FILED May 01, 2023 Data Center Missouri Public Service Commission

Exhibit No. 6

Ameren – Exhibit 6 Mark Peters Direct Testimony File No. ER-2022-0337

Exhibit No.: Issue(s): Production Cost Modeling Witness: Mark J. Peters Sponsoring Party: Union Electric Company Type of Exhibit: Direct Testimony File No.: ER-2022-0337 Date Testimony Prepared: August 1, 2022

MISSOURI PUBLIC SERVICE COMMISSION

FILE NO. ER-2022-0337

DIRECT TESTIMONY

OF

MARK J. PETERS

ON

BEHALF OF

UNION ELECTRIC COMPANY

D/B/A AMEREN MISSOURI

St. Louis, Missouri August, 2022

TABLE OF CONTENTS

I.	INTRODUCTION	1
II.	PURPOSE AND SUMMARY OF TESTIMONY	2
III.	PRODUCTION COST MODELING	3
IV.	PRODUCTION COST MODEL INPUTS	6
V.	REAL-TIME LOAD AND GENERATION DEVIATION and REAL-TIME	
RSG I	MAKE WHOLE PAYMENT MARGIN ADJUSTMENTS	.13
VI.	PERCENTAGE OF TRANSMISSION COST TO BE INCLUDED IN FAC	.14
VII.	MARKET ENERGY AND CAPACITY SALES REVENUES TO BE INCLUDED	
IN TH	IE RESRAM AND EXCLUDED FROM THE FAC	.14

DIRECT TESTIMONY

OF

MARK J. PETERS

FILE NO. ER-2022-0337

1		I. INTRODUCTION
2	Q.	Please state your name and business address.
3	А.	Mark J. Peters, One Ameren Plaza, 1901 Chouteau Avenue, St. Louis, Missouri
4	63103.	
5	Q.	By whom and in what capacity are you employed?
6	А.	I am employed by Ameren Services Company ("Ameren Services") as a Manager
7	in the Corpor	rate Planning Analysis Department, where I am responsible for the supervision and
8	guidance of t	he group responsible for running production cost model studies used in developing
9	budgets and	financial forecasts, fuel burn projections, emissions estimates, and other generation
10	station projec	t analyses, and which is used in the preparation of and as evidentiary support for rate
11	reviews, such	as this one.
12	Q.	Please describe your educational and professional background.
13	А.	I received a Bachelor of Arts degree in Liberal Arts & Sciences (Concentration in
14	Economics) i	n August of 1985 from the University of Illinois (Urbana-Champaign).
15	I bega	in employment with Illinois Power Company in August of 1985, holding a variety of
16	roles prior to	its acquisition by Ameren Corporation. Since Illinois Power's acquisition, I have
17	been involve	d with Ameren's Illinois utility subsidiaries' post-2006 energy supply acquisition
18	process, the g	guidance and supervision of a group that provided analytical support to the Ameren

Q.

Missouri trading group, which is now managed by Ameren Missouri witness Andrew Meyer, and
 the guidance of load forecasting and load research activities, in addition to my current duties.

3

II. PURPOSE AND SUMMARY OF TESTIMONY

4

What is the purpose of your direct testimony?

A. The purpose of my direct testimony is to sponsor the determination of the normalized value for the sum of allowable fuel costs plus the cost of net purchased power, which was used by Company witness Mitchell Lansford in determining Ameren Missouri's revenue requirement for this case and in calculating the Net Base Energy Costs ("NBEC") utilized in the Company's Fuel Adjustment Clause ("FAC"). These costs consist of the delivered cost of nuclear fuel, coal, oil, and natural gas associated with producing electricity from the Ameren Missouri generation fleet, plus the variable component of net purchased power.

12 My testimony will also include the determination of:

13 1) The real-time load and generation deviation adjustment that has been included in 14 the determination of NBEC over the last several Ameren Missouri electric rate 15 reviews;

162)The level of real-time revenue sufficiency guarantee make-whole payment ("RT17RSG MWP") margins to be include in the net off-system sales component of NBEC18included in witness Meyer's testimony;

193)The percentage of transmission costs and revenues to be included in the FAC; and204)The normalized value for market energy and capacity revenues for the High Prairie21and Atchison County Renewable Energy Centers to be included in the base amounts22established in this proceeding for the Company's Renewable Energy Standard Rate23Mechanism ("RESRAM"), and excluded from the NBEC.

