</u>
					Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

Formatted: Font color: Background 2

²²¹ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes
 <u>md Coincident Peak Factors</u>"
 ³²² Negative value because this is an increase in heating consumption due to the efficient lighting.
 ³²³ Reference Table adapted from Efficiency Vermont TRM, T5 Measure Savings Algorithms and Cost Assumptions, October,
 ³²⁴ Refer to "T5HO adjusted deemed costs.baselines.xlsx" for more information.
 ³²⁴ Refer to "T5HO adjusted deemed costs.baselines.xlsx" for more information.

Appendix H - TRM – Vol. 2: C&I Measures

T5 HO Component Costs and Lifetimes³²⁵

		EE M	leasure		Baseline				
EE Measure	Lamp Life (hrs)	Total Lamp Replacement Cost	Ballast Life (hrs)	Total Ballast Replacement Cost	Lamp Life (hrs)	Total Lamp Replacement Cost	Ballast Life (hrs)	Total Ballast Replacement Cost	Formatted: Font color: Background 2
3 Lamp T5 High Bay	30,000	\$63.00	70,000	\$87.50	15,000	\$63.00	4 0,000	\$107.50	Formatted: Font color: Background 2
<mark>,4-Lamp T5</mark> High Bay	30,000	\$84.00	70,000	\$87.50	20,000	\$68.00	40,000	\$117.50	Formatted: Font color: Background 2
<u>,6 Lamp T5</u> High Bay	30,000	\$126.00	70,000	\$112.50	20,000	\$73.00	40,000	\$127.50	Formatted: Font color: Background 2
<mark>_8 Lamp T5</mark> High Bay	30,000	\$168.00	70,000	\$137.50	20,000	\$78.00	4 0,000	\$137.50	Formatted: Font color: Background 2
									Formatted: Font color: Background 2

MEASURE CODE:

I

325 Costs include labor cost -- see "T5HO-adjusted deemed costs.baselines.xlsx" for more information.

Appendix H - TRM - Vol. 2: C&I Measures

2.6.36 LED Exit Sign (Available for Income Eligible and BSS programs)

This measure characterizes the savings associated with installing a new LED exit sign (or retrofit kit) in place of a CFL or incandescent exit sign in a commercial building. LED exit signs use less power (\leq 5 watts), have a significantly longer lifetime, and have less maintenance costs compared to incandescent or CFL exit signs.326

This measure applies to the following program types: RF and DI.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is an LED exit sign with an input power demand of 5 watts or less.³²⁷

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is the existing exit sign (either a CFL or incandescent unit).

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

See Lighting EUL Reference Table for EUL values by Lighting Measure Group.

DEEMED MEASURE COST

Actual program delivery costs should be used if available. If not, use the full cost of \$39328 for a new LED exit sign and \$25 for a retrofit kit, plus \$6.25 in labor, 329 for a total measure cost of \$45.25 and \$31.25, respectively.

LOADSHAPE

Lighting BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS³³⁰

 $Watts_{Base} - Watts_{EE} * Hours * WHF_e$ $\Delta kWh =$ 1000

Where:

Formatted: Font: 9 pt

³²⁶ ENERGY STAR® "Save Energy, Money and Prevent Pollution with LED Exit Signs."

³²⁷ ENERGY STAR® "Program Requirements for Exit Signs Version 3.0." While the EPA suspended the ENERGY STAR® Exit Sign specification effective May 1, 2008, Federal requirements specify minimum efficiency standards for electrically-powered, single-faced exit signs with integral lighting sources that are equivalent to ENERGY STAR® levels for input power demand of 5 wats or less per face. ³²⁸ Cost of new LED exit sign from ENERGY STAR® Exit Signs Calculator.xlsx.

³²⁹ Assumption based on 15 minutes (including portion of travel time) and \$25 per hour, which is in line with the typical prevailing wage of a General Laborer, as per the Annual Wage Order No. 23 published by the Missouri Department of Labor

³³⁰ There is no ISR calculation. Exit signs and emergency lighting are required by federal regulations to be installed and functional in all public buildings as outlined by the U.S. Occupational Safety and Health Standards (USOSHA 1993).

Appendix H - TRM - Vol. 2: C&I Measures

Watts_{Base} = Actual wattage if known, if unknown assume the following:

Baseline Type	Wattsbase
Incandescent (dual sided)	50 W 331
Incandescent (single sided)	25 W
CFL (dual sided)	14 W ³³²
CFL (single sided)	7 W

Watts_{EE} = Actual wattage if known; if unknown assume 2W for singled sided and 4W for dual sided.³³³
 Hours = Annual operating hours = 8,766

	β is a spectrum of β is a
WHFe	= Waste heat factor for energy to account for cooling energy savings from efficient
	lighting is selected from the Lighting Reference Table in Section 2.6 for each
	Building Type. If building is un-cooled, the value is 1.0.

HEATING PENALTY

IF_{kWh}

If electrically heated building:³³⁴

$$\Delta kWh_{heatpenalty} = \frac{Watts_{Base} - Watts_{EE}}{1000} * Hours * ISR * (-IF_{kWH})$$

Where:

= Lighting-HVAC Interaction Factor for electric heating impacts; this factor represents the increased electric space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Reference Table in Section 2.8. If unknown, use the C&I Average value.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

		Formatted Table
³³¹ Average incandescent single sided (5W, 10W, 15W, 20W, 25W, 34W, 40W, 50W) from Appendix B 2013-14		
Table of Standard Fixture Wattages. Available at: https://www.aesc-		
inc.com/download/spc/2013SPCDocs/PGE/App%20B%20Standard%20Fixture%20Watts.pdf (See rows 9-22 middle	-1	Formatted: Font: (Default) Times New Roman, 9 pt,
of page# B-26)		Font color: Auto
https://www.aeseine.com/download/spc/2013SPCDocs/PGE/App%20B%20Standard%20Fixture%20Watts.pdf	ι	
³³² Average CFL single sided (5W, 7W, 9W) from Appendix B 2013-14 Table of Standard Fixture Wattages. Available at:		
https://www.aesc-inc.com/download/spc/2013SPCDocs/PGE/App%20B%20Standard%20Fixture%20Watts.pdf (See rows 1-4,7,8	_	Formatted: Font color: Auto
top of page# B-26)http://www.aescinc.com/download/spc/2013SPCDocs/PGE/App%20B%20Standard%20Fixture%20Watts.pdf		
³³³ Average Exit LED watts are assumed as a 2W as listed in Appendix B 2013-14 Table of Standard Fixture Wattages. Available	l	Formatted: Font color: Auto
at: <u>http://www.aese-</u>		
inc.com/download/spc/2013SPCDocs/PGE/App%20B%20Standard%20Fixture%20Watts.pdfhttps://www.acsc-	0	
inc.com/download/spc/2013SPCDocs/PGE/App%20B%20Standard%20Fixture%20Watts.pdf (See last two rows on page# B-26)	-	Formatted: Font color: Auto
³³⁴ Negative value because this is an increase in heating consumption due to the efficient lighting.		

Appendix H - TRM - Vol. 2: C&I Measures

Where:

= Electric energy savings, including cooling savings, as calculated above. ∆kWh = Summer peak coincidence demand (kW) to annual energy (kWh) factor CF

= 0.0001899635

NATURAL GAS ENERGY SAVINGS

Heating penalty if fossil fuel heated building (or if heating is unknown):³³⁵

$$\Delta Therms = \frac{Watts_{Base} - Watts_{EE}}{1000} * Hours * ISR * (-IF_{therms})$$

Where:

 IF_{Therms} = Lighting-HVAC Integration Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Please select from the Reference Table in Section 2.6 for each Building Type.

Other factors as defined above.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

The annual O&M cost adjustment savings should be calculated using the following component costs and lifetimes.

Component	Baseline Measure			
Component	Cost ³³⁶	Life (yrs) 337		
CFL lamp	\$8.91	0.63 years		
Incandescent lamp	\$7.39	0.14 years		

Formatted Table

MEASURE CODE:

³³⁵ Negative value because this is an increase in heating consumption due to the efficient lighting.

³³⁶ Includes cost of labor and new replacement bulb. Labor cost of \$6.25 based on 15 minutes (including portion of travel time) and \$25 per hour, which is in line with the typical prevailing wage of a General Laborer, as per the Annual Wage Order No. 23 published by the Missouri Department of Labor. Cost of new 7W CFL bulb is \$2.66, from Itron "2010-2012 WO017 Ex Ante Measure Cost Study Final Report." Prepared for California Public Utilities Commission, May 27, 2014.
³³⁷ ENERGY STAR[®] "Save Energy, Money and Prevent Pollution with LED Exit Signs" states that CFL bulbs for exit signs typically have an average rated life of 5,000-6,000 hours. Given 24/7 run time, assume a CFL in an exit sign will require replacement

every 0.63 years (5,500 hours/8,766 hours).

2.6.<u>4</u>7 LED Specialty Lamp (Retired<u>Available for Income Eligible and BSS programs, effective 8/1/2023</u>) ³³⁸

DESCRIPTION

This characterization provides savings assumptions for LED directional, decorative, and globe lamps. This characterization assumes that the LED is installed in a commercial location. This is therefore appropriate for commercially targeted programs, or, if the implementation strategy does not allow for the installation location to be known (e.g., an upstream retail program), utilities should develop an assumption of the Residential v Nonresidential split and apply the relevant assumptions to each portion.

Federal legislation stemming from the EISA requires all general-purpose light bulbs between 40W and 100W to be approximately 30% more energy efficient than standard incandescent bulbs. Production of 100W, standard efficacy incandescent lamps ended in 2012, followed by restrictions on 75W lamps in 2013 and 60W and 40W lamps in 2014. The baseline for this measure has therefore become bulbs (improved incandescent or halogen) that meet the new standard.

A provision in the EISA regulations requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the baseline equivalent to a current day CFL. However, in 2019, the Department of Energy issued two final rules and clarified that a) the EISA backstop provision had not been triggered and therefore b) the efficiency standard would not change in 2020. As of 10/15/2020, the 45 lumen per watt EISA standard is not effective.

This measure was developed to be applicable to the following program types: TOS and RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, new lamps must be ENERGY STAR[®] labeled based upon the ENERGY STAR[®] specification v2.0 which will become effective on 1/2/2017.<u>https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Lamps%20V2_0%20 Revised%20AUG-2016.pdf(https://www.energystar.gov/ia/partners/prod_development/revisions/downloads/eps_spec_v2.pdf). Qualification</u>

could also be based on the Design Light Consortium's qualified product list.³³⁹

DEFINITION OF BASELINE EQUIPMENT

The baseline condition for this measure is assumed to be an EISA-qualified halogen or incandescent.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

See Lighting EUL Reference Table for EUL values by Lighting Measure Group. DEEMED MEASURE COST

* "Retire" indicates that the measure is not anticipated to be offered through an Ameren Missouri-administered demand-side rogram during the period of TRM effectiveness. https://www.designlights.org/OPL

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 5.0

Formatted: Font color: Background 1
Formatted: Font color: Auto
Formatted: Font color: Auto
Formatted: Font color: Auto
Formatted: Font color: Background 1

Formatted: Font color: Auto

Wherever possible, actual incremental costs should be used. If unavailable, assume the following incremental costs:³⁴⁰

Bulb Type	LED Wattage	LED	Incandescent	Incremental Cost
Directional	< 20W	\$14.52	¢(21	\$8.21
Directional	≥20W	\$45.85	\$6.31	\$39.54
	<15W	\$8.09		\$4.17
Decorative	15 to <25W	\$15.86	\$3.92	\$11.94
	≥25W	\$15.86		\$11.94

Formatted: Font color: Auto	
Formatted: Font color: Auto	

Formatted: Font color: Auto

Formatted: Font color: Background 1

LOADSHAPE

Lighting BUS Ext Lighting BUS Miscellaneous BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

$$\Delta kWh = \frac{Watts_{Base} - Watts_{EE}}{1000} * Hours * WHF_e * ISR$$

Where:

Watts _{Base}	= Based on bulb type and lumens of LED bulb installed. See table
	below.
Watts _{EE}	= Actual wattage of LED purchased / installed - If unknown, use default
	provided below: ³⁴¹
Hours	= Average hours of use per year as provided by the customer or selected
	from the Lighting Reference Table in Section 2.6 and based upon
	Building Type. If unknown, use the C&I Average value.
WHFe	= Waste heat factors for energy to account for cooling energy savings
	from efficient lighting are provided for each Building Type in the

³⁴⁰ Incandescent based on "2010-2012 WA017 Ex Ante Measure Cost Study Draft Report," Itron, February 28, 2014. LED lamp costs are based on a 2014/2015 VEIC review of a year's worth of LED sales through VEIC implemented programs. The retail co was averaged and then DOE price projection trends (from Department of Energy, 2012; "Energy Savings Potential of Solid-State Lighting in General Illumination Applications," Table A.1) used to decrease the cost for a 2017 TRM assumption (see 2015 LEE Sales Review.xls). LED costs are falling rapidly and should be reviewed in each update cycle.

³⁴¹ WattsEE defaults are based upon the average available ENERGY STAR[®] product, accessed 06/18/2015. For any lumen rang where there is no ENERGY STAR[®] product currently available, WattsEE is based upon the ENERGY STAR[®] minimum luminou efficacy (55Lm/W for lamps with rated wattages less than 15W and 65 Lm/W for lamps with rated wattages \geq 15 watts) for th mid-point of the lumen range. See calculation at "cerified-light-bulbs-2015-06-18.xlsx." These assumptions should be reviewer regularly to ensure they represent the available **product**.

Appendix H - TRM – Vol. 2: C&I Measures

Lighting Reference Table in Section 2.6. If unknown, use the C&I Average value.

ISR = In Service Rate represents the percentage of reported lamps or fixtures that is installed and operating and varies with the program delivery approach. Use 100% for programs with direct installation and/or installation verification procedures (e.g., verification inspections for a sample of projects); use 98.7% for program delivery without installation verification.³⁴² The ISR may also be set to 100% if the installation verification is embedded in other evaluation adjustments.

Bulb Type	Lower Lumen Range	Upper Lumen Range	WattsBase	Watts _{EE}	Delta Watts
	250	349	25	5.6	19.4
	350	399	35	6.3	28.7
District	400	599	40	7.5	32.5
Directional	600	749	60	9.7	50.3
	750	999	75	12.7	62.3
	1000	1250	100	16.2	83.8
	70	89	10	1.8	8.2
	90	149	15	2.7	12.3
Decorative	150	299	25	3.2	21.8
	300	499	40	4.7	35.3
	500	699	60	6.9	53.1
	250	349	25	4.1	20.9
	350	499	40	5.9	34.1
	500	574	60	7.6	52.4
Globe	575	649	75	13.6	61.4
	650	1099	100	17.5	82.5
	1100	1300	150	13.0	137.0

Formatted: Font color: Auto
Formatted: Font color: Auto

Formatted: Font color: Background 1

Heating Penalty:

If electrically heated building:³⁴³

$$\Delta kWh_{heatpenalty} = \frac{Watts_{Base} - Watts_{EE}}{1000} * Hours * ISR * (-IF_{kWH})$$

³⁴² Based on results presented in Ameren Missouri Lighting Impact and Process Evaluation: Program Year 2015. This value taker into account the time-delay of when bulbs are installed over subsequent program years. The reported ISR is based on the net present value (NPV) of the savings over 4 year installation period from the PY15 bulbs, discounted back to Year 1 at 6.95%

(utility discount rate). These evaluation results are from a retail-based lighting program with multiple delivery char

⁴³ Results in a negative value because this is an increase in heating consumption due to the efficient lighting

Appendix H - TRM - Vol. 2: C&I Measures

Where:

 IF_{kWh} = Lighting-HVAC Interaction Factor for electric heating impacts; this factor represents the increased electric space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Lighting Reference Table in Section 2.6 and based upon Building Type. If unknown, use the C&I Average value.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

 $\begin{array}{ll} \text{CF} & = \text{Summer peak coincidence demand (kW) to annual energy (kWh) factor} \\ & = 0.0001899635^{\underline{344}} \text{ for indoor lighting} \\ & = 0.0000056160 \text{ for exterior lighting} \\ & = 0.0001379439 \text{ for exterior } 24/7 \text{ lighting} \end{array}$

Other factors as defined above.

NATURAL GAS SAVINGS

Heating penalty if fossil fuel heated building (or if heating fuel is unknown):³⁴⁵

$$\Delta Therms = \frac{Watts_{Base} - Watts_{EE}}{1000} * Hours * ISR * (-IF_{therms})$$

Where:

IF_{Therms} = Lighting-HVAC Interaction Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Lighting Reference Table in Section 2.6 and based upon Building Type. If unknown, use the C&I Average value.

DEEMED O&M COST ADJUSTMENT CALCULATION

O&M cost should be applied as follows:

³⁴⁴ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

Formatted: Font color: Background 1 Formatted: Left, Indent: Left: 0"

Appendix H - TRM – Vol. 2: C&I Measures

Installation Location	Replacement Period	Replacement Cost ³⁴⁷
	(years) ³⁴⁶	
Large Office	0.32	-
Medium Office	0.32	-
Small Office	0.35	_
Warehouse	0.35	
Stand-alone Retail	0.29	
Strip Mall	0.27	
Primary School	0.29	Decorative:
Secondary School	0.29	\$6.31
Supermarket	0.27	
Quick Service Restaurant	0.16	Directional:
Full Service Restaurant	0.16	\$3.92
Hospital	0.26	
Outpatient Health Care	0.26	
Small Hotel - Building	0.27	
Large Hotel - Building	0.27	
Midrise Apartment - Building	0.35	
C&I Average	0.30	

MEASURE CODE:

³⁴⁶ Calculated by dividing assumed rated life of baseline bulb by hours of use. Assumed lifetime of EISA qualified Halogen/ Incandescent is 1000 hours. The manufacturers are simply using a regular incandescent lamp with halogen fill gas rather than Halogen Infrared to meet the standard (as provided by G. Arnold, NEEP and confirmed by N. Horowitz at NRDC). ³⁴⁷ Incandescent costs based on "2010-2012 WA017 Ex Ante Measure Cost Study Draft Report," Itron, February 28, 2014. Formatted: Font color: Auto
Formatted: Font color: Auto
Formatted: Font color: Auto
Formatted: Font color: Auto

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 5.0

Page 196

2.6.58 Lighting Power Density (Available for Income Eligible and BSS programs)

DESCRIPTION

This measure entails the installation of efficient lighting systems in either new construction or during substantial renovation of commercial buildings that triggers compliance with code. This methodology applies to situations where code specifies maximum lighting power density allowances (W/ft²). Either the Building Area Method or Space-by-Space (not recognized by IECC 2009) method as defined in IECC 2009, 2012, 2015, 2018, 2021, or 2024 can be used for calculating the Interior Lighting Power Density (LPD).³⁴⁸ The measure consists of a design that has a lower LPD than code requires.

This measure was developed to be applicable to the following program types: NC and TOS. The measure is application for any project for which the project requires compliance with building code. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the lighting system must be more efficient than the baseline energy code maximum lighting power density in watts/square foot for either the interior space or exterior space.

DEFINITION OF BASELINE EQUIPMENT

The baseline is assumed to be the maximum lighting power density that meets the building code recognized by the local jurisdiction. In the absence of local energy building codes, and for areas with an IECC code version prior to 2018, the IECC 2018 is the baseline. For illustrative purposes in this characterization, IECC 2009, 2012, 2015, and 20182018, 2021 and 2024, are highlighted to demonstrate the methodology.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

See Lighting EUL Reference Table for EUL values by Lighting Measure Group.

DEEMED MEASURE COST

The actual incremental cost over a baseline system should be collected from the customer if possible or quantified using an alternative suitable source.

LOADSHAPE

Lighting BUS Ext Lighting BUS Miscellaneous BUS

Algorithm

²⁴⁸ Refer to the referenced code documents for specifics on calculating lighting power density using either the whole building method (IECC) or the Space by Space method (ASHRAE 90.1).

CALCULATION OF SAVINGS

ENERGY SAVINGS

$$\Delta kWh = \frac{WSF_{Base} - WSF_{EE}}{1000} * SF * Hours * WHF_{e}$$

Where:

WSF _{base} WSF _{EE}	 Baseline lighting watts per square foot or linear foot as determined by building or space type. IECC example whole building analysis values are presented in the Reference Tables below.³⁴⁹ The actual installed lighting watts per square foot or linear foot.
SF	= Provided by customer based on square footage of the building area applicable to the lighting design for new building.
Hours	= Annual site-specific hours of operation of the lighting equipment collected from the customer or selected from the Reference Table in Section 2.8 if unavailable.
WHF _e	= Waste Heat Factor for Energy to account for cooling savings from efficient lighting is as provided in the Reference Table in Section 2.8 for each Building Type. If building is not cooled, the value is 1.0.

Heating Penalty

If electrically heated building: 350

$$\Delta kWh_{heatpenalty} = \frac{WSF_{Base} - WSF_{EE}}{1000} * SF * Hours * (-IF_{kWH})$$

Where:

 IF_{kWh} = Lighting-HVAC Interaction Factor for electric heating impacts; this factor represents the increased electric space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Reference Table in Section 2.8. If unknown, use the C&I Average value.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWh * \mathbf{X} CF$$

Where:

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor = 0.0001899635^{351} for indoor lighting

³⁴⁹ See IECC 20092015, 2012 2018 and 2015 2021 - Reference Code documentation for additional information.

³⁵⁰ Negative value because this is an increase in heating consumption due to the efficient lighting.

³⁵¹ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors." **Formatted:** Left, Indent: Left: 0", Don't keep lines together

Appendix H - TRM - Vol. 2: C&I Measures

= 0.0000056160 for exterior lighting = 0.0001379439 for exterior 24/7 lighting

Other factors as defined above.

NATURAL GAS ENERGY SAVINGS

Heating interactive loss is calculated as:

$$\Delta Therms = \frac{WSF_{Base} - WSF_{EE}}{1000} * x SF * x Hours * x (-IF_{therms})$$

Where:

IF_{Therms} = Lighting-HVAC Integration Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Please select from the Reference Table in Section 2.8 for each Building Type.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

Appendix H - TRM – Vol. 2: C&I Measures

REFERENCE TABLES

Lighting Power Density Values from IECC 2009, 2012 and 2015<u>2015</u>, 2018, 2021 for Interior Commercial New Construction and Substantial Renovation Building Area Method<u>. The IECC</u> <u>2024 has not been published as of June 2024. The IECC 2015 values are provided for comparison</u>, as the base models for developing the LPD standard did not include LED lighting.

Building Area Type ³⁵²	IECC 2009 <u>2015</u> Lighting Power Density (w/ft ²)	IECC 2012 <u>2018</u> Lighting Power Density (w/ft ²)	IECC 2015 <u>2021</u> Lighting Power Density (w/ft ²)
Automotive	<u>0.80.80.8</u> 0.9	<u>0.710.710.71</u> 0.9	<u>0.750.750.75</u> 0.80
facility Automotive Facility			
Convention	<u>1.011.011.01</u> 1.2	<u>0.760.760.76</u> 1.2	<u>0.640.640.64</u> 1.01
<u>center</u> Convention Center			
Courthouse	<u>1.011.011.01</u> 1.2	<u>0.90.90.9</u> 1.2	<u>0.790.790.79</u> 1.01
Dining: bar	<u>1.011.011.01</u> 1.3	<u>0.90.90.9</u> 1.3	<u>0.80.80.8</u> 1.01
lounge/leisureDining: Bar			
Lounge/Leisure			
Dining: cafeteria/fast	<u>0.90.90.9</u> 1.4	<u>0.790.790.79</u> 1.4	<u>0.760.760.76</u> 0.9
tood Food			
Dining: familyDining:	0.950.950.951.6	0.780.780.781.6	<u>0.710.710.71</u> 0.95
Family	<u>0.750.750.75</u> 1.0	<u>0.780.780.78</u> 1.0	0.710.710.71
Dormitory Dormitory	<u>0.570.570.57</u> 1.0	<u>0.610.610.61</u> 1.0	<u>0.530.530.53</u> 0.57
Exercise centerExercise	0.840.840.841.0	<u>0.650.650.65</u> 1.0	<u>0.720.720.72</u> 0.84
Center			
Fire station	<u>0.670.670.67</u> 1.0	<u>0.530.530.53</u> 0.8	<u>0.560.560.56</u> 0.67
Gymnasium Gymnasium	<u>0.940.940.94</u> 1.1	<u>0.680.680.68</u> 1.1	<u>0.760.760.76</u> 0.94
Health care clinic Healthcare	<u>0.90.90.9</u> 1.0	<u>0.820.820.82</u> 1.0	<u>0.810.810.81</u> 0.90
- clinic			
Hospital Hospital	<u>1.051.051.05</u> 1.2	<u>1.051.051.05</u> 1.2	<u>0.960.960.96</u> 1.05
Hotel/MotelHotel	<u>0.870.870.87</u> 1.0	<u>0.750.750.75</u> 1.0	<u>0.560.560.56</u> 0.87
Library Library	<u>1.191.191.19</u> 1.3	<u>0.780.780.78</u> 1.3	<u>0.830.830.83</u> 1.19
Manufacturing	<u>1.171.171.17</u> 1.3	<u>0.90.90.9</u> 1.3	<u>0.820.820.82</u> 1.17
facility Manufacturing Facility			
Motion picture theaterMotel	<u>0.760.760.76</u> 1.0	<u>0.830.830.83</u> 1.0	<u>0.440.440.44</u> 0.87
Multiple FamilyMotion	<u>0.510.510.51</u> 1.2	<u>0.680.680.68</u> 1.2	<u>0.450.450.45</u> 0.76
Picture Theater			
Museum Multifamily	<u>1.021.021.02</u> 0.7	<u>1.061.061.06</u> 0.7	<u>0.550.550.55</u> 0.51
Office Museum	<u>0.820.820.82</u> 1.1	<u>0.790.790.79</u> 1.1	<u>0.640.640.64</u> 1.02
Parking garageOffice	<u>0.210.210.21</u> 1.0	<u>0.150.150.15</u> 0.9	<u>0.180.180.18</u> 0.82

³⁵² In cases where both a general building area type and a more specific building area type are listed, the more specific building area type shall apply.

