Exhibit No.: Issues:

Witness:
Exhibit Type:
Sponsoring Party:
Case No.:
Date:

103 NP
Return on Equity, Capital Structure

Pauline M. Ahern
Surrebuttal PUBLIC
Missouri-American Water Company
WR-2010-0131
SR-2010-0135
May 6, 2010

MISSOURI PUBLIC SERVICE COMMISSION

CASE NO. WR-2010-0131
SR-2010-0135

SURREBUTTAL TESTIMONY

OF

PAULINE M. AHERN
ON BEHALF OF
MISSOURI-AMERICAN WATER COMPANY

MAWC Exhibit NoLO3NP
Date 5-17-10 Reporter 4F
File NoLR-2010-0131

BEFORE THE PUBLIC SERVICE COMMISSION

OF THE STATE OF. MISSOURI

IN THE MATTER OF MISSOURI-AMERICAN ;
WATER COMPANY FOR AUTHORITY TO
FILE TARIFFS REFLECTING INCREASED ;
RATES FOR WATER AND SEWER
SERVICE

IN THE MATTER OF MISSOURI-AMERICAN WATER COMPANY FOR AUTHORITY TO FILE TARIFFS REFLECTING INCREASED RATES FOR WATER AND SEWER

CASE NO. SR-2010-0135 SERVICE

AFFIDAVIT OF PAULINE M. AHERN

Pauline M. Ahern, being first duly sworn, deposes and says that she is the witness who sponsors the accompanying testimony entitled "Surrebuttal Testimony of Pauline M. Ahern"; that said testimony and schedules were prepared by her and/or under her direction and supervision; that if inquires were made as to the facts in said testimony and schedules, she would respond as therein set forth; and that the aforesaid testimony and schedules are true and correct to the best of her knowledge.

Pauline M. Ahern

State of New Jersey
County of Burlington
SUBSCRIBED and sworn to Before me this 20^{\wedge} day of \qquad 2010.

My commission expires:

SHARON M. KEEFE
NOTARY PUBLIC OF NEW JERSEY
MY COMMISSION EXPIRES JULY 9, 2011

TABLE OF CONTENTS

Page No.

I. INTRODUCTION 1
II. SUMMARY 1
III. RESPONSE TO STAFF WITNESS DAVID MURRAY'S COMMENTS 2

I. INTRODUCTION

Q. Please state your name, occupation and business address.
A. My name is Pauline M. Ahern and I am a Principal of AUS Consultants. My business address is 155 Gaither Drive, Suite A, Mount Laurel, New Jersey 08054.
Q. Are you the same Pauline M. Ahern who previously submitted direct and rebuttal testimonies in this proceeding?
A. Yes, I am.
Q. What is the purpose of this testimony?
A. The purpose of this testimony is to respond to the rebuttal testimony of David Murray, witness for the Missouri Public Service Commission Staff (the Staff). I will respond his criticisms of my recommended common equity cost rate.
Q. Have you prepared schedules in support of your surrebuttal testimony?
A. Yes, I have. They have been marked for identification as Schedules PMA-24 and PMA-25.

II. SUMMARY

Q. Please briefly summarize your testimony.
A. This testimony focuses upon Mr. Murray's misplaced criticisms of my recommended common equity cost rate.

With regard to common equity cost rate, I will first clarify Mr. Murray's misstatement as to how I developed my recommended common equity cost rate. In addition, I will reiterate evidence from my direct testimony
which supports the difference in the results of the application of the Discounted Cash Flow Model (DCF), Risk Premium Model (RPM), Capital Asset Pricing Model (CAPM) and Comparable Earnings Model (CEM). I will also demonstrate why Mr. Murray's use of third party analyses to support his recommended overall rate of return and common equity is unfounded. I will show that his criticisms of my methodologies, specifically: 1) the use of multiple cost of common equity cost rate models; 2) the use of forecasted yields in the RPM and CAPM; 3) the use of the arithmetic mean equity risk premium in the RPM and CAPM; 4) the use of the income return on longterm U.S. Treasury securities in the CAPM; 5) the use of the Empirical CAPM (ECAPM); and 6) the use of the CEM, are misplaced. Consequently, Mr. Murray's common equity cost rate recommendation is contrary to regulatory consensus and common sense. The cost rate for common equity capital is not, and should not be, the result of a mechanical application of essentially one cost of equity model.

III. RESPONSE TO STAFF WITNESS DAVID MURRAY'S COMMENTS

Q. On page 11, lines 18 through 22, of his rebuttal testimony Mr. Murray claims that you "calculated a simple average of the cost of equity estimation methodologies" for both your water and natural gas utility proxy groups. Please comment.
A. Mr. Murray is incorrect. In arriving at an indicated common equity cost rate for each proxy group, I not only evaluated the "simple average" or mean, but
also the midpoint of the ranges of common equity cost rates as well as the median of the common equity cost rates developed by each methodology.
Q. On page 12, lines 2 through 8 , of his rebuttal testimony, Mr. Murray makes the assertion that the difference in your indicated costs of common equity for the water utility proxy group relative to the natural gas utility proxy group is due to "inappropriate inputs . . . rather than actual cost of [common] equity differences in the capital markets." Please comment.

First, the inputs for each model were identical for each group so any bias in the results due to "inappropriate inputs" perceived by Mr. Murray affects the results of the application of the cost of common equity models to both proxy groups. The only difference was that I did not rely upon the CEM results of 21.00% for the natural gas utilities for reasons explained at page 65, lines 6 through 10 of my direct testimony, namely that 21.00% is an outlier when compared with the CEM results for the water utility proxy group and the results of the application of the DCF, the RPM and the CAPM.