1	Comj	pany witness Andrew Meyer is also filing direct testimony to address other FAC
2	components,	including net off-system sales revenues which are netted against the costs that I have
3	modeled, wh	ich are used by witness Lansford in determining NBEC.
4	Q.	Please summarize your testimony and conclusions.
5	А.	I have determined the following normalized values to be used by witness Lansford
6	in determini	ng Ameren Missouri's revenue requirement for this case and in calculating the
7	("NBEC") ut	ilized in the Company's FAC:
8	1)	Fuel costs of \$572.1 million;
9	2)	Net purchased power costs of \$50.4 million;
10	3)	Real-time load and generation deviation credit adjustment (reduction in NBEC) of
11		\$7.7 million; and
12	4)	RT RSG MWP Margins of \$2.7 million (reduction in NBEC).
13	I hav	e also determined the normalized market energy and capacity revenues related to the
14	High Prairie	and Atchison County Renewable Energy Centers to be used by witness Lansford in
15	determining	the revenue requirement and in calculating the base amount for the RESRAM are, in
16	total for both	facilities, \$73.1 million for energy and \$1 million for capacity.
17	Final	ly, I have determined that the generation weighted average locational margin price
18	("LMP") to b	be used in the Company's production cost modeling is \$33.30, and that the appropriate
19	percentage o	f transmission costs and revenues to be used in determining NBEC is 4.97%.
20		III. PRODUCTION COST MODELING
21	Q.	What is a production cost model?
22	А.	A production cost model is a computer application used to simulate an electric
23	utility's gene	eration system and load obligations. One of the primary uses of the production cost

1 model is to develop production cost estimates used for planning and decision making, including 2 the development of a normalized level of net energy costs upon which a utility's revenue 3 requirement can be based.

Whet energy costs" as used in this testimony are the normalized values for the sum of allowable fuel costs, including transportation, plus the cost of net purchased power. These are a subset of the total fuel and net purchased power costs, including transportation and emissions costs and revenues and net of net off-system sales revenues, which are used to establish NBEC in the Company's Rider FAC tariff sheets.¹ As noted, the NBEC is discussed in witness Lansford's direct testimony.

10

Q. How is PowerSIMM used by Ameren Missouri?

11 A. PowerSIMM is used by Ameren Missouri to model generation output, and when 12 compared to load, to model net off-system sales and net purchased power. The results of this 13 modeling are used for operational, financial, and regulatory purposes.

14

15

Q. What are the major inputs to the PowerSIMM model run used for calculating a normalized level of net energy costs?

A. The major inputs are: normalized hourly loads, unit operating characteristics, unit availabilities, prices for the primary variable cost components (fuel by type and by plant, variable operating and maintenance costs, opportunity cost of emissions), and the market price of electrical energy.

¹ There are other components of NBEC that are not produced by the production cost modeling, as discussed by witnesses Meyer and Lansford in their direct testimonies.

Q. What are the major outputs of the PowerSIMM model run used for calculating a normalized level of net energy costs?

A. The major outputs are: generation output by unit expressed in megawatt-hours ("MWh"), millions of British thermal units ("MMBtu"), and the cost in dollars; net purchases of energy, expressed in both MWh and dollars; and net off-system sales of energy, expressed in both MWh and dollars.

Q. Please generally describe how net off-system sales and net purchases of energy
are determined by the model.

A. For any given hour, the model increases the generation output for units that have a dispatch cost below the hourly market price for energy and decreases the output for those units whose dispatch cost is above the hourly market price. The model accomplishes this while recognizing the unit operating limits and characteristics, and after the model has determined unit commitment. In this manner, the model determines the output of each generator in MWh for each hour. This output is then compared to the load assumption in MWh for each hour to determine whether there is a net purchase or a net off-system sale for that hour.

In that regard, the model emulates the Company's market settlements with the Midcontinent Independent System Operator, Inc.'s ("MISO") markets. In actual operations, the Company purchases energy for its entire load from the MISO market and separately sells all of the MWhs generated by its generating units into the MISO market.² However, it is my understanding that the Federal Energy Regulatory Commission ("FERC") requires that these amounts be netted against each other for each hour for reporting purposes. This netting results in the recording of

² The only exception are the MWhs produced by the Atchison County Renewable Energy Center, with that power being sold into the Southwest Power Pool's ("SPP") energy market, since Atchison is connected to the transmission system under SPP's functional control. Those power sales, along with those for the High Prairie Renewable Energy Center, are included in the Company's RESRAM.