Appendix H - TRM - Vol. 2: C&I Measures

PenitentiaryParking Garage	0.810.810.810.3	0.750.750.750.3	0.690.690.690.21
Performing arts	1.391.391.391.0	1.181.181.181.0	0.840.840.840.81
theaterPenitentiary	<u>1.571.571.57</u> 1.0	<u>1.101.101.10</u> 1.0	0.010.010.01
Police stationPerforming Arts	0.870.870.871.6	0.80.80.81.6	0.660.660.661.39
Theater			
Post officePolice Station	<u>0.870.870.87</u> 1.0	<u>0.670.670.67</u> 1.0	<u>0.650.650.65</u> 0.87
Religious buildingPost	<u>111</u> 1.1	<u>0.940.940.94</u> 1.1	<u>0.670.670.67</u> 0.87
Office			
RetailReligious Building	<u>1.261.261.26</u> 1.3	<u>1.061.061.06</u> 1.3	<u>0.840.840.84</u> 1.0
School/universityRetail ³⁵³	<u>0.870.870.87</u> 1.5	<u>0.810.810.81</u> 1.4	<u>0.720.720.72</u> 1.26
Sports	0.910.910.91	0.870.870.871.2	<u>0.760.760.76</u> 0.87
arenaSchool/University			
Town hallSports Arena	<u>0.890.80.89</u> 1.1	<u>0.80.710.8</u> 1.1	<u>0.690.750.69</u> 0.91
Transportation Town Hall	<u>0.70.7</u> 1.1	<u>0.610.61</u> 1.1	<u>0.50.5</u> 0.89
Warehouse Transportation	<u>0.660.66</u> 1.0	<u>0.480.48</u> 1.0	<u>0.450.45</u> 0.70
WorkshopWarehouse	<u>1.191.19</u> 0.8	<u>0.90.9</u> 0.6	0.910.910.66
	<u>0.8</u> 1.4	<u>0.71</u> 1.4	<u>0.75</u> 1.19

Lighting Power Density Values from IECC 2012 for Interior Commercial New Construction and Substantial Renovation Space by Space Method

³⁵³ Where lighting equipment is specified to be installed to highlight specific merchandise in addition to lighting equipment specified for general lighting and is switched or dimmed on circuits different from the circuits for general lighting, the small of the actual wattage of the lighting equipment installed specifically for merchandise, or additional lighting power as determined below shall be added to the interior lighting power determined in accordance with this line item.

Formatted: Font color: Background 1

Appendix H - TRM - Vol. 2: C&I Measures

COMMON SPACE-BY-SPACE TYPES	LPD (w/ft ²)
Atrium – First 40 feet in height	0.03 per ft. h
Atrium - Above 40 feet in height	0.02 per ft. h
Audience/seating area – permanent For auditorium For performing arts theater For motion picture theater Classroom/lecture/training Conference/meeting/multipurpose Corrido/transition	0.9 2.6 1.2 1.30 1.2 0.7
Dining area Bar/lounge/leisure dining Family dining area	1.40 1.40
Dressing/fitting room performing arts theater	1.1
Electrical/mechanical	1.10
Food preparation	1.20
Laboratory for classrooms	1.3
Laboratory for medical/industrial/research	1.8
Lobby	1.10
Lobby for performing arts theater	3.3
Lobby for motion picture theater	1.0
Locker room	0.80
Lounge recreation	0.8
Office – enclosed	1.1
Office – open plan	1.0
Restroom	1.0
Sales area	1.6 ^a
Stairway	0.70
Storage	0.8
Workshop	1.60
Courthouse/police station/penetentiary Courtroom Confinement cells Judge chambers Penitentiary audience seating Penitentiary classroom Penitentiary classroom	1.90 1.1 1.30 0.5 1.3 1.1
BUILDING SPECIFIC SPACE-BY-SPACE	
Automotive – service/repair	0.70
Bank/office – banking activity area	1.5
Dormitory living quarters	1.10
Gymnasium/fitness center Fitness area Gymnasium audience/seating Playing area	0.9 0.40 1.40

COMMON SPACE-BY-SPACE TYPES	LPD (w/ft ²
Healthcare clinic/hospital	
Corridors/transition	1.00
Exam/treatment	1.70
Emergency	2.70
Public and staff lounge	0.80
Medical supplies	1.40
Nursery	0.9
Nurse station	1.00
Physical therapy	0.90
Patient room	0.70
Pharmacy	1.20
Radiology/imaging	1.3
Operating room	2.20
Recovery	1.2
Lounge/recreation	0.8
	0.60
Laundry – washing	0.00
Hotel	
Dining area	1.30
Guest rooms	1.10
Hotel lobby	2.10
Highway lodging dining	1.20
Highway lodging guest rooms	1.10
Library	
Stacks	1.70
Card file and cataloguing	1.10
Reading area	1.20
	1.20
Manufacturing	
Corridors/transition	0.40
Detailed manufacturing	1.3
Equipment room	1.0
Extra high bay (> 50-foot floor-ceiling height)	1.1
High bay (25 50-foot floor-ceiling height)	1.20
Low bay (< 25-foot floor-ceiling height)	1.2
Museum	
General exhibition	1.00
Restoration	1.70
Parking garage – garage areas	0.2
Convention center	
Exhibit space	1.50
Audience/seating area	0.90
Fire stations	
	0.80
Engine room	
Sleeping quarters	0.30
Post office	0.9
Sorting area	0.9
Religious building	
Fellowship hall	0.60
Audience seating	2.40
	2.40
Worship pulpit/choir	2.40
Retail	
Dressing/fitting area	0.9
Mall concourse	1.6
Sales area	1.6*

Appendix H - TRM - Vol. 2: C&I Measures

BUILDING SPECIFIC SPACE-BY-SPACE TYPES	LPD (w/ft ²)
Sports arena	
Audience seating	0.4
Court sports area - Class 4	0.7
Court sports area - Class 3	1.2
Court sports area - Class 2	1.9
Court sports area - Class 1	3.0
Ring sports area	2.7
Transportation	
Air/train/bus baggage area	1.00
Airport concourse	0.60
Terminal - ticket counter	1.50
Warehouse	
Fine material storage	1.40
Medium/bulky material	0.60

Formatted: Right: 0", Space After: 0 pt

Formatted: Right

Appendix H - TRM – Vol. 2: C&I Measures

Lighting Power Density Values from IECC 2015 for Interior Commercial New Construction and Substantial Renovation Space by Space Method:

SPACE-BY-SPACE METH COMMON SPACE TYPES ⁴	LPD (watts/sq.ft)	SPACE-BY-SPACE METHO COMMON SPACE TYPES*	LPD (watts/sq.ft)				
Atrium	ci o fundiciód inf	Food preparation area	1.21				
	0.03 per foot	Guest room 0.47					
Less than 40 feet in height	in total height	Laboratory					
8453	0.40 + 0.02 per foot	In or as a classroom	1.43				
Greater than 40 feet in height	in total height	Otherwise	1.81				
Audourrentenen	in total neight	Laundry/washing area	0.6				
Audience seating area	0.72	Loading dock, interior	0.47				
In an auditorium	0.63	Lobby					
In a convention center	0.82	In a facility for the visually impaired (and	1.8				
In a gymnasium	0.65	not used primarily by the staff) ^b For an elevator	0.64				
In a motion picture theater	1.14	In a hotel	1.06				
In a penitentiary	0.28	In a motion picture theater	0.59				
In a performing arts theater	2.43	In a performing arts theater	2.0				
In a religious building	1.53	Otherwise	0.9				
In a sports arena	0.43	Locker room	0.75				
2 2 3	and the second se	Lounge/breakroom					
Otherwise	0.43	In a healthcare facility	0.92				
Banking activity area	1.01	Otherwise	0.73				
Breakroom (See Lounge/Breakroom)	92 0	Office					
Classroom/lecture hall/training room	2	Enclosed	1.11				
In a penitentiary	1.34	Open plan	0.98				
Otherwise	1.24	Parking area, interior	0.19				
Conference/meeting/multipurpose room	1.23	Pharmacy area	1.68				
	0.72	Restroom					
Copy/print room	0.72	In a facility for the visually impaired (and not used primarily by the staff ^b	1.21				
Corridor		Otherwise	0.98				
In a facility for the visually impaired (and	0.92	Sales area	1.59				
not used primarily by the staff) ^b		Seating area, general	0.54				
In a hospital	0.79	Stairway (See space containing stairway)					
In a manufacturing facility	0.41	Stairwell	0.69				
Otherwise	0.66	Storage room	0.63				
Courtroom	1.72	Vehicular maintenance area	0.67				
Computer room	1.71	Workshop	1.59				
Dining area	22	BUILDING TYPE SPECIFIC SPACE TYPES* Facility for the visually impaired ^b	LPD (watts/sq.ft)				
In a penitentiary	0.96	In a chapel (and not used primarily by the	too be as of the				
In a facility for the visually impaired (and	0.90	staff)	2.21				
not used primarily by the staff) ^b	1.9	In a recreation room (and not used primarily by the staff)	2.41				
In bar/lounge or leisure dining	1.07	Automotive (See Vehicular Maintenance Area a	bove)				
In cafeteria or fast food dining	0.65	Convention Center—exhibit space	1.45				
In family dining	0.89	Domitory—living quarters	0.38				
Otherwise	0.65	Fire Station—sleeping quarters	0.22				
Electrical/mechanical room	0.95	Gymnasium/fitness center					
	0.56	In an exercise area	0.72				
Emergency vehicle garage	0.00	In a playing area	1.2				

(continued)

(continued)

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 5.0

Appendix H - TRM – Vol. 2: C&I Measures

healthcare facility	LPD (watts/sq.ft		
In an exam/treatment room	1.66		
In an imaging room	1.51		
In a medical supply room	0.74		
In a nursery	0.88		
In a nurse's station	0.71		
In an operating room	2.48		
In a patient room	0.62		
In a physical therapy room	0.91		
In a recovery room	1.15		
Library	70		
In a reading area	1.06		
In the stacks	1.71		
Manufacturing facility	77		
In a detailed manufacturing area	1.29		
In an equipment room	0.74		
In an extra high bay area (greater than 50' floor-to-ceiling height)	1.05		
In a high bay area (25-50' floor-to-ceiling height)	1.23		
In a low bay area (less than 25' floor-to- ceiling height)	1.19		
Museum	53		
In a general exhibition area	1.05		
In a restoration room	1.02		
Performing arts theater—dressing room	0.61		
Post Office—Sorting Area	0.94		
Religious buildings			
In a fellowship hall	0.64		
In a worship/pulpit/choir area	1.53		
Retail facilities	10000		
In a dressing/fitting room	0.71		
In a mall concourse	1.1		
Sports arena—playing area	515		
For a Class I facility	3.68		
For a Class II facility	2.4		
For a Class III facility	1.8		
For a Class IV facility	1.0		
Transportation facility			
In a baggage/carousel area	0.53		
In an airport concourse	0.36		
At a terminal ticket counter	0.50		
	0.0		
Warehouse—storage area	0.58		
For medium to bulky, palletized items For smaller, hand-carried items	0.58		

a. In cases where both a common space type and a building area specific space type are listed, the building area specific space type are listed, the building area specific space type shall apply b. A 'Facility for the Visually Impaired' is a facility that is licensed or will be licensed by local or state authorities for senior long-term care, adult daycare, senior support or people with special visual needs.

The exterior lighting design will be based on the building location and the applicable "Lighting Zone" as defined in IECC 2015 Table C405.5.2(1) which follows. This table is identical to IECC 2012 Table C405.6.2(1) and IECC 2009 Table 505.6.2(1).

LIGHTING ZONE	DESCRIPTION
1	Developed areas of national parks, state parks, forest land, and rural areas
2	Areas predominantly consisting of residential zoning, neighborhood business districts, light industrial with limited nighttime use and residential mixed-use areas
3	All other areas not classified as lighting zone 1, 2 or 4
4	High-activity commercial districts in major metropoli- tan areas as designated by the local land use planning authority

TABLE C405.5.2(1) EXTERIOR LIGHTING ZONES

The lighting power density savings will be based on reductions below the allowable design levels as specified in IECC 2009 Table 505.6.2(2), IECC 2012 Table C405.6.2(2) or IECC 2015 Table C405.5.2(2).

Appendix H - TRM – Vol. 2: C&I Measures

Allowable Design Levels from IECC 2009

	5 <u>6</u>	Zone 1	Zone 2	Zone 3	Zone 4					
Base Site Allowance (Base allowance may be used in tradable or nontradable surfaces.)		500W	600W	750W	1300W					
			Uncovered Parking Areas							
	Parking areas and drives	0.04 W/ft ²	0.06 W/ft ²	0.10 W/ft ²	0.13 W/ft ²					
	Building Grounds									
	Walkways less than 10 feet wide	0.7 W/linear foot	0.7 W/linear foot	0.8 W/linear foot	1.0 W/linear foot					
	Walkways 10 feet wide or greater, plaza areas special feature areas	0.14 W/ft ²	0.14 W/ft ²	0.16 W/ft ²	0.2 W/ ft ²					
	Stairways	0.75 W/ft ²	1.0 W/ft ²	1.0 W/ft ²	1.0 W/ft ²					
	Pedestrian tunnels	0.15 W/ft ²	0.15 W/ft ²	0.2 W/ft ²	0.3 W/ft ²					
Tradable Surfaces (Lighting power	Building Entrances and Exits									
densities for uncovered parking areas, building grounds, building	Main entries	20 W/linear foot of door width	20 W/linear foot of door width	30 W/linear foot of door width	30 W/linear foot of door width					
entrances and exits, canopies and overhangs and outdoor sales areas	Other doors	20 W/linear foot of door width	20 W/linear foot of door width	20 W/linear foot of door width	20 W/linear foot of door width					
may be traded.)	Entry canopies	0.25 W/ft ²	0.25 W/ft ²	0.4 W/ft ²	0.4 W/ft ²					
	Sales Canopies									
	Free-standing and attached	0.6 W/ft ²	0.6 W/ft ²	0.8 W/ft ²	1.0 W/ft ²					
	Outdoor Sales									
	Open areas (including vehicle sales lots)	0.25 W/ft ²	0.25 W/ft ²	0.5 W/ft ²	0.7 W/ft ²					
	Street frontage for vehicle sales lots in addition to "open area" allowance	No allowance	lOW/linear foot	lOW/linear foot	30 W/linear foot					
Nontradable Surfaces	Building facades No allowance		0.1 W/ft ² for each illuminated wall or surface or 2.5 W/linear foot for each illuminated wall or surface length	0.15 W/ft ² for each illuminated wall or surface or 3.75 W/linear foot for each illuminated wall or surface length	0.2 W/ft ² for each illuminated wall or surface or 5.0 W/linear foot for each illuminated wall or surface length					
(Lighting power density calculations for the following applications can be used only for the specific application and cannot be traded between surfaces or with other exterior lighting. The following allowances are in addition to any allowance otherwise permitted in the "Tradable Surfaces"	Automated teller machines and night depositories	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location					
	Entrances and gatehouse inspection stations at guarded facilities	0.75 W/ft ² of covered and uncovered area	0.75 W/ft ² of covered and uncovered area	0.75 W/ft ² of covered and uncovered area	0.75 W/ft ² of covered and uncovered area					
	Loading areas for law enforcement, fire, ambulance and other emergency service vehicles	0.5 W/ft ² of covered and uncovered area	0.5 W/ft ² of covered and uncovered area	0.5 W/ft ² of covered and uncovered area	0.5 W/ft ² of covered and uncovered area					
section of this table.)	Drive-up windows/doors	400 W per drive-through	400 W per drive-through	400 W per drive-through	400 W per drive-through					
	Parking near 24-hour retail entrances	800 W per main entry	800 W per main entry	800 W per main entry	800 W per main entry					

For SI: 1 foot = 304.8 mm, 1 watt per square foot = $W/0.0929 \text{ m}^2$.

Allowable Design Levels from IECC 2012

2025 MEEIA 4 Plan MEEIA 2019-21 Plan-Revision 56.0

•

Formatted: Normal, Line spacing: Multiple 1.08 li, Don't keep with next

Appendix H - TRM – Vol. 2: C&I Measures

Formatted: Right: 0", Space After: 0 pt

			LIGHTIN	IG ZONES					
		Zone 1	Zone 2	Zone 3	Zone 4				
Base Site Allowance (Base allowance is asable in tradable or nontradable surfaces.)		500 W	600 W	750 W	1300 W				
			Uncovered Parking Areas						
1	Parking areas and drives	0.04 W/ft ²	0.06 W/ft ²	0.10 W/ft ²	0.13 W/m ²				
	Building Grounds								
	Walkways less than 10 feet wide	0.7 W/linear foot	0.7 W/linear foot	0.8 W/linear foot	1.0 W/linear foot				
	Walkways 10 feet wide or greater, plaza areas special feature areas	0.14 W/m ²	0.14 W/ft²	0.16 W/ft²	0.2 W/n ²				
	Stairways	0.75 W/ft ²	1.0 W/ft ²	1.0 W/ft ²	1.0 W/ñ [±]				
Tradable Surfaces	Pedestrian tunnels	0.15 W/ft ²	0.15 W/ft ¹	0.2 W/ft ²	0.3 W/h ²				
(Lighting power		Building Entrances and Exits							
densities for uncovered parking areas, building grounds, building			20 W/linear foot of door width	30 W/linear foot of door width	30 W/linear foot of door width				
entrances and exits, canopies and overhangs	Other doors	20 W/linear foot of door width	20 W/linear foot of door width	20 W/linear foot of door width	20 W/linear foot of door width				
and outdoor sales areas are tradable.)	Entry canopies	0.25 W/ft ²	0.25 W/ft ²	0.4 W/ft ²	0.4 W/ft ²				
	Sales Canopies								
	Free-standing and attached	0.6 W/ft ²	0.6 W/ft ²	0.8 W/ft ²	1.0 W/ft²				
	Outdoor Sales								
	Open areas (including vehicle sales lots)	0.25 W/ft ²	0.25 W/ft ²	0.5 W/ft ²	0.7 W/ft ¹				
	Street frontage for vehicle sales lots in addition to "open area" allowance	No allowance	10 W/linear foot	10 W/linear foot	30 W/linear foot				
Nontradable Surfaces (Lighting power density calculations	Building facades	No allowance	0.1 W/h² for each illuminated wall or surface or 2.5 W/linear foot for each illuminated wall or surface length	0.15 W/ft ² for each illuminated wall or surface or 3.75 W/linear foot for each illuminated wall or surface length	0.2 W/ft ² for each illuminated wall or surface or 5.0 W/linear foot for each illuminated wall or surface length				
for the following applications can be used only for the specific application and cannot be traded between surfaces or with other exterior lighting. The following allowances are in addition to any allowance otherwise permitted in the	Automated teller machines and night depositories	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location				
	Entrances and gatehouse inspection stations at guarded facilities	0.75 W/ft ² of covered and uncovered area	0.75 W/ft ² of covered and uncovered area	0.75 W/ft ² of covered and uncovered area	0.75 W/ft ² of covered and uncovered area				
	Loading areas for law enforcement, fire, ambulance and other emergency service vehicles	0.5 Wilt ² of covered and uncovered area	0.5 W/ft ² of covered and uncovered area	0.5 W/ft ² of covered and uncovered area	0.5 W/ft ² of covered and uncovered area				
"Tradable Surfaces" section of this table.)	Drive-up windows/doors	400 W per drive-through	400 W per drive-through	400 W per drive-through	400 W per drive-through				
	Parking near 24-hour retail entrances	800 W per main entry	800 W per main entry	800 W per main entry	800 W per main entry				

For SI: 1 foot = 304.8 mm, 1 watt per square foot = W/0.0929 m².

Appendix H - TRM – Vol. 2: C&I Measures

Allowable Design Levels from IECC 2015

			LIGHTI	NG ZONES							
	Zone 1		Zone 2	Zone 3	Zone 4						
Base Site Allowance (Base allowance is usable in tradable or nontradable surfaces.)		500 W	600 W	750 W	1300 W						
	Uncovered Parking Areas										
	Parking areas and drives	0.04 W/ft ²	0.06 W/ft ²	0.10 W/ft ²	0.13 W/ft ²						
	Building Grounds										
	Walkways less than 10 feet wide	0.7 W/linear foot	0.7 W/linear foot	0.8 W/linear foot	1.0 W/linear foot						
	Walkways 10 feet wide or greater, plaza areas special feature areas	0.14 W/ft ²	0.14 W/ft²	0.16 W/ft ²	0.2 W/ft ²						
	Stairways 0.75 W/f		1.0 W/ft ²	1.0 W/ft ²	1.0 W/ft ²						
Tradable Surfaces	Pedestrian tunnels	0.15 W/ft ²	0.15 W/ft ²	0.2 W/ft ²	0.3 W/ft ²						
(Lighting power	Building Entrances and Exits										
densities for uncovered parking areas, building grounds, building	Main entries 20 W/linear foot of door width		20 W/linear foot of door width	30 W/linear foot of door width	30 W/linear foot of door width						
entrances and exits, canopies and overhangs	Other doors 20 W/linear of door wid		20 W/linear foot of door width	20 W/linear foot of door width	20 W/linear foot of door width						
and outdoor sales areas . are tradable.)	Entry canopies 0.25 W/ft ²		0.25 W/ft ²	0.4 W/ft ²	0.4 W/ft ²						
	Sales Canopies										
	Free-standing and attached	0.6 W/ft ²	0.6 W/ft ²	0.8 W/ft ²	1.0 W/ff ²						
	Outdoor Sales										
	Open areas (including vehicle sales lots)	0.25 W/ft ²	0.25 W/ft ²	0.5 W/ft ²	0.7 W/ft ²						
	Street frontage for vehicle sales lots in addition to "open area" allowance	No allowance	10 W/linear foot	10 W/linear foot	30 W/linear foot						
Nontradable Surfaces	Building facades	No allowance	0.075 W/ft ² of gross above-grade wall area	0.113 W/ft ² of gross above-grade wall area	0.15 W/ft² of gross above-grade wall area						
(Lighting power density calculations for the following applications can be used only for the specific application and cannot be traded between surfaces or with other exterior lighting. The following allowances are in addition to any allowance otherwise	Automated teller machines (ATM) and night depositories	achines (ATM) and 90 W per additional		270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location						
	Entrances and gatehouse inspection stations at guarded facilities	0.75 W/ft² of covered and uncovered area	0.75 W/ft² of covered and uncovered area	0.75 W/ft² of covered and uncovered area	0.75 W/ft² of covered and uncovered area						
	Loading areas for law enforcement, fire, ambulance and other emergency service vehicles	0.5 W/ft² of covered and uncovered area	0.5 W/ft² of covered and uncovered area	0.5 W/ft² of covered and uncovered area	0.5 W/ft² of covered and uncovered area						
permitted in the "Tradable Surfaces"	Drive-up windows/doors	400 W per drive-through	400 W per drive-through	400 W per drive-through	400 W per drive-through						
section of this table.)	Parking near 24-hour retail entrances	800 W per main entry	800 W per main entry	800 W per main entry	800 W per main entry						

For SI: 1 foot = 304.8 mm, 1 watt per square foot = W/0.0929 m². W = watts.