Nevertheless, there is ample evidence in my direct testimony as to why the capital markets may require a higher cost of common equity for water utilities than for natural gas utilities. Water companies are approximately four times as capital intensive as natural gas distribution companies. At discussed on page 8 , line 34 through page 9 , line 2 of my direct testimony, it took $\$ 3.44$ of net utility plant on average for the water industry to produce $\$ 1.00$ in operating revenues in 2008 or roughly four times
the $\$ 0.89$ of net utility plant per $\$ 1.00$ in operating revenues for the natural gas distribution industry. In addition, as discussed on page 11, lines 24 through 27 of my direct testimony, depreciation rates for the water utility industry as a whole of 2.5% in 2008 are approximately 63% those of the natural gas distribution industry as a whole of 4.0%. Consequently, the greater capital intensity and lower depreciation rates of water utilities presents significant challenges in obtaining needed capital to finance the replacement of aging infrastructure and to meet the demands of customer growth. The lower depreciation rates, as one of the principal sources of internal cash flows for all utilities, mean that water utility depreciation as a source of internaliy generated cash is far less than for the other utility industries. In view of the foregoing, water utilities face greater risk than do the energy utilities due to inflation which results in a higher replacement cost per dollar of net plant than for other types of utilities.

Also, the smaller size of water utilities, as represented by my water utility proxy group, relative to that of gas utilities, as represented by my natural gas distribution utility proxy group, indicates greater risk for water utilities, because, as discussed in detail in both my direct testimony at pages 14 through 18 and again in my rebuttal testimony at pages 27 through 28, all else equal, size has a bearing on risk and must be reflected in a recommended common equity cost rate. As shown in Table 3 on page 16 of my direct testimony the proxy group of gas distribution companies, at $\$ 1.464$
billion in market capitalization, is nearly twice as large on average as the proxy group of water companies at $\$ 769.035$ million.

The proxy group of water utilities also exhibits greater average systematic, i.e. market or non-diversifiable, risk than the proxy group of gas distribution companies as demonstrated by the water utility average / median beta of $0.78 / 0.80$ compared with the average / median beta of the gas distribution proxy group of $0.66 / 0.65$. Furthermore, as shown on Schedule PMA-11, page 2, the average Moody's bond rating of the water utility proxy group is A2 while that of the gas utility proxy group is A3 and the average Standard \& Poor's (S\&P) bond rating is A+ for the water group and A for the gas distribution group, indicating slightly greater bond default risk. In addition, while both groups share an average "Excellent' business risk profile as assigned by S\&P, the water group's financial risk profile is "Intermediate", while that of the gas utility group is on average "Significant".

These factors all provide support for "actual cost of [common] equity differences in the capital markets and the differences in the indicated common equity cost rates resulting from my applications of the DCF, RPM, CAPM and CEM are not "a function of inappropriate inputs."
Q. On page 13, line 15 through page 17 , line 5 , of his direct testimony, Mr. Murray discusses your DCF application. Please comment.
A. Mr. Murray's discussion is based upon a criticism of the use of analysts' earnings per share (EPS) long-term growth forecasts which I utilized in my

DCF application. He reiterates the concerns discussed in his direct testimony relative to the sustainability of such growth rates by comparing them with average growth in the U. S. economy as measured by projected GDP growth. My rebuttal testimony already addressed the fact that U.S. GDP growth is an average of the growth of the U.S. economy as a whole, with some sectors / industries growing at a faster pace and some at a slower pace as discussed on page 12, line 12 through page 13 , line 11 and demonstrated on Schedule PMA-15.

Also, as noted in my rebuttal testimony, at page 11, line 17 through page12, line 10 , Staff did not voice such concerns about analysts' projected EPS growth rates in previous MAWC rate cases, when projected growth in GDP was also lower than the then current analysts' EPS growth rate projections.

Finally, Mr. Murray's rebuttal testimony is silent about the support provided in my direct testimony that earnings expectations based upon analysts' earnings growth forecasts have a significant influence on market prices and, therefore, appreciation of the "growth" experienced by investors. The accuracy or sustainability of such forecasts of EPS growth is irrelevant after the fact. What is relevant is that they reflect widely held expectations and are influential and consistent with current stock price levels. It is investor expectations which are being reflected in market prices. As Morin notes ${ }^{1}$ "it is the consensus forecast that is embedded in price and therefore in required
return, and not the future as it will turn out to be." In addition, my direct testimony on pages 38 through 41 presents academic / empirical support for the superiority of analysts' EPS growth forecasts.
Q. On page 16, lines 3 through 21, of his direct testimony, Mr. Murray discusses research reports he reviewed relative to "long-term expected sustainable growth rates for investments in regulated water utility companies." Please comment.
A. Given that the superiority of analysts' EPS long-term growth forecasts for use in a DCF analysis has been demonstrated academically and empirically as discussed above and my direct testimony relative to their influence on investors' pricing decisions, it is both interesting and relevant that the Macquarie Research (Macquarie) report provided in reṣponse to Staff Data Request No. 107-R97 and provided as Attachment B contradicts Mr. Murray's rebuttal testimony in distinct ways.

First, on Attachment B-1, Macquarie states that it "believe[s] that an 8-10\% EPS CAGR [compound annual growth rate] is achievable longer term." Specifically, for American Water Works, Macquarie notes on Attachment B-14 that it expects a 14\% EPS CAGR through 2012 and longterm EPR growth at 7-10\%.

