REITZ & JENS, INC.

Appendix A

INVESTIGATION OF POTENTIAL CLAY LINER BORROW SITE AT AMEREN CALLAWAY PLANT Revised August 2013

REITZ & JENS, INC.

REITZ & JENS, INC.

May 25, 2011

Mr. Kevin Gerhardt, P.E. Ameren Missouri 3700 S Lindbergh Blvd., Mail Code F-604 St. Louis, Missouri 63127

RE: Report of Callaway Clay Borrow Site for Labadie Plant Utility Waste Landfill Franklin County, Missouri

Dear Mr. Gerhardt:

This report presents our findings and estimated quantity of available clay borrow based on the twelve (12) boring made at the Callaway borrow site. This borrow site is located in Callaway County approximately one mile east of the Callaway Power Plant on County Road 448 (see Figure 1). The purpose of these borings is to provide data on the subsurface conditions, which was used to quantify the clay borrow that could be used for the installation of clay liner and cover at the Labadie Plant Utility Waste Landfill.

Field Investigation

The borings were made at the approximate locations shown in Figure 1. The borings were located along existing gravel roads or existing farm roads so damage would be limited. The borings were located in the field using a hand-held GPS unit. The elevations at the borings were taken from GoogleEarth[™] at the locations of the borings.

The borings were made on March 17 and 18, 2011, by Midwest Drilling, Inc. of Florissant, Missouri, under subcontract to Reitz & Jens. The borings were advanced using 4.25-in. outside diameter solid-stem continuous flight augers (CFA). The borings were drilled to termination depths ranging from 14 feet to 31 feet, with some borings terminating on intact bedrock. The borings were backfilled with cuttings, gravel, and Bentonite chips. The top 5 feet of each boring was backfilled with Bentonite chips to limit direct infiltration from the surface. Any remaining cuttings were mounded on the boring in anticipation of some subsequent settling.

Samples of subsurface soils were obtained at about 2.5-foot intervals in the top 10 feet, and at 5-foot intervals below 10 feet. Samples were taken using either: 1) a hydraulically pushed, 3-inch O.D., thin-wall Shelby tube sampler in general accordance with ASTM D1587 "Thin-Walled Tube Sampling for Geotechnical Purposes"; or 2) a 2-inch O.D., split-spoon sampler driven by an automatic SPT hammer in conjunction with a Standard Penetration Test, in general accordance with

Geotechnical Engineering • Water Resources • Construction Engineering & Quality Control • Environmental Restoration & Permitting

ASTM D1586 "Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils". The Shelby tube samples were trimmed and then sealed with a tight-fitting plastic cap and duct tape. Loose materials were removed from the upper end of the tube and the length of the recovered sample was measured. The top end of the tube was then sealed with a tight-fitting plastic cap and duct tape. The disturbed split-spoon samples obtained were visually classified in the field and sealed in glass jars to prevent loss of moisture, for later testing in the laboratory. The Shelby tubes were extruded in our lab immediately prior to testing.

The field investigation was completed under the direction of a Reitz & Jens geologist, with instructions from a geotechnical engineer, who determined the sampling intervals, termination depth, and logged the borings. The borings were logged in the field based upon cuttings, drilling characteristics and recovered samples. The boring logs were subsequently modified as appropriate based on laboratory test results. The boring logs are attached in Figure 2-1 through 2-12. The key and notes for the boring log are shown in Figure 2-0.

Ground water measurements were made during drilling, and some borings were left open to obtain a water measurement the following day. The ground water levels observed during drilling are only representative of the time during sampling. The ground water level will fluctuate with precipitation and seasonally. Water levels were as shallow as 8.5 feet in Boring B-5; but many of the borings were completely dry after drilling. This may be an indication of pockets of perched water.

Laboratory Testing

All recovered samples were visually described in general accordance with the ASTM procedures. Geotechnical soil tests performed included water content and density (ASTM D2216), Atterberg Limits (ASTM D4318), soil finer than the #200 sieve (ASTM D1140), and sieve size analysis of soil (ASTM D422). The results of these tests appear on the individual boring logs, and a summary of the data is shown in Figure 3. The sieve size analyses were performed on samples where more than 10% by weight was retained on the #200 sieve. The results of the sieve analyses are reported in Figures 4-1 through 4-21.

We collected the left-over materials from the Shelby tubes and produced two composite samples for further laboratory testing. The first composite contains silt and low plastic silty clay, and the second contained high plastic clay. Compaction tests were performed on both composites using the Standard Proctor procedure according to ASTM D698. The results are presented in Figures 5-1 and 5-2. Atterberg Limits were also performed and reported on Figures 5-1 and 5-2. A hydraulic conductivity test according to ASTM 5084 was completed using the silty clay Proctor point compacted nearest to 95% of the maximum dry unit weight and on the wet side of the optimum moisture content. This sample had a hydraulic conductivity of 1.1×10^{-8} cm/sec. This result is presented in Figure 6. The measured hydraulic conductivity is below the required 1×10^{-7} cm/sec, thus qualifying this material as liner quality clay. We expect clays with liquid limits greater than that tested (37%) and compacted to a similar degree would have hydraulic conductivities equal to or less than composite sample that was tested. This would qualify nearly all materials described in the boring logs as low plastic silty clay, low plastic clay, medium to high plastic clay, and high plastic clay without significant amounts of sand and gravel, as suitable for liner material.

Estimate of Available Clay Borrow

The potential borrow area was broken down into five smaller borrow areas denoted as "BA #" in Figure 1. Two of the borrow areas, BA-1 and BA-4, were split due to shallow rock and thin deposits of clay. These areas which have little to no available clay are denoted as BA-1A and BA-4A and were not included in our calculations.

The linear footage of liner quality clay in each boring was estimated using only clay with a liquid limit greater than 40 and which did <u>not</u> have a significant amount of sand and gravel. We judge that clays with these parameters will result in hydraulic conductivities of less than 1×10^{-7} cm/sec when compacted. The linear footage of liner quality clay is shown parentheses on Figure 1 next to the individual boring number. The calculation for the individual borrow areas is presented in Figure 7 (top). The total estimated amount of liner quality clay in all five borrow areas is roughly 4.4 million cubic yards. This calculation is based on the assumption that the borrow area is flat and that the clay extends horizontally throughout each borrow area. These assumptions were used because of the lack of topographic survey data and the limited number of borings.

A second calculation was made in the same manner as the first, but using all fine-grain soils (silts and low plastic clays) that did <u>not</u> have significant amounts of sand and gravel. The calculation for the individual borrow areas is presented in Figure 7 (bottom). The total estimated amount of fine-grain soil in all five borrow areas is roughly 5.6 million cubic yards. We believe that almost all of the fine-grain soil would be suitable for compacted clay liner, or the additional 1.2 million cubic yards would definitely be suitable for top cover.

Please let us know if you have any questions regarding this report. We appreciate this opportunity to continue our working relationship you and Ameren Missouri.

Sincerely, REITZ & JENS, Inc.

ah.

Kyle E Kocher, P.E. Project Engineer

leff []. Fouse, P.E. Project Manager

The following figures are attached and complete this report:

Figure 1	Callaway Borrow Area
Figure 2-0	Key to Boring Logs
Figures 2-1 to 2-12	Log of Borings B-1 to B-12
Figure 3	Laboratory Test Summary
Figures 4-1 to 4-21	Sieve Analyses
Figures 5-1 and 5-2	Standard Proctors
Figure 6	Hydraulic Conductivity
Figure 7	Clay Volume Calculation

REITZ & JENS, INC.

REITZ & JENS, INC.

KEY TO BORING L	_OGS
------------------------	------

		KEY	TO BORING LOO
Symbol	Description	Symbol	Description
Strata sy	mbols		Description not given for:
000000000000000000000000000000000000000	Gravel frac		Description not given for:
	Low-high plasticity clays	Misc. Svr	"LWU"
		<u>iviise. Oyi</u>	
	Description not given for: "OZ"		Description not given for: "FTRANGLE"
	High plasticity clay		Description not given for: "FSQUARE"
	Description not given for: "O:"	<u> </u>	Water table during drilling
	Topsoil	—	Water table at boring completion
	Description not given for:	Soil Sam	plers
	"O="		Standard penetration test
	Description not given for:		
<u></u>			Undisturbed thin wall Shelby tube
	Low plasticity clay	•••	
	Description not given for: "C-3"		
	Silty sand		
	Shale		
Notes:			
1. Explorato 4-inch dia	ory borings were drilled on 03-17 meter continuous flight power a	'-11 using a uger.	

- 2. No free water was encountered at the time of drilling or when re-checked the following day.
- 3. Boring locations were taped from existing features and elevations extrapolated from the final design schematic plan.
- 4. These logs are subject to the limitations, conclusions, and recommendations in this report.
- 5. Results of tests conducted on samples recovered are reported on the logs.