MEASURE CODE

Formatted: Line spacing: single

Appendix H - TRM – Vol. 2: C&I Measures

2.6.9 Metal Halide Fixtures and Lamps (Retired, effective)

DESCRIPTION

This measure involves the installation of high efficiency pulse start metal halide fixtures and lamps in place of a standard metal halide. Pulse start metal halide luminaires produce more lumens per watt and have an improved lumen maintenance compared to standard probe start technology. Similarly, the high efficiency pulse start metal halide ballast lasts longer than a standard system due to their cooler operating temperatures.³⁵⁴

This measure was developed to be applicable for the following program type: RF.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient condition is an EISA compliant pulse start metal halide lamp and ballasts for luminaires. Under 2009 federal rulings metal halide ballasts in low-watt options (150W-500W fixtures) must be pulse start and have a minimum ballast efficiency of 88%.³⁵⁵ Amendments made in 2014 require more stringent energy conservations <u>efficiency</u> standards with compliance required by February 10, 2017.³⁵⁶

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is the existing bulb and fixture. If unknown assume, High Intensity Discharge (HID) Metal Halide lighting with probe start fixture and a standard \leq 400 Watt lamp.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is assumed to be 15 years.357

DEEMED MEASURE COST

Actual costs should be used when available. If unknown, cost is assumed to be \$267.358

LOADSHAPE

Lighting BUS

³⁵⁴Building a Brighter Future: Your Guide to EISA-Compliant Ballast and Lamp Solutions from Philips Lighting: http://1000bulbs.com/pdf/advance%20eisa%20brochure.pdf

³⁴⁵-Under EISA rulings, metal halide ballasts in low-watt options must be pulse start and have a minimum ballast efficiency of 88%. This ruling virtually eliminates the manufacture of probe start (ceramic) fixtures but some exemptions exist including significantly the 150w wet location fixtures (as rated per NEC 2002, section 410.4 (A)). These will be replaced by 150W. Department of Energy — 10 CFR Part 431 — Energy Conservation Program: Energy Conservation Standards for Metal Halide Lamp Fixtures; Final Rule 7746 Federal Register / Vol. 79, No. 27 / Monday, February 10, 2014 / Rules and Regulations https://www.federalregister.gov/articles/2014/02/10/2014-02356/energy-conservation-program-energy-conservation-standardsformetal-halide-lamp fixtures#h-9

The revised 2014 efficiency standards for metal halides require that luminares produced on or after rebrary 10, 2017, must not contain a probe-start metal halide ballast. Exceptions to this ruling include, metal halide luminaires with a regulated-lag ballast that utilize an electronic ballasts which operates at 480V and those which utilize a high-frequency (≥1000Hz) electronic ballasts. Department of Energy — 10 CFR Part 431 — Energy Conservation Program: Energy Conservation Standards for Metal Halide Lamp Fixtures; Final Rule 7746 Federal Register / Vol. 79, No. 27/ Monday, February 10, 2014 / Rules and Regulations https://www.federalregister.gov/articles/2014/02/10/2014_02356/energy_conservation_program_energy_conservation_standardsformetal-halide_lamp_fixtures/th-9

³⁵⁷ GDS Associates, Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, June 2007, http://library.cee1.org/sites/default/files/library/8842/CEE_Eval_MeasureLifeStudyLights&HVACGDS_1Jun2007.pdf ³⁵⁸ Assuming cost of lamp and fixture combined per Itron, Inc. 2010-2012 WO017 Ex Ante Measure Cost Study – Final Report (Deemed Measures), May 27, 2014.

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted: Font color: Auto, Highlight

Formatted: Font color: Background 2

Formatted: Font color: Background 1

Ameren Missour	i Appendix H - TRM – Vol. 2: C&I Measure	8
Ext Lighting BUS Miscellaneous BU		
	Algorithm	
CALCULATION OF	SAVINGS	
ELECTRIC ENERG	Y SAVINGS	
XX/1	$\Delta kWh = \frac{Watts_{base} - Watts_{bb}}{1000} * Hours * WHF_e * ISR$	
Where:		
Watts_{Base}	= Input wattage of the existing system which depends on the baseline fixture configuration (number and type of lamp). Value can be selected from the reference table at the end of the characterization or a custom value can be used.	
Wattsee	= New Input wattage of EE fixture, which depends on new fixture	Formatted: Font color: Background 2
	configuration. Value can be selected from the appropriate reference	
Hours	table at the end of the characterization, or a custom value can be used. = Average annual lighting hours of use as provided by the customer or	Example and color: Packground 2
Flours	selected from the Lighting Reference Table in Section 2.6. If hours or	Formatted: Font color: Background 2
	Building Type are unknown, use the C&I Average value.	
WHF.	= Waste heat factor for energy to account for cooling energy savings	Formatted: Font color: Background 2
	from efficient lighting is selected from the Reference Table in Section	
	2.8 for each Building Type. If building is un-cooled, the value is 1.0.	
, <mark>ISR</mark>	= In Service Rate is assumed to be 100%	Formatted: Font color: Background 2
		Formatted: Font color: Background 2
Heating Penalty:		Tormatted. Font color. Background 2
If electrically heat	ed building: ³⁵⁹	
	$h_{heatpenalty} = \frac{Watts_{Base} - Watts_{EE}}{1000} * Hours * ISR * (-IF_{RWH})$	
Where:		
₩ _{kWb}	— Lighting HVAC Interaction Factor for electric heating impacts; this factor represents the increased electric space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Reference Table in Section 2.8. If unknown, use the C&I Average value.	
A		Formatted: Font color: Background 2
	ENT DEMAND SAVINGS	

Appendix H - TRM - Vol. 2: C&I Measures

$\Delta kW = \Delta kWh *_x CF$

Where:

AkWh	= as calculated above.	
CF	= Summer peak coincidence demand (kW) to annual energy (kWh) factor	 Formatted: Font color: Background 2
	$= 0.0001899635^{360}$ for indoor lighting	
	= 0.0000056160 for exterior lighting	
	= 0.0001379439 for exterior 24/7 lighting	
		Formatted: Font color: Background 2

NATURAL GAS SAVINGS 361

AThorme -	$Watts_{Base} - Watts_{EE}$	* Hours * ISP * (_IF.)
	1000	· Hours · Hore · (In therms)

Where:

IFTherms = Lighting-HVAC Interaction Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Please select from the Reference Table in Section 2.8 for each Building Type.

Formatted: Font color: Background 2

Formatted: Font color: Background 1

together

Formatted: Left, Indent: Left: 0", Don't keep lines

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

No O&M adjustments apply to this measure.362

REFERENCE TABLES³⁶³

Lamp Watt _{EE}	Efficient Fixture Ballast	Efficient System Lumen	System Watt_{EE}	<mark>Lamp</mark> Watt _{Base}	Baselines Ballast³⁶⁴	System Watts_{Base}	Baseline System Lumen		
Pulse Start MH 150W	Pulse Start CWA Ballast	10500	- 185	Probe Start MH 175W	standard C&C	210	9100		Formatted: Font color: Background 2
Pulse Start MH 175W	Pulse Start CWA Ballast	-11200	208	Probe Start MH 175W	standard C&C	210	9100	(Formatted: Font color: Background 2
Pulse Start MH 200W	Pulse Start CWA Ballast	16800	232	Probe Start MH250W	standard C&C	295	13500	(Formatted: Font color: Background 2
Pulse Start MH 250W	Pulse Start- CWA Ballast	16625	290	Probe Start MH250W	standard C&C	295	13500		Formatted: Font color: Background 2

³⁶⁰ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors" ³⁶⁴ Negative value because this is an increase in heating consumption due to the efficient lighting

363 Per lamp/ballast.

364 Standard Magnetic Core and Coil ballast systems are common for Metal Halide lamp wattages 175-400. See Panasonie "Metal Halide: Probe Start vs. Pulse Start."

³⁶² Given that probe start MH technology is becoming a technology of the past, it is assumed that upon failure they would have been replaced with pulse start technology.

Appendix H - TRM – Vol. 2: C&I Measures

Probe Start	standard 450	24000		Formatted: Font color: Background 2
308 MH400W	C&C 438	24000		
Probe Start	standard 450	24000		Formatted: Font color: Background 2
400 MH400W	C&C 450	24000		
452 Probe Start	standard 450	24000		Formatted: Font color: Background 2
452 MH400W	C&C 450	24000		
				Formatted: Font color: Background 2
	368 MH400W 400 Probe Start 400 MH400W Probe Start 452 MH400W MH400W	368 MH400W C&C 458 Probe Start standard 458 400 MH400W C&C 400 MH400W C&C 452 Probe Start standard 452 Probe Start standard	368 MH400W C&C 458 24000 Probe Start standard 458 24000 400 MH400W C&C 458 24000 400 MH400W C&C 458 24000 452 Probe Start standard 458 24000	368 MH400W C&C 458 24000 Probe Start standard 458 24000 400 MH400W C&C 458 24000 452 Probe Start standard 458 24000

MEASURE CODE:

2.6.610 Occupancy Lighting Sensor Controls Lighting Controls

DESCRIPTION

The lighting controls measure is applicable to the installation of occupancy sensors, daylighting sensors, networked lighting controls (NLC) and luminaire level lighting controls (LLLC). Occupancy sensors are devices that reduce lighting levels by turning lights on or off in response to the presence (or absence) of people in a defined area. Associated energy savings depends on the Building building Typetype, location area covered, type of lighting-and, activity, and-occupancy pattern and control strategies.³⁶⁵

This measure relates to the installation of interior occupancy sensors on new fixtures in an existing lighting system. lighting controls with a new or existing interior lighting system, that are not required by local building energy codes. Lighting control types covered by this measure include remote-mounted and fixture mounted. It does not cover automatic photo sensors, time clocks, and energy management systems. All sensors must be hard wired and control interior lighting.

This measure was developed to be applicable to the following program types: TOS and RF-__If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

It is assumed that this The measure characterization applies to only fixture-mounted occupancy sensors, -and-remote mounted occupancy sensors, networked lighting controls (NLC) and LED fixtures equipped with light level luminaire control (LLLC). For LLLC fixtures, this measure applies to the control strategies (trimming the base wattage, dimming, occupancy, daylighting). The base watt reduction for LLLC fixtures over the existing or code based fixture is not characterized by this measure, but by measure 2.6.31 LED Bulbs and Fixtures. Also, not characterized for LLLC fixtures are HVAC temperature and humidity setback sensing.⁺

DEFINITION OF BASELINE EQUIPMENT

The baseline efficiency case assumes lighting fixtures with with no occupancy controls.only manual controls or no controls. When controls are installed with new fixtures, replacing existing fixtures, the controlled wattage is based on the new system.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life for all lighting controlsoccupancy sensors and daylight sensor is assumed to be 10 years.³⁶⁶

The expected measure life for NLC and LLLC controls is assumed to align with the fixture life, at 15 years.

DEEMED MEASURE COST

http://www.doi.gov/archive/greening/energy/occupy.html

³⁶⁶ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007 (See page 1-3).

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted: Normal, Left, Indent: Left: -0", Right: 3.12", Space After: 5 pt, Line spacing: Multiple 1.08 li

³⁶⁵ United States Department of the Interior. Greening the Department of Interior.

Appendix H - TRM - Vol. 2: C&I Measures

When available, the actual cost of the measure shall be used. When not available, the following default values are provided:

Cost ³⁶⁷			
\$45 <u>65 per sensor³⁶⁸</u>			
<u>\$138 per sensor</u>			Formatted: Font: 11 pt
\$ 105_ 105 per sensor			Formatted: Font: 11 pt
\$53 per fixture ³⁶⁹			
\$0.86 per SF ³⁷⁰			
<u>\$0.59 per SF</u>			
<u>\$0.44 per SF</u>			
	\$4565 per sensor ³⁶⁸ \$138 per sensor \$105-105 per sensor \$53 per fixture ³⁶⁹ \$0.86 per SF ³⁷⁰ \$0.59 per SF	\$4565 per sensor ³⁶⁸ \$138 per sensor \$105-105 per sensor \$53 per fixture ³⁶⁹ \$0.86 per SF ³⁷⁰ \$0.59 per SF	\$4565 per sensor ³⁶⁸ \$138 per sensor \$105 105 per sensor \$53 per fixture ³⁶⁹ \$0.86 per SF ³⁷⁰ \$0.59 per SF

LOADSHAPE

Lighting BUS Miscellaneous BUS Ext Lighting BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

$$\Delta kWh = \sum (kW_{Controlled} * x Hours * x(ESF_{occ} + ESF_{Trim} + ESF_{Other}) ESF * x(WHF_e - IF_{heat}))$$

Where:

 <u>AkWh</u>
 = Summation of controlled watts, hours of use, savings factors, waste

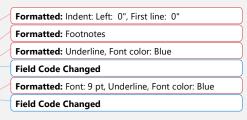
 <u>heater factor for each unique usage area</u>

 kWControlled
 = Total lighting loadLighting load connected to the control in

 kilowatts.controlled, kilowatts.Savings is per control. The total

 connected load per control should be collected from the customer, or

 use the default values presented below.


 =Actual, default from table below may be used for fixture or remote

 occupancy sensing. NLC and LLC to use actual only.

³⁶⁷-Based on averaging typical prices quoted by online vendors. <u>Ameren DSM participant reported costs</u>, 266 participants, 1/1/2019 through 7/1/2024, weighted average of 14,228 sensor cost with installation.

³⁶⁹NEEA, Northwest Energy Alliance, Table 11 page 11, Average of three systems, "2022 Luminaire Level Lighting Controls Incremental Cost Study", (March 2023), https://neea.org/img/documents/2022-Luminaire-Level-Lighting-Controls-Incremental-Cost-Study.pdf
³⁷⁰ Lawrence Berkeley National Laboratory, Energy Solutions, for the California Energy Commission (April 2019), Average

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Page 215

³⁶⁸Ameren DSM participant reported costs, 266 participants, 1/1/2019 through 7/1/2024, weighted average of 14,228 sensor co with installation.

³⁷⁰ Lawrence Berkeley National Laboratory, Energy Solutions, for the California Energy Commission (April 2019), Average incremental cost of three building types by area, Page 62-63 Table 18 to 20, <u>https://www.energy.ca.gov/sites/default/files/202</u> 06/CEC-500-2019-041.pdf

Appendix H - TRM – Vol. 2: C&I Measures

ighting Control Type, <u>nted occupancy sensor</u> <u>ing) mounted occupancy sensor</u> <u>minaire level control</u> <u>e total annual operating hours of</u> <u>ing before occupancy sensors.</u> <u>te usage area.</u> ual, if unknown the hours by B <u>number should be collected fro</u> <u>able, the deemed average numb</u> <u>should be used as provided by</u> <u>on 2.6. If Building Type is unke</u> <u>should be used as provided by</u> <u>on 2.6. If Building Type is unke</u> <u>e</u> operating Hours <u>hours for occ</u> <u>olled baseline lighting system</u>). <u>ual, if unknown, the</u> <u>Determine</u> <u>the default values below.</u> <u>=</u> <u>regy Savings Factor for high end</u> <u>ork Lighting Controls with or y</u>	Annual operating hours per hilding Type may be applied. In the customer. If no data is er of operating hours by Build Lighting Reference Table in hown, use the C&I Average resents the percentage reduction upancy sensing from the non- red on a site specific basis or	Form Form Form Form	atted: Font: Not Bold, Font color: Background 1 atted: Font color: Background 1 atted: Font: Not Bold, Font color: Background 1 atted: Font: Not Bold, Font color: Background 1 atted: Font color: Background 1 atted: Font: 11 pt, Font color: Background 1
ing) mounted occupancy sensor minaire level control e total annual operating hours of ing before occupancy sensors. Le usage area. ual, if unknown the hours by B number should be collected fro able, the deemed average numb should be used as provided by on 2.6. If Building Type is unk sergy Savings factor Factor (represent operating Hours hours for occo olled baseline lighting system). ual, if unknown, the Determined the default values below.	0.338 (per control) Custom f lighting for each type of annual operating hours per ailding Type may be applied. m the customer. If no data is er of operating hours by Build Lighting Reference Table in town, use the C&I Average resents the percentage reduction upancy sensing from the non- ad on a site specific basis or	Form Form Form Form	hatted: Font: Not Bold, Font color: Background 1 hatted: Font: Not Bold, Font color: Background 1 hatted: Font color: Background 1
e total annual operating hours of ing before occupancy sensors. <u>A</u> ual, if unknown the hours by B number should be collected fro able, the deemed average numb -should be used as provided by on 2.6. If Building Type is unk S ergy Savings factor Factor (repr e operating Hours hours for occ olled baseline lighting system). ual, if unknown, the Determined the default values below.	f lighting for each type of annual operating hours per ailding Type may be applied. If no data is er of operating hours by Build Lighting Reference Table in town, use the C&I Average resents the percentage reduction upancy sensing from the non- ad on a site specific basis or	Form Form Form	natted: Font: Not Bold, Font color: Background 1 natted: Font color: Background 1
ing before occupancy sensors. <u>the usage area.</u> <u>ual, if unknown the hours by B</u> number should be collected fro able, the deemed average numb should be used as provided by on 2.6. If Building Type is unke be ergy Savings factor Factor (represent e operating Hours-hours for occ olled baseline lighting system). <u>ual, if unknown, the</u> -Determined the default values below. be ergy Savings Factor for high end	Annual operating hours per hilding Type may be applied. In the customer. If no data is er of operating hours by Build Lighting Reference Table in hown, use the C&I Average resents the percentage reduction upancy sensing from the non- red on a site specific basis or	Form	natted: Font color: Background 1
ing before occupancy sensors. <u>the usage area.</u> <u>ual, if unknown the hours by B</u> number should be collected fro able, the deemed average numb should be used as provided by on 2.6. If Building Type is unke be ergy Savings factor Factor (represent e operating Hours-hours for occ olled baseline lighting system). <u>ual, if unknown, the</u> -Determined the default values below. be ergy Savings Factor for high end	Annual operating hours per hilding Type may be applied. In the customer. If no data is er of operating hours by Build Lighting Reference Table in hown, use the C&I Average resents the percentage reduction upancy sensing from the non- red on a site specific basis or	Form	
ual, if unknown the hours by B number should be collected fro able, the deemed average numb should be used as provided by on 2.6. If Building Type is unker ergy Savings factor Factor (repre- coperating Hours hours for occ olled baseline lighting system). ual, if unknown, the Determined the default values below.	m the customer. If no data is er of operating hours by Build Lighting Reference Table in nown, use the C&I Average resents the percentage reduction upancy sensing from the non- ed on a site-specific basis or	ing	aatted: Font: 11 pt, Font color: Background 1
number should be collected fro able, the deemed average numb should be used as provided by on 2.6. If Building Type is unker ergy Savings factor Factor (represent operating Hours hours for occo olled baseline lighting system). ual, if unknown, the Determine the default values below.	m the customer. If no data is er of operating hours by Build Lighting Reference Table in nown, use the C&I Average resents the percentage reduction upancy sensing from the non- ed on a site-specific basis or		
able, the deemed average numb should be used as provided by on 2.6. If Building Type is unker ergy Savings factor Factor (represent operating Hours-hours for occo olled baseline lighting system). ual, if unknown, the Determine the default values below.	er of operating hours by Build Lighting Reference Table in hown, use the C&I Average resents the percentage reduction upancy sensing from the non- ed on a site-specific basis or		
should be used as provided by on 2.6. If Building Type is unki- ergy Savings factor Factor (repr e operating Hours hours for occ olled baseline lighting system). ual, if unknown, the Determine the default values below.	Lighting Reference Table in nown, use the C&I Average resents the percentage reduction upancy sensing from the non- ed on a site-specific basis or		
on 2.6. If Building Type is unk ergy Savings factor Factor (repr e operating Hours-hours for occ olled baseline lighting system). ual, if unknown, the Determine the default values below.	nown, use the C&I Average resents the percentage reduction upancy sensing from the non- ed on a site-specific basis or	n	
ergy Savings factor Factor (repr e operating Hours-hours for occ olled baseline lighting system). ual, if unknown, the Determine the default values below.	resents the percentage reduction upancy sensing from the non- and on a site specific basis or	n	
ergy Savings factor Factor (repr e operating Hours hours for occ olled baseline lighting system). ual, if unknown, the Determine the default values below.	upancy sensing from the non- and on a site specific basis or	n	
e operating Hours hours for occ olled baseline lighting system). ual, if unknown, the -Determine the default values below gray Savings Factor for high end	upancy sensing from the non- and on a site specific basis or	n	
olled baseline lighting system). ual, if unknown, the <u>Determine</u> ; the default values below <u>.</u> : rgy Savings Factor for high end	ed on a site-specific basis or		
ual, if unknown, the <u>Determine</u> ; the default values below <u>.</u> : ergy Savings Factor for high end	d on a site-specific basis or		
the default values below Brgy Savings Factor for high end	-		
rgy Savings Factor for high end	na tra contra construction de		
	i trim adjustment or tuning wi	th Form	atted: Subscript
OIK Lighting Controls with of v	vithout Luminaire Lighting Le		
rols (represents percentage redu	ction to the base fixture watta	ge)	
xture full wattage – Trimmed w			atted: Font: Italic
ergy Savings Factor for NLC wi		Form	atted: Subscript
		(
ual, if unknown the default valu	ies below may be used.		
tegy by Equipment Type	Energy Savings Factor 372	Form	atted Table
Fixture, Remote, NLC, LLC	0.24		
	0.11 ³⁷³		
C + LLLC	0.28		
	<u>0.10</u>		
	pancy sensing or scheduling. In ming, luminaire level lighting co	transpace sensing or scheduling. Includes daylight harvesting, ming, luminaire level lighting control, personal control, tual, if unknown the default values below may be used. tegy by Equipment Type Energy Savings Factor ³⁷² - Fixture, Remote, NLC, LLC 0.24 C	upancy sensing or scheduling. Includes daylight harvesting, ming, luminaire level lighting control, personal control. tual, if unknown the default values below may be used. tegy by Equipment Type Energy Savings Factor ³⁷² - Fixture, Remote, NLC, LLC 0.24 C 0.11 ³⁷³ C + LLLC 0.28

 Without Lumination relation of the total sector of the

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Page 216

Formatted: Underline, Font color: Blue

WHFe = Waste heat factor for energy to account for cooling energy savings from more efficient lighting is provided in the table , "C&I Lighting Deemed Hours and Waste Heat Factors by Building Type".Lighting Reference Table in Section 2.6. IF_heat = Lighting-HVAC Interaction Factor for electric heating impacts; this factor represents the increased electric space heating requirements Formatted: Subscript Use to the reduction of waste heat rejected by the efficient lighting. Values are provided in the table , "C&I Lighting Deemed Hours and

Waste Heat Factors by Building Type".

Lighting Control Type Interior	Default kW controlled ³⁷⁴	 ~	-(Formatted: Font color: Text 1
Fixture mounted occupancy sensor	0.138 (per fixture)		1	Formatted Table
Remote (ceiling) mounted occupancy sensor	0.338 (per control)		Ì	Formatted: Font color: Text 1

Formatted: Font color: Text 1

together

together

together

together

Formatted: No widow/orphan control, Keep lines

Appendix H - TRM - Vol. 2: C&I Measures

Lighting Control Type	Energy Savings Factor- ³⁷⁵	4
Fixture mounted sensor	24%	-
Remote (ceiling) mounted occupancy sensor	24%	
Network Connected controls	24%	

Heating Penalty:

Ameren Missouri

If electrically heated building:³⁷⁶

 $\Delta kWh_{heatpenalty} = kW_{controlled} * Hours * ESF * (-IF_{kWH})$

Where:

IFkWh

Lighting HVAC Interaction Factor for electric heating impacts; this factor represents the increased electric space heating requirements due to the reduction of waste heat rejected by the efficient lighting.
 Values are provided in the Lighting Reference Table 2.6.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh \stackrel{*}{\xrightarrow{}} CF$

Where:

³⁷⁴Efficiency Vermont Technical Reference Manual 12:31:2018, Page 47; https://puc.vermont.gov/sites/psbnew/files/doc_library/Vermont%20TRM%20Savings%20Verification%202018%20Version_FIL <u>AL.pdf</u> ³⁷⁵-Lawrence Berkeley National Laboratory. A Meta-Analysis of Energy Savings from Lighting Controls in Commercial Building Page & Associates Inc. 2011.(Page 1).

Page of Associates inc. 2011.<u>(Page 17</u>. https://eta.lbl.gov/publications/meta-analysis-energy-savings-lightinghttp://eetd.lbl.gov/publications/meta-analysis-energy-saving

lighting controls commercial buildings. LBNL's meta study of energy savings from lighting controls in commercial buildings bases its savings analysis on over 240 act us field installations. The report found that savings are over represented and do not filter for external factors such as building orientation location, use, weather, blinds, commissioning, changes in behavior after controls are set, etc. As such, their value of 24% represente the best conservative estimate of occupancy controls energy savings achievable in the field today. ³⁷⁶ Negative value because this is an increase in heating consumption due to the efficient lighting.

Appendix H - TRM – Vol. 2: C&I Measures

 $\begin{array}{ll} \Delta k Wh &= As \mbox{ calculated above} \\ CF &= Summer \mbox{ peak coincidence demand (kW) to annual energy (kWh) factor.} \\ &= 0.0001899635^{\underline{377}} \mbox{ for indoor lighting} \\ &= 0.0001379439 \mbox{ for Miscellaneous} \\ &= 0.0000056160 \mbox{ for exterior lighting} \end{array}$

Natural Gas Energy Savings

If gas heated building (or unknown), the heating penalty is:

$$\Delta Therms = kW_{controlled} * Hours * ESF * (-IF_{therms})$$

$$\Delta Therms = \sum (kW_{controlled} * Hours * (ESF_{occ} + ESF_{Trim} + ESF_{Other}) * (-IF_{heat}))$$

Where:

IF_{Therms} = Lighting-HVAC Integration Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting and is provided in the <u>table</u>, "C&I Lighting Deemed Hours and Waste Heat Factors by <u>Building Type".Lighting Reference Table in Section 2.6 by Building</u> Type.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

377	Ameren Missouri	TRM Vol	ume 1	Appendix G:	"Table 2 -	- Commercial	and	Industrial	End U	Use (Category	Monthly	Shap	es
and	d Coincident Peak	Factors"												

Formatted: Font: 9 pt

Formatted: Left, Indent: Left: 0", Don't keep lines together

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Page 218

Appendix H - TRM - Vol. 2: C&I Measures

2.6.11 Street Lighting (Retired 8/1/2024)

DESCRIPTION

This measure characterizes the savings associated with LED street lighting conversions where a LED fixture replaces a high intensity discharge (HID) outdoor lighting system, including metal halide, high pressure sodium, and mercury vapor. LED street lights provide considerable benefits compared to HID lights, including:

- Improved nighttime visibility and safety through better color rendering, more uniform light distribution and elimination of dark areas between poles.
- Reduced direct and reflected uplight which are the primary causes of urban sky glow.
- 40-80% energy savings (dependent on incumbent lighting source).
- 50-75% street lighting maintenance savings.³⁷⁸

This measure includes LED fixture housings including cobrahead and post-top and is applicable only where utility tariffs support LED street lighting conversions.

