

Distribution Automation & Substation Modernization

Benefits & Steps to a Successful Implementation

> Jim Weikert Power System Engineering, Inc. <u>www.powersystem.org</u> November 28, 2011

Benefits of Distribution Automation (DA)

DA Program Types	Improved Reliability	Improved Performance Indices	Increased Profit	Reduce Losses	Improved Asset Life
Smart Switching					
Conservation Voltage Reduction (CVR)					
Power Factor Improvement (VAR)					
Real-time Fault Indicators			•		

- Voltage Sags: Can cause under-voltages that can disrupt manufacturing processes.
- Harmonics: Decrease equipment life; increase line losses.
- **Spikes**: Severe over-voltage for very short periods can damage electronic equipments.
- **Phase Imbalances**: Increase system wide losses, damage equipments and machinery.

Customer Outage Metrics

SAIDI	Sys. Avg. Interruption Duration Index	Duration of all interruption in sys / # customers
SAIFI	Sys. Avg. Interruption Frequency Index	Number of interruptions in sys / # customers
CAIDI	Cust. Avg. Interruption Duration Index	Average outage time (SAIDI/SAIFI)
MAIFI	Mom. Avg. Interruption Frequency Index	Number of blinks in sys / # customers

Utilities are serving the needs of digital society.

© 2011 Power System Engineering, Inc.

Volt/VAR Benefits

- Utilities face these issues every day ullet
- A solid Volt/VAR scheme can improve or alleviate many of these. •

Pain Points	Cause	Severity		VAR	CVR
PF Penalties	G&T charges for Lagging Power	\$\$	Penalties	$\checkmark\checkmark$	
Lost Capacity	Excess current due to inductive loads uses up line capacity.	\$	5-10% Excess Current	$\checkmark\checkmark$	\checkmark
Line Losses	Resistance in wire uses Real power	\$	10-20% Excess Line Losses	$\checkmark\checkmark$	\checkmark
Voltage Drop	Excess current and line loss leads to excess voltage drop	\$	5-10% Excess Voltage Drop	\checkmark	\checkmark
Lost Generation	Customers charged for W but Generation covers VA	\$\$\$	Unbilled Generation	$\checkmark\checkmark$	
Peak Penalties	Excess energy usage during coincident peak periods	\$\$\$	Peak Rates	\checkmark	$\checkmark\checkmark$

Power System Engineering, Inc.

CVR Case Study: Cost/ Benefit Analysis

- Midwest Suburban Co-op
- 140,000 Customers (270 C&I, 10 large industrial)
- 40 substations, 400MW avg.
- Winter & Summer peak charge 20
 6 coincident peaks/year 10

Program Results

- 16 Substation Pilot (178MW Peak)
 3.2MW (1.8%) reduction: VAR (flattening) & CVR (peaks only)
- 24 Substations Remaining (414MW Peak)
 3.7MW (0.9%) conservative estimate: not all feeders,

Net Present Value (15 years)

- \$2.7M investment, \$370,000 annual benefit
- Positive present value of more than \$725,000 over 15 years

Wholesale monthly charge for peak demand Winter Spring Summer Fall Winter \$15,790 \$21,002 \$15,790 487,415 KW Peak Aug 3, hour ending 1900 400,000 ≩ 300,000 TGE 200,000

Voltage Control Program

- Components
 - Regulation (Substation & Feeder)
 - Measurement (Meters & Regulators
 - Control (SCADA or Integrated Volt/VAR Application)
- Considerations
 - Objectives: CVR, Voltage Optimization
 - Seasonal / Daily Load changes
 - Metering latency
 - Dynamic network

Power System Engineering, Inc. Switching Program • Implementation Options – Central / Distributed Control - Central visibility in real time • Simplistic Switching – Automatic Transfer • Complexities – Maintaining communications – Restore to normal state after repair – Modeling a dynamic load - Switching voltage control

© 2011 Power System Engineering, Inc.