Second, stated on Attachment B-6 relative to the consolidation in the water utility industry which Mr. Murray "believes" is a "reason for near-term higher expected growth rates in both EPS and DPS for water utilities", as he
states on page 14, lines 13-17, Macquarie "warn[s] that historically large acquisitions proved detrimental to earnings growth and realized ROEs of US water utilities" due in large part to regulatory lag and the "serious drag" it places on earnings.

Third, the November 24, 2008 Society Generale equity research report provided in response to Staff Data Request No. 107-R104 provided by Mr. Murray as Attachment D-1, while providing a 7.5% cost of common equity estimate (without any discussion of the underiying assumptions or description of how it was derived) nevertheless, states on Attachment D-19, that after 2009, "we expect [dividend] payout to stabilize at around 70%, which should make possible a 12% increase in dividend p. a."' (emphasis added)

In view of all the foregoing, Mr. Murray's criticism of the use of analysts' EPS long-term growth forecasts in a DCF analysis is unfounded, unsupported and should be disregarded.
Q. At page 17, line 19 through page 19, line 17 of his rebuttal testimony Mr . Murray discusses MAWC's response to Staff Data Request No. 109. Please comment.
A. 'MAWC's response to Staff Data Request Nos. 109-R1 and 109-R2 were confidential valuation studies conducted by Duff \& Phelps, LLC (D\&P) as of November 30, 2008 and November 30, 2009. It is inappropriate to rely upon D\&P's conclusions to test the reasonableness of either Mr. Murray's or my

[^0]
betas, Morin ${ }^{3}$ states:
The fundamental beta of a security is the weighted average of its relative response coefficients, each weighted by the proportion of total variance in market returns due to that specific event. To compute fundamental beta, it is necessary to consider the sources of economic events, to project the reaction of the security to such moves, and to assign probabilities to the likelihood of each possible type of economic event.

To forecast fundamental betas, Rosenberg uses a multiple regression equation similar to. Equation 3-12, but with considerably more variables. A vast array of variables on market variability, earnings variability, financial risk, size growth, and a multitude of company and industry characteristics is used to capture differences between betas of various companies and industries. Fundamental betas, which are commercially available from the firm of BARRA, are of the form:
$B=a_{0}+a_{1}$ Factor $_{1}+a_{2}$ Factor $_{2}+a_{3}$ Factor $_{3}+\ldots$ etc. $(3-13)$
The weightings are based on historical estimates. The advantage of the approach is that it uses fundamental company data that are related to risk. The disadvantage is that the final regression equation 3-13 is arbitrary. (italics added for emphasis.)

Moreover, the BARRA betas used by D\&P reflect market conditions of November 30, 2008 and November 30, 2009 and are therefore outdated. In
addition, to the best of my knowledge and experience in regulatory ratemaking over the last twenty-plus years, I cannot recall ever seeing BARRA betas used for setting an authorized return rate on common equity for a regulated utility. In my opinion, the Value Line Investment Survey betas utilized by Mr. Murray and myself are more appropriate for a CAPM analysis for ratemaking and cost of capital purposes.

[^1]

Q. At lines 3 through 22 on page 21 of his rebuttal testimony, Mr. Murray criticizes your testimony regarding the need to rely upon more than one cost of common equity model. Please comment.
A. He does so without responding to the substantial academic and regulatory support found on pages 25 through 35 of my direct testimony for the use of multiple cost of common equity models and ignoring the Efficient Market Hypothesis (EMH) upon which all cost of common equity models are premised ${ }^{6}$ which confirms that investors rely upon multiple cost of common equity models in formulating their required rates of return as discussed in my direct testimony at page 24 , lines 5 through 17 . My direct testimony provides, at page 25, line 1 through page 27, line 31, academic support from Charles F. Phillips, Jr. and Roger A. Morin, who cites Eugene F. Brigham and Stewart Myers, that multiple cost of common equity cost rate models should be utilized when assessing investors' required returns. As stated in my direct testimony, at page 27, lines 28 through 31, "[i]n view of the foregoing, it is clear that investors are or should be aware of all of the models available for use in determining a common equity cost rate. The EMH requires the assumption that, collectively, investors consider them all."

Nevertheless, in disregard of this support for the use of multiple cost

[^2]of common equity models, Mr. Murray again relies upon "other available financial information to test the reasonableness of a recommendation, once again citing the Missouri State Employees' Retirement System's (MOSERS) report. My rebuttal testimony, on page 23 , line 23 through page 25 , line 1 has already addressed the MOSERS' expected return for large cap domestic studies, concluding that it has no relevance to the determination of a common equity cost rate relative to a single asset/security such as MAWC's rate base.

In addition, since Mr. Murray did not explain his "rule of thumb" test to determine if his cost of common equity estimate was within reason and since this surrebuttal testimony has demonstrated that the equity analysts' research reports studied by Mr. Murray and provided in his rebuttal exhibit do not support the reasonableness of his approach to the determination of a recommended common equity cost rate of 9.25%, his comments on page 21 should be rejected.
Q. On page 22 , lines 3 through 14 and page 26 , lines 20 through 22 of his rebuttal testimony, Mr. Murray discusses his disagreement with your use of forecasted yields in the RPM and the CAPM. Please comment.
A. As discussed in my rebuttal testimony and previously in this testimony, ratemaking and the cost of capital are both prospective. Therefore, the
appropriate yields to use in the RPM and CAPM are forecasted yields. In addition Roger A. Morin states ${ }^{7}$:

Because of the dominance of institutional investors and their influence on individual investors, analysts' forecasts of longrun growth rates provide a sound basis for estimating required returns. Financial analysts exert a strong influence on the expectations of many investors who do not possess the resources to make their own forecasts, that is, they are a cause of g . The accuracy of these forecasts in the sense of whether they turn out to be correct is not at issue here, as long as they reflect widely held expectations. As long as the forecasts are typical and/or influential in that they are consistent with current stock price levels, they are relevant. The use of analysts' forecasts in the DCF model is sometimes denounced on the grounds that it is difficult to forecast earnings and dividends for only one year, let alone for longer time periods. This objection is unfounded, however, because it is present investors expectations that are being priced; it is the consensus forecast that is embedded in price and therefore in required return, and not the future as it will turn out to be.