1 either a net off-system sale or a net power purchase for that hour, depending on whether the volume 2 of total sales exceeds total purchases (net off-system sale) or if the volume of total purchases 3 exceeds total sales (net power purchase). A \$1 increase in off-system sales revenue has the same 4 impact on NBEC as a \$1 reduction in purchased power expense (and vice versa). 5 IV. **PRODUCTION COST MODEL INPUTS** 6 Q. What load data assumptions were used in the PowerSIMM model run used for calculating a normalized level of net fuel costs? 7 8 We used normalized hourly loads, including applicable losses, developed from the A. 9 actual loads for the test year of April 1, 2021 through March 31, 2022. 10 Q. What operational data assumptions were used in the PowerSIMM model run 11 used for calculating a normalized level of net energy costs? 12 A. Operational data assumptions reflecting the characteristics of the generating units 13 were used for this purpose, including: unit input/output curve, which calculates the fuel input 14 required for a given level of generator output; unit minimum and maximum load levels; ramp rates; 15 minimum up and down times; unit commit status; identification of specific fuel used for startup 16 and generation, including the ratio of those fuels if more than one for a given unit; emission 17 limitations, and fuel blending. Schedule MJP-D1 lists the operational data used for this review. 18 Q. Are there any changes of note in the unit operating characteristics included in 19 the PowerSIMM model as compared to the modeling submitted in the Company's last 20 electric rate review? 21 A. Yes. 22 First, all units of the Meramec Energy Center have been removed from the modeling to 23 reflect its retirement by end of year 2022.

1	Secondly, the model assumptions reflect limits on the output of its combustion turbines
2	sited in the State of Illinois to conform to the emission limits in that State's Climate and Equitable
3	Jobs Act ("CEJA"), enacted in September 2021.
4	The model assumptions also reflect more limited production of the Rush Island Energy
5	Center to reflect the reduced operations explained in witness Meyer's direct testimony.
6	Additionally, unit ramp rates, heat rates and minimum load levels were updated to reflect
7	current operating practice.
8	It should be noted that the normalized output of the High Prairie and Atchison County
9	Renewable Energy Centers have been excluded from the production cost model, as the revenue
10	associated with these facilities are excluded from NBEC. Instead, the normalized revenues
11	associated with these resourced is included in the base amounts established for the RESRAM.
12	Q. What unit availability data assumptions were used in the PowerSIMM model
12 13	Q. What unit availability data assumptions were used in the PowerSIMM model run used for calculating a normalized level of net energy costs?
13	run used for calculating a normalized level of net energy costs?
13 14	run used for calculating a normalized level of net energy costs?A. Unit availability data assumptions were developed to annualize planned outages,
13 14 15	 run used for calculating a normalized level of net energy costs? A. Unit availability data assumptions were developed to annualize planned outages, unplanned outages and de-ratings. Planned outages are major unit outages that are scheduled in
13 14 15 16	 run used for calculating a normalized level of net energy costs? A. Unit availability data assumptions were developed to annualize planned outages, unplanned outages and de-ratings. Planned outages are major unit outages that are scheduled in advance. The length of the scheduled outage depends on the type of work being performed.
13 14 15 16 17	 run used for calculating a normalized level of net energy costs? A. Unit availability data assumptions were developed to annualize planned outages, unplanned outages and de-ratings. Planned outages are major unit outages that are scheduled in advance. The length of the scheduled outage depends on the type of work being performed. Planned outage intervals vary due to factors such as type of unit, unplanned outage rates during
 13 14 15 16 17 18 	 run used for calculating a normalized level of net energy costs? A. Unit availability data assumptions were developed to annualize planned outages, unplanned outages and de-ratings. Planned outages are major unit outages that are scheduled in advance. The length of the scheduled outage depends on the type of work being performed. Planned outage intervals vary due to factors such as type of unit, unplanned outage rates during the maintenance interval, and plant modifications. A normalized planned outage length was used
 13 14 15 16 17 18 19 	 run used for calculating a normalized level of net energy costs? A. Unit availability data assumptions were developed to annualize planned outages, unplanned outages and de-ratings. Planned outages are major unit outages that are scheduled in advance. The length of the scheduled outage depends on the type of work being performed. Planned outage intervals vary due to factors such as type of unit, unplanned outage rates during the maintenance interval, and plant modifications. A normalized planned outage length was used for this rate review, as reflected in Schedule MJP-D2. The lengths of the planned outage

fueling outages: numbers 21 through 24. The unit availability assumptions for the Rush Island
 Energy Center units are explained later in my testimony.