Feeder Switching Example

Reliability is primary benefit (not simply cost justified)

Example Utility Profile:

- 10,000 customers
- 40MW Demand
- 15 Substations
- 50 Feeders

Assumptions:

- 2 Outages/Year (3 hours each)
- \$50,000 cost to C&I / outage
- 50% outage reduction with feeder switching

	Category	Item	Total
Cost	Equipment Cost	\$75,000	\$140,000
	Engineering & Labor	\$65,000	
Benefit	Customer Benefit	\$25,000	~\$25,000
	Revenue Recovered	Small	
	Fewer Truck Rolls	Small	

Modern SCADA Architecture

- Intelligent devices remotely accessible
- Bi-directional data flow
- High level of redundancy

Modern SCADA Systems

Database & screen design, site testing

SCADA System Components

- Software: License (features) & Maintenance
- Hardware: Servers, workstations, network, security •
- Engineering:

•

Training: User, upgrade and modification

<u>Representative Cost Break-down</u> <u>Features to consider:</u>

- Redundant modular hardware
- Firewalls for secure remote access
- Open database for 3rd party integration
- Historian, Trending & Graphing
- Tagging for secure lockout
- User Authentication for access levels
- Web Access for infrequent users
- ICCP, MultiSpeak & protocol interfaces
- Security Logging for NERC CIP
- Advanced applications

Benefit to Many Departments

• Modern Substation Architecture is key to a well automated distribution system.

Function	Legacy Systems	Modern SCADA	Difference
Operations	• Customer reported issues	Continuous monitoringDetect before fault	• Better customer service
Routine Inspections	Travel to every siteNo info between visits	Gather remotelyTravel when needed	Less drive timeMore information
System Protection Optimization	• Multiple trips to gather data, analyze and optimize	Obtain data remotelyMonitor changes	More efficient analysisBetter follow-up
Equipment Failure	• Dispatch, assess, get equipment, return, fix	Remotely analyzeFirst trip to fix	• Faster repair time
System Engineering	Limited system dataTough to gather data	• Real-time historical information & settings.	 Better timely data Better decisions & design updates

Role of the RTU

Legacy

- **Capture signals** (analog & digital) from transducers.
- **Data gathering** without decision making.
- Vendor specific protocols
- Gather data from serial devices.
- Constrained by limited communications.
- Limited history, sequence of events.

Modern

- One of many intelligent devices.
- Data gathering blended with decision making.
- Standard (DNP3, 61850) protocols.
- Gather data from legacy transducers & devices.
- Enabled by improved communications.
- Greater history, sequence of events.

Stages of Automation

SCADA Master

- Powerful server
- Separate workstation(s) •
- Monitoring and Control •
- Alarm management, historian • & trending

Substation Automation

- Ethernet connectivity •
- Bandwidth to SCADA master •
- IED Reclosers: feeder outage • notification, demand profile, control, sequence of events data
- Revenue meter: substation • MVA, MW, PF, power quality data
- Standard RTU

Role of Security in Modernization

- Prepare for Future, Apply best practices today
- Security essential for remote intelligence
 - Perimeter, Authentication, Encryption, Integrity)
 - Scale solutions, start with secure base

NERC CIP	Purpose
Version 3	Address fundamental Critical Cyber Assets
Version 4	Greatly expand the number of Bulk Electric System assets
Version 5	Complete coverage of FERC Order 706

© 2011 Power System Engineering, Inc.

Multi-Tier Infrastructure

Tier		Description	Speed	Coverage	Redundancy
1	Backbone	Connect offices and most substations	High speed	Ring	Critical
			10-100+ Mbps		
2	Backbone	Connects remote substations	Medium speed	Point to Point	Preferable
	Extension		10+ Mbps		
3	DA Network	Connect field DA equipment to each other and to a	Lower speed	Wide-area	Preferable
		collection point to the SCADA system.	30 kbps to 1 Mbps		
4	AMI Network	Connect meters to each other and to a collection point.	Lower speed	Wide-area	Preferable
			<500kbps to 1Mbps		

Technology & Tier Comparison

- Each technology has its own strengths.
- Best solution is to use multiple technologies across tiers, matching the strengths with the requirements

Technology	Characteristics	Tiers			
		1	2	3	4
Fiber	Speeds to 10+ Gbps,	$\checkmark\checkmark$			
	Ring network supporting redundancy				
Licensed Broadband Wireless	Speeds ~ 10 to 150 Mbps	\checkmark	$\checkmark\checkmark$		
(6, 11 and 18GHz)	Point to point links,				
Unlicensed Wireless	Speeds 1-10Mbps, Point to multipoint		✓	$\checkmark\checkmark$	
	coverage, non-dedicated channels				
Licensed Wireless	Speed ~10kbps			$\checkmark\checkmark$	$\checkmark\checkmark$
(220, 450 & 900MHz)	Very good wide area coverage				
Power Line Carrier	Speeds ~10kbps			\checkmark	\checkmark
Cellular	Speeds 1+Mbps, generally good coverage,			✓	\checkmark
	uncontrolled reliability				
	© 2011 Power System Engineering, Inc.				