Academic research confirms the superiority of analysts' earnings forecasts over univariate time-series forecasts that rely on history. This latter category includes many ad hoc forecasts from statistical models, ranging from the naïve methods of simple averages, moving averages, etc. to the sophisticated time-series techniques such as the BoxJenkins modeling techniques. The literature suggests that analysts' earnings forecasts incorporate all the public information available to the analysts and the public at the time the forecasts are released. This finding implies that analysts have already factored historical growth trends into their forecast growth rates, making reliance on historical growth rates somewhat redundant and, at worst, potentially double counting growth rates which are irrelevant to future expectations. Furthermore, these forecasts are statistically more accurate than forecasts based solely on historical earnings, dividends, book value equity, and the like.

Although the foregoing quote by Morin is relative to analysts' growth rate projections, the principles apply equally to interest rate projections. Financial analysts do exert a strong influence on the expectations of investors, whether it be with forecasts of growth for use in the DCF or forecasts of interest rate levels. Not only do analysts' earnings forecasts incorporate all the public information available to them and the public at the time of the forecasts, so do analysts' forecasts of interest rate levels. Therefore, the use of current yields in the RPM and CAPM is not appropriate. Rather, forecasts of corporate, public utility and U.S. Treasury bond yields are appropriate.
Q. Mr. Murray states at lines 11 through 14 on page 22 of his rebuttal testimony that "[u]sing projected bond yield is akin to using projected stock prices when estimating the cost of [common] equity using the DCF methodology." Please comment.
A. Once again, Mr. Murray is incorrect. First, the theory underlying the DCF model is that the present value of an expected future stream of net cash flows during the investment holding period can be determined by discounting the cash flows at the cost of capital, at the investors' capitalization rate. DCF theory indicates that an investor buys a stock for an expected total return rate which is derived from cash flows received in the form of dividends plus appreciation in market price, i.e., a future stock price. Note however, in both

Mr. Murray's and my applications, the investment horizon is infinity and there is no terminal market price.

Second, the use of projected bond yields in both the RPM and CAPM is more akin to the use of a future dividend yield, i.e., $D_{1 / 2}$ or D_{1} and the use of a growth rate, whether based upon historical and/or projected growth as a proxy for the investors' expected growth in dividends. Moreover, interest rate forecasts are available to investors. The use of projected bond yields therefore does not violate the underlying premise of the EMH. To the contrary, the use of projected bond yields is both consistent with and required by the EMH. Mr. Murray's comments should be disregarded.
Q. Mr. Murray criticizes your use of arithmetic means in your RPM and CAPM analyses on pages 22 and 24 , respectively, of his rebuttal testimony. Please comment.
A. On pages 22 through 25 of his rebuttal testimony, Mr. Murray provides an example to support his contention that using the arithmetic mean is questionable. However, Mr. Murray's mathematical example is questionable because it does not take into account the probability of each outcome, i.e., an increase of 50% in one year and a decrease of 50% in another. As noted in my rebuttal testimony, at page 20 , line 14 through page 21 , line 11 , the financial literature is quite clear that risk is measured by the variability of expected returns, i.e., the probability distribution of returns. The arithmetic mean return and not the geometric mean return provides insight into the
variance and standard deviation of returns, i.e., risk, without which investors cannot meaningfully evaluate prospective risk. An example, similar to Mr. Murray's, is given on page 2 of Schedule PMA-18 which demonstrates that the proper expected value is predicted by compounding the arithmetic mean and not the geometric mean. In other words, it is the arithmetic mean which must be compounded over a period of time in order to achieve the terminal wealth value which gives rise to the compound average or geometric return. As noted on page 3 of Schedule PMA-18, " $[t]$ he arithmetic mean equates the expected future value with the present value; it is therefore the appropriate discount rate. "
Q. At page 28 , line 14 through page 29 , line 11 of his rebuttal testimony, Mr . Murray criticizes your use of the CEM. He states at page 28 , lines 20 through 21, "if the allowed returns are set based on expected returns, then it is possible that these returns will be based on returns that are not consistent with the long-term required returns on common equity, i.e., required ROE.
A. This statement by Mr. Murray indicates a lack of understanding of the market prices paid by investors. The DCF model upon which he relies is based entirely upon investor expectations. Sometimes those expectations are met; sometimes returns are greater than expected; and sometimes returns are less than expected. However, it is the expectations of those returns that influence the market prices that investors pay.