Æ			EITZ Dnsu		<u>&</u>	<u>ENS, INC.</u>	BOF	RING	G	LOG B-1
Lab Pot	oadie entia	Pl l C	ant lay nere	Ut Bo	ility orro Mic	y Waste Landfill w at Callaway Plant ssouri		TION: N ATION: 8	1070 21	0025 E 1850593 DATUM:
DEPTH (FEET)	ELEVATION	WATER TABLE	GRAPHIC LOG	SAMPLE TYPE	PERCENT RECOVERY	MATERIAL DESCRIP	TION	DEV UNIT WEIGHT (PCF) BLOWS PER 6 INCHES RQD= ROCK QUALITY DES.	MOISTURE CONTENT PERCENT BY WEIGHT	SHEAR STRENGTH, tsf △ QU/2 PP SV TV 1 2 3 STANDARD PENETRATION TEST ▲ N-VALUE (BLOWS PER LAST FOOT) ● MOISTURE CONTENT, % ○ % FINES (SILTS & CLAYS) PL
0	- - - 816				78 95	8-inches of crushed limestone CLAY (CL-CH), brown and gray moderately plastic, slightly silty, Silty CLAY (CL-ML), brown an lignite and limonite, dry	 y, <u>stiff, moist</u> d tan, with	3-3-4 110.5	32.5 19.5	20 40 60 • 97.9 • 97.9
6 -	-			7	100 94	CLAY (CH), light brown and gra plastic, moist, dry With trace fine sand and fine gra	ay, high wel	3-3-5 3-4-5	27.6 26.9	
12 -	- 810 				100	Becoming gray		110.3	19.1	
18 -	- 804 - -			ŀ	100	With fine sand		113.2	17.5	4.5+
- 24 -	- 798 -				100	Becoming gray and orange brow medium to fine sand	n, with	117.7	15.1	4.5±
30 – 792 30 – 792 100 Sandy CLAY (Cl plastic, fine grain stiff Boring terminated NOTE: Bulk sam						Sandy CLAY (CH), golden brow plastic, fine grain sand, with silt stiff Boring terminated in sandy clay NOTE: Bulk sample taken at 13'	vn, high lenses, very at 30'- 0"	4-9-11	13.1	4
36 -	- 786 -						20			
DRIL MET TYPE HAM LOG	LER: HOD: E OF S MER E GED B	PT I FFI		Mid IER CY (lwest 4.25" 1: (%): J. 1	Drilling CFA STRATIFICATION LINES ARE APPROXIMATE SOIL BOUNE ONLY; ACTUAL CHANGES M GRADUAL OR MAY OCCUR SAMPLES.	WATE E DARIES MAY BE BETWEEN PIEZO	R LEVELS :	DURI Y AT AT INST	ING DRILLING FEET BORING DRY AT COMPLETION OF DRILLING FEET AFTER HOURS FEET AFTER HOURS ALLED AT FEET <u>SCHEDULE CJG-ST1</u> FIGURE 2-1

Æ			EITZ DNSU	<u>Z</u>	<u>&</u>	<u>ENS, INC.</u>	В	OF	RINO	G	L	0	G	E	8-2)		
Lab Pot CLII	oadie entia ENT:	Pla l C Ar	ant lay nere	Ut Bo en	ility orro Mis	v Waste Landfill w at Callaway Plant ssouri		LOCA ⁻ ELEVA DATE	FION: N ATION: 8 DRILLED	1069 13 : 03-	.17.	2 D. -11	E ATL	185 IM:	5201	0		
DEPTH (FEET)	ELEVATION	WATER TABLE	GRAPHIC LOG	SAMPLE TYPE	PERCENT RECOVERY	MATERIAL DESC	CRIPTIO	N	DRY UNIT WEIGHT (PCF) BLOWS PER 6 INCHES RQD= ROCK QUALITY DES.	MOISTURE CONTENT PERCENT BY WEIGHT	• • •	∆ QL STA N-V MO % F	SHE 1/2 NDA ALUI ISTU	RD PF RD PF (BL) RE C S (SIL)	TREN 2 ENET OWS ONTE TS &	IGTH, SV RATIO PER L SNT, % CLAY:	tsf <u>3</u> ON T AST 6 S)	♦ TV EST FOOT)
0	- 810 -				83 92	∑5-inches of topsoil Silty CLAY (CL), brown lignite and limonite, firm, Becoming dry	and gray, tr , moist	 ace	2-2-4 106.7	29.1 19.0	•		20		40		60	94.0
6	- 804 -				100 71	CLAY (CH), red-brown, l lignite and limonite, stiff Becoming gray brown	high plastic,	3-3-5 102.9	21.5 22.8			•					88.8	
12 -	- 798 -				100	With fine sand, trace med	lium sand		110.5	16.8)					4.5+
18 -	- - 792 -				100	Highly weathered sandsto gravel Boring terminated in weat at 18'-9.5" NOTE: Bulk sample taker	n 10'-13'	ı chert	50/3.5"									100+-
24 -	- 786 -																	
30 -	- 780 -																	
DRIL MET TYPE HAM LOG	LER: HOD: E OF S MER E GED B	PT H FFI(Y: _	I HAMM CIENC		dwest 4.25" R: (%): J.]	Drilling CFA STRATIFICATION Approximate SC ONLY; ACTUAL CF GRADUAL OR MA SAMPLES.	I LINES ARE OIL BOUNDARIES HANGES MAY BE YY OCCUR BETWE	WATER EN PIEZOI	R LEVELS: METER:	DURI <u>Y</u> AT _ AT _ INST	NG B ALLI	DRIL DRINC DRINC FE ED A HEI		AFTE AFTE FEI CEC	FEE OMPL R R ET	ETION H ^I ST1		PRILLING S S

Æ		RE co	ITZ NSU		<u>&</u>	<u>ENS, INC.</u> Engineers	ВО	RIN	G	LOG B-3
Lab Pote	oadie entia	Pla l Cl	nnt ay]	Ut Bo	ility orro	v Waste Landfill w at Callaway Plant	LOC	CATION: N	1068 22	8835 E 1850564 DATUM:
CLIE	=N1:	An	iere	en ∏∣	IVIIS	ssouri	<u> </u>		$\frac{03}{1}$	-1 / -1 1 SHEAR STRENGTH, tsf
DEPTH (FEET)	ELEVATION	WATER TABLE	GRAPHIC LOG	SAMPLE TYPE	PERCENT RECOVERY	MATERIAL DESCRIP	TION	DRY UNIT WEIGHT (PCF) BLOWS PER 6 INCHES RQD= ROCK QUALITY DES.	MOISTURE CONTENT PERCENT BY WEIGHT	△ QU/2 ■ PP □ SV ◇ TV 1 2 3 STANDARD PENETRATION TEST N-VALUE (BLOWS PER LAST FOOT) MOISTURE CONTENT, % % FINES (SILTS & CLAYS) PL └────────────────────────────────
0 -	- 822	2	ন্দ্রহুত্ব							
-	_	Trerest			100	Silty CLAY (CL), brown and gr lignite and limonite, stiff, moist	ay, trace	2-3-4	24.4	
	-				100	CLAY (CH), brown and gray, h slightly silty, dry	igh plasti	2, 107.3	17.3	● ● ● ● ● ● ● ● ● ●
6	- 816			Z	100	Personing tannish gray		3-4-6	27.7	
-	-				38	Becoming tannish gray		107.8	19.0	
12	- 810 - -				100			107.2	21.0	
18	- 804				100	CLAY (CL), gray, with fine san gravel	d, trace fi	ne 107.4	20.6	
24	- 798 -			·	100	Becoming very sandy and grave	lly 	115.0	15.0	
30 -	- 792			Z	100	Shaley CLAY, golden, with che and rock residuum	rt gravel	17-32-39	14.9	•
36 -	- 786					Boring terminated in shaley clay NOTE: Bulk sample taken 1'-10	7 at 30'- 0 '	"		
DRIL	LER:		1	∟ Miċ	lwest	Drilling	WA	TER LEVELS:	DUR	I ING DRILLING FEET
		от н			4.25"	CFA STRATIFICATION LINES AR Automotio	E DARIES	-	Y AT	
HAM	MER E	FFIC		CY	(%):	ONLY; ACTUAL CHANGES I GRADUAL OR MAY OCCUR	MAY BE BETWEEN		AT _	FEET AFTER HOURS
LOG	GED B	Y: _			J. 1	David SAMPLES.	PIE	ZOMETER:	INST	ALLED AT FEET
										Figure 2-3 Sheet 1 of 1

Æ			EITZ DNSU		<u>&</u>	<u>JENS, INC.</u> Engineers	BO	RIN	G	LOG B-4
Lab Pot CLIE	oadie entia ENT:	Pla d C Ar	ant lay nere	Ut Bo en	ility orro Mis	y Waste Landfill w at Callaway Plant ssouri	LOCA ELEV DATE	ATION: N (ATION: 8 E DRILLED	1068 21 : 03-	3562 E 1852007 DATUM: -17-11
DEPTH (FEET)	ELEVATION	WATER TABLE	GRAPHIC LOG	SAMPLE TYPE	PERCENT RECOVERY	MATERIAL DESCRI	PTION	DRY UNIT WEIGHT (PCF) BLOWS PER 6 INCHES RQD= ROCK QUALITY DES.	MOISTURE CONTENT PERCENT BY WEIGHT	SHEAR STRENGTH, tsf △ QU/2 PP SV TV 1 2 3 STANDARD PENETRATION TEST N-VALUE (BLOWS PER LAST FOOT) ● MOISTURE CONTENT, % 0 % FINES (SILTS & CLAYS) PI → → ↓↓
0	- - - 816				92 100	∑5-inches of topsoil Silty CLAY (CL), gray-brown and limonite, stiff, moist Becoming dry No recovery	, with lignite	95.6	28.1 19.5	
	- 810 -				21 100 100	CLAY (CH), gray and golden, With sand and trace fine grave	high plastic	2-3-5	24.6 18.9	
18 -	- 804 -				100	Silty SAND (SM), golden and clay, with layers of clayey silt,	gray, trace dry, hard	100.2	23.6	
24 -	- 798 -				100	Boring terminated in shale at 2 NOTE: Bulk sample taken 15'-	4'-0" 24'	50/4.5"	5.3	● ▲100+ →
30 -	- - 792 -									
36 -	- - 786 -									
DRIL Meti Type Ham Loge	LER: HOD: E OF S MER E GED B	PT H FFI(Y: _	I HAMM CIENC		<u>dwest</u> 4.25" R: (%): J. 1	Drilling STRATIFICATION LINES / CFA APPROXIMATE SOIL BOU Automatic ONLY; ACTUAL CHANGES GRADUAL OR MAY OCCL SAMPLES.	WAT ARE INDARIES S MAY BE JR BETWEEN PIEZ	ER LEVELS:	DUR <u>Y</u> AT _ AT _ INST	ING DRILLING FEET BORING DRY AT COMPLETION OF DRILLING FEET AFTER HOURS FEET AFTER HOURS ALLED AT FEET <u>SCHEDULE CJG-ST1</u> Figure 2-4 Sheet 1 of 1