In addition to the length of the planned outage, the time period when the planned outage occurs is also important. The planned outage schedule assumption used in modeling Ameren Missouri's generation with the PowerSIMM model in this proceeding is shown in Schedule MJP-D3. This assumption was developed in consideration of historical practices and market prices, whereby such outages are generally scheduled in the spring and fall, when the negative financial consequences of removing a unit from service are lower.

9 Unplanned outages are short outages when a unit is completely off-line, which are not 10 scheduled in advance. These outages typically last from one to seven days and occur between the 11 planned outages. Unplanned outages by definition are unforeseen events whose timing cannot be 12 predicted, and thus are modeled as random events. The normalized unplanned outage rate 13 assumption for this proceeding is based on a six-year average of unplanned outages that occurred 14 between April 1, 2016 and March 31, 2022, and is reflected in Schedule MJP-D4. It should be 15 noted that the extended forced outage at the Callaway Nuclear Energy Center immediately 16 following the late 2020 refueling was excluded, as that was considered to be a non-recurring event.

A unit de-rate occurs when a generating unit cannot reach its maximum output due to operational considerations. The magnitude of the de-rating varies based on the operating issues involved. As with the unplanned outage assumption, these are unforeseen events whose timing cannot be predicted, and thus are modeled as random events. The de-rate assumption used in this case is based on a six-year average of de-rates that occurred between April 1, 2016 and March 31, 2022, and is reflected in Schedule MJP-D5.

- Q. What fuel data assumptions were used in the PowerSIMM model run used for
 calculating a normalized level of net energy costs?
- 3 A. Ameren Missouri's units burn four general types of fuel: nuclear fuel, coal, natural 4 gas (including landfill gas), and oil. The specific fuels (and the applicable ratio of those fuels if 5 more than one) used by each generating unit for both normal generation and unit startup are 6 identified in the model, and an incremental and average cost assumption is developed for each. 7 The incremental cost assumptions are used by the model in its dispatch logic—determining when 8 and at what output level a specific unit should run. Average costs represent the accounting costs 9 incurred for the fuel consumed by generation and are used to calculate the fuel cost for each 10 generating unit:
- The natural gas and oil price assumptions are based on the average daily spot
 market prices for the 36-month period ending March 31, 2022, adjusted to remove
 the impact of Winter Storm Uri;
- The nuclear fuel cost assumption is based on the average nuclear fuel cost
 associated with Callaway Refuel 24;
- The incremental coal cost assumptions are based on the average spot market prices
 for the 36-month period ending March 31, 2022; and
- The average (accounting) coal cost assumptions reflect coal and transportation
 costs based upon coal and transportation prices that will be effective as of
 January 1, 2023.
- We have not included a cost assumption for landfill gas, as those costs represent Renewable
 Energy Standard ("RES") compliance costs and are accounted for in the rebase of operations and

maintenance costs reflected in the RESRAM, as addressed by Company witness Lansford in his
 direct testimony.

3 Q. What market energy price assumptions were utilized for the production cost 4 modeling?

A. Consistent with past practice, the price assumptions used to model dispatch were the average hourly energy prices for the 36-month period ending December 21, 2022, adjusted to remove the impact of Winter Storm Uri. These prices averaged \$33.30 per MWh, on an aroundthe-clock basis. The energy prices for the period of January 1, 2020 through March 31, 2022 are the actual generation weighted average day-ahead locational marginal LMPs in the MISO energy market for those Ameren Missouri generating units. Given that the Meramec Energy Center units will be retired in 2022, they were excluded from this calculation.

Consistent with past practice, the energy prices for the remaining months through the trueup are basis-adjusted forward energy prices, which serve as a reasonable proxy until they are replaced with actual generation weighted energy prices as part of the true-up in this case.

12 Q. Please explain why you chose to utilize day-ahead LMPs at the generator 13 nodes.

A. The use of the day-ahead LMPs is consistent with longstanding practice. As mentioned before, the PowerSIMM model simulates the dispatch of the Company's generators based on a series of inputs. This dispatching logic is similar to the one followed by the MISO to determine its day-ahead commitment of all of the generators in its footprint. The result of the MISO process is, among other things, the determination of individual LMPs for each generator. It is most appropriate to use the historical prices applicable to Ameren Missouri generation for the day-ahead markets since day-ahead prices determined the generation levels that produced the vast

1 majority of Ameren Missouri's historic net off-system energy sales. In fact, day-ahead prices 2 determine about 97% of Ameren Missouri's generation commitment and dispatch.