Moreover, the CEM has a long, well-established history in utility ratemaking and is based upon the premise that regulation is a substitute for the competition of the marketplace consistent wit the "corresponding risk" standard set forth in the landmark U.S. Supreme Court cases and consistent with the Hope doctrine that the return to the equity investor should be commensurate with returns on investment in other firms having corresponding risks. Since the non-utility companies upon which I rely in my CEM analysis are selected based upon comparable total risk to my proxy groups, the selection bases make the non-price regulated companies comparable in both non-diversifiable, systematic, risk as well as diversifiable, unsystematic risk. Consequently, because they are comparable in total risk, the returns on their book values are relevant to the returns on book values of price regulated companies and hence appropriate for setting an authorized return rate on common equity. Mr. Murray's criticisms should be rejected.
Q. Does this conclude your surrebuttal testimony?
A. Yes, it does.

Exhibit No.:	
Issues:	Return on Equity
Witness:	Pauline M. Ahern
Exhibit Type:	Surrebuttal
Sponsoring Party:	Missouri-American Water
\quad.	Company
Case No.:	WR-2010-0131 SR-2010-
	0135
Date:	May 6,2010

MISSOURI PUBLIC SERVICE COMMISSION

CASE NO. WR-2010-0131

SR-2010-0135

EXHIBIT

TO ACCOMPANY THE

SURREBUTTAL TESTIMONY

OF

PAULINE M. AHERN, CRRA
ON BEHALF OF
MISSOURI-AMERICAN WATER COMPANY

Copyright © 2000 BARRA, inc. No part of thls publication may be reproduced or transmitted in any form by any means (electronlc, photocopying or otherwite) without the pribr writen consent of BARRA. BARRA is a registered trademark, and other BARRA pnoduct names, service names, slogans or logos referenced in this pubication are trademarks or registered tradernarks of BARRA, lnc. BARRA erademarks include but are not limited to BARRA Aegis System, Aeggls, Aegis Risk Manager, Aegis Global Risk Manager, Aesis Oprinwzer, Aeg[s Performance Aralyst,Aegis PAN, Aegis Developer's Toolkit, Aegis Automation Assistant, BARRA [country narre\} Equity Model, BARRA European Equlgy Model, BARRA Smallicap Equity Model, BARAA Gюbal Equity Model, GEM, BARRA Equity Trading Model, Market Impact Model, Alphzbuiddor, BARRA Macrbeconomic Model barRA Custom Performance, BARRA Cosmos Sysrem, Cosmos, Cosmos Global Risk Manager, Global Sofle Analyzer, BARRA World Markers Model, BaRRA Alti Syssem, BARRA/Rubenstein Exotic Detivatives, BaRRA Total Plan Risk System, ToulRisk, BARRA WorloView, InvestWerks, This Estimate Directory, TED. TEDnet, BARRA Global Estlmates. Diresctus, BARRA RogersCasey, EQuest, and OSUM. All other company, product or service names referenced in this publicazion are used for identificaion purposes anly and may be trademarks of their respective owners,
bartu and its supplers oisclaim all waranntes express or mpueg regarging the products and the serices reference in this pusucation kand any RESULIS TO BE OBTAINED FROM THE USE THERECF, INCLIDING BUT NOT LIMITED TO ALL WARRANTTES OF MERCHANTABILITY, FITNESS FOR A PARTICLIAR PURPOSE OR USE, AND ORIGINAUTT,AND ALI WARRANTIES ARYSING FROM COURSE OF PERFORMANCE, COURSE OF DEALING AND USAGE OF TRADE OR THER EQUIVALENIS UNOER THE LAWS OF ANY JUREDICTION. TME PRODUCTS AND SERVICES ARE PROVLDED "AS IS". Accuracy, consifrency and compleceness of data are not guaranteed. Neither BARRA nor any of its supplers warrant that the products or services referenced in this publication will be uninterrupted or free from error or from unausthorized hidden programs introduced into such products withour their knowledge. BARRA products concain a number of analyical wois chat should be used only by sophtstcated investment professfonals. There is no assurance that the financial instruments identifled by the products will perform in a matner that is consistent with their biscorical ctaracceristics or assure 'thu profitablity or uellity of forecasts or expected values. Except as exprossly agread by BARRA gARRA shall be deemed wo be providing investrnent managemenh, superrision or advisory services.

To the extent chis publication discusses year 2000 readiness, it shall be corsidered a "Year 2000 Readiness Disclosure" and shall not constitute a concract, a warranty or the hasts of any subscripsion, icenst or other bargain or transation.

BARRA Predicted Beta

Beta is a gauge of the expected response of a stock, bond, or porfolio to the overall market. For example, a stock with a beta of 1.5 has an expected excess return of 1.5 times the market excess return. If the market is up 10\% over the risk-free rate, then-other things heid equal-the portfolio is expected to be up 15%. Beta is one of the most significant means of measuring portfolio risk and shows a strong relationship to expected return.

Historical Beta vs. Predicted Beta

Historical beta is calculated after the fact by running a regression (often over 60 months) on a stock's excess returns against the market's excess returns. There are two important problems with this simple historical approach:

- It does not recognize fundamental changes in the company's operations. For example, when RJR Nabisco spun off its tobacco holdings in 1999, the company's risk characteristics changed significantly. Historical beta would recognize this change only slowly, over time.
- It is influenced by events specific to the company that are unlikely to be repeated. For example, the December 1984 Union Carbide accident in Bhopal, India, took piace in a buil market, causing the company's historical beta to be artificially low.

Predicted beta, the beta BARRA derives from its risk model, is a forecast of a stock's sensitivity to the market. It is also known as fundamental beta, because it is derived from fundamental risk factors. In the BARRA model these risk factors include 13 attributes-such as size, yield, and price/earnings ratio-plus industry exposure allocated across a maximum of 6 of 55 industry groups. Because we reestimate these risk factors monthly, the predicted beta reflects changes in the company's underlying risk structure in a timely manner.