Æ			EITZ DNSU		<u>&</u>	<u>JENS, INC.</u> Engineers	В	OF	RINO	G	L	0	G	6 E	3-:	5		
Lab Pot	oadie entia	Pla l C Ar	ant lay nere	Ut Bo	ility orro Mi	y Waste Landfill w at Callaway Plant ssouri			TION: N ATION: 8	1068 23 0: 03-	301	7 	E AT	: 18 UM:	507	'04		
DEPTH (FEET)	ELEVATION	WATER TABLE	GRAPHIC LOG	SAMPLE TYPE	PERCENT RECOVERY	MATERIAL DESCRI	PTIO	N	D DRY UNIT WEIGHT (PCF) BLOWS PER 6 INCHES RQD= ROCK QUALITY DES.	MOISTURE CONTENT	• • •	 	SH U/2 1 AND VALU DIST FINE	IEAR S P ARD F JE (BL URE C S (SIL		ENGT	H, tsf SV 3 TION T LAS , % (YS)	♦ TV TEST T FOOT)
0 -	- 822				94	∑2-inches of topsoil Silty CLAY (CL), gray-brown	 n, firm, i	 moist	2-2-3	30.6			20	P	40		60	
-	-				100	With lignite and limonite			108.2	20.0			•					95,6
6 -	- 816	ii			100	CLAY (CH), gray and golden, stiff, dry	, high pl	lastic,	3-3-5	24.5				•				
12 -	- 	-			100				108.6	19.9			•					
-	-				92				106.0	21.7			•					
-	- 804 -	\ Ţ			100	With fine sand			3-4-7	22.3			•					
24 -	-				89	siltstone gravel, hard, dry	ne and		4-13-24	7.2								4.5
-	- 798 - -		7.87.87			Boring terminated in weathere 6" NOTE: Bulk sample taken 15'	ed shale -18.5'	at 24'-										
30 -	- 792 -																	
36 -	- 786																	
DRIL METI	LER: HOD:		1	Mid	<u>lwest</u> 4.25"	Drilling STRATIFICATION LINES	ARE	WATE	R LEVELS:	DUR N	ING B	DRII ORIN	LIN G DR	G _22	2_ F COMF	EET ^y LETIC	ON OF	DRILLING
type Ham	E OF S MER E	PT H		IER CY (R: (%):	APPROXIMATE SOIL BOI Automatic ONLY; ACTUAL CHANGE GRADUAL OR MAY OCCI SAMPLES	UNDARIES ES MAY BE EUR BETWEE	ΞN		AT _ AT _	8.5	_ F _ F	EET EET	AFTE AFTE	R _ R _	24	HOU HOU	RS RS
LOG	GED B	Y: _			J.]	David Shire LES.		PIEZOI	METER:	INST	ALL SC Fi	ED A	T DU 2-5	E FE	et CJG	r-ST She	1 et 1	

Æ			EITZ DNSU		<u>&</u>	ENS, INC.		BOF	RINO	G	L	0 0	GE	3-7	•	
Lab Pote	oadie entia = _{NT} .	Pla l C Ar	ant lay nere	Ut Bo	ility orro Mis	Waste Landfil w at Callaway	l Plant	LOCA ELEV	TION: N ATION: 8 DRILLED	1068 09	3084	DA ⁻ 11	E 18 TUM:	5294	12	
DEPTH (FEET)	ELEVATION	WATER TABLE	GRAPHIC LOG	SAMPLE TYPE	PERCENT RECOVERY	MATERIAI	_ DESCRIPT	ION	DRY UNIT WEIGHT (PCF) BLOWS PER 6 INCHES RQD= ROCK QUALITY DES.	MOISTURE CONTENT PERCENT BY WEIGHT		△ QU/2	DARD I DARD I LUE (BL TURE (IES (SII	P P PENET OWS CONTE	IGTH, t SV RATIO PER L/ ENT, % CLAYS	⇒ TV 3 N TEST AST FOOT)) LL
0 -	-				83	7.5-inches of cru Silty CLAY (CL CLAY (CH), gra	shed limestone), gray-brown, fir y and tan, trace fi		3-3-3	19.1	Ą	20)	40		60
6 -	- 804				67	, <u></u>	, <u> </u>		95.6	27.4			•		-	8534
-	-				100 80	Becoming golder very stiff Shaley CLAY (C	n, trace fine grave 	el, dry, naroon,	3-6-8 121.0	18.9 17.0		•				4.5+
12 -	- 798 -				100	with chert gravel			17-50/5 5"	12.4		•				▲100+ →
	- - 792 -					Boring terminate limestone at 15'-0 NOTE: Bulk sam	d at auger refusal)" ple taken 10'-13.	l on 5'								
24 -	- - 786 -															
30 -	- 780 - -															
36 -	- 774 -															
DRIL METI TYPE HAM LOG	LER: HOD: E OF S MER E GED B	PT F FFI(Y: _	I HAMM CIENC	Mid IER CY (<u>lwest</u> 4.25" R: (%): J. 1	Drilling CFA STR Automatic ONL GRA David SAW	ATIFICATION LINES ARE ROXIMATE SOIL BOUNDA Y; ACTUAL CHANGES MA DUAL OR MAY OCCUR BE IPLES.	WATE RIES Y BE ETWEEN PIEZO	R LEVELS:	DURI <u>Y</u> AT _ AT _ INST	NG E BO	ORILLII RING D FEE FEE D AT	NG PRY AT C T AFTE T AFTE FE	_ FEI COMPL R R ER	ETION (HC HC	DF DRILLING DURS DURS
											SCI Fig	IED ure 2	JLE (EJG	ST1 Sheet	1 of 1

Æ		RF co	EITZ Nsu	<u>z 8</u>		ENS, INC.	BOF	RINO	G	L	0	G	B	-8			
Lab Pot	oadie entia	Pla l C	ant U lay l	Uti Boi	lity rro	Waste Landfill w at Callaway Plant		TION: N ATION: 8	1067 16	7429	DA	E	1853 M:	8784			
			nere		VIIS	souri	DATE		: 03-	-18-1		SHEA	R ST	RENG	TH, ts	f	
DEPTH (FEET)	ELEVATION	WATER TABLE	GRAPHIC LOG	SAMPLE TYPE	PERCENT RECOVERY	MATERIAL DESCRIP	ΓΙΟΝ	DRY UNIT WEIGHT (PCF) BLOWS PER 6 INCHES RQD= ROCK QUALITY DES.	MOISTURE CONTENT PERCENT BY WEIGHT		QU/ STAI N-V/ MOI % FI	2 1 NDAR ALUE STUR NES	PP DPEI (BLO) E CO (SILTS	2 NETR WS PE NTEN S & CL	I SV ATION ER LAS T, % LAYS)	⇒ 3 1 TESI ST FO	тv ЮТ) .L
0 -	- 816		200000								- 2	20 : :		40 : :	6	0	: :
_	_				83	Silty CLAY (CL), gray-brown, v	ery stiff,	3-6-14	10.2			1					1.5+
	-			·	54			106.8	12.7		•					Ş)3.2 1.5
0 -	- 810		\square		89	CLAY (CH), golden and gray, hi	gh plastic,	4-6-10	18.9		4					2	
	-				86	Gravelly CLAY (GC), brown and plastic, coarse to fine gravel, with	d tan, high h fine sand	100.4	19.1		•		(•
12 -	- 804 -			. į	100	No recovery											
_	_					From 14.5' to 15.5' heavy rocky of	drilling										
18 —	- 798 -					Boring terminated at auger refuse limestone at 17'-0" NOTE: Bulk sample taken 1'-15'	al on										
24 —	- 792																
30-	- - - 786																
	-																
36 -	- 780																
DRIL METI TYPE	LER: HOD: E OF S			<u>/idv</u> 4 ER:	west 1 .25" (Drilling CFA STRATIFICATION LINES ARE APPROXIMATE SOIL BOUND Automatic GRADUAL OR MAY OCCUP	WATE ARIES AY BE BETWEFN	I R LEVELS:	DURI Y AT 	ING D BOI		ING DRY / ET AF		FEET MPLET		F DRILI JRS	LING
LOG	GED B	Y: _			J. I	David SAMPLES.	PIEZO	METER:	INST.				FEET E CJ	G-S Sh	T1 eet 1	of 1]