3 Q. Please describe the emission limitations placed upon the Illinois based CTGs 4 by CEJA.

5 A. In September 2021, the State of Illinois enacted CEJA. Provisions of this Act limit 6 the level of emissions that a specific generating unit can produce over any rolling twelve-month 7 period of time to no more than the annual average for that same emission, produced by that same 8 unit, over Calendar Years 2018-2020.

9

Q. How did you model these limits?

10 Given that emissions are directly correlated to unit output, we modeled these limits A. 11 by placing maximum MWh limits on each individual unit corresponding to the annual average for 12 the 2018-2020 time period that was used to establish the CEJA limits. These annual limits were 13 then allocated to individual months.

14

Q. Please describe how the operating limits placed upon the Rush Island Energy 15 Center have been modeled.

16 A. The expected operation of the Rush Island Energy Center is described in the Direct 17 Testimony of witness Meyer. Our goal is to emulate the expected operations of the station.

18 To reasonably emulate those expected operations, for those months where the units are not 19 expected to operate (October, November, March, April and May), the units' output was limited to 20 zero.

21 For those months where the expected operations indicate that the units would be expected 22 to operate, the unit maximums were adjusted to match a reasonably expected operating profile. 23 For January, February and December, one unit was set to a maximum of 602 MW and the second

unit to 300. For the summer months of June, July, August and September, these limits were set to
 300 for both units.

Attempting to model forced outage rates on units whose output is already significantly restricted with both maximum generation constraints, and limits to their economic maximums, is likely to distort the expected output. As such, forced outage rates for these units were set to zero.

6 I believe that this method of modeling the Rush Island units provides a reasonable 7 representation of the net output, fuel cost and associated off-system sales revenue for these units 8 during the period for which rates will be in effect. The results of our modeling also conform with 9 the operations described by witness Meyer. We will update the modeling as part of the true-up to 10 incorporate the operating parameters established by the court.

- Q. Are there costs and revenues other than those established by the PowerSIMM
 production cost model which should be considered in the determination of NBEC?
- A. Yes. In addition to the real-time load and generation deviation and RT RSG MWP margin adjustments discussed below, there are other costs and revenues that should be considered in determining NBEC, which are addressed in witness Meyer's and witness Lansford's direct testimonies.

Q. Please list the items that are modeled in PowerSIMM that should be trued-up
using data as of the end of the anticipated true-up date in this rate review.

- A. The following PowerSIMM input assumptions should be updated as of theapplicable true-up date:
- Ameren Missouri's normalized retail kilowatt-hour ("kWh") sales and distribution
 line losses;
- Coal, nuclear, natural gas, and oil costs;

1	•	Unit availability factors, including Callaway refueling;
2	•	Energy prices;
3	•	Known and measurable changes to unit operating characteristics, if any;
4	•	Known and measurable changes in emission limitations; and
5	•	Known and measurable changes in unit operation limitations for the Rush Island
6		Energy Center, if any.
7	V. REA	AL-TIME LOAD AND GENERATION DEVIATION and REAL-TIME RSG
8		MAKE WHOLE PAYMENT MARGIN ADJUSTMENTS
9	Q.	Please describe how the real-time load and generation deviation was
10	calculated.	
11	А.	The deviation was calculated in a manner consistent with that used in File No. ER-
12	2021-0240, A	Ameren Missouri's last rate review, using data for the 36 months ending March 31,
13	2022. Consis	tent with past practice, the combustion turbine generators ("CTGs") and the Taum
14	Sauk Energy	Center were excluded. Additionally, all units at the Meramec Energy Center were
15	excluded, as	they are being retired this year.
16	Consi	stent with past practice, we intend to update this amount as part of the true-up process.
17	Q.	Please describe how the RT RSG MWP margins were calculated?
18	А.	These margins were calculated in a manner consistent with that used in the true-up
19	in File No. E	R-2021-0240, Ameren Missouri's last rate review, using market settlement and fuel
20	data for the	36 months ending March 31, 2022, with the exception that Meramec CTG1 and
21	Meramec CT	G2 were excluded due to retirements.
22	Consi	stent with past practice, we intend to update this amount as part of the true-up process.