This measure was developed to be applicable for a one-to-one RF opportunity only.379

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment must be an LED fixture that meets the United Illuminating Rate Schedule, alongside all other luminary performance requirements, based on site characteristics³⁸⁰ and all local, state and federal codes.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is the existing lighting system – a metal halide, high pressure sodium, or mercury vapor outdoor lamp, ballast, and fixture.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is assumed to be 12.5 years.³⁸¹

DEEMED MEASURE COST

2025 MEEIA 4 Plan MEEIA 2019-21 Plan-Revision 56.0

Formatted: Font color: Background 2

³⁷⁸-See NEEP "LED Street Lighting Assessment and Strategies for the Northeast and Mid-Atlantic," January 2015, and the Municipal Solid State Street Lighting Consortium for more information

http://www1.eere.energy.gov/buildings/ssl/consortium.html

²⁷⁹⁹ Many light fixtures were placed in service 20–50 years ago and may no longer service their intended purpose. It is important to conduct a comprehensive assessment of lighting needs with a lighting professional when considering a LED street lighting project LED street lighting the measure only characterizes a one-to-one replacement value, it is recommended that this measure be updated following a Missouri assessment to see where LED street lighting has resulted in the removal of street lighting to ensure additional savings calculations are captured. Recommend using Street and Parking Facility Lighting Retrofit Financial Analysis Tool developed by DOE Municipal Solid-State Street Lighting Consortium "Model Specifications for LED Roadway Luminaires v.2.0," July 2014.

³⁸¹ The measure lifetime is calculated using 4,000 annual hours of use from Ameren Missouri "Light Emitting Diode (LED) Stree and Area Lighting Report," July 2013 (page 10) and a typical LED streetlight lifetime of 50,000 hours from Massachusetts Department of Energy Resources "LED Streetlights: What is Your Plan? (page 28_webinar)," September 11, 2013.

Appendix H - TRM - Vol. 2: C&I Measures

Actual measure installation cost should be used, including material and labor.³⁹² If the actual cost of the LED unit is unknown, use the default values for typical LED streetlight retrofits provided below.383

		- Light	output									
A	Low (<50₩)	Med (50	W-100W)	High (>100₩)			Formatted: Font color: Background 2			
Fixture Type	min	max	min	max	min	max			Formatted: Font color: Background 2			
Decorative/Post Top	\$350.00	\$615.00	\$550.00	\$950.00	\$750.00	\$1,450.00		2				
Cobrahead	\$99.00	\$225.00	\$179.00	\$451.00	\$310.00	\$720.00			Formatted: Font color: Background 2			
							_		Formatted: Font color: Background 2			

Formatted: Font color: Background 2

LOADSHAPE

Ext Lighting BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS³⁸⁴

Watts_{Base} – Watts_{EE} * Hours ΔkWh 1000

Where:

cre.		
Watts _{Base}	= Actual wattage if known, if unknown assume the following	
	nominal wattage based on technology ³⁸⁵	
	<u>— Metal Halide = 554W</u>	
	— High Pressure Sodium = 157W	
	<u>— Mercury Vapor = 228W</u>	
Watts _{EE}	= Actual wattage ³⁸⁶	Formatted: Font color: Background 2
Hours	= Annual operating hours	 Formatted: Font color: Background 2
	$=4,000 \text{ hours}^{387}$	

SUMMER COINCIDENT PEAK DEMAND SAVINGS

No summer peak savings should be claimed for street lighting, as street lights are not expected to be operational during system peak loads.

NATURAL GAS ENERGY SAVINGS

³⁸² Labor should include the removal of the old fixture and installation of the new fixture. Assume the typical prevailing wage as per

the Annual Wage Order No. 23 published by the Missouri Department of Labor. ³⁸³ LED unit costs from New York State Energy Research and Development Authority "Street Lighting in New York State: Opportunities and Challenges," Revised January 2015 (Page 12, Table 2-3). ³⁸⁴ There is no ISR input. Savings are per unit.

³⁸⁵ Baseline wattages are a weighted average of products evaluated in Ameren Missouri "Light Emitting Diode (LED) Street and Area Lighting Report," July 2013. See "Street Lighting_Baseline Wattages xlsx." ³⁴⁶ It is important to ensure that retrofit opportunities base efficient wattage on a lumen per watt equivalence. ³⁸⁷ Ameren Missouri "Light Emitting Diode (LED) Street and Area Lighting Report," July 2013.

Appendix H - TRM – Vol. 2: C&I Measures

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION N/A

DEEMED O&M COST ADJUSTMENT CALCULATION Annual O&M savings are estimated at \$50/LED streetlight.³⁸⁸ MEASURE CODE:

³⁸⁸ New York State Energy Research and Development Authority "Street Lighting in New York State: Opportunities and Challenges," Revised January 2015 (page 7, section 1.5).

Appendix H - TRM – Vol. 2: C&I Measures

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Appendix H - TRM – Vol. 2: C&I Measures

2.7 Miscellaneous		
2.7.1 Laptop Computer (<u>Retired, effective 1/1/2025)</u>		
DESCRIPTION		Formatted: Font color: Background 1
This measure estimates savings for a laptop (or notebook) computer with that has been certified by ENERGY STAR [®] (ES) Version 6.0 <u>8.0</u> .		
This measure was developed to be applicable to the following program type: TOS. If applied to other program types, the measure savings should be verified.		
DEFINITION OF EFFICIENT EQUIPMENT		
The efficient product is laptop meeting the requirements set forth by ENERGY STAR [®] Version $68.0.389$		
DEFINITION OF BASELINE EQUIPMENT		
Non ENERGY STAR [®] -qualified laptop.		
DEEMED LIFETIME OF EFFICIENT EQUIPMENT		
The life of this measure is 4 years. ³⁹⁹		
DEEMED MEASURE COST ³⁹⁴		
The incremental cost is \$5.		
LOADSHAPE		
Miscellaneous BUS		
Algorithm		
CALCULATION OF ENERGY SAVINGS		
ELECTRIC ENERGY SAVINGS ³⁹²		
<u> AkWh = Hoursidle *x (Pidle_base - Pidle_eff) + Hourssleep *x (Psleep_base - Psleep_eff) +</u> Hoursoff * <u>x (Poff_base - Poff_eff</u>)		
Where:		
³⁸⁹ ENERGY STAR, Effective July 2022, https://www.energystar.gov/sites/default/files/asset/document/ENERGY% 20STAR% 20Computers% 20Version% 208.0% 20Final%	-	Formatted: Font color: Background 1
20Specification%20Rev.%20July%202022.pdf ²⁰⁰ Based on Energy Stat [®] Office Equipment Calculator. See "Office Equipment Calculator.xlsx." ³⁹¹ Computer CASE Report, CA IOUs. <u>http://www.energy.ca.gov/appliances/2013rulemaking/documents/proposals/12_AAER_2A_Consumer_Electronics/California_IOUs_Standards_Proposal_Computers_UPDATED_2013_08_06_TN.71813. The small incremental cost is in alignment with Energy Star® reporting, which lists an incremental cost of \$0.280 Based on the algorithms</u>	F \	Formatted: Footnotes, No widow/orphan control
used by the Energy Star® Office Equipment Calculator. See "Office Equipment Calculator.xlsx." ³⁹² ENERGY STAR®, Office Equipment Calculator, Laptop Cales worksheet, Equipment Life field,		Formatted: Footnotes, Space After: 0 pt
https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fdnr.mo.gov%2Fsites%2Fdnr%2Ffiles%2Fmedia%2Ffile%2 F2021%2F01%2Foffice-equipment-calculator.xlsx&wdOrigin=BROWSELINKBased on the algorithms used by the Energy Star® Office Equipment Calculator. See "Office Equipment Calculator.xlsx."	-	

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Page 223

Appendix H - TRM - Vol. 2: C&I Measures

Hours _{idle}	= Annual hours the computer is on and idling. Custom input or based on	
	usage pattern (see table below).	
Pidle_base	= Power draw (kW) of baseline unit while idling. Based on computer	Formatted: Font color: Background 1
-	performance level (see table below).	
Pidle_eff	= Power draw (kW) of efficient unit while idling. Based on computer	Formatted: Font color: Background 1
_	performance level (see table below).	·,
Hourssleep	= Annual hours the computer is in sleep mode. Custom input or based on	Formatted: Font color: Background 1
	usage pattern (see table below).	
Psleep_base	= Power draw (kW) of baseline unit while in sleep mode. Based on	Formatted: Font color: Background 1
	computer performance level (see table below).	
Psleep_eff	= Power draw (kW) of efficient unit while in sleep mode. Based on	Formatted: Font color: Background 1
	computer performance level (see table below).	
Hoursoff	= Annual hours the computer is off. Custom input or based on usage	Formatted: Font color: Background 1
	pattern (see table below).	,
Poff_base	= Power draw (kW) of baseline unit while off. Based on computer	Formatted: Font color: Background 1
	performance level (see table below).	
Poff_eff	= Power draw (kW) of efficient unit while off. Based on computer	Formatted: Font color: Background 1
	performance level (see table below).	
		Formatted: Font color: Background 1

Table: Default Hours of Use³⁹³

Use Pattern	Hours_idle	Hours_sleep	Hours_off
<u>'urned off at night, sleep enabled</u>	803	1104	6854
Curned off at night, sleep disabled	1906	θ	6854
_eft on at night, sleep enabled	803	7957	θ
Left on at night, sleep disabled	8760	θ	θ
Unknown	5853	4 39	2467
-		1	

Table: Power Requirements 394&395

Performance Level ²⁸³	³ Baseline			Efficient				
	Pidle_base	Psleep_base	Poff_base	Pidle_eff	Psleep_eff	Poff_eff		
Low	0.01104	0.00104	0.000563	0.0064	0.000787	0.000382		Formatted: Font color: Background 1
Medium	0.01482	0.00121	0.000606	0.00861	0.000889	0.000457		Formatted: Font color: Background 1
High	0.01724	0.00134	0.000619	0.01024	0.00122	0.000522		Formatted: Font color: Background 1

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

w See "Office Equip Star[®] Off ""Unknown" based on data

suggesting 36% of computers are shut off at night and 8% have sleep mode enabled. ³⁹⁴ Based on Energy Star[®] Office Equipment Calculator. See "Office Equipment Calculator.xlsx."

³⁹⁵ "Low" refers to budget or low end models, "Medium" refers to mid-grade models and "High" refers to high-end models. For more specific performance definitions, refer to Energy Star[®] 6.0 Requirements.

2025 MEEIA 4 Plan MEEIA 2019-21 Plan-Revision 56.0

Formatted: Font color: Background 1

Formatted: Font color: Background 1

Appendix H - TRM – Vol. 2: C&I Measures

Ameren Missouri

AkWh CF	 Energy Savings as calculated above Summer peak coincidence demand (kW) to annual energy (kWh) factor 0.0001379439³⁹⁶ 	Formatted: Font color: Background 1
		Formatted: Font color: Background 1
NATURAL GAS SA	AVINCS	
N/A		
WATER AND OTH	ER NON-ENERGY IMPACT DESCRIPTIONS AND CALCULATION	
N/A		
DEEMED O&M (Cost Adjustment Calculation	
N/A		
MEASURE CODE:		

		Formatted: Font color: Background 1
Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes	+	 Formatted: Left, Indent: Left: 0", Don't keep lines
and Coincident Peak Factors"		together
2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0 Page 22	5	

Appendix H - TRM – Vol. 2: C&I Measures

2.7.2 Computer Power Management Software (Retired, effective 1/1/2025)

DESCRIPTION

Computer power management software is installed on a network of computers. This is software which monitors and records computer and monitor usage, as well as allows centralized control of computer power management settings.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is defined by the requirements listed below:

- Allow centralized control and override of computer power management settings of workstations which include both a computer monitor and CPU (i.e. a desktop or laptop computer on a distributed network).
- Be able to control on/off/sleep states on both the CPU and monitor according to the network administrator defined schedules and apply power management policies to network groups.
- Have capability to allow networked workstations to be remotely wakened from powersaving mode (e.g. for system maintenance or power/setting adjustments).
- Have capability to detect and monitor power management performance and generate energy savings reports.
- Have capability to produce system reports to confirm the inventory and performance of equipment on which the software is installed.

This measure was developed to be applicable to the following program type: RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF BASELINE EQUIPMENT

Baseline is defined as a computer network without software enforcing the power management eapabilities in existing computers and monitors.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is 4 years.³⁹⁷

DEEMED MEASURE COST

The deemed measure cost is \$29 per networked computer, including labor.³⁹⁸

LOADSHAPE

Miscellaneous BUS

Formatted: Font color: Background 1

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted: Font color: Background 1

 ²⁹⁷-Consistent with the expected lifetimes of Energy Star[®] Office Equipment.
 ³⁹⁸ Work Paper WPSCNROE0003 Revision 1, Power Management Software for Networked Computers. Southern California Edison <u>https://www.calmac.org/publications/13-14_PCPMS_Report_FINAL_20160329.pdf</u> (table 3-1, pg 17)

Appendix H - TRM - Vol. 2: C&I Measures

	Algorithm		
CALCULATION OF]	Energy Savings		
Electric Energy	<u>Y SAVINGS</u>		
$\Delta kWh = k$	Wh _{savings} * <u>x</u> N		
Where:			
kWh _{savings}	= <u>Annual energy savings per workstation</u> = <u>200 kWh³⁹⁹ for desktops</u> , <u>50 kWh for laptops</u>		
N	= If unknown, assume 161 kWh (based on 74% desktop and 26% laptop) ⁴⁰¹ = Number of desktop or laptop workstations controlled by the power	Formatted: Font color: Background 1	
	management software		
SUMMER COINCID	ENT PEAK DEMAND SAVINGS	Formatted: Font color: Background 1	
$\frac{AkW = Al}{AkW}$			
$\frac{\Delta KW}{Where:}$	KW n * CF		
AkWh	= Energy Savings as calculated above		
CF	= Summer peak coincidence demand (kW) to annual energy (kWh) factor	Formatted: Font color: Background 1	
	= 0.0001379439	Formatten. Font color, background i	
		Formatted: Font color: Background 1	
NATURAL GAS SAVI	INGs		
N/A			
DEEMED O&M COST	FADJUSTMENT CALCULATION		
Assumed to be \$2/	/unit annually. ⁴⁰²		
Measure code:			
WIEASUKE CODE.			
South California Edison,	rgy-savings/computer from the following sources; , Work Paper WPSCNROE0003 (200k Wh) zy Manager Evaluation Report, NEEA (68, 100, and 128kWh)		
Regional Technical Foru	mm measures/measure.asp?id=95https://rtf.nwcouncil.org/measures/measure.asp?id=95 (200 kWh)		
	rr Power Management Savings Calculator (~190 kWh for a mix of laptop/desktop and assuming 30% are	Field Code Changed	
already turned off at nigh			
	ov/ia/products/power_mgt/LowCarbonITSavingsCale.xlsx?78c1https://www.energystar.gov/ia/products/p FSavingsCale.xlsx?78c1-120e&78c1-120e Power Management for Networked Computers: A Review of	 Field Code Changed	
Utility Incentive Program	ns J. Michael Walker, Beacon Consultants Network Inc., 2009 ACEEE Summer Study on Energy		
Efficiency in Industry (3 400 Power Management f	30 kWh). for Networked Computers: A Review of Utility Incentive Programs J. Michael Walker, Beacon Consultants		
Network Inc., 2009 ACE	EEE Summer Study on Energy Efficiency in Industry.		
⁴⁰² Based on Dimetrosky Report, No. 2 (Northwest	d Computer Software Program data showing a split of 74% desktop to 26% laptop. , S., Luedtke, J. S., & Seiden, K. (2005). Surveyor Network Energy Manager: Market Progress Evaluation st Energy Efficiency Alliance report #E05-136). Portland, OR: Quantec LLC and review of CLEARResult alfving Software Providers for ComEd program and their licensing fees; "Qualifying Vendor Software		
Comparison.pdf."			
	Dion MEELA 2010 21 Dion Devision 56 0		

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Page 227

Appendix H - TRM – Vol. 2: C&I Measures

2.7.3 Heat Pump Pool Heater

DESCRIPTION

This measure applies to the installation of a heat pump pool heater in place of a standard electric pool heater on an outdoor pool at a commercial location.

This measure was developed to be applicable to the following program type: TOS and RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be a new heat pump pool heater meeting program requirements.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new, standard efficiency electric resistance pool heater.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 15 years.403

DEEMED MEASURE COST

The incremental equipment cost difference between an electric resistance pool heater and a heat pump pool heater is \$1,000 per unit.⁴⁰⁴

LOADSHAPE

Miscellaneous BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = Q_{PoolHeating} * (1/Eff_{Base} - 1/Eff_{EE})$

Where:

Q_{PoolHeating} = Rec

= Required annual heat transfer to pool water (kWh), calculated as follows:⁴⁰⁵ For an uncovered pool: [53.075 *<u>x</u> (SQFT)] + 1631.1 For a pool that is regularly covered when not in use: [8.079 *<u>x</u> (SQFT)] + 1295.4

 ⁴⁴³-Measure life is for a high-efficiency pool heater, from 2017 Michigan Energy Measures Database <u>(row 246)</u>.
 ⁴⁴⁴-Measure cost based on "The Definitive Guide to Heating Your Swimming Pool," <u>page 7</u>, AquaCal, July 2013. <u>https://www.thepoolworks.com/pdfs/The Definitive Guide To Heating Your Swimming Pool.pdf</u>, Electric resistance pool heaters can be purchased for less than \$2,000, and heat pump pool heaters cost between \$2,000 and \$4,000 (<u>page 7</u>).
 ⁴⁴⁵-Based on the results of a swimming pool energy calculation tool found at <u>http://noanderson.com/services/swimming-poolenergy-temperature-calculator/energy-temperature-calculator/. Results use St. Louis weather related assumptions and assume a pool season of May through October (per Energy Star® guidelines), with a water temperature of 80 degrees Fahrenheit.
</u>

Formatted: Footnotes, Left, Line spacing: single

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Page 228

Ameren Missouri	Appendix H - TRM – Vol. 2: C&I Measures
Eff_{Base}	Where SQFT is the total surface area of the pool. = Efficiency of electric resistance pool heater = 100% = Efficiency (COP) of heat pump pool heater = Actual
Summer Coincide	NT PEAK DEMAND SAVINGS
$\Delta kW = \Delta k$	Wh * <u>x</u> CF
Where:	
CF =	- Calculated value above. - Summer peak coincidence demand (kW) to annual energy (kWh) factor - 0.0001379439 ⁴⁰⁶
NATURAL GAS ENE	RGY SAVINGS
N/A	
WATER IMPACT DE	SCRIPTIONS AND CALCULATION
N/A	
DEEMED O&M CO	ST ADJUSTMENT CALCULATION
N/A	
Measure Code:	

Formatted: Footnotes

.

Appendix H - TRM – Vol. 2: C&I Measures

2.7.<u>1</u>4 Computer Server

DESCRIPTION

This measure estimates savings for an energy efficient computer server with that has been certified by-to_ENERGY STAR[®] (ES) Version 24.0.

This measure was developed to be applicable to the following program type: TOS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient product is computer server meeting the requirements set forth by ENERGY STAR[®] Version 24.0. The measure characterization includes computer server, blade systems (one or more blade servers), resilient server, and multi-node server. Power supply efficiency must meet the PSU criteria for 10%,20%, 50% and 100% load. The power supply must also meet the power factor criteria for ENERGY STAR[®] Version 4.0. The server must also meet the active state efficiency score requirements, which include the CPU efficiency, memory efficiency and storage efficiency. The table lists the minimum active efficiency by server type and installed processors.²

DEFINITION OF BASELINE EQUIPMENT

Non ENERGY STAR[®] qualified computer server.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The life of this measure is 4 years.407

DEEMED MEASURE COST⁴⁰⁸

The incremental cost is \$9.80. The actual incremental cost of the equipment should be used, if unknown, the following estimates may be used.

<u>Number</u> Installed <u>Processors</u>	<u>Equipment</u>	Incremental cost ⁴⁰⁹
	Rack	\$331
<u>1</u>	Tower	<u>\$323</u>
	Resilient	<u>\$5000</u>
<u>2</u>	Rack	<u>\$452</u>

⁴⁰⁷ Consistent with Energy Star[®] computing equipment. It is important to note that lifetime doesn't necessarily reflect the expected functional lifetime of mechanical components, but rather the lifetime of operating system technology, which is generally assumed to become posolete after a period of four years.

2A_Consumer_Electronics/California_IOUs_Standards_Proposal_Computers_UPDATED_2013-08-06_TN-71813. The small incremental cost is in alignment with Energy Star® reporting, which lists an incremental cost of \$0 for all office

equipment.<u>Online manufacturer website product directory</u>. Base and efficient are same manufacturer, processor quantity ⁴⁰⁹ Internet online manufacturer product pricing difference for rack and tower, resilient and blade servers estimated with ^{20%} incremental cost for ENERGY STAR certified equipment. Local file: "Server incremental cost.xlsx"

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted: Indent: Left: 0", First line: 0"

⁴⁰⁸ Computer CASE Report, CA IOUs. California Energy Commission Docketed <u>12-AAER-2a</u> TN 71813 Aug <u>06 2013</u> (page <u>41)</u> http://www.energy.ca.gov/appliances/2013rulemaking/documents/proposals/12-AAER-

Appendix H - TRM – Vol. 2: C&I Measures

	Tower	<u>\$668</u>
	Blade or Multi-Node	<u>\$1225</u>
	Resilient	<u>\$5000</u>
<u>≥3</u>	Rack	<u>\$452</u>

LOADSHAPE

Miscellaneous BUS

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS⁴¹⁰

Annual energy savings are based on the rated output of the server's power supplynumber of installed processor and equip, ment type, as estimated by the ENERGY STAR[®] Computer Server Analysis calculator, with the results summarized according toin the following table⁴¹¹:

Equipment SizeNumber Installed Processors	<u>Equipment</u>	Minimum Score Eff _{Active}	<u>Electric</u> <u>Savings</u> <u>kWh</u>	
One Installed				
Processor				
1 Rack	Rack	<u>26.4</u>	1,459	
Tower	Tower	24.4	723	
Resilient	Resilient	<u>6.6</u>	1,474	
Two Installed				
Processors				
2Rack	Rack	<u>30.4</u>	2,542	
Tower	Tower	26.5	2,028	

 411
 ENERGY STAR®, "Computer Servers Final Data and Analysis Package", Energy and Cost Savings worksheet, https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fwww.energystar.gov%2Fsites%2Fdefault%2Ffiles%2Fasse %2Fdocument%2FENERGY%2520STAR%2520Version%25204.0%2520Computer%2520Servers%2520Final%2520Data%2520 and%2520Analysis%2520Package.xlsx&wdOrigin=BROWSELINK,

 2025
 MEEIA 4 Plan
 MEEIA 2019-21 Plan
 Revision 56.0
 Page 231

Formatted:	Subscript
Formatted:	Font: 11 pt
Formatted:	Font: 11 pt
Formatted:	Centered, Space Before: 2 pt, After: 2 pt
Formatted:	Centered, Space Before: 2 pt, After: 2 pt
Formatted:	Font: 11 pt
Formatted:	Centered, Space Before: 2 pt, After: 2 pt
Formatted:	Font: 11 pt
Formatted:	Font: 11 pt
Formatted:	Centered, Space Before: 2 pt, After: 2 pt
Formatted 1	[able
Formatted:	Font: 11 pt
Formatted:	Centered, Space Before: 2 pt, After: 2 pt
Formatted:	Font: 11 pt
Formatted:	Font: 11 pt
Formatted:	Centered, Space Before: 2 pt, After: 2 pt
Formatted:	Font color: Auto
Formatted:	Font color: Auto
Formatted:	Footnotes
Formatted: color: Blue	Underline, Underline color: Blue, Font
Formatted:	Font color: Blue

Appendix H - TRM - Vol. 2: C&I Measures

Blade or	Blade or Multi-Node	<u>29.1</u>	1,574	
Multi Node	Resilient	<u>6.0</u>	<u>0</u>	
Resilient	θ			-
Greater Than Two Installed Processors				
<u>>3</u> Rack	Rack	<u>31.9</u>	10,218	
A Blade or Multi Node	Blade or Multi-Node	26.8	3,903	

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

 ΔkWh = Energy Savings as calculated above

= Summer peak coincidence demand (kW) to annual energy (kWh) factor $= 0.0001379439 \frac{412}{2}$

NATURAL GAS SAVINGS

CF

N/A

WATER AND OTHER NON-ENERGY IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

Formatted: Font: 11 pt	
Formatted: Centered, Space Before: 2 pt, After: 2 pt	
Formatted: Font: 11 pt	
Formatted: Centered, Space Before: 2 pt, After: 2 pt	
Formatted: Font: 11 pt	
Formatted: Centered, Space Before: 2 pt, After: 2 pt	
Formatted Table	
Formatted: Font: 11 pt	
Formatted: Centered, Space Before: 2 pt, After: 2 pt	
Formatted: Font: 11 pt	
Formatted: Centered, Space Before: 2 pt, After: 2 pt	
Formatted: Font: 11 pt	
Formatted: Centered, Space Before: 2 pt, After: 2 pt	
Formatted: Font: 11 pt	
Formatted: Centered, Space Before: 2 pt, After: 2 pt	_

⁴¹² Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors" Page 232

Appendix H - TRM – Vol. 2: C&I Measures

2.8 Motors and Pumps

2.8.1 Motors

DESCRIPTION

This measure applies to the one-for-one replacement of an old, working or failed/near failure 1-350 horsepower, constant speed, uniformly loaded HVAC fan or pumping motor with a new motor of the same rated horsepower that meets or exceeds National Electrical Manufacturers Association (NEMA) Premium efficiency levels. <u>The measure includes general purpose</u> motors, induction induction, <u>and</u>-reluctance, electronically commutated, and permanent magnet motors. Fire pump motors are excluded.