Æ			EITZ DNSU		<u>&</u>	<u>ENS, INC.</u> Engineers	BOF	RINO	G	LOG B-9
Lab Pote	oadie entia ENT:	Pla l C Ar	ant lay nere	Ut Bo en	ility orro Mis	y Waste Landfill w at Callaway Plant ssouri	LOCA ELEV DATE	TION: N ATION: 8 DRILLED	1067 34 : 03-	7143 E 1850654 DATUM: -17-11
DEPTH (FEET)	ELEVATION	WATER TABLE	GRAPHIC LOG	SAMPLE TYPE	PERCENT RECOVERY	MATERIAL DESCRIPT	ΓΙΟΝ	DRY UNIT WEIGHT (PCF) BLOWS PER 6 INCHES RQD= ROCK QUALITY DES.	MOISTURE CONTENT PERCENT BY WEIGHT	SHEAR STRENGTH, tsf △ QU/2 PP □ SV ◇ TV 1 2 3 STANDARD PENETRATION TEST N-VALUE (BLOWS PER LAST FOOT) ● MOISTURE CONTENT, % ○ % FINES (SILTS & CLAYS) PL — LL
0	- 834				58	CLAY (CH), reddish brown and plastic, with lignite and limonite,	gray, high moist	91.0	29.9	20 40 60 98.6
6 -	- 828				100	Silty CLAY (CL), gray brown, d	 ry, hard	5-12-16	13.4	
-	-				100 100	CLAY (CH), brown and gray, his slightly silty, stiff	gh plastic,	100.0 4-4-6	23.6 20.2	
12	- 822 ₹ - 100 singinity sinty, sint							104.3	23.4	
18	- 816				100	Becoming golden		3-5-8	23.5	
24	- - 810 -				100	With fine to medium sand		109.3	20.0	•
30 -	- 804	⊻			100	Shaley CLAY (CH), brown gray with weathered limestone, with f medium sand	and purple, ine to	125.9	12.9	• • • • • • • • • • • • • • • • • • •
	- - 709	Ē			100	Boring terminated at auger refusa limestone at 31'-1" NOTE: Bulk sample taken 10'-13	al on 3'	<u>50/.5</u>		
DRIL	LER: HOD:]	Mid	lwest 4.25"	Drilling CFASTRATIFICATION LINES ARE	WATE	R LEVELS:		ING DRILLING <u>31</u> FEET BORING DRY AT COMPLETION OF DRILLING
TYPE HAMI LOG(OF S MER E GED B	PT F FFIC Y: _	HAMIV CIENC	IER CY	R: (%): J. I	Automatic APPROXIMATE SOIL BOUND ONLY; ACTUAL CHANGES M GRADUAL OR MAY OCCUR E SAMPLES.	ARIES AY BE BETWEEN PIEZO	METER:	AT _ AT _ INST	11.1 FEET AFTER 24 HOURS FEET AFTER HOURS `ALLED AT FEET SCHEDULE CJG_ST1 Figure 2-9 Sheet 1 of 1

Æ			EITZ	<u>Z</u>	<u>&</u>	<u>ENS, INC.</u>		BO	RIN	G	L	0	G	B	-10)	
Lab Pot CLIE	oadie entia ENT:	Pl l C Ar	ant lay nere	Ut Bo en	tility orro Mis	v Waste Land w at Callawa ssouri	fill y Plant	LOCA ELEV DATE	ATION: N /ATION: 8 E DRILLED	1066 33): 03-	5225 -17-	DA 11	E	1850 M:)478		
DEPTH (FEET)	ELEVATION	WATER TABLE	GRAPHIC LOG	SAMPLE TYPE	PERCENT RECOVERY	MATERI	AL DESCRIPT	ION	DRY UNIT WEIGHT (PCF) BLOWS PER 6 INCHES ROD= ROCK QUALITY DES.	MOISTURE CONTENT PERCENT BY WEIGHT		STAN N-VA MOIS % FI	SHEA 2 1 NDAF ALUE STUR NES	AR ST	RENG 2 NETRA WS PE NTEN 3 & CL	TH, tsf SV ATION ER LAS T, % AYS)	⇒ TV TEST T FOOT) → LL
0 -	_					$\underline{-4-inches of top}$	<u>soil</u>		_			2	20		40	60)
_					100	Silty CLAY (C lignite and lime	L), brown and tan onite, moist, stiff	, with	2-4-5	21.1	1		•				
_	-				100				3-3-5	21.1			•				
6 –	- 828					CLAY (CH), g	ray and tan, high p	plastic, dry	7								96.7
-	-				100	Becoming gold	len		107.5	18.7							
_	-			L	100	Decoming gote			113.0	17.5		•					4.3
12 -	- 822																
_	_				100	Becoming gray		105.7	21.0			•					
-	- 816	V															
18 -	-				100	Becoming orar	igish brown, trace	fine sand	112.9	18.3							
24 -	- 810	_ Ţ		7	<u>,100</u> 100	Gravelly drillir With fine to me With fine grave	ng at 22.5' edium sand		<u>116.0</u> 7-9-13	16.5 15.7		•					4.5+ 0.4.5
-	_					Boring termina 25'-0"	ted in high plastic	clay at	-								
30 -	- 804 -					NOTE. Duik se											
36 -	- 798																
DRIL MET	LER: HOD:			Mic	dwest 4.25"	Drilling CFA s	TRATIFICATION LINES ARE	WAT	ER LEVELS:	DUR N	ING D BO	RILL	ING DRY /	<u>23.5</u> AT COI	FEET MPLET		DRILLING
TYPE Ham	E OF S	PT I		IEF CY	R: (%):	Automatic C	NPROXIMATE SOIL BOUND ONLY; ACTUAL CHANGES M/ GRADUAL OR MAY OCCUR E GAMPLES.	ARIES AY BE ETWEEN		AT _ AT _	16.5		ET AI ET AI	FTER	18	HOU	RS RS
LOG	GED B	Y: _			J.]	David	-	PIEZ	OMETER:	INST	ALLE SCI Figu	D AT HED Jre 2	UL 2-10	fee E CJ	G <u>-S</u> Sh	F1 eet 1	 of 1

REITZ & JENS, INC. CONSULTING ENGINEERS BORING LOG B-11																	
Labadie Plant Utility Waste Landfill Potential Clay Borrow at Callaway Plant CLIENT: Ameren Missouri								LOCATION: N 1066268 E 1852244 ELEVATION: 836 DATUM:									
DEPTH (FEET)	ELEVATION	WATER TABLE	GRAPHIC LOG	SAMPLE TYPE	PERCENT RECOVERY	MATERIAL DESCRIPT		DEY UNIT WEIGHT (PCF) BLOWS PER 6 INCHES RQD= ROCK QUALITY DES.	MOISTURE CONTENT	SHEAR STRENGTH, tsf							
0	- 834			1	00	6-inches of topsoil CLAY (CH), gray and reddish br plastic, silty, moist		95.2	28.9			20	•	40		60	98 .7
6-	_	*****		1	00	Silty CLAY (CL), gray-brown, d	ry, hard	5-10-15	14.3		•	/					
	- 828			50		CLAY (CH), tan and gray, high p very stiff Becoming gray	olastic,	101.0	19.5								96,6
	- - 822 -				00	Becoming gray red-brown and go fine gravel	gray red-brown and golden, trace					•					
18	- 816 -			1	00	Becoming gray-tan		105.1	22.4			•					
24	- 810 -			1	00	Sandy CLAY (CH), tan gray and brown, fine to medium grain sand	orangish d	117.4	16.9								0 1
30	- 804 -			. 1	00	Boring terminated in sandy clay a NOTE: Bulk sample taken 10'-13	at 29'- 6" 3.5'	116.4	17.1								
METHOD: 4.25" CFA STRATIFICATION LINES ARE TYPE OF SPT HAMMER: Automatic ONLY; ACTUAL CHANGES MAY BE HAMMER EFFICIENCY (%): GRADUAL OR MAY OCCUR BETWEEN LOGGED BY: J. David STRATIFICATION LINES ARE								Y BORING DRY AT COMPLETION OF DRILLING AT FEET AFTER HOURS AT FEET AFTER HOURS DMETER: INSTALLED AT FEET SCHEDULE CJG_ST1 FEET									