1	VI.	PERCENTAGE OF TRANSMISSION COST TO BE INCLUDED IN FAC							
2	Q.	With respect to transmission charges recorded in Account 565 and							
3	transmissio	n revenues recorded in Account 456.1, have you determined what portion of these							
4	charges sho	uld be included in the determination of NBEC used to determine the Base Factors							
5	("BF") in F	Rider FAC?							
6	А.	Yes. I have determined that amount to be 4.97%. Those amounts excluded from the							
7	calculation of NBEC and BF should be included in base rates.								
8	Q.	Is this the same percentage that should be utilized to determine the portion of							
9	total transn	nission charges to be included in the FAC in any given period?							
10	А.	Yes.							
11	Q.	How was the 4.97% determined?							
12	А.	4.97% is the result obtained by dividing the total MWh of net purchased power in							
13	the producti	on cost model run for this case by the total load assumption used in that model. This							
14	calculation i	s consistent with that utilized in the true up for File No. ER-2014-0258, and the true							
15	up in each ra	ate review since.							
16 V	TI. MA	ARKET ENERGY AND CAPACITY SALES REVENUES TO BE INCLUDED							
17		IN THE RESRAM AND EXCLUDED FROM THE FAC							
18	Q.	What is the level of market energy sales revenue that is appropriate to include							
19	in the base	amount established for the RESRAM?							
20	А.	I have determined that the normalized market energy sales revenues to be used in							
21	calculating	the base amount for the RESRAM are \$73.1 million. This value was obtained by							
22	multiplying	the profiled hourly unit output for the High Prairie and Atchison Renewable Energy							

- 1 Centers by the applicable hourly LMPs. These LMPs are the same LMPs that were used in our 2 production cost modeling.
- 3 This same amount is excluded from the calculation of NBEC as required by Rider FAC.
- 4

- Q. What is the level of capacity sales revenue that is appropriate to include in the
- 5 base amount of the RESRAM?
- 6 A. I have determined that the normalized capacity sales revenues to be used in 7 calculating the base amount of the RESRAM to be \$1 million. This value was determined by taking 8 the UCAP value for the High Prairie Renewable Energy Center for the most recent MISO capacity 9 auction and multiplying that value by the average clearing price for the last 3 MISO auctions, for 10 zone 5, where the facility is located.
- 11 This same amount is excluded from the calculation of NBEC as required by Rider FAC.

12 Q. Why did you not include a capacity revenue value for the Atchison Renewable 13 **Energy Center?**

14 A. Atchison is located in the Southwest Power Pool, which does not have a capacity 15 market. Ameren Missouri has not received any capacity revenues related to this facility since its in-service date. 16

- 17 Q. Does this complete your direct testimony?
- 18 A. Yes, it does.