This measure was developed to be applicable to the following program type: RF, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be a new motor that meets or exceeds NEMA Premium efficiency levels.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment efficiency is the efficiency of the existing motor <u>for early replacements</u>, or <u>if unknown, the federal minimum required efficiency is assumed, the Federal Energy Standards for</u> <u>normal replacements</u>. ⁴¹³

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 15-18 years.⁴¹⁴

DEEMED MEASURE COST

Actual incremental costs should be used if available. If actual costs are unknown, use default installed cost from table below.⁴¹⁵

Motor Size (HP)	Installed Cost
1	\$730
1.5	\$725
2	\$800
3	\$840
5	\$860
7.5	\$1,165
10	\$1,298
15	\$2,242
20	\$2,522

 413_DOE|Motors|https://www.ecfr.gov/current/tile-10/chapter-II/subchapter-D/part-431_

 414_ASHRAE, Chapter 38: Owning and Operating Costs, Table 4. "Heating, Ventilating and Air Conditioning

 Applications", (2023 edition) for electric motors, California Database for Energy Efficiency Resources (DEER) 2014

 Estimated Useful Life (EUL) Table Update_("Updated 2014 EUL table" rows 40,52,131,134,627)

 415_Installed
 costs

 from
 2015-2016

 Demand-Side
 Management

 Plan,
 Xcel

 https://www.xcelenergy.com/staticfiles/xe/PDF/Regulatory/CO-DSM-2015-16-DSM-Plan.pdf (page 440).

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted: Font: 9 pt Formatted: Font: 9 pt Formatted: Font: 9 pt Formatted: Indent: Left: 0.01" Formatted: Font color: Text 1 Formatted: Default Paragraph Font, Font color: Text 1 Formatted: Font color: Text 1

Formatted: Font: 9 pt

Page 233

Energ

Appendix H - TRM – Vol. 2: C&I Measures

Motor Size (HP)	Installed Cost
25	\$2,873
30	\$3,095
40	\$3,716
50	\$4,073
60	\$5,128
75	\$5,888
100	\$7,392
125	\$9,076
150	\$9,401
200	\$11,250
250	\$13,958
300	\$17,744
350	\$25,653

LOADSHAPE

Motors BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = HP^* LF * 0.746 * (1/\eta_{Bmotor} - 1/\eta_{EEmotor}) * Hours$

Where:

HP	= Nominal horsepower (HP) of new motor
	= Actual
LF	= Load Factor; Motor Load at Fan/Pump Design CFM
	$=75\%^{416}$
0.746	= Conversion factor from HP to kWh
η_{Bmotor}	= Actual efficiency of existing motor, or if unknown, use federal baseline
-	nominal/nameplate motor efficiency as shown in table below. for early
	<u>replacement</u>
	=Federal Energy Standards for normal replacement
η_{EEmotor}	= Efficient motor nominal/nameplate motor efficiency
	= Actual
Hours	= Annual hours of operation for motor; see table below for HVAC
	motors

⁴¹⁶ Motor efficiency curves typically result in motors being most efficient at approximately 75% of the rated load. *Determining Electric Motor Load and Efficiency*, US DOE Motor Challenge, a program of the US Department of Energy, https://energy.gov/sites/prod/files/2014/04/f15/10097517.pdf. (see page 1)

Formatted: Underline, Font color: Blue

2025 MEEIA 4 Plan MEEIA 2019-21 Plan-Revision 56.0

Appendix H - TRM – Vol. 2: C&I Measures

	Open	Drip Proof (O of Poles			Totally Enclosed Fan-Cooled # of Poles	
Motor Size	6	4	2	6	4	2
(HP)		Speed (RPM)			Speed (RPM)	
	1200	1800	3600	1200	1800	3600
1	82.50%	85.50%	77.00%	82.50%	85.50%	77.00%
1.5	86.50%	86.50%	84.00%	87.50%	86.50%	84.00%
2	87.50%	86.50%	85.50%	88.50%	86.50%	85.50%
3	88.50%	89.50%	85.50%	89.50%	89.50%	86.50%
5	89.50%	89.50%	86.50%	89.50%	89.50%	88.50%
7.5	90.20%	91.00%	88.50%	91.00%	91.70%	89.50%
10	91.70%	91.70%	89.50%	91.00%	91.70%	90.20%
15	91.70%	93.00%	90.20%	91.70%	92.40%	91.00%
20	92.40%	93.00%	91.00%	91.70%	93.00%	91.00%
25	93.00%	93.60%	91.70%	93.00%	93.60%	91.70%
30	93.60%	94.10%	91.70%	93.00%	93.60%	91.70%
40	94.10%	94.10%	92.40%	94.10%	94.10%	92.40%
50	94.10%	94.50%	93.00%	94.10%	94.50%	93.00%
60	94.50%	95.00%	93.60%	94.50%	95.00%	93.60%
75	94.50%	95.00%	93.60%	94.50%	95.40%	93.60%
100	95.00%	95.40%	93.60%	95.00%	95.40%	94.10%
125	95.00%	95.40%	94.10%	95.00%	95.40%	95.00%
150	95.40%	95.80%	94.10%	95.80%	95.80%	95.00%
200	95.40%	95.80%	95.00%	95.80%	96.20%	95.40%
250	95.40%	95.80%	95.00%	95.80%	96.20%	95.80%
300	95.40%	95.80%	95.40%	95.80%	96.20%	95.80%
350	95.40%	95.80%	95.40%	95.80%	96.20%	95.80%

Open Drip Proof (ODP) and Totally Enclosed Fan Cooled (TEFC)417

⁴¹⁷ For 1-200 HP motors, baseline efficiency is from NEMA MG 1 Table 12-12. For motors over 200 hp, baseline efficiency is from NEMA MG 1 Table 12-11.

Appendix H - TRM - Vol. 2: C&I Measures

Annual Hours of Use for HVAC Motors⁴¹⁸

Building Type	Hot Water Pump Hours	Chilled Water Pump Hours	Fan Motor Run Hours
Large Office	5,233	6,385	6,753
Medium Office	3,437	5,921	6,968
Small Office	3,715	3,774	6,626
Warehouse	4,587	1,292	6,263
Stand-alone Retail	4,040	2,713	6,679
Strip Mall	3,908	2,548	6,687
Primary School	4,754	5,160	5,906
Secondary School	5,594	5,279	6,702
Supermarket	4,868	4,255	6,900
Quick Service Restaurant	4,231	3,378	7,679
Full Service Restaurant	4,595	4,897	7,664
Hospital	8,760	8,717	8,760
Outpatient Health Care	8,760	8,689	8,760
Small Hotel - Building	3,533	7,976	8,760
Large Hotel - Building	5,538	8,308	8,760
Midrise Apartment - Building	5,197	4,347	8,728
Nonresidential Average	4,411	3,539	6,773

SUMMER COINCIDENT PEAK DEMAND SAVINGS419

Where:

 $\varDelta kW = \varDelta kWh * CF$

ΔkWh

CF

= Energy Savings as calculated above

= Summer peak coincidence demand (kW) to annual energy (kWh) factor = 0.0001379439^{420}

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

⁴¹⁸ Hours per year are estimated using the eQuest models as the total number of hours the heating or cooling system is operating for each Building Type. "Heating and Cooling Run Hours" are estimated as the total number of hours fans are operating for heating, cooling and ventilation for each Building Type. This may over claim certain applications (e.g. pumps) and so where possible actual hours should be used for these applications.

possible actual hours should be used for these applications. ⁴¹⁹ Since savings will be constant and without fluctuation over the period of operation, demand savings are simply the energy savings divided by the hours of operation. Demand savings are expected to coincide with peak demand period definitions, consistent with assumptions in VFD measures on HVAC pumps and fans.

⁴²⁰ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted: Footnotes

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

2.8.2 Pool Pump

DESCRIPTION

This measure applies to the installation of a variable frequency drive (VFD) on an existing singlespeed pool pump at a commercial location. VFDs save energy by reducing the speed of the pool pump motor to match the pool's required flow rate. Additionally, VFD's soft-starting extends motor life by reducing wear.

This measure was developed to be applicable to the following program type: RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be a new VFD meeting program requirements. The hydraulic horsepower must exceed 2.5 hhpHHP, which is approximately equal to a 5 hp motor, as their minimum efficiency is regulated by the dedicated pool pump (DPPP) standard.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is an existing, single-speed pool pump without a VFD or other motor control device.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 10 years.⁴²¹

DEEMED MEASURE COST

Actual costs (equipment and labor) should be used if available. If actual costs are unknown, assume equipment costs of \$200/motor horsepower and labor cost of \$46.422

LOADSHAPE

Motors BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = 1,747 * HP$

⁴²¹ EUL set to 10 years based on 2021 comparison with other TRM values; Database for Energy Efficient Resources (2014). http://www.deeresources.com/nttp://www.deeresources.com/g ("Updated 2014 EUL table, row 592)
Formatted:

⁴²² Costs from 2017 Michigan Energy Measures Database ("Commercial" tab row 356).

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Page 237

Formatted: Default Paragraph Font, Font color: Auto

Formatted: Font color: Auto

Appendix H - TRM - Vol. 2: C&I Measures

Where:

1,747	= Average annual energy savings per pool pump motor horsepower
	(kWh/HP) ⁴²³
HP	= Pool pump motor horsepower
	= Custom input, actual horsepower rating of the pump motor.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

kWh	= Electric energy savings, as calculated above.
CF	= Summer peak coincidence demand (kW) to annual energy (kWh) factor
	$= 0.0001379439^{\frac{424}{2}}$

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

⁴²³ Energy savings based on monitoring performed at commercial pool facilities, from "Commercial Variable Speed Pool Pump Market Characterization and Metering Study," Southern California Edison, February 2015 (page "i" and 22 https://www.etccca.com/sites/default/files/reports/et13sce1170_comm_vfd_pool_pumps_final.pdf).

⁴²⁴ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors" 2025 AMEELIA A Diago MEELIA 2010 21 Diago Provincian 56 0

Formatted: Font color: Auto
Formatted: Default Paragraph Font, Font color: Auto
Formatted: Footnotes

²⁰²⁵ MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Appendix H - TRM – Vol. 2: C&I Measures

Appendix H - TRM – Vol. 2: C&I Measures

2.8.3 Pool Pump Timer

DESCRIPTION

This measure applies to the installation of a pump timer on an existing single-speed pool pump at a commercial location. Many times, it is not necessary to run a pool's circulation pump 24 hours a day.

This measure was developed to be applicable to the following program type: RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be a new pump timer meeting program requirements.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is an existing, single speed pool pump without a VFD or other motor control device.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 10 years.

DEEMED MEASURE COST

Actual costs (equipment and labor) should be used if available. If actual costs are unknown, assume equipment costs of \$100.⁴²⁵

LOADSHAPE

Motors BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $-\Delta kWh = HRS * HP * .746$

Where:

 HRS
 = Hours Timer will shut off pump annually

 = Actual.

 HP
 = Pool pump motor horsepower

 = Custom input, actual horsepower rating of the pump motor.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

⁴²⁵ <u>https://pooltimerdoor.com/how-much-does-it-cost-to-replace-a-pool-timer/</u>Costs from Ameren Missouri MEEIA 2016-18 TRM.

CF

Appendix H - TRM - Vol. 2: C&I Measures

 $\Delta kW = \Delta kWh * CF$

Where:

kWh = Electric energy savings, as calculated above.

= Summer peak coincidence demand (kW) to annual energy (kWh) factor $= 0.0001379439^{426}$

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

426-Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

Formatted: Footnotes

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

2.8.34 Pump Optimization

DESCRIPTION

Pump improvements can be done to optimize the design and control of centrifugal water pumping systems, including water solutions with freeze protection up to 15% concentration by volume. Other fluid and gas pumps cannot use this measure calculation. The measurement of energy and demand savings for commercial and industrial applications will vary with the type of pumping technology, operating hours, efficiency, and existing and proposed controls. Depending on the specific application slowing the pump, trimming or replacing the impeller may be suitable options for improving pumping efficiency. Pumps up to 40 HP are allowed to use this energy savings calculation. Larger motors should use a custom calculation (which may result in larger savings than this measure would claim).

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is proven to be an optimized centrifugal pumping system meeting the applicable program efficiency requirements:

- Pump balancing valves no more than 15% throttled; and
- Balancing valves on at least one load 100% open.

DEFINITION OF BASELINE EQUIPMENT

In order for this characterization to apply, the baseline equipment is assumed to be the existing pumping system including existing controls and sequence of operations.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 10 years.⁴²⁷

DEEMED MEASURE COST

The incremental capital cost for this measure can vary considerably depending upon the strategy employed to achieve the required efficiency levels and should be determined on a site-specific basis.

LOADSHAPE

Process BUS

Algorithm

CALCULATION OF SAVINGS

⁴²⁷ Martin, N. et al., Emerging Energy-Efficient Industrial Technologies: New York State Edition, American Council for an Energy Efficient Economy (ACEEE) <u>Page 126</u>, March 2001 (as stated in the OH State TRM, page 269).

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = (HP_{motor} \underline{*_{\mathbf{X}}} 0.746 \underline{*_{\mathbf{X}}} LF / \eta_{motor}) \underline{*_{\mathbf{X}}} HOURS \underline{*_{\mathbf{X}}}$

ESF

Where:

HP _{motor}	= Installed nameplate motor horsepower
	= Actual
0.746	= Conversion factor from horsepower to kW (kW/hp)
LF / η_{motor}	= Combined as a single factor since efficiency is a function of load
	$= 0.65^{428}$
LF	= Load Factor; Ratio of the peak running load to the nameplate rating of
	the motor
η_{motor}	= Motor efficiency at pump operating conditions
HOURS	= Annual operating hours of the pump
	=Actual
ESF	= Energy Savings Factor; assume a value of 15%.429

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh \stackrel{\text{\tiny{lag}}}{=} CF$

Where:

CF

= Summer Coincident Peak Factor for measure = 0.0001379439^{430}

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

⁴²⁹ Published estimates of typical pumping efficiency improvements range from 5 to 40%. For analysis purposes, assume 15%. United States Industrial Electric Motor Systems Market Opportunities Assessment December 2002, Table E-7, Page 18, https://www1.eere.energy.gov/manufacturing/tech-assistance/pdfs/mtrmkt.pdf.
 ⁴³⁰ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes

⁴³⁰ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shape: and Coincident Peak Factors" Based on Ameren Missouri 2016 Process Loadshape. Formatted: Underline, Font color: Blue

Formatted: Footnotes, Space After: 0 pt, Line spacing: single

⁴²⁸ "Measured Loading of Energy Efficient Motors - the Missing Link in Engineering Estimates of Savings," ACEEE 1994 Summer Study Conference, Asilomar, CA (page 3.95 Table 3).

2.8.45 Variable Frequency Drives for Pumps and Fans on Hydronic HVAC Systems

DESCRIPTION

This measure applies to VFDs installed on HVAC chilled water distribution pumps, hot water distribution pumps, condenser water pumps and cooling tower fans. Back-up pumps/fans do not qualify for this measure. There is a separate measure for HVAC supply and return fans. The VFD will modulate the speed of the motor when it does not need to run at full load. Since the power of the motor is proportional to the cube of the speed for these types of applications, significant energy savings will result.

This measure was developed to be applicable to the following program types: TOS and RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The VFD is applied to a pump or fan motor that does not have a VFD. The hydronic system that the VFD is applied to must have a variable or reduced load. Installation is to include the necessary control points and parameters (example: differential pressure, differential temperature, return water temperature) as determined by a qualified engineer.

DEFINITION OF BASELINE EQUIPMENT

The time of sale baseline is a new motor installed without a VFD or other methods of control. Retrofit baseline is an existing motor operating as is.

Installations of new equipment with VFDs which are required by regional code adoption should not claim savings.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life for HVAC application is 15-15 years.431

DEEMED MEASURE COST

Customer provided costs will be used when available. Default measure costs are listed below for up to 100 hp motors.⁴³² The tables values can also be extrapolated with:

Incremental cost = $300 \times Hp + \$1,500$.

⁴³² TRC, Ameren MO C&I participant self reported cost data for completed projects (2019 to 2024).

⁴³¹ ASHRAE, Chapter 38: Owning and Operating Costs, Table 4, "Heating, Ventilating and Air Conditioning Applications", (2023 edition) for electronic building controls, Consistent with Ameren Missouri program assumptions. California Database for Energy Efficiency Resources (DEER) 2014 Estimated Useful Life (EUL) Table Update. ("Updated 2014 EUL table" row 108) Consistent with Ameren Missouri program assumptions.

Appendix H - TRM - Vol. 2: C&I Measures

Page 245

HP	Cost
<u>1-2.5 HP</u>	<u>1,593</u>
<u>2.6-5 HP</u>	<u>2,383</u>
<u>6-10 HP</u>	<u>3,610</u>
<u>11-20 HP</u>	<u>8,786</u>
<u>21-50 HP</u>	<u>13,082</u>
<u>51-75 HP</u>	<u>18,867</u>
<u>75-100 HP</u>	21,760
<u>>100 HP</u>	23,116

Customer provided costs will be used when available. Default measure costs are listed below for to 75 HP motors.⁴³³ The average of the values below is \$179/HP.

₩₽	Cost
1-9 HP	\$1,874
10-19 HP	\$2,967
20-29 HP	\$4,060
30-39 HP	\$5,154
40-49-HP	\$6,247
50-59 HP	\$7,340
60-69 HP	\$8,433
70-75 HP	\$9,526
>75 HP	\$179/HP

LOADSHAPE

Cooling BUS Heating BUS HVAC BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = BHP / EFFi \stackrel{*}{\underline{x}} Hours \stackrel{*}{\underline{x}} ESF$

Where:

BHP = System Brake Horsepower = Nominal motor HP *x Motor load factor)

433 Average costs observed by other Midwestern states energy efficiency programs - specific data reflects results from Iowa program costs. 2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted: Keep with next Formatted: Keep with next Formatted: Keep with next Formatted: Keep with next Formatted: Keep with next Formatted: Keep with next Formatted: Keep with next Formatted: Keep with next Formatted: Keep with next

Appendix H - TRM - Vol. 2: C&I Measures

Motors are assumed to have a load factor of 65% for calculating kW if actual values cannot be determined.⁴³⁴ Custom load factor may be applied if known.

- EFFi = Motor efficiency, installed. Actual motor efficiency shall be used to calculate kW. If not known, a default value of 93% is an appropriate assumption.
- Hours = Default hours are provided for HVAC applications which vary by HVAC application and Building Type.⁴³⁵ When available, actual hours should be used.
- ESF = Energy savings factor varies by VFD application. Units are kW/HP.

Annual Hours of Use for VFD Pumps and Fans

Building Type	Heating Run Hours	Cooling Run Hours
Large Office	5233	6385
Medium Office	3437	5921
Small Office	3715	3774
Warehouse	4587	1292
Stand-alone Retail	4040	2713
Strip Mall	3908	2548
Primary School	4754	5160
Secondary School	5594	5279
Supermarket	4868	4255
Quick Service Restaurant	4231	3378
Full Service Restaurant	4595	4897
Hospital	8760	8717
Outpatient Health Care	8760	8689
Small Hotel - Building	3533	7976
Large Hotel - Building	5538	8308
Midrise Apartment - Building	5197	4347
Nonresidential Average	4411	3539

Formatted Table

ESF for VFD Pumps and Fans

Application	ESF ⁴³⁶
Hot Water Pump	0. 3577-<u>2</u>49⁴³⁷

⁴³⁴ Del Balso, Ryan J. "Investigation into the Reliability of Energy Efficiency/Demand Side Management Savings Estimates for Variable Frequency Drives in Commercial Applications," University of Colorado, Department of Civil, Environmental and Architectural Engineering, 2013 (page 24).

⁴³⁵ Hours per year are estimated using the eQuest models as the total number of hours the heating or cooling system is operating for each Building Type. "Heating and Cooling Run Hours" are estimated as the total number of hours fans are operating for heating, cooling and ventilation for each Building Type. This may over claim certain applications (e.g. pumps) and so where possible actual hours should be used for these applications.

⁴³⁶ Developed from datasets produced from the Northeast Energy Efficiency Partnerships Variable Speed Drive Loadshape Project.
 See supporting workbook "VSD HVAC Pump Savings.xlsx" for derivation.
 ⁴³⁷ VEIC, workpaper to support VFD savings,Local file: "VSD ESF Calculation.xlsx"

CF

Appendix H - TRM - Vol. 2: C&I Measures

Cooling Water Pump	0. 3389 <u>358</u> ⁴³⁸
Cooling Tower Fan	0. 126 502 ⁴³⁹

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

∆kWh = Energy Savings as calculated above

> = Summer peak coincidence demand (kW) to annual energy (kWh) factor $= 0.000910684^{440}$ Cooling Water Pumps = 0.000443983 Hot Water Pumps

= 0.000443983 Cooling Tower Fans

FOSSIL FUEL IMPACT DESCRIPTIONS AND CALCULATION

If fossil fuel impacts are expected, a custom analysis should be used to support them.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

Formatted: Footnotes, Space After: 0 pt

⁴³⁸ VEIC, workpaper to support VFD savings,Local file: "VSD HVAC Pump Savings.xlsx"

 ⁴³⁰ VEIC, workpaper to support VFD savings,Local Inte: "VSD HVAC Pump Savings,Xisx"
 ⁴³⁹ Based on the methodology described in the Illinois Statewide TRM for Energy Efficiency, 7th Edition (2019). VEIC, workpape to support VFD savings,Local file: "VSD ESF Calculation.xilsx"
 ⁴⁴⁰ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

Formatted: Footnotes

2.8.56 Variable Frequency Drives for HVAC Supply and Return Fans

DESCRIPTION

This measure applies to VFDs installed on HVAC supply fans and return fan. Back-up fans do not qualify for this measure. There is a separate measure for HVAC Pumps. The VFD will modulate the speed of the motor when it does not need to run at full load. Since the power of the motor is proportional to the cube of the speed for these types of applications, significant energy savings will result.

This measure is applicable to the following program types: TOS and RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The VFD is applied to an HVAC fan motor that does not have a VFD. The air distribution system must have a variable or reduced load, and installation is to include the necessary control point as determined by a qualified engineer (example: differential pressure, temperature, or volume). Savings are based on the application of VFDs to a range of baseline system conditions, including no control, inlet guide vanes, outlet guide vanes, relief dampers, and throttling valves.

DEFINITION OF BASELINE EQUIPMENT

The TOS baseline is a new motor installed without a VFD or other methods of control. The RF baseline is an existing motor operating as is. RF baselines may or may not include guide vanes, throttling valves, or other methods of control.

Installations of new equipment with VFDs which are required by regional code adoption should not claim savings.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life for HVAC application is 15-15 years.441

DEEMED MEASURE COST

Customer provided costs will be used when available. Default measure costs are listed below for up to 100 hp motors.⁴⁴² The average of the values below is \$168/HP:tables values can also be extrapolated with:

Incremental cost = $300 \times Hp + \$1,500$.

 ⁴⁴¹ ASHRAE, Chapter 38: Owning and Operating Costs, Table 4, "Heating, Ventilating and Air Conditioning Applications", (2023 edition) for electronic building controls (page 38.3). Consistent with Ameren Missouri program assumptions.
 ⁴⁴² Average costs observed by energy efficiency programs in Iowa. <u>TRC</u>, Ameren MO C&I participant self reported cost data for completed projects (2019 to 2024).

Appendix H - TRM - Vol. 2: C&I Measures

HP	Cost
1- <mark>9-<u>2.5</u> HP</mark>	<u>1,593 </u> \$1,874
10-19<u>2.6-5</u> HP	<u>2,383 \$2,967</u>
20<u>6-10</u>-29 HP	<u>3,610 \$4,060</u>
30-39<u>11-20</u> HP	<u>8,786 \$5,154 </u>
40-49 <u>21-50</u> HP	<u>13,082</u> \$6,247
<u>50-5951-75</u> HP	<u>18,867 \$7,340 </u>
60-69 75-100	21,760, \$8,433
HP	<u>21,700,00,433</u>
70-79 HP	\$9,526
80-89 HP	\$10,620
90-100 HP	\$11,713
>100 HP	<u>\$168/HP23,116</u>

LOADSHAPE

HVAC BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS443

 $\Delta kWh_{fan} = kWh_{Base} - kWh_{Retrofit}$

 $\Delta kWh_{total} = \Delta kWh_{fan} * (1 + IE_{energy})$

$$kWh_{Base} = 0.746 * HP * \frac{LF}{\eta_{moto}} * RHRS_{base} \sum_{0.0\%}^{100\%} (\%FF * PLR_{Retrofit})$$
$$kWh_{Retrofit} = 0.746 * HP * \frac{LF}{\eta_{moto}} * RHRS_{base} \sum_{30\%}^{100\%} (\%FF * PLR_{Retrofit})$$

Where:

ΔkWh_{fan}	= Fan-only annual energy savings
ΔkWh_{total}	= Total project annual energy savings
kWh _{Base}	= Baseline annual energy consumption (kWh/yr)
kWh _{Retrofit}	= Retrofit annual energy consumption (kWh/yr)
0.746	= Conversion factor for HP to kWh
HP	= Nominal horsepower of controlled motor
LF	= Load Factor; Motor Load at Fan Design CFM (Default = 65%) ⁴⁴⁴
	_

⁴⁴³ Methodology developed and tested in Del Balso, Ryan Joseph. "Investigation into the Reliability of Energy

Efficiency/Demand Side Management Savings Estimates for Variable Frequency Drives in Commercial Applications." A project report submitted to the Faculty of the Graduate School of the University of Colorado, 2013.