LABORATORY TEST SUMMARY

Client: Ameren Missouri Project: Labadie UWL Location: Callaway Borrow Site

	Sample Ide	ntification			Inc	dex Prope	rties				
Boring Number	Sample Number	bepth (ft)	Sample Recovery (inches)	Visual Classification ASTM D2488	Water Content (%) ASTM D2216	Dry Density (pcf)	Liquid Limit ASTM D4318	Plastic Limit ASTM D4318	#200 Wash (Fines Content %) ASTM D2488 If greater than 10% remains on #200 sieve, dry shake with full nest of sieves	Penetrometer (tsf)	Remarks
B-1	SPI-1	1-2.5	14	CL-CH	32.5	110.5	28	21	07.0	2.5	
B-1 B-1	SPT-3	3-5 6-7.5	20	CL-ML	27.7	110.5	20	21	97.9	4.0	
B-1	SPT-4	8-10	17	CH	26.9					1.8	
B-1	BULK	13-20		СН			69	22	95.7		
B-1	ST-5	13-15	24	СН	19.1	110.3				4.0	
B-1	ST-6	18-20	24	CH, sandy	17.5	113.2			Figure 4-1	4.5+	
B-1	ST-7	23-25	24	CH, sandy	15.1	117.7			Figure 4-2	4.5+	
B-1	SPI-8	28.5-30	18	CH, sandy	13.1					4.5+	
B-2	ST-2	3-5	22	CL, Silty	29.1	106.7	32	10	94.0	2.5	
B-2	SPT-3	6-7.5	18	CL, Silly CH	31.5	100.7	52	13	34.0	3.0	
B-2	ST-4	8-10	17	CH	50.6	83.9				3.5	
B-2	BULK	10-13		CH, trace sand			78	22	Figure 4-3		
B-2	ST-5	13-15	24	CH, sandy	16.8	110.5			Figure 4-4	4.5+	Bent Tube
B-2	SPT-6	18.5-20	1.5	Weathered rock							
B-3	SPT-1	1-2.5	18	CL, silty	24.4					2.0	
B-3	ST-2	3-5	24	CH	17.3	107.3	61	22	92.2	4.5+	
B-3	SPI-3	6-7.5	18	CH	27.7	107.0				2.9	
B-3	BILK	0-10 1 10	9		19.0	107.0	101	33	07.8	3.0	
B-3	ST-5	13-15	24	СН	21.0	107.2	101	55	57.0	3.5	
B-3	ST-6	18-20	24	CL, sandy, trace gravel	20.6	107.4	44	20	Figure 4-5	3.8	
B-3	ST-7	23-25	18	CL, sandy, gravelly	15.0	115.0			Figure 4-6		
B-3	SPT-8	28.5-30	18	Shaley clay	14.9					4.5+	
B-4	ST-1	1-3	22	CL, silty	28.1	95.6				2.5	
B-4	SPT-2	3.5-5	18	CL, silty	19.5					1.8	
B-4	SI-3	6-8	5	CL, silty	047					2.5	Sample was all fall in, no virgin material
B-4	5P1-4	8.5-10	18		24.7	111.4				2.3	
B-4	BULK	15-24	24	CH sandy	10.9	111.4	56	21	Figure 4-7	4.0	
B-4	ST-6	18-20	21	SM	23.6	100.2	00		. 19010 - 1	1.5	Not acceptable liner material
B-4	SPT-7	23.5-24	4.5	SHALE	5.3						
B-5	SPT-1	1-2.5	17	CL, silty	30.6					1.7	
B-5	ST-2	3-5	24	CL, silty	20.0	108.2	30	20	95.6	3.3	
B-5	SPT-3	6-7.5	18	CH	24.5	100.0				2.5	
B-5	SI-4	8-10	24	CH	19.9	108.6				3.5	
B-5	BIIK	15-15	22	СН	21.7	100.0	67	21	03.3	3.0	
B-5	SPT-6	18-19.5	18	CH, sandv	22.3		01		00.0	3.4	
B-5	SPT-7	23-24.5	16	Weathered rock	7.2					4.5+	
B-6	ST-1	1-3	11	CH, sandy	36.5	85.1	83	29	Figure 4-8	1.5	
B-6	SPT-2	3.5-5	18	CL	20.3		-			2.0	
B-6	SPT-3	6-7.5	18	CH	26.3					2.1	
B-6	ST-4	8-10	24	CH	20.5	108.8	0.2		00.7	3.3	
B-6	BULK	10-13	<u></u>	CH	07.0	05.5	86	22	96.5	0.5	
B-6	S1-5	13-15	24	CH	27.9	95.5				3.5	
B-0	ST-7	23-25	24	CH sandy	20.0	114.9	50	18	Figure 4-0	3.5 4.5+	
B-6	ST-8	28-30	10	CH, sandy gravelly	20.7	103.7	00	10	1 igure 1 -3	4.51	Bent Tube
20	010			or i, carray, gravony	20.7			1	I	L	2011 1000

LABORATORY TEST SUMMARY

Client: Ameren Missouri Project: Labadie UWL Location: Callaway Borrow Site

	Sample Ide	ntification			Inc	lex Prope	rties				
									<u>۳</u>		
Boring Number	Sample Number	Depth (ft)	Sample Recovery (inches)	Visual Classification ASTM D2488	Water Content (%) ASTM D2216	Dry Density (pcf)	Liquid Limit ASTM D4318	Plastic Limit ASTM D4318	#200 Wash (Fines Content %) ASTM D2488 1 greater than 10% remains on #200 sieve, dry shake with full nest of sieves	Penetrometer (tsf)	Remarks
B-7	SPT-1	1-2.5	15	CL, silty	19.2					2.5	
B-7	ST-2	3-5	16	CH, trace sand	27.4	95.6	81	25	Figure 4-10	2.5	
B-7	SP13	6-7.5	18	CH, trace sand & gravel	19.0	101.0				3.7	
B-7	51-4	8-10	16	Shaley clay	17.0	121.0	54	20	Eiguro 4 11	4.5+	
B-7	SDT 5	0-10 13.5.15	14	Shaley clay	12.4		54	20	Figure 4-11		
B-8	SPT-1	1_2 5	14		10.2					42	
B-8	ST-2	3-5	13	CL, silty	12.7	106.8	38	16	93.2	7.2	
B-8	SPT-3	6-7.5	16	CH, sandy, gravelly	18.9				00.2	4.5+	
B-8	ST-4	8-10	18	GC, sandy	19.1	100.4			Figure 4-12	3.5	
B-8	BULK	1-15		CH, sandy			52	17	Figure 4-13		
B-8	ST-5	13-15	9	GC, sandy							Bent Tube, All Fall-in
B-9	ST-1	1-3	14	CH	29.9	91.0	80	26	99.9	2.3	
B-9	SPT-2	3.5-5	18	CL, silty	13.4					2.5	
B-9	ST-3	6-8	24	CL, silty	19.7	100.0	60	20	98.1	4.5+	
B-9	SPT-4	8.5-10	18	CH	20.2			10		3.7	
B-9	BULK	10-13	0.4	CH	00.4	404.0	52	18	95.7	0.0	
B-9	51-5 SDT 6	13-15	24	CH	23.4	104.3				3.3	
B-9 B 0	SP1-0 ST 7	23.25	10		23.5	100.3			Figure 4 14	3.5	
B-9	ST-8	23-23	15	Shaley clay, sandy	12.0	125.9			Figure 4-15	4.5+	Bent Tube
B-9	SPT-9	31-32.5	0.5	Limestone	12.0	120.0			riguie + io	4.01	Bent Tube
B-10	SPT-1	1-2.5	18	CL, silty	21.1					1.7	
B-10	SPT-2	3-4.5	18	CL, silty	21.1					2.3	
B-10	ST-3	6-8	24	СН	18.7	107.5	53	16	96.7		
B-10	ST-4	8-10	24	СН	17.5	113.0				4.5	
B-10	ST-5	13-15	24	СН	21.0	105.7				3.3	
B-10	BULK	15-18		CH, sandy	40.0	110.0	65	18	Figure 4-16	1.0	
B-10	51-6	18-20	24 7	CH, trace sand	18.3	112.9			Eiguro 4 47	4.0	Popt Tubo
B-10 B-10	SI-7	23-23.0	18	CH sandy gravelly	10.5	110.0			Figure 4-17	4.5+	Benit Tube
B-10 B-11	ST-1	1-3	24	CH	28.9	95.2	59	24	98.7	3.5	
B-11	SPT-2	3.5-5	18	CL, silty	14.3	33.2	55	27	50.1	4.0	
B-11	ST-3	6-8	12	CH	19.5	101.0	51	21	96.5		
B-11	SPT-4	8.5-10	18	СН	20.0					3.3	
B-11	BULK	10-13		СН			63	16	98.5		
B-11	SPT-5	13-15	18	CH, trace gravel	23.8		-			3.3	
B-11	ST-6	18-20	24	СН	22.4	105.1				3.5	
B-11	ST-7	23-25	24	CH, sandy	16.9	117.4			Figure 4-18	4.0	
B-11	ST-8	28-29.5	18	CH, sandy	17.1	116.4				4.5+	
B-12	SP1-1	1-2.5	6	CH condu	22.0		74	22	Eigure 4.40	2.0	
B-12	ST-2	2.5-10	18	CH sandy	13.7	116.2	74	_ 22	Figure 4-19	4.5+	
B-12	SPT-3	6-7.5	16	CH sandy trace gravel	14.8	110.2			1 iguie 4-20	4.5+	
B-12	ST-4	8-10	10	CH. sandy gravelly	14.5	115.0			Figure 4-21	4.5+	
				,, g.a.o,				ı			

SCHEDULE CJG-ST1

Ameren Missouri; Labadie Power Plant UWL Calaway Borrow Site Silty CLAY Composite Compacted Proctor point 103.0pcf at 21.8% moisture Hydraulic Conductivity

Soil Co] [Test Info	ormation	
Pre-test conditions	Post-test Conditions		a (cm^2)=	0.1969
Wet Density = 125.7 (lbs/ft^3)	Wet Density = 128.1 (lbs/ft^3)		L (cm)=	4.8061
% Moisture = 21.7%	% Moisture = 22.9%		A (cm^2)=	19.4194
Dry Density = 103.3 (lbs/ft^3)	Dry Density = 104.2 (lbs/ft^3)			