BARRA programs use predicted beta rather than historical beta because it is a better forecast of market sensitivity.

Computing Predicted Beta

Below we show how the predicted beta of a portfolio is computed.
The beta of a portfolio p with respect to the market m is defined as the covariance of the portfolio return with the market return divided by the variance of the market:
(1) $\beta_{p}=\frac{\operatorname{COV}\left(r_{p}, r_{m}\right)}{\operatorname{VAR}_{m}}$

The covariance between two portfolios is decomposed into two parts:
a) the part explained by factors, called common factor covariance; and b) the part unexplained by factors, called specific covariance.

The factor covariance between portfolio p and the return on the market m is the product of the transposed vector of the factor exposures for the portfolio, the factor covariance matrix, and the vector of the factor exposures for the market:
(2) $\operatorname{CFCOV}\left(r_{p}, r_{m}\right)=X_{b}^{\top} F X_{m}$

The specific covariance is:
(3) $\operatorname{SPCOV}\left(r_{p}, r_{m}\right)=\sum_{i=1}^{N} h_{p i} h_{m i} \sigma_{i}^{2}$

Now, combining equations (1) and
(4) $\operatorname{COV}(r, r)=\operatorname{VAR}(r)$
we have the formula for the BARRA predicted beta of a portfolio:
(5) $\quad \beta_{\rho}=\frac{\operatorname{Cov}\left(r_{p}, r_{m}\right)}{\operatorname{VAR}_{m}}$

$$
=\frac{\operatorname{CFCOV}\left(r_{p}, r_{m}\right)+\operatorname{SP} \operatorname{Cov}\left(r_{p}, r_{m}\right)}{\operatorname{CFCOV}\left(r_{m}, r_{m}\right)+\operatorname{SPCOV}\left(r_{m}, r_{m}\right)}
$$

$$
=\frac{\sum_{j=1}^{N E A C} \sum_{k=1}^{N E A C} x_{p j} F j k X_{m k}+\sum_{j=1}^{N} h_{p l} h_{m i} \sigma_{i}^{2}}{\sum_{j=1}^{N E A C} \sum_{k=1}^{N F A C} x_{m F} F j k x_{m k}+\sum_{i=1}^{N} n_{m i}^{2} \sigma_{j}^{2}}
$$

where

NFAC	is the number of factors (68 in U.S. E2)
N	is the number of assets in the market portfolio
$X_{p l}$	is the portfolio's exposure to factor j
$F_{f k}$	is the covariance between factors k and j
$X_{m j}$	is the market's exposure to factor j
$h_{p i}$	is the holding of the portfolio in asset i
$h_{m i}$	is the holding of the market in asset i
σ_{i}^{2}	is the specific variance of asset i
$V_{m R}$	is the variance of the market

Misscuxi-Arnerican Walter Company

Capital Asset Pricing Model (CAPM) Cost-Of-Common-Equily Estimates for Duff \& Phelps' Guideline Companies Corrected to Reflect a Prospective Risk-Free Rate, Value Line Adjusted Betas, the Averege Historical and Forecasted Market Equity Risk Premium and the Empirical Capital Assel Pricina Model (ECAPM)

1
2
Traditional Capital Assel Pricing Model

Company Name	Risk-Freo Rate (1)	Company's Bota (2)	Market Risk Premium (3)	Beta Adjusted Market Risk Premium (4)	Cost of Common Equity (5)	Market-to Book Ratio (6)
Americarn States Water Co.	4.97\%	0.80	7.31\%	5.85\%	10.82\%	184\%
Agua America, Inc.	4.97\%	0.65	7.31\%	4.75\%	9.72\%	208\%
Artesian Resources, Inc.	4.97\%	NA	7.31\%	NA	NA	150\%
California Water Service Group	4.97\%	0.75	7.31\%	5.48\%	10.45\%	181\%
Middlesex Water Co.	4.97\%	0.75	7.31\%	5.48\%	10.45\%	173\%
SJW Corp.	4.97\%	0.95	7.31\%	6.94\%	11.91\%	176\%
Southwest Water Co.	4.97\%	1.10	7.31\%	8.04\%	13.01\%	217\%
York Water Co.	4.97\%	0.65	7.31\%	4.75\%	9.72\%	203\%
Average	4.97\%	0.81	7.31\%	5.90\%	10.87\%	187\%

Empirical Capital Asset Pricing Modet

Company Name	Rlsk-Free Rate (1)	Companys Beta (2)	Market Risk Premium (3)	Eeta Adjusted Market Risk Premium (7)	Cost of Common Equity (5)	Market-to- Book Ratio (6)
American States Water Co.	4.97\%	0.80	7.31\%	6.21\%	14.78\%	184\%
Aqua America, Inc.	4.97\%	0.65	7.31\%	5.39\%.	10.36\%	208\%
Artesian Rasources, Inc.	4.97\%	NA	7.31\%	NA	NA	150\%
Callfornia Water Service Group	4.97\%	0.75	7.31\%	5.94\%	10.94\%	181\%
Midelesex Water Co.	4.97\%	0.75	7.31\%	5.94\%	10.91\%	173\%
SJW Corp.	4.97\%	0.95	7.31\%	7.04\%	12.01\%	176\%
Southwest Water Co.	4.97\%	1.10	7.31\%	7.86\%	12.83\%	217\%
York Water Co.	4.97\%	0.65	7.31\%	5.39\%	10.36\%	203\%
Average	4.97\%	0.81	7.31\%	$\underline{6.25 \%}$	11.22\%	187\%

Average of Traditional and Empärical CAPM

Notes: (1) From note 2 on page 3 of Schedule PMA-12 (Updaled) in Schedula PMA-23.
(2) From pages 2 tirough 8 of this Schedule.
(3) Derived in note 1 on page 3 of Schedule PMA-12 (Updated) in Schedule PMA-23.
(4) Column 2 * Column 3.
(5) Column $1+$ Column 4.
(6) From AUS Utility Reports, April 2010.
(7) The empirical CAPM is applied using the formula found in note 4 on page 3 of Schedule PMA-12 (Updated) in Schedule PMA-23.