444 Lawrence Berkeley National Laboratory, and Resource Dynamics Corporation. (2008). "Improving Motor and Drive System

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted: Keep with next
Formatted Table
Formatted: Font: 11 pt
Formatted: Keep with next
Formatted: Font: 11 pt
Formatted: Keep with next
Formatted: Font: 11 pt
Formatted: Keep with next
Formatted: Font: 11 pt
Formatted: Keep with next
Formatted: Font: 11 pt
Formatted: Keep with next
Formatted: Font: 11 pt
Formatted: Keep with next
Formatted: Keep with next
Formatted: Font: 11 pt
Formatted: Keep with next
Formatted: Keep with next
Formatted: Keep with next
Formatted: Keep with next

Appendix H - TRM - Vol. 2: C&I Measures

ηmotor	 Installed nominal/nameplate motor efficiency Actual. If unknown, default can be assumed as a NEMA Premium Efficiency, ODP, 4-pole/1800 RPM fan motor, with efficiency indicated in the table below.
RHRS _{Base}	= Annual operating hours for fan motor based on Building Type.
%FF	= Percent of time at flow fraction
PLR _{Base}	= Part load ratio for a given flow fraction range based on the baseline flow control type (see table below)
PLR _{Retrofit}	= Part load ratio for a given flow fraction range based on the retrofit flow control type (see table below)
Eenergy	= HVAC interactive effects factor for energy (default = 15.7%) ⁴⁴⁵

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

I

 $\frac{\Delta kWh}{CF} = \frac{Energy Savings}{e Summer peak co}$ $= 0.004439830^{446}$

<u>= Energy Savings as calculated above</u>
 <u>= Summer peak coincidence demand (kW) to annual energy (kWh) factor</u>

Performance; A Sourcebook for Industry," U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Golden, CO: National Renewable Energy Laboratory (page 42).

⁴⁴⁵ Del Balso, Ryan Joseph. "Investigation into the Reliability of Energy Efficiency/Demand Side Management Savings Estimates for Variable Frequency Drives in Commercial Applications." (page 123) A project report submitted to the Faculty of the Graduate School of the University of Colorado, 2013.

⁴⁴⁶ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

Appendix H - TRM – Vol. 2: C&I Measures

2.8.67 4 Pump OptimizationEfficient Pumps

DESCRIPTION

Pump improvements can be done to optimize the design and control of centrifugal water pumping systems, including water solutions with freeze protection up to 15% concentration by volume. Oth fluid and gas pumps cannot use this measure calculation. The measurement of energy and demand savings for commercial and industrial applications will vary with the type of pumping technolog operating hours, efficiency, and existing and proposed controls. Depending on the specif application slowing the pump, trimming or replacing the impeller may be suitable options f improving pumping efficiency. Pumps up to 40 HP are allowed to use this energy saving ealculation. Larger motors should use a custom calculation (which may result in larger savings the this measure would claim). rThe Federal Energy ConservationEfficiency Standards set minimum energy ratings for clean water pumps. The types of pumps characterized in this measure include clean water commercial & industrial pumps, circulator pumps and dedicated purpose pool pumps The Federal Energy ConservationEfficiency Standards for C&I clean water pumps was effective April 24, 2023 January 27, 2020. The standards for circulator pumps are effective May 2028, bu are included in the measure eharaecharacterization. The Federal Energy ConservationEfficienc Standards for dedicated purpose pool pump with VFD motors, setting a minimum weighted energy factor (WEF) effective date was July 19, 2021. The measure requires exceeding the minimum standard by 10% or more of the rated efficiency. The measure does not include fire pumps., magn driven pumps The standards for other clean water pumps was effective April 24, 2023.s

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the C&I pump is the efficient equipment is proven to be an optimized centrifugal pumping system meeting the applicable program efficiency requirements:

- Pump balancing valves no more than 15% throttled; and Clean water pump
- <u>Balancing valves on at least one load 100% open.</u> Flow rate of ≥25 gpm (BEP, full impeller diameter); 1 to 200 hp
- Electric motor driven, (may be included in energy rating)
- Variable load pump energy index (PEI_{VL}) or constant load pump energy index (PEI_{CI}) rated.exceed the minimum standard<1.000.90 with varying C-values.

The motor and motor controls may be included in the system energy rating. The <u>PEI is equal to 1 - 1/Energy Rating (ER)</u> following formula may be used to convert the PEI to the Energy Rating, ER.-to the pump energy index, <u>PEI</u> <u>PEIEnergy Rating = (1 - PEI) x 100</u>

For circulator pumps

- Hydraulic horsepower ≤2.5 HHP.
- Flow rate of ≥25 gpm (BEP, full impeller diameter)
- Circulator Energy Index, CEI <0.90.

For dedicated dedicated purpose pool pumps

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted: Normal, Left, Indent: Left: 0"

Formatted: Indent: Left: 0.5", No bullets or

Appendix H - TRM - Vol. 2: C&I Measures

- <u>Clean water pump</u>Hydraulic horsepower ≤ 2.5 HHP. (HHP is approximately $\frac{1}{2}$ of total motor • hp, THP)
- Flow rate of ≥ 25 gpm (BEP, full impeller diameter)
- Weighted energy factor (WEF) exceeds the minimum standard by 10% or more

ElectricFor circulator pumps

- <u> Hydraulic horsepower ≤2.5 HHP.</u>
- Flow rate of ≥25 gpm (BEP, full impeller diameter)
- -Circulator Energy Index, CEI <1.000.90.

Weighted

DEFINITION OF BASELINE EQUIPMENT

In order for this characterization to apply, the baseline equipment pump is assumed to be the existing pumping system including existing controls and sequence of operations. be a minimally an efficient pump meeting Federal Energy ConservationEfficiency Standards for pumps. for a clean water pump listed in the following table.

Pump Type	Efficiency Units	Efficiency Value	Requirements Applicability
A			
C&I variable load	PEIVL	1.0	By C-value
C&I constant load	PEICL	1.0	By C-value
Self prime pool pumps	WEF, kgal/kWh	<u>-2.3 *x, hhp + 6.59</u>	<u>0.711 ≤ hhp<2.5</u>
<u>Self prime pool</u> pumpsCirculator pump	WEF, kgal/kWhCEI	<u>1.05.5</u>	<u>≥25 gpmhhp≤0.711</u>

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to 20 years.⁴⁴⁷ be 105 years.⁴⁴⁸

DEEMED MEASURE COST

The incremental capital cost for this measure can vary considerably depending upon the strategy employed to achieve the required efficiency levels and should be determined on a site-specific basis.

LOADSHAPE

Process BUS Cooling BUS HVAC BUS

447 ASHRAE, Chapter, 38: Owning and Operating Costs, Table 4, "Heating, Ventilating and Air Conditioning Applications", (2023) edition) for base mounted pumps.

48 Martin, N. et al., Emerging Energy-Efficient Industrial Technologies: New York State Edition, American Council for an Energy Efficient Economy (ACEEE), March 2001 (as stated in the OH State TRM, page 269). 2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Page 252

Formatted: Font: (Default) Times New Roman Formatted: Font: (Default) Times New Roman Formatted: Font: (Default) Times New Roman

Formatted: No bullets or numbering
Formatted: Font: 11 pt, Font color: Background 1
Formatted: Centered, Keep with next
Formatted: Font: 11 pt
Formatted: Keep with next
Formatted Table
Formatted: Font: 11 pt
Formatted: Font: 11 pt, Subscript
Formatted: Font: 11 pt
Formatted: Keep with next
Formatted: Font: 11 pt
Formatted: Font: 11 pt, Subscript
Formatted: Keep with next
Formatted: Font: 11 pt
Formatted: Font: 11 pt
Formatted: Font: 11 pt
Formatted: Keep with next
Formatted: Font: 11 pt
Formatted: Keep with next
Formatted: Footnotes Char, Font: 10 pt
Formatted: Footnotes Char
Formatted: Footnotes Char, Font: 10 pt
Formatted: Footnotes Char
Formatted: Footnotes Char, Font: 10 pt
Formatted: Footnotes Char
Formatted: Footnotes Char, Font: 10 pt
Formatted: Indent: Left: 0"
Formatted: Footnotes Char
Formatted: Font: 10 pt, Font color: Text 1
Formatted: Footnotes, Right: 0", Space After: 0 pt, Line spacing: single

Appendix H - TRM – Vol. 2: C&I Measures

	Algorithm			
CALCULATION OF	<u>Savings</u>			
	Algorithm	-		
CALCULATION OF				
	 A second sec second second sec			
ELECTRIC ENERG				
	iency expressed in ER units.	•		Formatted: Indent: Left: 0", Right: 0", Space After: 0 pt, Line spacing: single
$\Delta kW n =$	$\frac{gy Rating}{hp} x Pump Motor (hp)x 0.746 \frac{kW}{hp} x Annual Hours \frac{\Delta kWh = HP}{hp}$	•		Formatted: Left
<u>* LF * 0.746 * (1</u>	η _{Bmotor} - 1/η _{EEmotor})* Hours			
Where:				
HPER	= Nominal horsepower (HP) of new motor Energy rating of pump (may			
	include motor and controls)			
	= Actual, as listed by the Hydraulic Institute ⁴⁴⁹			
LF	$\frac{= \text{Load Factor; Motor Load at Fan/Pump Design CFM}}{= 75\%^{450}}$			
0.746	= $\frac{-75}{10}$ = Conversion factor from HP to kWh			
<u>n</u> Bmotor	= Actual efficiency of existing motor, or if unknown, use federal baseline			
	nominal/nameplate motor efficiency as shown in table below.			
<u>ŋEEmotor</u>	= Efficient motor nominal/nameplate motor efficiency = Actual			
Hours	= Annual hours of operation for motor			
	=Actual, or if unknown,; see table below for HVAC motors in 2.8.1 for			
	Annual Hours of Use for HVAC motors			
ELECTRIC ENERG	Y SAVINGS			
Pumps with effic	iency expressed in WEF units.			Formatted: Font: Not Bold
A	· ·			
				Formatted: Font color: Text 1
			/	Formatted: Font Cool: Text T
				Field Code Changed
				Formatted: Underline, Font color: Blue
 ⁴⁴⁹ Hydraulic Institute, ⁴⁵⁰ Motor efficiency cu 	Hydraulic Institutelhttps://er.pumps.org/ratings/searchhttps://er.pumps.org/ratings/search rves typically result in motors being most efficient at approximately 75% of the rated load. Determining	-		Formatted: Font color: Text 1
Electric Motor Load a	<i>dEfficiency</i> , US DOE Motor Challenge, a program of the US Department of Energy, /prod/files/2014/04/f15/10097517.pdf _m (page # 1)			Formatted: Font color: Text 1
https://energy.gov/sites	s/prod/mes/2014/04/115/1009/51/.pdf_(page # 1)	- k	\leq	Field Code Changed

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Appendix H - TRM – Vol. 2: C&I Measures

 ΔkWh

$$= \left(\frac{1}{WEF_{base}} - \frac{1}{WEF_{eff}} - \frac{1}{WEF_{eff}} - \frac{1}{100}x \text{ Volume x Turnover x OpenHoursDays Pump Motor (hp)x 0.746} \frac{kW}{hp}x \text{ Annual Hours}\right)$$

Where:

WEF _{base}	=Federal Energy Efficiency Standard		Formatted: Subscript
	= -2.3 x hydraulic horsepower + 6.59,		
ER-WEF _{eff}	<u>= Energy rating of pump (may include motor and controls)</u> Weighted		Formatted: Subscript
	energy factor, kgal/kWh	Ń	Formatted Table
	= Actual, as listed by the Hydraulic Institute ⁴⁵¹	(
LF-Volume	= Load Factor; Motor Load at Fan/Pump Design CFM		
	$=75\%^{452}$ Pool volume, 1,000 gallons		
<u>0.746</u> Turnover	= Conversion factor from HP to kWhWater turnovers per house, Pool		
	water turnover per day, actual		
	= 2.54.0 if unknown ⁴⁵³		
<u>1Bmotor</u>	= Actual efficiency of existing motor, or if unknown, use federal		
	baseline nominal/nameplate motor efficiency as shown in table below.		
]] EEmotor	= Efficient motor nominal/nameplate motor efficiency		
	<u>= Actual</u>		
Hours-Open	= Annual hours of operation for motor; see table below for HVAC		
Hours Days	motorshoursdays pool is open requiring filtration		

451 Hydraulic Institute/https://er.pumps.org/ratings/search	
⁴⁵² Motor efficiency curves typically result in motors being most efficient at approximately 75% of the rated load. Determining Electric Motor Load and Efficiency, US DOE Motor Challenge, a program of the US Department of	 Formatted: Font: 10 pt, Font color: Text 1
Energy, https://energy.gov/sites/prod/files/2014/04/f15/10097517.pdf.	
⁴⁵³ CA eTRM, Six hour or less complete pool water turnover for public pools, "VSD for Pool & Spa Pump", VSD%20for%20Pool%20&%20Spa%20Pump%20%20ETRM%20(caetrm.com)VSD%20for%20Pool%20&%20Spa%20Pump%	 Formatted: Font color: Text 1

20%20ETRM%20(caetrm.com)VSDf0rPoolsSpaPumpETRM(caetrm.com) https://clearcomfort.com/why-is-swimming-pool-circulation-important/#:-:text=Circulating%20your%20pool%20disperses%20any.to%20disinfect%20your%20ponl. 2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0 Page 254

Formatted: Footnotes

Appendix H - TRM – Vol. 2: C&I Measures

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = (HP_{motor} * 0.746 * LF / \eta_{motor}) * HOURS * ESF$

Where:

HPmotor	= Installed nameplate motor horsepower
	= Actual
<u>0.746</u>	- Conversion factor from horsepower to kW (kW/hp)
<u>LF / ηmotor</u>	= Combined as a single factor since efficiency is a function of load
	$=0.65^{454}$
LF	= Load Factor; Ratio of the peak running load to the nameplate rating of
	the motor
Ŋmotor	= Motor efficiency at pump operating conditions
HOURS	= Annual operating hours of the pump
	<u>=Actual</u>
ESF	= Energy Savings Factor; assume a value of 15%.455

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh \stackrel{*}{\times} CF$ Where: $CF = \frac{Summer Coincident Peak Factor for measure}{= Summer peak coincidence demand (kW) to annual energy (kWh)}{\frac{factor}{= 0.000910684^{456} Cooling Water Pumps}{= 0.00043983 Hot Water Pumps}{= 0.0001379439 Process Pumps 0.0001379439^{457}}$

NATURAL GAS ENERGY SAVINGS

<u>N/A</u>

WATER IMPACT DESCRIPTIONS AND CALCULATION

<u>N/A</u>

DEEMED O&M COST ADJUSTMENT CALCULATION

<u>N/A</u>

MEASURE CODE:

⁴⁵⁴ "Measured Loading of Energy Efficient Motors – the Missing Link in Engineering Estimates of Savings," ACEEE 1994 Summer Study Conference, Asilomar, CA.
⁴⁵⁵ Published estimates of typical pumping efficiency improvements range from 5 to 40%. For analysis purposes, assume 15%.

United States Industrial Electric Motor Systems Market Opportunities Assessment December 2002, Table E-7, Page 18, https://www1.eere.energy.gov/manufacturing/tech_assistance/pdfs/mtrmkt.pdf.

⁴⁵⁶ America Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

⁴⁵⁷-Based on Ameren Missouri 2016 Process Loadshape.

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Page 255

single

Formatted: Footnotes

Formatted: Indent: Left: 0"

Formatted: Footnotes, Space After: 0 pt, Line spacing:

Appendix H - TRM – Vol. 2: C&I Measures

WATER IMPACT DESCRIPTIONS AND CALCULATION

<u>N/A</u>

DEEMED O&M COST ADJUSTMENT CALCULATION

<u>N/A</u>

MEASURE CODE:

Formatted: Indent: Left: -0", Right: 3.12", Space After: 5 pt, Line spacing: Multiple 1.08 li

2025 MEEIA 4 Plan MEEIA 2019-21 Plan-Revision 56.0

Appendix H - TRM – Vol. 2: C&I Measures

.

NEMA Premium Efficiency Motors Default Efficiencies458									
	O	pen Drip Proof (C) DP)	Totally E	nclosed Fan-Cool	ed (TEFC)			
		# of Poles			# of Poles	# of Poles			
Size HP	6	4	2	6	4	2			
		Speed (RPM)			Speed (RPM)				
	1200	1800 Default	3600	1200	1800	3600			
1	0.825	0.855	0.770	0.825	0.855	0.770			
1.5	0.865	0.865	0.840	0.875	0.865	0.840			
2	0.875	0.865	0.855	0.885	0.865	0.855			
3	0.885	0.895	0.855	0.895	0.895	0.865			
5	0.895	0.895	0.865	0.895	0.895	0.885			
7.5	0.902	0.910	0.885	0.910	0.917	0.895			
10	0.917	0.917	0.895	0.910	0.917	0.902			
15	0.917	0.930	0.902	0.917	0.924	0.910			
20	0.924	0.930	0.910	0.917	0.930	0.910			
25	0.930	0.936	0.917	0.930	0.936	0.917			
30	0.936	0.941	0.917	0.930	0.936	0.917			
40	0.941	0.941	0.924	0.941	0.941	0.924			
50	0.941	0.945	0.930	0.941	0.945	0.930			
60	0.945	0.950	0.936	0.945	0.950	0.936			
75	0.945	0.950	0.936	0.945	0.954	0.936			
100	0.950	0.954	0.936	0.950	0.954	0.941			
125	0.950	0.954	0.941	0.950	0.954	0.950			
150	0.954	0.958	0.941	0.958	0.958	0.950			
200	0.954	0.958	0.950	0.958	0.962	0.954			
250	0.954	0.958	0.950	0.958	0.962	0.958			
300	0.954	0.958	0.954	0.958	0.962	0.958			
350	0.954	0.958	0.954	0.958	0.962	0.958			
400	0.958	0.958	0.958	0.958	0.962	0.958			
4 50	0.962	0.962	0.958	0.958	0.962	0.958			
500	0.962	0.962	0.958	0.958	0.962	0.958			

Formatted: Space After: 8 pt, Line spacing: Multiple 1.08 li, Tab stops: Not at 3.03" + 4.91" + 6.01"

⁴⁵⁸ Douglass, J. (2005). Induction Motor Efficiency Standards. Washington State University and the Northwest Energy Efficiency Alliance, Extension Energy Program, Olympia, WA. Retrieved October 17, 2013, from <u>http://www1.eere.energy.gov/manufacturing/tech_assistance/pdfs/motor_efficiency_standards.pdf.</u>

Appendix H - TRM – Vol. 2: C&I Measures

Default hours are provided for HVAC applications which vary by Building Type.⁴⁵⁹ When available, actual hours should be used.

Building Type	Total Fan Run Hours
Large Office	6753
Medium Office	6968
Small Office	6626
Warehouse	6263
Stand alone Retail	6679
Strip Mall	6687
Primary School	5906
Secondary School	6702
Supermarket	6900
Quick Service Restaurant	7679
Full Service Restaurant	7664
Hospital	8760
Outpatient Health Care	8760
Small Hotel Building	8760
Large Hotel Building	8760
Midrise Apartment Building	8728
Nonresidential Average	6773

Flow Fraction (% of design cfm)	Percent of Time at Flow Fraction
0% to 10%	0.0% -
10% to 20%	1.0%
20% to 30%	5.5%
30% to 40%	15.5%
40% to 50%	22.0%
50% to 60%	25.0%
60% to 70%	19.0%

⁴⁵⁹ Hours per year are estimated using the modeling results and represent the total number of hours the fans are operating for heating, cooling and ventilation for each Building Type.

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

	Formatted	
	Formatted	
•///	Formatted	
•//	Formatted	
•//	Formatted	
• //	Formatted	
	Formatted	
	Formatted	
	Formatted	
•	Formatted	
~	Formatted	
•	Formatted	
•	Formatted	
	Formatted	 []
	Formatted	 []
	Formatted	 []
1//	Formatted	
1//	Formatted	
•///	Formatted	
	Formatted	
	Formatted	
•///	Formatted	
•///	Formatted	
•///	Formatted	
	Formatted	
	Formatted	
-///	Formatted	 []
1///	Formatted	
1///	Formatted	
///	Formatted	
	Formatted	 []
	Formatted	
	Formatted	
	Formatted	
	Formatted	
	Formatted	 []
	(

Appendix H - TRM – Vol. 2: C&I Measures

70% to 80%	8.5%
80% to 90%	3.0%
90% to 100%	0.5%

Control Type		Flow Fraction								
		20%	30%	40%	50%	60%	70%	80%	90%	100%
No Control or Bypass Damper	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Discharge Dampers	0.46	0.55	0.63	0.70	0.77	0.83	0.88	0.93	0.97	1.00
Outlet Damper, BI & Airfoil Fans	0.53	0.53	0.57	0.64	0.72	0.80	0.89	0.96	1.02	1.05
Inlet Damper Box	0.56	0.60	0.62	0.64	0.66	0.69	0.74	0.81	0.92	1.07
Inlet Guide Vane, BI & Airfoil Fans	0.53	0.56	0.57	0.59	0.60	0.62	0.67	0.74	0.85	1.00
Inlet Vane Dampers	0.38	0.40	0.42	0.44	0.48	0.53	0.60	0.70	0.83	0.99
Outlet Damper, FC Fans	0.22	0.26	0.30	0.37	0.45	0.54	0.65	0.77	0.91	1.06
Eddy Current Drives	0.17	0.20	0.25	0.32	0.41	0.51	0.63	0.76	0.90	1.04
Inlet Guide Vane, FC Fans	0.21	0.22	0.23	0.26	0.31	0.39	0.49	0.63	0.81	1.04
VFD with duct static pressure controls	0.09	0.10	0.11	0.15	0.20	0.29	0.41	0.57	0.76	1.01
VFD with low/no duct static pressure	0.05	0.06	0.09	0.12	0.18	0.27	0.39	0.55	0.75	1.00

Provided below are the resultant values based upon the defaults provided above:

Control Type	$\sum_{0\%}^{100\%} (\% FF \times PLR_{Base})$
No Control or Bypass Damper	1.00
Discharge Dampers	0.80
Outlet Damper, BI & Airfoil Fans	0.78
Inlet Damper Box	0.69
Inlet Guide Vane, BI & Airfoil Fans	0.63
Inlet Vane Dampers	0.53
Outlet Damper, FC Fans	0.53
Eddy Current Drives	0.49
Inlet Guide Vane, FC Fans	0.39
VFD with duct static pressure controls	0.30
VFD with low/no duct static pressure	0.27

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

/	Formatted	
	Formatted	
///	Formatted	
11	Formatted	
///	Formatted)
44	Formatted	
[]],	Formatted	
////	Formatted	
11/	Formatted	
$\ \ $	Formatted)
	Formatted	
	Formatted	
/ ,	Formatted	
	Formatted	
/	Formatted	
	Formatted	
	Formatted	
	Formatted	
	Formatted	
	Formatted	
	Formatted	
\bigcirc	Formatted	
$\langle \rangle$	Formatted	
	Formatted	
Ν	Formatted	
//	Formatted	
$\langle \rangle$	Formatted	
	Formatted	
	Formatted	
\mathbb{N}	Formatted	
\backslash	Formatted	
$\langle \rangle \rangle$	Formatted	
//	Formatted	

Appendix H - TRM – Vol. 2: C&I Measures

Formatted: Body Text

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kW h_{total} *CF$

Where:

 $\frac{AkWh_{total}}{CF} = \frac{As calculated above.}{= 0.000443983^{460}}$

NATURAL GAS ENERGY SAVINGS

If fossil fuel impacts are expected, a custom analysis should be used to support them.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

⁴⁶⁰Ameren Missouri TRM Volume 1 – Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

Appendix H - TRM - Vol. 2: C&I Measures

2.9 Refrigeration

2.9.1 Commercial Solid and Glass Door Refrigerators & Freezers

DESCRIPTION

This measure applies to ENERGY STAR[®] vertical closed and horizontal closed refrigerators or freezers installed in a commercial kitchen. ENERGY STAR[®] commercial refrigerators and freezers are more energy efficient because they are designed with components such as ECM evaporator and condenser fan motors, hot gas anti-sweat heaters, or high-efficiency compressors, which will significantly reduce energy consumption.

This measure was developed to be applicable to the following program type: TOS.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be a new ENERGY STAR[®] certified vertical closed or horizontal closed, solid or glass door refrigerator or freezer meeting energy consumptions requirements as determined by door type (solid or glass) and refrigerated volume (V).