	Trial 1												
			Base	Burette	Тор Е	Burette							
		Cell Burette		Distance		Distance	Total Head		Weighted	Uncorrected Hydraulic	Correction	Cumulative	Corrected Hydraulic
Date and Time	Elapsed Time	Reading	Reading	from Datum	Reading	from Datum	Across Sample	Temperature	Average Temp.	Conductivity	Factor	Time	Conductivity
	(seconds)	(ml)	(ml)	(cm)	(ml)	(cm)	(cm of water)	(°C)	(\mathfrak{D})	(cm/sec)		(sec)	(cm/sec)
5/4/11 7:55	0	8.5	10.00	27.200	0.00	78.000	85.979	18.1					
5/4/11 14:25	23400	8.4	9.92	27.606	0.13	77.340	84.912	21.5	19.80	1.30E-08	1.0051515	23400	1.31E-08
5/5/11 9:10	90900	8.7	9.67	28.876	0.44	75.765	82.067	19.8	20.43	1.25E-08	0.9897973	90900	1.24E-08
5/6/11 8:10	173700	8.7	9.38	30.350	0.80	73.936	78.765	19.5	20.06	1.23E-08	0.9988069	173700	1.23E-08
5/9/11 7:15	429600	8.9	8.61	34.261	1.83	68.704	69.621	22.9	20.74	1.20E-08	0.9824633	429600	1.18E-08

	Trial 2												
			Base	Burette	Тор Е	Burette							
		Cell Burette		Distance		Distance	Total Head		Weighted	Uncorrected Hydraulic	Correction	Cumulative	Corrected Hydraulic
Date and Time	Elapsed Time	Reading	Reading	from Datum	Reading	from Datum	Across Sample	Temperature	Average Temp.	Conductivity	Factor	Time	Conductivity
	(seconds)	(ml)	(ml)	(cm)	(ml)	(cm)	(cm of water)	(°C)	(°C)	(cm/sec)		(sec)	(cm/sec)
5/9/11 7:45	0	8.9	10.00	27.200	0.00	78.000	85.979	22.6					
5/10/11 7:30	85500	9.2	9.67	28.876	0.37	76.120	82.423	22.4	22.50	1.20E-08	0.9421229	85500	1.13E-08
5/11/11 8:30	175500	9.2	9.35	30.502	0.77	74.088	78.765	22.4	22.45	1.22E-08	0.9432589	175500	1.15E-08
5/12/11 8:05	260400	9.3	9.07	31.924	1.10	72.412	75.667	22	22.37	1.20E-08	0.9450598	260400	1.13E-08
5/13/11 8:15	347400	9.3	8.79	33.347	1.42	70.786	72.619	22.1	22.29	1.18E-08	0.9468317	347400	1.12E-08

Base Burette Top Burette				
Cell Burette Distance Distance Total Head Weighted Uncorrected Hydraulic Cor	ection Cu	Correction	Cumulative	Corrected Hydraulic
Date and Time Elapsed Time Reading Reading from Datum Reading from Datum Across Sample Temperature Average Temp. Conductivity F	ctor	Factor	Time	Conductivity
(seconds) (ml) (ml) (cm) (ml) (cm) (cm of water) (°C) (°C) (cm/sec)			(sec)	(cm/sec)
5/16/11 7:55 0 10.1 10.00 27.200 0.00 78.000 85.979 19				
5/17/11 7:50 86100 9.9 9.71 28.673 0.32 76.374 82.880 19.2 19.10 1.04E-08 1.02	26658	1.0226658	86100	1.06E-08
5/18/11 8:00 173100 9.9 9.43 30.096 0.66 74.647 79.731 20.5 19.48 1.06E-08 1.0 ⁻¹	31690	1.0131690	173100	1.08E-08
5/19/11 8:00 259500 9.9 9.16 31.467 0.98 73.022 76.733 21.7 20.02 1.07E-08 0.99	98188	0.9998188	259500	1.07E-08
5/20/11 8:30 347700 10.0 8.91 32.737 1.28 71.498 73.939 21.8 20.46 1.06E-08 0.94	91813	0.9891813	347700	1.05E-08

H.C.= 1.1E-08

CLAY VOLUME CALCULATION

Client:	Ameren Missouri
Project:	Labadie UWL
Location:	Callaway Borrow Site

USING ONLY MODERATE TO HIGH PLASTIC CLAY MATERIAL WITH LOW SAND/GRAVEL CONTENT							
		Thickness of Useable					
Borrow Area No.	Surface Area (acres)	Liner Material (feet)	Volume (acre-ft)	Volume (cubic yards)			
1	35	20	700	1130000			
2	33	11	363	590000			
3	22	19	418	670000			
4	28	18	504	810000			
5	36	22	792	1280000			
		TOTAL	2777	4480000			

TOTAL 2777

USING ALL SILT, LOW PLASTIC CLAY, AND HIGH PLASTIC CLAY MATERIAL WITH LOW SAND/GRAVEL CONTENT							
		Thickness of Useable					
Borrow Area No.	Surface Area (acres)	Liner Material (feet)	Volume (acre-ft)	Volume (cubic yards)			
1	35	27	945	1520000			
2	33	17	561	910000			
3	22	24	528	850000			
4	28	21	588	950000			
5	5 36 25 900 1450000						
		TOTAL	3522	5680000			

Figure 7

REITZ & JENS, INC.

Appendix A-1

POTENTIAL HAUL ROUTE FOR CLAY BORROW AND SUPPLEMENTAL LABORATORY TESTING

REITZ & JENS, INC.

REITZ & JENS, INC.

Ameren Missouri Labadie UWL POSSIBLE ROUTE FROM CALLAWAY PLANT CLAY BORROW SITE TO LABADIE UWL

REITZ & JENS, INC. Consulting Engineers

Figure A-1

Checked By: K. Kocher

DIRECT SHEAR TEST

Assumed Specific Gr	avity=2.68	LL=62	PL= 19	PI= 43	
Type of Sample:	Compacted				
Remarks:	High plastic clay	was sheared ag	ainst the textured li	ner from Sioux UW	'L
	high plastic clay.				
	Sample is a comp	posite of materi	al left over from she	elby tubes that was	visually classified as
Description:	CLAY (CH), gre	y-brown-tan-or	angish brown, high	platic, with trace fin	ne chert fragments
Location:	Composite: high	plastic clay ma	terial		
Project No.:	2008012455				
Project:	Labadie Plant Ut	ility Waste Lan	dfill		
Client:	Ameren Missour	i			
Date:					

Parameters for Specimen No. 1								
Specimen Parameter	Initial	Consolidated	Final					
Moisture content: Moist soil+tare, gms.	329.350		329.350					
Moisture content: Dry soil+tare, gms.	271.510		271.510					
Moisture content: Tare, gms.	39.160		39.160					
Moisture, %	24.9	24.9	24.9					
Moist specimen weight, gms.	129.8							
Diameter, in.	2.00	2.00						
Area, in.²	3.14	3.14						
Height, in.	1.28	1.28						
Net decrease in height, in.		0.00						
Wet density, pcf	123.4	123.4						
Dry density, pcf	98.8	98.8						
Void ratio	0.6933	0.6933						
Saturation, %	96.2	96.2						

Test Readings for Specimen No. 1 Primary load ring constant = .1176 lbs. per input unit

Normal stress = 0.2 tsf

Strain rate, %/min. = 0.80

Fail. Stress = 0.226 tsf at reading no. 6

Ult. Stress = 0.208 tsf at reading no. 19

No.	Horizontal Def. Dial in.	Load Dial	Load Ibs.	Strain %	Shear Stress tsf
0	0.0000	0.00	0.0	0.0	0.000
1	0.0050	45.00	5.3	0.3	0.121
2	0.0100	58.00	6.8	0.5	0.156
3	0.0150	70.00	8.2	0.8	0.189
4	0.0200	76.00	8.9	1.0	0.205
5	0.0250	81.00	9.5	1.3	0.218
6	0.0300	84.00	9.9	1.5	0.226
7	0.0400	85.00	10.0	2.0	0.229
8	0.0500	85.00	10.0	2.5	0.229
9	0.0600	84.00	9.9	3.0	0.226
10	0.0700	84.00	9.9	3.5	0.226
11	0.0800	84.00	9.9	4.0	0.226

11/20/2012

Test Readings for Specimen No. 1

No.	Horizontal Def. Dial in.	Load Dial	Load Ibs.	Strain %	Shear Stress tsf
12	0.0900	83.00	9.8	4.5	0.224
13	0.1000	83.00	9.8	5.0	0.224
14	0.1100	81.00	9.5	5.5	0.218
15	0.1200	79.00	9.3	6.0	0.213
16	0.1300	81.00	9.5	6.5	0.218
17	0.1400	80.00	9.4	7.0	0.216
18	0.1500	78.00	9.2	7.5	0.210
19	0.1750	77.00	9.1	8.8	0.208

Parameters for Specimen No. 2

	arameter	s for specifien in	10. 2	
Specimen Parameter	Initial	Consolidated	Final	
Moisture content: Moist soil+tare, gms.	329.350		329.350	
Moisture content: Dry soil+tare, gms.	271.510		271.510	
Moisture content: Tare, gms.	39.160		39.160	
Moisture, %	24.9	24.9	24.9	
Moist specimen weight, gms.	129.8			
Diameter, in.	2.00	2.00		
Area, in. ²	3.14	3.14		
Height, in.	1.28	1.28		
Net decrease in height, in.		0.00		
Wet density, pcf	123.4	123.4		
Dry density, pcf	98.8	98.8		
Void ratio	0.6933	0.6933		
Saturation, %	96.2	96.2		
	and the second se			A REAL PROPERTY OF THE REAL PR