Batce EPS. Exa nowsouring gesin (Doss),
dus lede duly:
$\left\{\begin{array}{l}\text { Bjay } \\ \text { May, Alendy, and Norv, }\end{array}\right.$
availatle.

-

(O) in mivitions, adpurtod for sple
1E Exdudes nofitig. giw.

Note: Ho analyst eatimates avarablo.

SHM CORP NYSE－SM			$\text { REFER } 77.77$			$\begin{aligned} & \text { 䗑ANE } \\ & \text { PRED } 1.7 \end{aligned}$		$2.5 \% \text { VALUE }$		
	17．83	15.07	12.95	19.84	27.80 18.07	45.33 21.16	43.00 27.65	－ $\begin{aligned} & 35.11 \\ & 20.05\end{aligned}$	30.44 18.22	2780 $21.60{ }^{\text {H1gh }}$
PERFDRHAHCE 3 avarup	us	8								45
		yvo Avp					11			
TBChrlesal 3 Anwagy		${ }^{\text {a }}$				1				\square－ 30
SAFETY 3 arwage	2－for－1 ¢pf	A			－14				H＋	－ 22.5
BETA ． $85 \quad$（1，00 $=$ Matkel	170714	近								－ 13
		．＊＊					${ }^{\prime}$	＊＊	－	
Price Slabilly										
	Frixtub									
Phite Growth Pownatence 75	8 max									
Earmingas Predkfalaly 85										± 3000
						11刀］		4	（T）	NOL
O VALUE LINE PUBLSHINC，LNC．	2005	2002	2003	2004	2005	2006	2097	2008	2009	2010／2011
SALES PERSH	7.45	7.97	8.20	S．14	8.88	10.35	11.25	12.12	11.58	
＇GASH FLOY＇PER SHEARNWOS PER SH	1.49	1.55	1.75	8.88	2.24	2.36	2.30	2.44	2.21	
	． 77	． 78	． 81	． 87	1.12	1.19	1.04	1.08	． 81	$1.04{ }^{\text {A．8 }} 17.13^{\text {c }}$
EARNWVS PER SH DIVOS OECL＇D PER SH	． 43	． 46	． 49	． 51	． 53	． 57	． 6.1	．65	． 66	
CAP＇L SPENDING PER SHGOOK YALUE PER SH	2.63	2.08	3.41	2.31	2.83	3.87	6.62	3，79	3.77	
	8.17	8.40	8，11	10.11	10.72	12.48	12.90	13.99	13.66	
	10．27	38.27	48.27	18.27	18.27	18.26	18.38	18.18	48.50	
AVG ANF＇L PIE RATIO	18.5	17.3	15.4	19.6	19.7	23.5	33.4	28.2	28.7	28．2／24．1
RELATNE PEE RATIO AVG ANHOL DVOC YIELO	． 95	． 94	． 88	1.04	1.04	1，27	1.77	1.58	1.92	
	3．0\％	3，4\％	3．5\％	3，0\％	2．4\％	2．0\％${ }^{\text {\％}}$	1．7\％	2．3\％	2．8\％	
SALES（\＄MILL） OPERATNO MARGN	136.1	145.7	148，7	168.9	180.1	169.2	206.6	220.3	218.1	Bobd figuras
	64．4\％	63．7\％	56．0\％	58．4\％	55．9\％	57．0\％	41．8\％	42．4\％	42．5\％	nre conswryus
DEPRECLATION（KMLL）	13.2	14.0	15.2	18.5	19，7	21.3	22.9	24.0	25.6	eamhags
NET PROFIT（ShnLL）	14.0	14.2	15.7	16.0	20,7	22.2	19.3	20.2	15.2	－Stmaters
LICOME TAX RATE HET PROFIT MARCH	34．5\％	40，4\％	98．2\％	42.1%	41．6\％	40．8\％	39，4\％	34．54	40．4\％	and，usting the
	10．3\％	8．8\％	11．2\％	9．6\％	11．5\％	11．7\％	9．4\％	8．2\％	7．0\％	fucent mitces，
	63．8	d4．9	12.0	13.0	10.8	22.2 ．	d1．4	011.3	d4．0	PEE ratios．
LOIGETERM DEBT（\％MILL）	110.0	110.0	139.6	143.8	146.3	163.6	216.3	218.6	246.9	
SHR EGUMY（SMILL）	149.4	153.5	16.6	184．7	155.9	228.2	238.9	254.3	252.8	
RETURA ON TOTAL CAPLLRETURN ON SHR，EQUITY	6．7\％	6．9\％	6．9\％	6．5\％	$7.6 \times$	7．04	5.7%	58\％	4．4\％	
	9．4\％	9．3\％	10．0\％	B．7\％	10，6\％	9．7\％	8．2\％	8．0\％	6．0\％	
RETANED TO COMED ALL ON＇DS TO NET PROF	4．1\％	3．8\％	4．7\％	3.64	5．6\％	5．2\％	3．5\％	3．3\％	1．2\％	
	58%	69\％	53\％	58\％	47\％	48\％	67\％	59\％	80\％	