ENERGY STAR[®] Requirements (Version 35.0, Effective October 1, 2014December 22, 2022) 461

Volume (ft ³)	Maximum Daily Energy Consumption (kWh/day)		
voranie (ie)	Refrigerator	Freezer	
Vertical Closed			
Solid Door			
0 < V < 15	$\leq 0.02\underline{6}V + \underline{0.8}\underline{1.60}$	$\leq 0.25V-21V + 1.550.9$	
$15 \leq V \leq 30$	$\leq 0.09V \cdot 05V + 0.5545$	$\leq 0.20V - 12V + 2.30248$	
$30 \le V < 50$	$\leq 0.01 \text{V} \cdot 05 \text{V} + 2.95 \text{O.45}$	$\leq 0.25 \underline{78} V - \underline{1.8864} + \underline{0.80}$	
$V \ge 50$	$\leq 0.06V_{-025V} +$	$\leq 0.14 \text{V} + \underline{4.06.30}$	
	0.45 <u>1.6991</u>		
Glass Door			
0 < V < 15	$\leq 0.09510V + .4451.07$	$\leq 0.56 V 0.232 V + 2.36$	
		1.61	
$15 \leq V \leq 30$	$\leq 0.0515V + 1.120.32$	$\leq 0.232V + 2.36 \leq 0.30V +$	
		5.50	
$30 \le V \le 50$	$\leq 0.0\underline{7}6V + \underline{3.020.34}$	$\leq 0.232V + 2.36 \leq 0.55V$	
		2.00	
$V \ge 50$	≤ 0.10508 V <u>-1.111</u> + 2.02	$\leq 0.232V + 2.36 \leq 0.32V +$	
		9.49	
Horizontal Closed			
Solid or Glass Doors			
All Volumes	$\leq 0.056V + 0.2860$	≤ 0.05710 V + 0.5520	

461 ENERGY STAR® | Commercial Refrigerators & Freezers |

https://www.energystar.gov/products/commercial_food_service_equipment/commercial_refrigerators_freezers/key_product_criteri

2025 MEEIA 4 Plan MEEIA 2019-21 Plan-Revision 56.0

Page 262

Formatted: Footnote Char, Font: 10 pt, Font color: Black

Formatted: Left, Indent: Left: 0"

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new vertical closed or horizontal closed, solid or glass door refrigerator or freezer that is not ENERGY STAR[®] certified—<u>and meets the Federal Energy Efficiency</u> Standards for units built as of March 2017 for TOS. Existing, working equipment may use the value in the baseline table determined by the manufacturing date.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years.462

DEEMED MEASURE COST

The incremental capital cost for this measure varies by size as shown in the table below:

Measure	Incremental Cost 463
Commercial Glass Door Freezers less than 15 ft ³	\$ 220-<u>50</u>
Commercial Glass Door Freezers 15 to 30 ft ³	\$ 950-<u>100</u>
Commercial Glass Door Freezers 30 to 50 ft ³	\$ 1,307<u>300</u>
Commercial Glass Door Freezers more than 50 ft ³	\$ 2,300 500
Commercial Glass Door Refrigerators less than 15 ft ³	\$ 250- 50
Commercial Glass Door Refrigerators 15 to 30 ft ³	\$ 500- 200
Commercial Glass Door Refrigerators 30 to 50 ft ³	\$ 1,307<u>450</u>
Commercial Glass Door Refrigerators more than 50 ft ³	\$ 2,300<u>700</u>
Commercial Solid Door Freezers/Refrigerators- less than 15 ft ³	\$ 150 _ <u>100</u>
Commercial Solid Door Freezers/Refrigerators 15 to 30 ft ³	\$400- <u>350</u>
Commercial Solid Door Freezers/Refrigerators 30 to 50 ft ³	\$ 550- 500
Commercial Solid Door Freezers/Refrigerators more than 50 ft ³	\$ 700_ 600
Commercial Solid Door Refrigerators less than 15 ft3	<u>\$150</u>
Commercial Solid Door Refrigerators 15 to 30 ft3	<u>\$200</u>
Commercial Solid Door Refrigerators 30 to 50 ft3	<u>\$250</u>
Commercial Solid Door Refrigerators more than 50 ft3	<u>\$350</u>
Horizontal Closed - Solid or Glass Door Refrigerator (all volumes)	\$ 525-0
Horizontal Closed - Solid or Glass Door Freezer (all volumes	\$ 595_0

LOADSHAPE

Refrigeration BUS

⁴⁶² Effective Useful Life and Remaining Useful Life | ETRM (caetrm.com)California cTRM | Effective useful life table | https://www.caetrm.com/cpuc/table/effusefullife/ENERGY_STARENERGY_STAR® | Commercial Food Service Calculator | Freezer Calcs, Refrigerator Calcs worksheets | https://www.energystar.gov/cfs/calculatorCalifornia eTRM | Effective useful life table | Reach in refrigerator, freezer | https://www.caetrm.com/cpuc/table/effusefullife/Measure life from ENERGY_STAR® Commercial Kitchen Equipment Savings-Calculator which cites reference as "FSTC research on available models, 2009." https://www.energystar.gov/sites/default/files/asset/document/commercial_kitchen_equipment_calculator%2003-15-2016.xlsx. ⁴⁶³ ENERGY_STAR | Commercial Food Service Calculator | Freezer Calcs, Refrigerator Caes worksheets https://www.energystar.gov/cfs/calculatorhttps://www.energystar.gov/sites/default/files/2024-

03/CFS%20Equipment%20Calculator.xlsx

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

-	Formatted: Font: 11 pt
1	Formatted: Font: 11 pt
\downarrow	Formatted: Font: 11 pt
Ľ	Formatted: Font: 11 pt
$\langle \rangle$	Formatted: Font: 11 pt
$\langle \rangle$	Formatted: Font: 11 pt
$\langle \rangle$	Formatted: Font: 11 pt
Y	Formatted: Font: 11 pt

l	Formatted: Footnote Char, Font: 9 pt, Font color: Black
-{	Field Code Changed
-(Formatted: Indent: Left: 0"
-{	Formatted: Indent: Left: 0" Field Code Changed

Appendix H - TRM - Vol. 2: C&I Measures

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Custom calculation below.464

 $\Delta kWh = (kWh_{Base} - kWh_{ESTAR}) * Days$

Where:

 $kWh_{Base} = Maximum \ daily \ energy \ consumption \ (kWh/day) \ of \ baseline \ refrigerator \ or \ freezer$

= Calculated as shown in the table below using the actual refrigerated volume (V)

		Daily Energy, kWh ⁴⁶⁵		
<u>Equi</u> j		<u>Manufactured</u> <u>1/1/2010-3/27/2017</u>	<u>Manufactured</u> <u>3/28/2017 to Current</u> <u>or TOS</u>	
Solid Door	Refrigerator	0.10V + 2.04	<u>0.05V + 1.36</u>]
Glass Door	r Refrigerator	0.12V + 3.34	0.1V + 0.86	
Solid Door	Freezer	0.40V + 1.38	0.22V + 1.38]
Glass Door Freezer		0.75V + 4.10	0.29V + 2.95	
kWh _{ESTAR} = Maximum dai		ily energy consumptio	on (kWh/day) of ENERG	Y STAR®
	= Custom or if	unknown, Actual, if un	known calculated as show	wn in the
			g the actual refrigerated v	
V	= Refrigerated	volume (ft ³) calculated	l in accordance with the I	Department
	of Energy test p	procedure in 10 CFR §	431.64	
	= Actual install	ed		
Days	= Days of refrig	gerator or freezer operation	ation per year	
	= Custom, or if	unknown assume 365	.25 days per year	

Equipment Type	kWhBase466	
Solid Door Refrigerator	0.10V + 2.04	
Glass Door Refrigerator	0.12V + 3.34	
Solid Door Freezer	0.40V + 1.38	
Glass Door Freezer	0.75V + 4.10	

SUMMER COINCIDENT PEAK DEMAND SAVINGS

⁴⁶⁵ Federal Energy Efficiency Standards | Commercial Refrigerators and Freezers | https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431/subpart-C
⁴⁶⁶-32510 CFR §431.66 - Energy Conservation Standards for Commercial Refrigerators, Freezers and Refrigerator-Freezers.

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0 Page 264

•	Formatted Table
•	Formatted: Centered

Formatted: Left, Indent: Left: 0"

⁴⁶⁴ Algorithms and assumptions from ENERGY STAR® Commercial Kitchen Equipment Savings Calculator.

CF

Appendix H - TRM - Vol. 2: C&I Measures

 $\Delta kW = \Delta kWh * CF$

Where:

 ΔkWh = Electric energy savings, calculated above

= Summer peak coincidence demand (kW) to annual energy (kWh) factor = 0.0001357383⁴⁶⁷

NATURAL GAS ENERGY SAVINGS

N/A

PEAK GAS SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

⁴⁶⁷ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly <u>Shapes and Coincident Peak Factors</u>" <u>See reference "Ameren Missouri 2016 Appendix E – End Use Shapes and Coincident Factors.pdf.</u>"

2.9.2 Refrigerated Beverage Vending Machine

DESCRIPTION

This measure applies to new ENERGY STAR[®], Class A or Class B refrigerated vending machines. ENERGY STAR[®] vending machines incorporate more efficient compressors, fan motors, and lighting systems as well as a low power mode option that allows the machine to be placed in low-energy lighting and/or low-energy refrigeration states during times of inactivity.

This measure was developed to be applicable to the following program type: TOS.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be a new or rebuilt ENERGY STAR[®], Class A or Class B⁴⁶⁸ refrigerated vending machine meeting energy consumptions requirements as determined by equipment type (Class A or Class B).

ENERGY STAR[®] -Requirements (Version 3.14.0, Effective March 1, 2013 April 2020) 469

Equipment Type	Maximum Daily Energy Consumption (kWh/day)
Class A	\leq 0.0523V + 2.432
Class B	\leq 0.0657V + 2.844

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new or rebuilt, Class A or Class B refrigerated vending machine that is not ENERGY STAR[®] certified.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years.470

DEEMED MEASURE COST

The incremental cost of this measure is \$140125.471

LOADSHAPE

Refrigeration BUS

⁴⁶⁸ Class A means a refrigerated bottled or canned beverage vending machine that is fully cooled, and is not a combination vending machine. Class B means any refrigerated bottled or canned beverage vending machine not considered to be Class A, and is not a combination vending machine. See 10 CFR §431.292 "Definitions concerning refrigerated bottled or canned beverage vending machines."

469 ENERGY STAR® | Refrigerated Vending Machines Key Product Criteria,

- https://www.energystar.gov/products/vending_machines/key_product_criteria ⁴⁷⁰ Average of measure lives recognized by Ameren Missouri (10 years) and KCPL (14 years). Also consistent with Energy StarENERGY STAR® [®] commercial refrigerator lifetime ("Refrigerator Calcs" tab row 42).
- ⁴⁷¹ Serving Up Savings: The New Value Equation for Energy Efficient Vending Machines (Average of \$100 for Tier II on pag 4-211 and \$150 for a kit to refurbish an old machine on page 4-216.
- 211 cmb or 100 rule for the function and on machine on page 1.210. https://www.accee.org/files/proceedings/2006/data/papers/SS06 Panel4 Paper18.pdf Consistent with Ameren Missouri MEEIA 2016-18 and KCPL TRM assumptions.

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Page 266

Formatted: Footnotes
Formatted: Underline, Font color: Blue

Formatted: Hyperlink

Appendix H - TRM - Vol. 2: C&I Measures

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Custom calculation below.

 $\Delta kWh = (kWh_{Base} - kWh_{ESTAR}) * Days$

Where:

```
kWh<sub>Base</sub>
                = Maximum daily energy consumption (kWh/day) of baseline
                vending machine
                = Calculated as shown in the table below using the actual refrigerated
                volume (V)
```

Equipment Type	kWhBase 472	
Class A	0.055V + 2.56	
Class B	0.073V + 3.16	
Maximum daily energy consumption (kWh/day)		

kWh _{ESTAR}	= Maximum daily energy consumption (kWh/day) of ENERGY
	STAR [®] vending machine
	= Custom or if unknown, Actual, if unknown calculated as shown in

the table below using the	actual refrigerated volume (V)
	A 1997 A 1997 A 1997

	Equipment Type	kWhEE ⁴⁷³
	Class A	\leq 0.0523V + 2.432
	Class B	\leq 0.0657V + 2.844
V =	Refrigerated volume474 (ft3	3)
=	Actual installed	
Days =	Days of vending machine	operation per year
:	= 365.25 days per year	

-Equipment Type	kWhBase 475
Class A	0.055V + 2.56
Class B	0.073V + 3.16
Equipment Type	kWhEE ⁴⁷⁶
Equipment Type Class A	$\frac{kWhEE^{476}}{\leq 0.0523V + 2.432}$

⁴⁷² 33010 CFR §431.296 - Energy Conservation Standards for Refrigerated Bottled or Canned Beverage Vending Machines	1	
⁴⁷³ ENERGY STAR® Refrigerated Vending Machines Key Product Criteria.	4	Formatted: Footnotes, Indent: Left: 0"
https://www.energystar.gov/products/vending_machines/key_product_criteria		
474 V is measured by the American National Standards Institute (ANSI)/Association of Home Appliance Manufacturers (AHAN	M)	Formatted: Underline
HRF-1-2004, "Energy, Performance and Capacity of Household Refrigerators, Refrigerator-Freezers and Freezers." Measurement	ent	
of refrigerated volume must be in accordance with the methodology specified in Section 5.2, Total Refrigerated Volume (excludi	ng	
subsections 5.2.2.2 through 5.2.2.4), of ANSI/AHAM HRF-1-2004.	-	
475-33010 CFR §431.296 - Energy Conservation Standards for Refrigerated Bottled or Canned Beverage Vending Machines		

476 ENERGY STAR® Version 3.1 requirements for maximum daily energy consumption (page 5).

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Page 267

Formatted Table

Formatted Table

Appendix H - TRM - Vol. 2: C&I Measures

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

Where:

- ΔkWh = Electric energy savings, calculated above
- CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor = 0.0001357383⁴⁷⁷

MEASURE CODE:

Formatted: Footnotes, Indent: Left: 0", Space After: 0

⁴⁷⁷ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"2016 Ameren Missouri Coincident Peak Demand Factor for Commercial Refrigeration. See reference "Ameren Missouri 2016 Appendix E - End Use Shapes and Coincident Factors.pdf."

 2025 MEEIA 4 Plan MEEIA 2019-21 Plan-Revision 56.0
 Page 268

2.9.3 Door Heater Controls for Cooler or Freezer

DESCRIPTION

This measure applies to door heater controls installed on commercial coolers or freezers. There are two main categories of commercially available control strategies that achieve "on-off" control of door heaters based on either (1) the relative humidity of the air in the store or (2) the "conductivity" of the door (which drops when condensation appears). In the first strategy, the system activates door heaters when the relative humidity in a store rises above a specific set point and turns them off when the relative humidity falls below that set point. In the second strategy, the sensor activates the door heaters when the door conductivity falls below a certain set point and turns them off when the conductivity rises above that set point. Savings result from a reduction in electric energy use due to heaters not running continuously and from reduced cooling loads when heaters are off. The assumptions included within this measure assume that door heater controls which are properly designed and commissioned will achieve approximately equivalent savings, regardless of control strategy.

This measure applies to the following program type: RF.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be a door heater control installed on a commercial glass door cooler or freezer.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a door heater without controls, installed on a commercial glass door cooler or freezer.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years.478

DEEMED MEASURE COST

Actual incremental costs should be used if available. The incremental capital cost $\frac{151-150}{150}$ per door.⁴⁷⁹

LOADSHAPE

Refrigeration BUS

Algorithm

CALCULATION OF SAVINGS

 ⁴⁷⁸ Database for Energy Efficient Resources (2014). http://www.deeresources.com/. ("Updated 2014 EUL table, cell D35)2008
 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05, "Effective/Remaining Useful Life Values," California Public Utilities Commission, December 16, 2008.
 ⁴⁷⁹ Ameren Missouri Technical Resource Manual – Effective January 1, 2018.TRC, Ameren DSM participants for anti-sweat heater

controls, 2014 to 2024. Loca file: "Door heat controls cost 2014 to 2024.xlsx"

Appendix H - TRM – Vol. 2: C&I Measures

ELECTRIC ENERGY SAVINGS

$\Delta kWh = kW_{Base} \stackrel{\underline{*}_{\underline{X}}}{=} DOORS \stackrel{\underline{*}_{\underline{X}}}{=} (\%ON_{Base} - \%ON_{Control}) \stackrel{\underline{*}_{\underline{X}}}{=} Hours$

Where:

kW _{Base}	= Per door electric energy consumption of door heater without controls	
	= Assume 0.130 kW per door ⁴⁸⁰	
DOORS	= Number of doors controlled with door heater controls	
	= Actual or if unknown, use 1 (a per door savings)	
%ON _{Base}	= Effective run time of uncontrolled door heater	
	= Actual or if unknown, use 90.7% ⁴⁸¹	
%ON _{Control}	= Effective run time with anti-sweat door heater controls	
	= Actual or if unknown, use 45.6% $\frac{481481334820}{481481334820}$	Formatted: Superscript
Hours	= Annual hours of cooler or freezer operation	
	= Assume 8,766 hours per year	
BF	= Cooling Bonus factor for reduction in waste heat inside of the	
	refrigerated space.	
	= 1.3 for a refrigerator (medium/high temp), 1.5 for freezers (low	
	temp)483	

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $-\Delta kW = \Delta kWh * CF$

Where:

∆kWh = Electric energy savings, calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor. = 0.0001357383484

Savings calculated with default values as defined above.

Door Heater Control Application AkWh/door AkW/door
Refrigerator 668.1 0.0907

⁴⁸⁰ The Cadmus Group, Commercial Refrigeration Loadshape Project Final Report, Northeast Energy Efficiency Partnerships, Regional Evaluation, Measurement, and Verification Forum, Lexington, MA 2015. Page 75, Table 42.

Regional Evaluation, Measurement, and Verification Forum, Lexington, MA 2015. Page 78, Figure 54.

484 Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors" Ameren Missouri Coincident Peak Demand Factor for Commercial Refrigeration. See reference "Ameren Missouri 2016 Appendix E - End Use Shapes and Coincident Factors.pdf" 2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted: Footnotes, Space After: 0 pt, Line spacing: single

Page 270

⁴⁸¹ The Cadmus Group, Commercial Refrigeration Loadshape Project Final Report, Northeast Energy Efficiency Partnerships, Regional Evaluation, Measurement, and Verification Forum, Lexington, MA 2015. Page 6769, Table 37.

⁸² The Cadmus Group, Commercial Refrigeration Loadshape Project Final Report, Northeast Energy Efficiency Partnerships, Regional Evaluation, Measurement, and Verification Forum, Lexington, MA 2015. Page 69, Table 37. 483 The Cadmus Group, Commercial Refrigeration Loadshape Project Final Report, Northeast Energy Efficiency Partnerships,

Appendix H - TRM – Vol. 2: C&I Measures

Freezer	770.9	0.1046

NATURAL GAS ENERGY SAVINGS

N/A

MEASURE CODE:

Appendix H - TRM – Vol. 2: C&I Measures

2.9.4 Electronically Commutated Motors (ECM) for Walk-in and Reach-in Coolers/Freezers

DESCRIPTION

This measure consists of replacement of an existing, uncontrolled, and continuously operating standard efficiency shaded pole evaporator fan motor in refrigerated display cases or fan coil in walk ins.

This measure achieves savings by installing a more efficient motor, thereby moving the same amount of air with less energy requirements. Additionally, less waste heat is produced, resulting in a decreased refrigeration load.

This measure was developed to be applicable to the following program type: RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

This measure applies to the replacement of an existing standard efficiency shaded pole evaporator fan motor in refrigerated display cases or fan coil in walk ins. The replacement unit must be an electronically commutated motor (ECM). Savings assume that efficient motors operate continuously.

DEFINITION OF BASELINE EQUIPMENT

The baseline is the existing shaded pole motor(s) with no fan control operating 8760 hours continuously in a refrigerated display case or fan coil unit of a walk in cooling unit.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 15 years.485

DEEMED MEASURE COST

The measure cost is assumed to be \$177 <u>\$358</u> per motor for a walk in cooler and <u>\$208</u> walk in freezer, <u>labor cost was assumed equal for a code compliant motor and ECM motor, including the</u> cost of the motor plus installation.⁴⁹⁶

LOADSHAPE

Miscellaneous BUS

Algorithm

CALCULATION OF SAVINGS

Savings are based on a measure created by Energy & Resource Solutions for the California Municipal Utilities Association and supported by PGE workpaper PGE3PREF126. Note that

⁴⁸⁵ Database for Energy Efficient Resources (2014). https://www.deeresources.com/("Updated 2014 EUL table, cell D52)DEER database.

⁴⁸⁶ <u>CA eTRM, "High Efficiency Fan ", Southern California Edison, "SWCROO4-02Cost analysis.xlsx" (2022), Equipment cost for ECM motor Difference in the fully installed cost (\$468) for ECM motor and controller, listed in Work Paper PGE3PREF126, "ECM for Walk-In Evaporator with Fan Controller," June 20, 2012, and the measure cost specified in the DEER database for controller (\$291).</u>

Appendix H - TRM – Vol. 2: C&I Measures

climate differences across all California climate zones resulted in negligible savings differences, which indicates that the average savings for the California study should apply equally as well to Missouri. Savings found in the aforementioned source are presented in combination with savings from controllers, however for the purposes of this measure only those associated with the ECM upgrade are considered.

ELECTRIC ENERGY SAVINGS

*<u>AkWh = Savings per motor *x motors</u>* Where:

Savings per motor⁴⁸⁷ = based on the motor rating of the ECM motor – see table below.

Motors

= number of fan motors replaced

Evaporator Fan Motor Rating (of ECM)	Annual kWh Savings/motor
16W	408
1/15 1/20HP	1,064
1/5HP	1,409
1/3HP	1,994
1/2HP	2,558
<u>3/4HP</u>	2,782

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$\Delta kW = \Delta kWh * CF$

Where:

 ΔkWh = Electric energy savings, as calculated above.

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor = 0.0001379439⁴⁸⁸

NATURAL GAS ENERCY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

⁴⁸⁷-See reference workbook "ECM Savings.xlsx" for derivation.

⁴⁸⁸ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Page 273

Formatted: Footnotes

Formatted: CambriaTextFormula, Indent: First line: 0"

Appendix H - TRM – Vol. 2: C&I Measures

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

I

Appendix H - TRM – Vol. 2: C&I Measures

2.9.5 Strip Curtain for Walk-in Coolers and Freezers

DESCRIPTION

This commercial measure pertains to the installation of infiltration barriers (strip curtains) on walkin coolers or freezers. Strip curtains impede heat transfer from adjacent warm and humid spaces into walk-ins when the main door is opened, thereby reducing the cooling load. As a result, compressor run time and energy consumption are reduced. The engineering assumption is that the walk in door is open for varying durations per day based on facility type, and the strip curtain covers the entire door frame. All assumptions are based on values that were determined by direct measurement and monitoring of over 100 walk-in units in the 2006-2008 evaluation for the C/A Public Utility Commission.⁴⁸⁹

This measure was developed to be applicable to the following program type: RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is a strip curtain added to a walk-in cooler or freezer. The new strip curtain must cover the entire area of the doorway when the door is opened.

DEFINITION OF BASELINE EQUIPMENT

The baseline assumption is a walk in cooler or freezer that previously had either no strip curtain installed or an old, ineffective strip curtain installed.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 4 years.490

DEEMED MEASURE COST

The incremental capital cost for this measure is \$10.22/sq ft of door opening.491

LOADSHAPE

Refrigeration BUS

Algorithm

CALCULATION OF SAVINGS

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Page 275

⁴⁴⁹ The scale factors have been determined with tracer gas measurements on over 100 walk-in refrigeration units during the California Public Utility Commission's evaluation of the 2006-2008 CA investor owned utility energy efficiency programs. The door open and close times, and temperatures of the infiltrating and refrigerated airs are taken from short term monitoring of over 100 walk-in units. <u>https://www.calmac.org/publications/ComFac_Evaluation_V1_Final_Report_02_18-</u> 2010.pdfhttp://www.calmac.org/publications/ComFac_Evaluation_V1_Final_Report_02_18-2010.pdf.

⁴⁹⁰ Database for Energy Efficient Resources (2014). http://www.deeresources.com/. ("Updated 2014 EUL table, cell D50)DEER 2014 Effective Useful Life.

⁴⁹¹ The reference for incremental cost is \$10.22 per square foot of door opening (includes material and labor). 2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05 <u>"NR - Commercial Refrigeration" tab cells E18 & G18</u>, "Cost Values and Summary Documentation," California Public Utilities Commission, December 16, 2008.

A

Appendix H - TRM - Vol. 2: C&I Measures

ELECTRIC ENERGY SAVINGS⁴⁹²

*ΔkWh = ΔkWh/SQFT *<u>x</u> A* Where:

Formatted: CambriaTextFormula, Indent: First line: 0"

AkWh/SQFT = Average annual kWh savings per square foot of infiltration barrier. Based on application type, as indicated by the table below.⁴⁹³

= Doorway area. Use actual measurements, if unknown use the

values in the table below.