								10	put / Ou
				_		<u>Minimum</u>			
	Minimarum	12 Manth Ave		Ramp	Minimum	Down Time			
	<u>Minimum -</u> Net MW	12 Month Avg Net MW	Must Run	Rate	Up Time Hours	Time Hours	Primary Fuel Type	EDE	
Unit Name			Yes	<u>IVIVV/FII</u>	<u></u>	Hours 6	Nuclear	<u>EDF</u> 1.000	<u>A</u>
Callaway Labadie 1	1,190 240	1,217 607	No	480	72	72	PRB Coal	0.976	729.3
Labadie 2	240	607	No	480	72	72	PRB Coal	0.976	840.6
Labadie 3	240	607	No	300	72	72	PRB Coal	0.976	866.4
Labadie 4	240	607	No	480	72	72	PRB Coal	0.976	727.5
Rush 1	225	602	No	300	72	72	PRB Coal	0.949	667.3
Rush 2	225	602	No	300	72	72	PRB Coal	0.949	####
Sioux 1	200	430	No	240	72	72	PRB/IL Coal	1.035	514.9
Sioux 2	200	430	No	240	72	72	PRB/IL Coal	1.035	688.0
Audrain CT 1	62	82	No		2	2	Natural Gas	1.000	172.9
Audrain CT 2	62	82	No		2	2	Natural Gas	1.000	172.9
Audrain CT 3	62	82	No		2	2	Natural Gas	1.000	172.9
Audrain CT 4	62	82	No		2	2	Natural Gas	1.000	172.9
Audrain CT 5	62	82	No		2	2	Natural Gas	1.000	172.9
Audrain CT 6	62	82	No		2	2	Natural Gas	1.000	172.9
Audrain CT 7	62	82	No		2	2	Natural Gas	1.000	172.9
Audrain CT 8	62	82	No		2	2	Natural Gas	1.000	172.9
Fairgrounds CT	60	60	No		2	1	Oil	1.000	179.0
Goose Creek CT 1	50	81	No		2	2	Natural Gas	1.000	259.1
Goose Creek CT 2	50	81	No		2	2	Natural Gas	1.000	259.1
Goose Creek CT 3	50	81	No		2	2	Natural Gas	1.000	259.1
Goose Creek CT 4	50	81	No		2	2	Natural Gas	1.000	259.1
Goose Creek CT 5	50	81	No		2	2	Natural Gas	1.000	259.1
Goose Creek CT 6	50	81	No		2	2	Natural Gas	1.000	259.1
Kinmundy CT 1	77	112	No		2	4	Natural Gas	1.000	269.6
Kinmundy CT 2	77	112	No		2	4	Natural Gas	1.000	269.6
Meramec CT 1									
Meramec CT 2									
Mexico CT	60	60	No		1	1	Oil	1.000	193.9
Moberly CT	60	60	No		1	1	Oil	1.000	175.3
Moreau CT	60	60	No		1	1	Oil	1.000	144.5
Peno Creek CT 1	51 51	51	No		1 1	1	Natural Gas	1.000	117.8 117.8
Peno Creek CT 2 Peno Creek CT 3	51	51 51	No No		1	1	Natural Gas Natural Gas	1.000 1.000	117.8
Peno Creek CT 3	51	51	No		1	1	Natural Gas	1.000	117.8
Pinkneyville CT 1	42	42	No		1	1	Natural Gas	1.000	91.1
Pinkneyville CT 2	42	42	No		1	1	Natural Gas	1.000	91.1
Pinkneyville CT 3	42	42	No		1	1	Natural Gas	1.000	91.1
Pinkneyville CT 4	42	42	No		1	1	Natural Gas	1.000	91.1
Pinkneyville CT 5	39	39	No		1	1	Natural Gas	1.000	174.0
Pinkneyville CT 6	39	39	No		1	1	Natural Gas	1.000	174.0
Pinkneyville CT 7	39	39	No		1	1	Natural Gas	1.000	174.0
Pinkneyville CT 8	39	39	No		1	1	Natural Gas	1.000	174.0
Raccoon Creek CT 1	42	82	No		2	2	Natural Gas	1.000	286.2
Raccoon Creek CT 2	42	82	No		2	2	Natural Gas	1.000	286.2
Raccoon Creek CT 3	54	82	No		2	2	Natural Gas	1.000	286.2
Raccoon Creek CT 4	42	82	No		2	2	Natural Gas	1.000	286.2
Venice CT 2	52	52	No		1	1	Natural Gas	1.000	120.8
Venice CT 3	130	178	No		2	4	Natural Gas	1.000	535.0
Venice CT 4	130	178	No		2	4	Natural Gas	1.000	535.0
Venice CT 5	77	112	No		2	4	Natural Gas	1.000	230.0
Maryland Hts (Fred Weber) Ofallon	10 Modeled using	8.0	Yes		1	1	Landfill Gas	1.000	
Lambert BJC	Modeled using Modeled using Modeled using	fixed profile							
High Prairie Atchison	Modeled using Modeled using	fixed profile							
Osage	Modeled using								
Keokuk	Modeled using								
Taum Sauk 1		200	No				Pumped Storage		
Taum Sauk 2		200	No				Pumped Storage		

					Minimum	-		
			Ram	Minimum	Down			
	Minimum -	12 Month Avg	Rate	Up Time	Time			
<u>Unit Name</u>	Net MW	Net MW	Must Run MW/H	r <u>Hours</u>	<u>Hours</u>	Primary Fuel Type	EDF	<u>A</u>

Note: #1 Input Output equation: mmbtu = (A + B x Pnet + C x Pnet^2) x EDF, where Pnet = Net power level

NORMALIZED PLANNED OUTAGES

	Mar-Dec						Jan-Feb			
Actual	2016	2017	2018	2019	2020	2021	2022	Total	Total	Total
	<u>(hrs)</u>	<u>(days)</u>	<u>(annualized days)</u>							
Labadie 1	160		169	2,215				2,544		
Labadie 2	757		70	2,137				2,964		
Labadie 3	7	1,207	2,724			438		4,375		
Labadie 4	1,873					605		2,479		
Labadie 1-4								12,362	515	86
Rush Island 1			2,026		664	700		3,390		
Rush Island 2	2,355		455		536			3,346		
Rush 1-2								6,735	281	47
Sioux 1	2,378				1,724	695		4,798		
Sioux 2		1,947			639	1,561		4,148		
Sioux 1-2								8,946	373	62

Callaway

	Refuel Days
Refuel 21	38.5
Refuel 22	60.0
Refuel 23	47.6
Refuel 24	55.8
Average	50.5
RC PO Year 12/18	PO Days 33.6