Salos

Cash flour＇	6.0%	$.5 .5 \%$
Earntigs	3.0%	-25.5%
Didddesids	5.5%	2.5%
Book Vathe	8.0%	-2.5%

Flizal Ytat	OUARTERLY SALES（盉ILI）				$\begin{aligned} & \text { FLAH } \\ & \text { Yeir } \end{aligned}$
	10	20	30	49	
12／31／27	390	55.1	64.9	47.8	208
12391908	41．3	$6 \pm .0$	69.5	49.5	22.
12／31109	40.0	582	63.3	48.6	212
：2／3140					
Fireal Yes	EARNINOS PER SHARE				Fult
	19	29	39	42	
12／31／00	． 14	． 35	． 48	22	
12131／0］	． 12	29	． 43	． 20	1.04
1231408	． 15	． 34	44	． 15	1.09
1231109	． 01	． 23	． 43	． 14	． 61
123410	． 05	． 36	． 48		
Cad	QUARTERLY OMDENOS PADD				Fual
ender	10	20	30	40	Yorr
2007	． 451	． 151	． 15%	．+51	． 62
2000	． 161	． 181	． 101	． 281	． 4
2009	． 185	． 165	． 465	． 165	． 68
2010	． 17				

JHSTITUTIOHAL DECISIONS			
	2009	30\％	40＇09
6 Buy	43	34	43
to Sol	40	28	24
Hides（000）	8694	8807	8887

A8SEIS（\＄milit	2007	2006	123169
Cath Assela	2.4	3.4	1.4
Recrabilbles	23.0	24.5	233
Inventary	． 8	． 3	1.0
Olhar	6.4	32	2.3
Curisnl Assals	31.6	32.0	28.0
Property，Plim			
Aceum Daprectalion	288.8	274.5	302.2
Ned Property	645.5	684.2	714.5
Oher	98.2	134，7	132.0
Toled hasats	787.3	850.9	878．5
Labichties（3mik）			
Accts Payable	9.3	5.8	6.6
Ofot Dus	5.8	19.1	8.9
Oling	18.1	18.4	18．5
Curnent Uab	33.0	43.3	320
LONO．TERA DEET ANO EQUTY is of 1231099			
LT Debr $\$ 246.9$ mill		Dug In 5 Yrs．$\$ 21.5$ mild	
PId \＄iock None			
Compren Stock 18，498．602 shares			
			of $\operatorname{Cop} 7$ 7

BUSINESS：SJW Corporation，through its subsidiaries， engages in the production，purchase，storage，purification， distribution，end retail sale of weter．The company offers nouregulated water－related services，including water system operations，cash remittances，and．maintenarce contract services．SIW also owns undoveloped land；a 70\％limited partnership interest in 444 West Santa Clara Street，L．P．；and operates commercial buildings in Arizona，Califomia，Con－ necticur，Florida，Tennessee，send Texas．As of September 30，2009，S5W provided water service to approximately 226,000 connections that served a population of approxi－ mately one million prople in the San Jose area．It also provides water servico to approximately 8,700 connections that serve approximately 36,000 residents in a service area in the region between San Antonio and Austin，Texas．Has 375 employees．Chainnan：Charies J．Toeniskoelter．Inc．； CA．Address： 110 W．Taylor Streed，San Jose，CA 95110. Tel．：（408）279－7800．Internet：http：／／ywn．sjwater．com，

				WT．
April 23， 2010				
TOTAL SHAREHOLOER RETURN 				
3 Mot．	6 Mos．	1 Yr ．	3 Yrs．	5 Yrs,
13．50\％	12．94\％	3．07\％	－32．38\％	62，58\％

8USINESS: The York Water Company engages in the impounding, purification, and distribution of water in York County and Adams County, Pennsylvania. The company supplies water for residential, comunercial, industrial, and other customers. It has two reservoits, Lake Wihiams, which is 700 feet long and 58 feet high, and creates a reservoir covering approximately 165 acres containing about 870 million gallons of waler, and Lake Redman, which is 1,000 feet long and 52 feet high and creates reservoir covering approximately 290 acres containing about 1,3 billion gallons of water. In addition, the company possesses a 15 -mile pipeline from the Susquehanna River to Lake Redman that provides access to an additional supply of water. As of December 31, 2009, the tompany served approximately 180,000 residential, commercial, industrial and other customers in 39 mumicipalities in York County and seven municipalities in Adams County. Has 111 employees. C.E.O. \& President: Jeffrey R. Hines. Inc.: PA. Address: 130 East Market Street, York, PA 17401. Ted. (717) 845-3601. Internet: hitp:/fwwwyorkwatercon.

$$
\text { April 23. } 2010
$$

TOTAL SHAREHOLDER RETURN

3 Mos.	6 Mos.	1 Yr .	3 Yrs.	$5 \mathrm{Yrs}$.
-4.36\%	9.00\%	15.19\%	-10.47\%	26.22\%

[^0]: 2 MSCI BARRA provides products and services supporting client's investment processes. www,mscibarra.com.

[^1]: $4 \quad$ Id., at p. 175.
 ld., at p. 175.

[^2]: 6 Mr. Murray, later in his rebuttal testimony, invokes the EMH relative to his concerns with the RPM.