Type	Pre-Existing Curtains	Energy Savings AkWh/sq-ft
Supermarket Cooler	Yes	37-<u>40</u>
Supermarket Cooler	No	108 <u>120</u>
Supermarket Freezer	Yes	119 <u>170</u>
Supermarket - Freezer	No	349 <u>490</u>
Convenience Store Cooler	Yes	<u>5 10</u>
Convenience Store - Cooler	No	20
Convenience Store Freezer	Yes	<u>8 10</u>
Convenience Store Freezer	No	27 <u>30</u>
Restaurant Cooler	Yes	<u>8 10</u>
Restaurant Cooler	No	30 <u>20</u>
Restaurant Freezer	Yes	34 <u>30</u>
Restaurant Freezer	No	119 <u>110</u>
Refrigerated Warehouse	Yes	254 <u>50</u>
Refrigerated Warehouse	No	729 <u>150</u>

Facility Type	Doorway Arca (sq ft)
Supermarket Cooler	35
Supermarket Freezer	35
Convenience Store Cooler	21
Convenience Store Freezer	21
Restaurant Cooler	21
Restaurant Freezer	21
Refrigerated Warehouse	80

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * GF$

⁴⁹² The source algorithm from which the savings per square foot values are determined is based on Tamm's equation (an application of Bernoulli's equation) [Kalterveluste durch kuhlraumoffnungen. Tamm W.,Kaltetechnik-Klimatisierung 1966;18;142-144;] and the ASHRAE handbook [American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE). 2010. ASHRAE Handbook, Refrigeration: 13.4, 13.6].

493 See reference file "Strip Curtain Savings Cales.doex" for details on derivation.<u>NW Council.</u> <u>https://rtf.nwcouncil.org/measure/strip-curtains/, "ComGroceryStripCurtain_v3_1.xlsm" savings calculator, Local files: Revised effectiveness against infiltration value to 0.58 for existing curtains.</u>

Appendix H - TRM - Vol. 2: C&I Measures

Where:

 $\Delta kWh = Electric energy savings, calculated above$

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor = 0.0001357383⁴⁹⁴

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION N/A

DEEMED O&M COST ADJUSTMENT CALCULATION N/A

MEASURE CODE:

 494

 Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes

 and Coincident Peak Factors"2016 Ameren Missouri Coincident Peak Demand Factor for Commercial Refrigeration. See reference

 "Ameren Missouri 2016 Appendix E - End Use Shapes and Coincident Factors.pdf."
 Page 277

 2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0
 Page 277

Formatted: Footnotes, Indent: Left: 0", Space After: 0

Appendix H - TRM – Vol. 2: C&I Measures

2.10 Shell

2.10.1 Windows

DESCRIPTION

Energy and demand saving are realized through the installation of windows that offer performance improvements over baseline windows. Savings may be realized from reducing air infiltration, improved insulating properties, and changes to solar heat gain through the glazed surfaces of the building.

This measure was developed to be applicable to the following program types: RF and NC.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to exceed the efficiency requirements defined by the program.

DEFINITION OF BASELINE EQUIPMENT

In order for this characterization to apply, the baseline is assumed to meet the efficiency requirements set forth by local jurisdictions. In most cases, this will be some version of the IECC. For retrofit applications, the baseline condition is the existing condition and requires assessment of the existing window assemblies.

Local code shall be referenced to define baseline where applicable. As an example, the following is set forth by IECC $\frac{20122015}{2015}$. An efficient window would have specifications not exceeding these values.

<u>Characteristic</u>	Climate Zones 4 & 5	•	-(Formatted: Font: Bold, Font color: Background 1
U-Factor				Formatted: Font: Bold
Fixed Windows	0.38 Btu/ft ² .°F.h		Ì	Formatted Table
Operable Windows	0.45 Btu/ft ² .°F.h		\backslash	Formatted: Font: Not Bold, Font color: Text 1
SHGC	0.40		$\langle \rangle$	Formatted: Font color: Text 1

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 20 years.495

DEEMED MEASURE COST

For retrofit projects, full installation costs should be used, including both material and labor costs to install the windows.

In all other scenarios, the incremental cost for this measure is assumed to be 1.50 per square foot of window area.⁴⁹⁶

⁴⁹⁶ Alliance to Save Energy Efficiency Windows Collaborative Report, December 2007. Consistent with other market reports (Page C-5-2).

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted: Font: Not Bold, Font color: Text 1

Formatted: Font: Not Bold, Font color: Text 1

Formatted: Font: Not Bold, Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

⁴⁹⁵ Database for Energy Efficient Resources (2014). http://www.deeresources.com/. ("Updated 2014 EUL table, cell

D21)Consistent with window measure lives specified by Ameren Missouri and KCP&L.

Appendix H - TRM - Vol. 2: C&I Measures

LOADSHAPE

Cooling BUS HVAC BUS

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

Electric energy savings is calculated as the sum of energy saved when cooling the building and energy saved when heating the building.

$\Delta kWh = \Delta kWh_{cooling} + \Delta kWh_{heating}$	
--	--

Heating and cooling savings are composed of three components: infiltration, conduction and solar gains. In instances where infiltration savings do not apply or are not eligible, it may be disregarded. If central cooling, the electric energy saved in annual cooling due to the added insulation is:

$\Delta kWh_{cooling} = Inf_{\underline{i}} ltration_{cooling} + Conduction_{cooling} + Solar_{cooling}$ Infiltration_{cooling} = (CFM_{PRE} - CFM_{POST}) * $\underline{x} \ 60 * \underline{x} \ EFLH_{cooling} * \underline{x} \ \Delta T_{AVG,cooling} * \underline{x} \ 0.018 * \underline{x} \ LM / Cooling * \underline{x} \ \Delta T_{AVG,cooling} * \underline{x} \ 0.018 * \underline{x} \ LM / Cooling * \underline{x} \ \Delta T_{AVG,cooling} * \underline{x} \ 0.018 * \underline{x} \ LM / Cooling * \underline{x} \ \Delta T_{AVG,cooling} * \underline{x} \ 0.018 * \underline{x} \ LM / Cooling * \underline{x} \ \Delta T_{AVG,cooling} * \underline{x} \ 0.018 * \underline{x} \ LM / Cooling * \underline{x} \ \Delta T_{AVG,cooling} * \underline{x} \ 0.018 * \underline{x} \ LM / Cooling * \underline{x} \ \Delta T_{AVG,cooling} * \underline{x} \ 0.018 * \underline{x} \ LM / Cooling * \underline{x} \ \Delta T_{AVG,cooling} * \underline{x} \ 0.018 * \underline{x} \ LM / Cooling * \underline{x} \ \Delta T_{AVG,cooling} * \underline{x} \ 0.018 * \underline{x} \ LM / Cooling * \underline{x} \ \Delta T_{AVG,cooling} * \underline{x} \ 0.018 * \underline{x} \ LM / Cooling * \underline{x} \ \Delta T_{AVG,cooling} * \underline{x} \ 0.018 * \underline{x} \ LM / Cooling * \underline{x} \ \Delta T_{AVG,cooling} * \underline{x} \ 0.018 * \underline{x} \ LM / Cooling * \underline{x} \ \Delta T_{AVG,cooling} * \underline{x} \ 0.018 * \underline{x} \ DM$

(1000 <u>*</u> χ η _{cooling})	
Where:	
CFM _{PRE}	= Infiltration at natural conditions as estimated by blower door testing
	before window upgrade
	= Actual
CFM _{POST}	= Infiltration at natural conditions as estimated by blower door testing after
	window upgrade
	= Actual
60	= Converts Cubic Feet per Minute to Cubic Feet per Hour
EFLH _{cooling}	= Equivalent Full Load Hours for Cooling [hr] are provided in Table
	<u>1Section 2.7</u> , HVAC End Use
$\Delta T_{AVG,cooling}$	= Average temperature difference [⁰ F] during cooling season between
	outdoor air temperature and assumed 75°F indoor air temperature – see
	table below
0.018	= Specific Heat Capacity of Air (Btu/ft ³ °F)
LM	= Latent Multiplier to account for latent cooling demand 497
	= 3.0 for St. Louis, MO
1,000	= Conversion from Btu to kBtu
	= Seasonal energy efficiency ratio (SEER) of cooling system (kBtu/kWh)
$\eta_{cooling}$	= Actual

⁴⁹⁷ The Latent Multiplier is used to convert the sensible cooling savings calculated to a value representing sensible and latent cooling loads. The values are derived from the methodology outlined in Infiltration Factor Calculation Methodology by Bruce Harley, Senior Manager, Applied Building Science, CLEAResult 11/18/2015 and is based upon an 8760 analysis of sensible and total heat loads using hourly climate data.

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted: Subscript

Formatted: Subscript

Formatted: CambriaTextFormula, Indent: First line: 0"

Formatted: Cambria12, Right: 0", Space After: 0 pt, Line spacing: single

Appendix H - TRM – Vol. 2: C&I Measures

St Louis, MO	<u>80.882.83.0</u> <u>57.88.0</u>	
<i>Conduction_{Co}</i> Where:	oling = (UBASE - UEFF) $\underline{*_X} A$ window $\underline{*_X} EFLH_{cooling} \underline{*_X} \Delta T_{AVG, cooling} / (1000 \underline{*_X} \eta_{cooling})$	Formatted: CambriaTextFormula
UBASE	 = U-factor value of baseline window assembly (Btu/ft².°F.h) = Dependent on Weather Basis and window type. See table below for IECC 2012 requirements.baseline description for values. 	
UEFF	= U-factor value of the efficient window assembly (Btu/ft ² .°F.h) = Actual.	
A_{window}	= Area of insulated window (including visible frame and glass) (ft^2)	
Other var	riables as defined above.	
<i>Solar_{Cooling} = (</i> Where:	$(SHGC_{BASE} - SHGC_{EFF}) \stackrel{*}{} A_{window} \stackrel{*}{} \Psi_{cooling} / (1000 \stackrel{*}{} \eta_{cooling})$	Formatted: CambriaTextFormula
SHGC _{BA}	ASE = Solar Heat Gain Coefficient of the baseline window assembly (fractional)	
SHGCEF		
Ψ_{cooling}	= 40,996 for St. Louis, MO	
Other var	riables as defined above.	
	heated with electric heat (resistance or heat pump), the electric energy saved in ue to the window upgrade is:	
	ng = Infltrationheating + Conductionheating - Solarheating ating = (CFMPRE - CFMPOST) <u>*x</u> 60 <u>*x</u> EFLHheating <u>*x</u> Δ TAVG,heating <u>*x</u> 0.018 / (3,412 <u>*x</u>	Formatted: Cambria12
EFLH _{heat}	ing = Equivalent Full Load Hours for Heating [hr] are provided in <u>Table</u> <u>1Section 2.7</u> , HVAC end use	
¹⁹⁸ National Solar Rad Onebuilding.org MO	liation Data Base 1991 2005 Update: Typical Meteorological Year 3	
lata https://climate.on	ebuilding.org/WMO_Region_4_North_and_Central_America/USA_United_States_of_America/index.html#	Formatted: Font: 9 pt, Font color: Text 1 Formatted: Line spacing: Multiple 1.08 li
IDIVICE IVESSOURI-	///redc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/by_state_and_city.html. <u>CoolingHeating Season</u> 17 th through April 13 th , cooling season defined as May 20 through August 15 th . For cooling season,	in and the spacing. Multiple 1.00 li

= Efficiency of heating system η_{heating} = Actual. Note: electric resistance heating and heat pumps will have an efficiency greater than or equal to 100% Other variables as defined above. Weather Basis OAAVG,heating $\Delta T_{AVG,heating}$ $[^{\circ}\mathbf{F}]^{500}$ [°F] St Louis, MO 43.244.346.4 11.810.78.6 Conduction_{heating} = (UBASE - UEFF) $\underline{*_X} A_{window} \underline{*_X} EFLH_{heating} \underline{*_X} \Delta T_{AVG,heating} / (3,412 \underline{*_X} \eta_{heating})$ Formatted: CambriaTextFormula Where: Variables as defined above. Solar_{Heating} = (SHGC_{BASE} – SHGC_{EFF}) $\underline{*_{X}} A_{window} \underline{*_{X}} \Psi_{Heating} / (3,412 \underline{*_{X}} \eta_{Heating})$ Where: = Incident solar radiation during the heading season (Btu/ft^2) Ψ_{heating} = 66,592 for St. Louis, MO

Other variables as defined above.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWH_{cooling} * CF$

Where:

 $\Delta kWH_{cooling}$ = Annual electricity savings for cooling, as calculated above CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor for Cooling $= 0.000910684^{501}$ Cooling =0.000443983 HVAC (heating and cooling combined)

 $\Delta T_{AVG,heating}$ = Average temperature difference [⁰F] during heating season between

= Conversion from Btu to kWh.

outdoor air temperature and assumed 55°F heating base temperature

500 Onebuilding.org MO TMYx weather National Solar Radiation Data Base -- 1991- 2005 Update: Typical Meteorological Year 3 climatewebsite\WMO_Region_4_North_and_Central_America\USA_United_States_of_America (onebuilding.org)https://climate.onebuilding.org/WMO Region 4 North and Central America/USA United States of America /index.html#IDMO_Missouri_http://rrede.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/by_state_and_city.html. Heating Seasor defined as September 17th through April 13th., cooling season defined as May 20 through August 15th. For cooling season, temperatures from 8AM to 8PM were used to establish average temperatures as this is when cooling systems are expected to be loaded

⁵⁰¹ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors" Page 281

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Formatted: Font color: Text 1 Formatted: Footnotes

Field Code Changed

Formatted: Font color: Text 1

Formatted: Font: 9 pt, Font color: Text 1

Formatted: CambriaTextFormula

Ameren Missouri

3.412

Appendix H - TRM – Vol. 2: C&I Measures

Appendix H - TRM - Vol. 2: C&I Measures

NATURAL GAS SAVINGS

If building uses a gas heating system, the savings resulting from the window assembly is calculated with the following formula.

ΔTherms = Infltration_{gasheat} + Conduction_{gasheat} - Solar_{gasheat} Infiltration_{gasheat} = (CFMPRE - CFMPOST) <u>*x</u> 60 <u>*x</u> EFLHheating <u>*x</u> ΔTAVG,heating <u>*x</u> 0.018 / (100,000 <u>*x</u> η_{heat}) Conduction_{gasheeat} = (UBASE - UEFF) <u>*x</u> Awindow <u>*x</u> EFLHheating <u>*x</u> ΔTAVG,heating / (100,000 <u>*x</u> η_{heat}) Solar_{gasheat} = (SHGC_{BASE} - SHGC_{EFF}) <u>*x</u> Awindow <u>*x</u> Ψ_{Heating} / (100,000 <u>*x</u> η_{heat}) Where:

100,000= Conversion from BTUs to Therms η_{heat} = Efficiency of heating system

= Actual

Other variables as defined above.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

-	Formatted: Font: 12 pt
	Formatted: Font: 12 pt
\int	Formatted: Font: 12 pt
	Formatted: Font: 12 pt
	Formatted: Cambria12, Right: 0", Space After: 0 pt, Line spacing: single
	Formatted: Cambria12
	Formatted: Subscript

2.10.2 Ceiling and Wall Insulation

DESCRIPTION

Energy and demand saving are realized through reductions in the building cooling and heating loads.

This measure was developed to be applicable to the following program types: RF and NC.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to exceed the efficiency requirements defined by the program.

DEFINITION OF BASELINE EQUIPMENT

In order for this characterization to apply, the baseline is assumed to meet the efficiency requirements set forth by local jurisdictions. In most cases, this will be some version of IECC. For retrofit applications, the baseline condition is the existing condition and requires assessment of the existing insulation. It should be based on the entire wall assembly.

Local code shall be referenced to define baseline where applicable. As an example, the following is set forth by IECC $\frac{20122015}{12}$:

	ASHRAE/IECC Climate Zone 5 (A, B, C) Nonresidential		
	Assembly Maximum Insulation Min. R-Value		
Mass	U-0.078	R-11.4 ci	
Metal Building	U-0.052	R-13 + R-13 ci	
Metal Framed	U-0.064	R-13 + R-7.5 ci	
Wood Framed and Other	U-0.064	R-13 + R-3.8 ci or R-20	

	ASHRAE/IECC Climate Zone 6 (A, B, C) Nonresidential		
	Assembly Maximum	Insulation Min. R-Value	
Mass	U-0.078	R-13.1 ci	
Metal Building	U-0.052	R-13 + R-13 ci	
Metal Framed	U-0.064	R-13 + R-7.5 ci	
Wood Framed and Other	U-0.051	R-13 + R-7.5 ci or R-20 + R-3.8 ci	

Note: ci = continuous insulation

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure expected useful life (EUL) is assumed to be 20 years per DEER 2008. This is consistent with SDG&E's 9th Year Measure Retrofit Study (1996 & 1997 Residential Weatherization Programs), CPUC's Energy Efficiency Policy Manual v.2, and GDS's Measure Life Report Residential and Commercial/Industrial Lighting and HVAC Measures (June 2007).

DEEMED MEASURE COST

For retrofit projects, full installation costs should be used.

For new construction projects, costs should be limited to incremental material and labor costs associated with the portion of insulation that exceeds code requirements.

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Page 283

Appendix H - TRM – Vol. 2: C&I Measures

LOADSHAPE

COOLING BUS

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

Electric energy savings is calculated as the sum of energy saved when cooling the building and energy saved when heating the building:

 $\Delta kWh = \Delta kWh_{cooling} + \Delta kWh_{heating}$

If central cooling, the electric energy saved in annual cooling due to the added insulation is

 $\Delta kWh cooling = \frac{\left(\frac{1}{R_{existing}} - \frac{1}{R_{new}}\right) * Area * CRF * EFLH_{cooling} * \Delta T_{AVG, cooling}}{(1,000 * \eta_{cooling})}$

If the building is heated with electric heat (resistance or heat pump), the electric energy saved in annual heating due to the added insulation is:

$$\Delta kWhheating = \left(\frac{1}{R_{existing}} - \frac{1}{R_{new}}\right) * Area * CRF * EFLH_{heating} * \Delta T_{AVG,heating}$$

Where:

= Assembly heat loss coefficient with existing insulation [(hr- ⁰ F-ft ²)/Btu]
= Assembly heat loss coefficient with new insulation [(hr- ⁰ F-ft ²)/Btu]
= Area of the surface in square feet.
= Correction Factor. Adjustment to account for the effects the framing has
on the overall assembly R-value, when cavity insulation is used.
= 100% if Spray Foam or External Rigid Foam
= 50% if studs and cavity insulation ⁵⁰²
= Equivalent Full Load Hours for Cooling [hr] are provided in Table
<u>1Section 2.7</u> , HVAC End Use
= Average temperature difference [⁰ F] during cooling season between
outdoor air temperature and assumed 75°F indoor air temperature
= Conversion from Btu to kBtu
= Seasonal energy efficiency ratio (SEER) of cooling system (kBtu/kWh)
= Actual
= Equivalent Full Load Hours for Heating [hr] are provided in Table
<u>1Section 2.7</u> , HVAC end use

⁵⁰² Consistent with the information listed in ASHRAE, 2001, Table 5-1 Wall Sections with Steel Studs Parallel Path Correction Factors and experimental findings by the Oak Ridge National Laboratory, "Couple Secrets about How Framing is Effecting the Thermal Performance of Wood and Steel-Framed Walls."

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Page 284

	Formatted	
	Formatted	
	Formatted	 [
	Formatted	
Ϊ,	Formatted	
/	Formatted	 []
/	Formatted	
_	Formatted	
	Formatted	
	Formatted	
\langle	Formatted	
	Formatted	
	Formatted	
	Formatted	
	Formatted	 [
/	Formatted	
/	Formatted	
//	Formatted	
	Formatted	
	Formatted	
	Formatted	
	Formatted	
	Formatted	_
	Formatted	

Appendix H - TRM – Vol. 2: C&I Measures

 ΔTAVG,heating
 = Average temperature difference [⁰F] during heating season between outdoor air temperature and assumed 55⁰F heating base temperature

 3,412
 = Conversion from Btu to kWh.

 ηheating
 = <u>Actual Efficiency COP efficiency</u> of heating system

= <u>Actual</u>. Note: electric resistance heating and heat pumps will have an efficiency greater than or equal to 100%

Weather Basi <mark>ss</mark>	OA _{AVG} ,cooling [°F] ⁵⁰³	ΔT _{AVG} ,cooling [°F]	OA _{AVG} ,heating	ΔT _{AVG} ,heating [°F]
(City based upon)			[° F] ⁵⁰⁴	
St Louis, MO	80.8 83.0	<u>5.8</u> 8.0	<u>43.2</u> 46.4	<u>11.88.6</u>

If the building is heated with a gas furnace, there will be some electric savings in heating the building attributed to extra insulation since the furnace fans will run less.

 $\Delta kWh_{heating} = \Delta Therms \underline{*_{X}} Fe \underline{*_{X}} 29.3$

Where:

Δ Therms	= Gas savings calculated with equation below.
Fe	= Percentage of heating energy consumed by fans, assume 3.14% ⁵⁰⁵
29.3	= Conversion from therms to kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWH_{cooling} * CF$

CF

Where:

 $\Delta kWH_{cooling}$ = Annual electricity savings for cooling, as calculated above.

= Summer peak coincidence demand (kW) to annual energy (kWh) factor for Cooling

⁵⁰³ Onebuilding.org|MO TMYx weather National Solar Radiation Data Base -- 1991-2005 Update: Typical Meteorological Year 3 https://climate.onebuilding.org/WMO_Region_4_North_and_Central_America/USA_United_States_of_America/index.html#IDN

O_Missouri-http://rredc.nrel.gov/solar/old_data/nsrdb/1991_2005/tmy3/by_state_and_city.html_Cooling_Heating Season defined as September 17th through April 13th, cooling season defined as May 20 through August 15th. For cooling season, temperatures from 8AM to 8PM were used to establish average temperatures as this is when cooling systems are expected to be loaded. ⁵⁰⁴ Onebuilding.org/MO TMYx weather

 505 F_e is not one of the AHRI certified ratings provided for furnaces, but can be reasonably estimated from a calculation based on the certified values for fuel energy (Ef in MMBtu/yr) and Eae (kWh/yr). An average of a 300 record sample (non-random) out of 1495 was 3.14% for residential units. This is, appropriately, ~50% greater than the Energy Star® version 3 criteria for 2% F_e. See "Programmable Thermostats Furnace Fan Analysis.xlsx" for reference. Assumed to be consistent with C&I applications.

2025 MEEIA 4 Plan MEEIA 2019-21 Plan Revision 56.0

Page 285

-	Formatted: Space After:	0 pt, Line spacing:	Multiple
	1.08 li		

1	
1	Formatted: Subscript
l	
	Formatted: Subscript
4	
	Formatted: Subscript
Ν	
	Formatted Table
1	

Formatted: Subscript

Formatted: Font: 9 pt, Underline, Font color: Bl	ue
Field Code Changed	
Formatted: No underline, Underline color: Auto color: Text 1	o, Font
Formatted: Font color: Text 1	
Formatted: Font color: Text 1	
Formatted: Font: 9 pt, Underline, Font color: Bl	ue
Formatted: Font: 9 pt	
Formatted: Font: 9 pt	
Formatted: Font color: Text 1	

http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/by_state_and_city.html, Heating Season defined as September 17th through April 13th, cooling season defined as May 20 through August 15th. For cooling season, temperatures from 8AM to 8PM were used to establish average temperatures as this is when cooling systems are expected to be loaded.

Appendix H - TRM - Vol. 2: C&I Measures

= 0.0004439830⁵⁰⁶ Cooling =0.000443983 HVAC

NATURAL GAS SAVINGS

If building uses a gas heating system, the savings resulting from the insulation is calculated with the following formula.

	ΔTherms	$= \left(\frac{1}{R_{existing}} - \frac{1}{R_{new}}\right) * Area * CRF * EFLH_{heating} * \Delta T_{AVG,heating}$	Formatted: Font: 12 pt
		$\frac{\left(R_{existing} \ R_{new}\right)}{\left(100,000 * \eta_{heat}\right)}$	Formatted: Font: 12 pt
Where	:		Formatted: Font: 12 pt
	Rexisting	= Assembly heat loss coefficient with existing insulation $[(hr-{}^{0}F-ft^{2})/Btu]$	Formatted: Font: 12 pt
	R _{new}	= Assembly heat loss coefficient with new insulation $[(hr-{}^{0}F-ft^{2})/Btu]$	Formatted: Font: 12 pt
	Area	= Area of the surface in square feet. Assume 1000 sq ft for planning.	Formatted: Font: 12 pt
	EFLHheating	= Equivalent Full Load Hours for Heating are provided in <u>Table 1</u> Section	Formatted: Font: 12 pt
	AT	2.7, HVAC end use	Formatted: Font: 12 pt
	$\Delta T_{AVG,heating}$ 100,000	= Average difference [⁰ F] during heating season (see above) = Conversion from BTUs to Therms	Formatted: Font: 12 pt
	η _{heat}	= Efficiency of heating system	Formatted: Font: 12 pt
	Ineat	= Actual	Formatted: Font: 12 pt
			Formatted: Font: 12 pt
WATER IMPACT DESCRIPTIONS AND CALCULATION			Formatted: Font: 12 pt
N/A			Formatted: Font: 12 pt
DEEMED O&M COST ADJUSTMENT CALCULATION			Formatted: Font: 12 pt
N/A			Formatted: Font: 12 pt
MEASURE CODE:			Formatted: Font: 12 pt
			Formatted: Font: 12 pt

ⁱ Hydraulic Institute|https://er.pumps.org/ratings/search

Formatted: Normal

Formatted: Font: 12 pt

 506 Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes

 and Coincident Peak Factors"

 2025 MEEIA 4 Plan
 MEEIA 2019-21 Plan-Revision 56.0
 Page 286

Formatted: Footnotes