* Annualized Refuel Outage Length = Avg Days / Refuel Outage x 2/3

ws		JAN	FEB	MA		APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
NS		1 8 15 22	29 5 12 19	26 5 12	19 26	2 9 16 23	30 7 14 21	28 4 11 18 29	5 2 9 16 23	30 6 13 20 27	3 10 17 24	1 8 15 22	29 5 12 19 26	3 10 17
	CAL 1											Callaway 1		
	RUSH 1											Rush 1		
	RUSH 2													
	LAB 1			Lab	adie 1									
	LAB 2													
	LAB 3													
	LAB 4													
	SX 1					Sioux 1								
	SX 2													
		1 8 15 22	29 5 12 19	26 5 12	19 26	2 9 16 23	30 7 14 21	28 4 11 18 2	5 2 9 16 23	30 6 13 20 27	3 10 17 24	1 8 15 22	29 5 12 19 26	3 10 17
		JAN	FEB	MA	ч	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC

Rush 1 Oct 7 1AM Nov 22 7:33	46.8 PM	Days	L1 R1 S1	86 12 47 7 62 9
Lab 1 Mar 11 1AM Jun 5 9:18P	85.8	Days		
Sx 1 Apr 1 1AM	62.1	Days		

62.1 Jun 2 3:57AM

Normalized Unplanned Outage Rates - Full Outages

	Mar-Dec						Jan-Feb	Weigted
	<u>2016</u>	<u>2017</u>	<u>2018</u>	<u>2019</u>	<u>2020</u>	<u>2021</u>	2022	Average
Callaway 1	0.0%	3.6%	0.0%	0.2%	4.5%	0.0%	5.7%	1.6%
Labadie 1	11.1%	5.1%	3.7%	1.4%	2.5%	5.4%	0.0%	4.7%
Labadie 2	4.9%	7.1%	6.0%	5.0%	2.7%	4.7%	10.5%	5.2%
Labadie 3	13.6%	6.2%	5.5%	2.8%	5.5%	7.2%	0.0%	6.6%
Labadie 4	1.7%	5.4%	5.5%	6.7%	10.0%	6.3%	5.2%	6.1%
Rush Island 1	5.6%	5.6%	5.6%	7.9%	5.5%	5.3%	8.7%	5.9%
Rush Island 2	4.2%	6.2%	1.2%	9.1%	4.1%	8.8%	3.7%	5.6%
Sioux 1	10.8%	11.1%	15.0%	12.9%	11.2%	16.1%	10.0%	12.9%
Sioux 2	10.2%	8.6%	6.4%	32.0%	6.8%	3.5%	0.8%	12.4%

Normalized Derating

Callaway 1	Mar-Dec <u>2016</u> 1.5%	<u>2017</u> 1.3%	<u>2018</u> 0.4%	<u>2019</u> 1.2%	<u>2020</u> 0.4%	<u>2021</u> 0.1%	Jan-Feb <u>2022</u> 0.2%	Weighted <u>Average</u> 0.8%
Labadie 1	1.4%	4.0%	2.0%	2.1%	3.0%	3.1%	0.5%	2.6%
Labadie 2	1.3%	1.6%	1.5%	4.2%	1.6%	0.4%	2.9%	1.8%
Labadie 3	2.8%	1.7%	1.9%	1.9%	3.4%	1.6%	0.6%	2.2%
Labadie 4	1.1%	1.7%	1.2%	4.7%	2.7%	1.3%	3.6%	2.2%
Rush Island 1	4.7%	3.8%	2.1%	2.6%	1.7%	2.7%	2.0%	2.9%
Rush Island 2	10.0%	1.7%	1.6%	2.3%	0.7%	2.9%	2.4%	3.0%
Sioux 1	0.1%	1.1%	0.5%	1.1%	2.8%	4.8%	0.9%	1.7%
Sioux 2	3.3%	3.5%	0.2%	1.5%	2.3%	2.4%	4.1%	2.2%

BEFORE THE PUBLIC SERVICE COMMISSION OF THE STATE OF MISSOURI

)

)

In the Matter of Union Electric Company d/b/a Ameren Missouri's Tariffs to Adjust) Its Revenues for Electric Service.

Case No. ER-2022-0337

AFFIDAVIT OF MARK J. PETERS

STATE OF MISSOURI)) ss **CITY OF ST. LOUIS**)

Mark J. Peters, being first duly sworn states:

My name is Mark J. Peters, and on my oath declare that I am of sound mind and lawful

age; that I have prepared the foregoing *Direct Testimony*; and further, under the penalty of perjury,

that the same is true and correct to the best of my knowledge and belief.

/s/ Mark J. Peters Mark J. Peters

Sworn to me this 1st day of August, 2022.