Test Readings for Specimen No. 2

Primary load ring constant = .1176 lbs. per input unit

Normal stress = 0.61 tsf

100

Strain rate, %/min. = 0.80

Fail. Stress = 0.539 tsf at reading no. 8

Ult. Stress = 0.493 tsf at reading no. 19

	Horizontal				Shear
No.	Def. Dial in.	Load Dial	Load Ibs.	Strain %	Stress tsf
0	0.0000	0.00	0.0	0.0	0.000
1	0.0050	109.00	12.8	0.3	0.294
2	0.0100	142.00	16.7	0.5	0.383
3	0.0150	165.00	19.4	0.8	0.445
4	0.0200	174.00	20.5	1.0	0.469
5	0.0250	183.00	21.5	1.3	0.493
6	0.0300	191.00	22.5	1.5	0.515
7	0.0400	198.00	23.3	2.0	0.534
8	0.0500	200.00	23.5	2.5	0.539
9	0.0600	195.00	22.9	3.0	0.526
10	0.0700	193.00	22.7	3.5	0.520
11	0.0800	191.00	22.5	4.0	0.515
12	0.0900	186.00	21.9	4.5	0.501
13	0.1000	183.00	21.5	5.0	0.493
14	0.1100	182.00	21.4	5.5	0.491

	A margaret		the second	Te	st Readii	ngs for Specimen No. 2		
No.	Horizontal Def. Dial in.	Load Dial	Load Ibs.	Strain %	Shear Stress tsf			
15	0.1200	180.00	21.2	6.0	0.485			
16	0.1300	181.00	21.3	6.5	0.488			
17	0.1400	182.00	21.4	7.0	0.491			
18	0.1500	183.00	21.5	7.5	0.493			
19	0.1750	183.00	21.5	8.8	0.493			
				Р	aramete	rs for Specimen No. 3		
Spe	ecimen Para	ameter			Initial	Consolidated	Final	
Mois	ture conten	t: Moist s	oil+tare	, gms.	329.350		329.350	
Mois	ture conten	t: Dry soi	il+tare, ç	gms.	271.510		271.510	
Moist	ture conten	t: Tare, g	ms.		39.160		39.160	
Mois	ture, %				24.9	24.9	24.9	
Moist	t specimen	weight, g	jms.		129.8			
Diam	eter, in.				2.00	2.00		
Area,	in.²				3.14	3.14		
Heigl	nt, in.				1.28	1.28		
Net d	ecrease in	height, in	ı.			0.00		
Wet o	density, pcf				123.4	123.4		
Dry d	ensity, pcf				98.8	98.8		
Void	ratio				0.6933	0.6933		
Satur	ation, %				96.2	96.2		
				Tes	st Readii	ngs for Specimen <u>No. 3</u>		
Prima	ary load ring	g constai	nt = .117	'6 lbs. p	er input u	nit		

Normal stress = 1 tsf

Strain rate, %/min. = 0.80

Fail. Stress = 0.755 tsf at reading no. 7

Ult. Stress = 0.679 tsf at reading no. 19

	Horizontal Def Dial	Load	Load	Strain	Shear Stress
No.	in.	Dial	lbs.	%	tsf
0	0.0000	0.00	0.0	0.0	0.000
1	0.0050	177.00	20.8	0.3	0.477
2	0.0100	190.00	22.3	0.5	0.512
3	0.0150	228.00	26.8	0.8	0.615
4	0.0200	256.00	30.1	1.0	0.690
5	0.0250	268.00	31.5	1.3	0.722
6	0.0300	277.00	32.6	1.5	0.747
7	0.0400	280.00	32.9	2.0	0.755
8	0.0500	278.00	32.7	2.5	0.749
9	0.0600	277.00	32.6	3.0	0.747
10	0.0700	273.00	32.1	3.5	0.736
11	0.0800	270.00	31.8	4.0	0.728
12	0.0900	267.00	31.4	4.5	0.720
13	0.1000	266.00	31.3	5.0	0.717
14	0.1100	263.00	30.9	5.5	0.709
15	0.1200	262.00	30.8	6.0	0.706
16	0.1300	259.00	30.5	6.5	0.698
17	0.1400	258.00	30.3	7.0	0.695

REITZ & JENS, INC.

				Te	st Readir	ngs for Specimen No	. 3	-	
No.	Horizontal Def. Dial in.	Load Dial	Load Ibs.	Strain %	Shear Stress tsf				
18	0.1500	257.00	30.2	7.5	0.693				
19	0.1750	252.00	29.6	8.8	0.679				
				P	aramete	rs for Specimen No. 4	4		
Spe	ecimen Para	ameter			Initial	Consolidated	Final		
Mois	ture conten	t: Moist s	oil+tare	, gms.	329.350		329.350		
Mois	ture conten	t: Dry soi	il+tare, g	jms.	271.510		271.510		
Mois	ture conten	t: Tare, g	ms.		39.160		39.160		
Mois	ture, %				24.9	24.9	24.9		
Mois	t specimen	weight, g	jms.		129.8				
Diam	eter, in.				2.00	2.00			
Area,	in.²				3.14	3.14			
Heigl	ht, in.				1.28	1.28			
Net d	lecrease in	height, in				0.00			
Wet o	density, pcf				123.4	123.4			
Dry d	lensity, pcf				98.8	98.8			
Void	ratio				0.6933	0.6933			
Satur	ration, %				96.2	96.2			
10000		A CONTRACTOR OF THE OWNER	ALT PARTY		10.11	(0 · N			and the second second

Test Readings for Specimen No. 4

Primary load ring constant = .1176 lbs. per input unit

Normal stress = 1.62 tsf

Strain rate, %/min. = 0.80

Fail. Stress = 1.027 tsf at reading no. 7

Ult. Stress = 0.941 tsf at reading no. 18

	Horizontal				Shear
No	Def. Dial	Load	Load	Strain %	Stress
NO.		Diai	105.	70	151
0	0.0000	0.00	0.0	0.0	0.000
1	0.0050	275.00	32.3	0.3	0.741
2	0.0100	321.00	37.7	0.5	0.865
3	0.0150	346.00	40.7	0.8	0.933
4	0.0200	357.00	42.0	1.0	0.962
5	0.0250	364.00	42.8	1.3	0.981
6	0.0400	376.00	44.2	2.0	1.013
7	0.0500	381.00	44.8	2.5	1.027
8	0.0600	380.00	44.7	3.0	1.024
9	0.0700	375.00	44.1	3.5	1.011
10	0.0800	374.00	44.0	4.0	1.008
11	0.0900	367.00	43.2	4.5	0.989
12	0.1000	364.00	42.8	5.0	0.981
13	0.1100	363.00	42.7	5.5	0.978
14	0.1200	358.00	42.1	6.0	0.965
15	0.1300	357.00	42.0	6.5	0.962
16	0.1400	352.00	41.4	7.0	0.949
17	0.1500	350.00	41.2	7.5	0.943
18	0.1750	349.00	41.0	8.8	0.941

Tested By: K. Kocher

Checked By: J. Fouse

Checked By: J. Fouse

TRIAXIAL CELL SETUP & TAKEDOWN Project American UE - Calkaday Chu Date Date Date Sample ± 35-471 M Depth Confining Pressure Differential Triat Triat Description - In + Selden HP Cloy Triat Triat Triat Description - In + Selden HP Cloy Triat Tri					
Project American UE - Callavâny Date Open Open <thopn< th=""> Open Open<</thopn<>	TRIAXIAL CELL SETUP	& TAKEDOWN			
Somple ± 35 - 212 M Depth: Complexite being Standard Pacta: Method Description	Project Ameren UE - Callanary Cha	y Date Celarlia			
Johnya Jan + Steen HP Clay Type of Test Cull Confining Pressure Differential Tps: Cell Number Saturate before ofter Consolidation IENCTH CHANGE Number of Membranes A Filter Strip: Yes to IENCTH CHANGE MOISTURE CONTENT INITIAL Tare No. Strain GAUGE at setup Wet Wet + Tore IT.3.02 143,51 665,26 Tare Wt. Alassi Data 163,122 26,724 Moisture X It.3.05 124,223 28,724 Mass PROPERTIES MASS PROPERTIES gm. Wt. Water It.3.05 26,724 Mass Properties gm. gm. SPECIMEN DIMENSIONS in. / mm. mm. total trim HEIGHT DIAMETER It. Tube loaneter Setup By Mass Properties gm. Mass Properties m. top trim in. Setup By Mass Properties gm. Setup By Mass Properties gm. Setup By Setup By Setup By Generate Setup By Setup By Setup By Setup By	Sample + 25-27% M Depth Compacted using	Standard Proton Method			
Type of Test Cut Confining Pressure Differential Test Cell Number Saturate before after Consolidation IENCTH CHANGE Number of Membranes Filter Strip Yes to IENCTH CHANGE MOISTURE CONTENT INITAL FINAL Image: with a consolidation start Soc ot saturation start Soc Image: with a consolidation start Soc ot and load start Soc Image: with a consolidation start Soc at axial load start Soc Image: with a consolidation start Soc at axial load start Soc Image: with a consolidation start Soc gm. gm. MASS PROPERTIES Wt. Soil Gm. gm. Image: with a consolidation start Soc gm. gm. SPECIMEN DIMENSIONS in. / mm. Mass PROPERTIES gm. gm. Seturation Initial Final initial final 1 -1.0715 I. 67175 m. fin. 2 -1.0715 I. 67175 m. m. 3 -1.0615 B. 80190 m. Avg. via	Description tan + golden HP Clay				
Type of Test Type of Test Type of Test Cell Number of Membranes Saturate Gener Offer Consolidation Number of Membranes E-Filter Strip Yes to LENGTH CHANGE MOISTURE CONTENT LENGTH CHANGE Type of Test Strip Yes to LENGTH CHANGE MOISTURE CONTENT MOISTURE CONTENT LENGTH CHANGE Type of the Strip Yes to LENGTH CHANGE MOISTURE CONTENT MOISTURE CONTENT MOISTURE CONTENT MOISTURE CONTENT MOISTURE CONTENT MITTOR WILL Tore TILLS MITTOR TILLS MITTOR TILLS <th <="" colspan="2" td=""><td></td><td></td></th>	<td></td> <td></td>				
Cell Number 1 Saturate before after Consolidation Number of Membranes Filter Strip Yes No MOISTURE CONTENT Image: Strip Strain Strain Strain MOISTURE CONTENT Image: Strip Strain Strain Strain Strain Image: Strip Image: Strip Yes No at saturation start Strain	Type of TestCONConfining Pressure Differentia	η Τρς:			
Number of Membranes Filter Strip Yes No MOISTURE CONTENT IS STRAIN GAUGE at setup 500 Image: Strain of the	Cell Number Saturate before after Conse	olidation			
LETENT INDE MOISTURE CONTENT STRAIN GAUGE at setup Soo Tare NL. STRAIN GAUGE at setup Soo MOISTURE CONTENT Tare NL. STRAIN GAUGE at setup Soo MITAL Folder at setup Soo MITAL Folder at setup Soo MITAL STRAIN GAUGE at setup Soo MITAL STRAIN GAUGE at setup Soo Wet W. Water Tare WI. Algo at saturation start SOO MASS PROPERTIES W. Tube + Soil gm. MASS PROPERTIES WI. Tube + Soil Genetation In the light In the light In the light In t	Number of Membranes	LENGTH CHANCE			
MOISTURE CONTENT INTIAL FINAL Tore No. Sile of the setup Solo MOISTURE CONTENT Tore No. Sile of the setup Solo MOISTURE CONTENT Moisture X Sile of the setup Solo Moisture X Colspan="2">of the setup Solo Moisture X 20.0 Moisture X 20.0 Moisture X Colspan="2">of the setup Solo Moisture X 20.0 Moisture X 20.0 Moisture X Colspan="2">of the setup Solo Moisture X 20.0 of the setup Solo Setup Site Solo Of the setup Solo Moisture X Colspan="2">Of the setup Solo Solo Of the setup Solo		STRAIN CALLOF A John 500			
MOISTORE CONTENT initial FINAL Tare No. 31a Wet Wt. + Tare 117.10 Dry Wt. + Tare 110.27 Dry Wt. Water 213.75 Dry Wt. Water 213.75 Dry Wt. Water 213.75 Moisture X. 20.303 26.243 Moisture X. 20.403 26.245 Wt. Soil Wt. 10.1110 Final 11.101 HeiGHT DIAMETER SPECIMEN DIMENSIONS in. // mm. 1 1.0115 2 4.0845 4.0915 T 2 4.0845 4.0916 B.4010 2 4.0845 4.0917 L.9101 Description After Test	MOISTURE CONTENT	STRAIN GAUGE at setup			
Tare No. State Invite Invite <thinvite< th=""> Invite Invite</thinvite<>	MOISTORE CONTENT	at saturation start00			
Wet Wit + Tore 117.37 127.51 202.12 Dry Wit + Tore 117.37 127.52 22.20 Dry Soll Wit. 21.55 24.202 26.791 Mass PROPERTIES Wit. Tube + Soil gm. Mass PROPERTIES Wit. Tube + Soil gm. Wit. Soil Mass PROPERTIES gm. Wit. Soil Mass PROPERTIES gm. Wit. Soil Mass Properties gm. Sector Mas	Tare No Sta 22 Baul 1	at consolidation start 583 488			
Dry Wt. + Tare 91.05 107.1.10 513.26 Wt. Water 11.55 18.00 195.34 Moisture % 20.863 20.263 28.71 Avg. w % 20.863 20.263 28.71 SPECIMEN DIMENSIONS in. / mm. ////////////////////////////////////	Wet Wt. + Tare 117.37 129.51 605.78	672			
Tore WL. Al. 35 As. 06 195.24 Moisture X 20.963 20.223 28.991 Avg. w X 20.963 20.223 28.991 Avg. w X 20.963 20.223 28.991 Wt. Tube + Soil gm. SPECIMEN DIMENSIONS in. / mm. mm. HEIGHT DIAMETER Initial Final 1 4.0795 2 4.0645 3 4.0645 4.0795 T. 1.9715 2 4.0645 3 4.0645 4.0795 B.8.0010 Avg. 4.0645 M.1.9740 3 4.0645 2.0000 Met Density Description After Test pcf. Dry Density pcf. Dry Density pcf. Setup By Setup By Setup Date 1042 Take Down Date 1042	Dry Wt. + Tare 77.08 107.10 513.96	at axial load start			
Dry Soll Wt.	Tare Wt. 21.95 28.06 195.04	MASS PROPERTIES			
Moisture x 20:200 20:200 20:200 20:200 20:200 20:200 20:200 20:200 20:200 20:200 00:200	Dry Soil Wt.				
SPECIMEN DIMENSIONS in. / mm. //mm. Initial Final Initial Final 1 4.0715 2 4.0705 3 4.0715 3 4.0715 3 4.0715 3 4.0715 1 4.0715 2 4.0715 3 4.0715 3 4.0715 3 4.0715 4.0715 T. (Avg. w %	Wt. Tube + Soil gm.			
SPECIMEN DIMENSIONS in. / mm. Initial Length in. HEIGHT DIAMETER tube length in. Initial Final Initial Final in. 1 4.0795 T. (.97175) Initial in. 2 4.0625 M. 19740 Initial in. 3 4.0615 B. 8.010 M. 19740 Initial Initial Avg. 4.0516 B. 8.010 M. 19740 Initial Initial Initial Description After Test Semple Length Initial Initi		Wt. Soil 404.Bl gm.			
SPECIMEN DIMENSIONS in. / mm. //// mm. HEIGHT DIAMETER Initial Final 1 4.0795 2 4.0625 3 -1.0215 Avg. 4.0625 Avg. 4.0625 B d.0100 Avg. 4.0625 M 1.97420 Avg. 4.0625 M 2.97420 Avg. 4.0625 M 1.97420 Avg. 4.0625 M 1.97420 Avg. 4.06275 B d.0100 Avg. 4.06275 Description After Test		Tube Diameter in.			
SPECIMEN DIMENSIONS In. / Initial / <th <="" th=""> <th <="" th=""> / <th <="" td=""><td></td><td>Sample Length in lin</td></th></th></th>	<th <="" th=""> / <th <="" td=""><td></td><td>Sample Length in lin</td></th></th>	/ <th <="" td=""><td></td><td>Sample Length in lin</td></th>	<td></td> <td>Sample Length in lin</td>		Sample Length in lin
HEIGHT DIAMETER Initial Final Initial Final 1 4.0795 T. (.9175) Initial 2 4.0845 M. (.9740) B. d.0100 Avg. 4.0815 B. d.0100 B. d.0100 Avg. 4.0816 B. d.0100 B. d.0100 Avg. 4.0817 I. M67 Pcf. Description After Test Dry Density pcf. Beau Trimmed By Initial Failure Sketch Trimmed By Initial Setup By Setup By Setup Date Take Down By Initial Initial	SPECIMEN DIMENSIONS In. / mm.	top trim in.			
Initial Final Initial Final initial Final initial Final initial initial <td< td=""><td>HEIGHT DIAMETER</td><td>bottom trim in.</td></td<>	HEIGHT DIAMETER	bottom trim in.			
1 4.0795 T 1.9775 In. In. 2 4.0645 M 1.9740 In. In. In. 3 -4.0615 B 8.0000 Wet Density pcf. Avg. 4.0815 In. 91617 In. Wet Density pcf. Description After Test In. In. 91617 In. In. Pcf. Description After Test In. 91617 In. 91617 In. 91617 In. In. Description After Test In. 91617 In. 91617 In. 91617 In. 91617 In. 91617 Description After Test In. 91617 In. 91617 In. 91617 In. 91617 In. 91617 Description After Test In. 91617 In. 91617 In. 91617 In. 91617 In. 91617 Remorks In. 91617 In. 91617 In. 91617 In. 91617 In. 91617 In. 91617 Foilure Sketch In. 91617 In. 91617 In. 91617 In. 91617 In. 91617 In. 91617 In. 91617 In. 91617 In. 91617 In. 91617 In. 91617 In. 91617	Initial Final Initial Final	total trim in.			
2 4.05/15 B A.01/10 Hereity pcf. Avg. 4.08/17 1.99/17 Pry Density pcf. Description After Test	1 4.0795 T 1.9775	Density constant			
3 4.0815 B d.010 pcf. Avg. 4.0817 I.9967 pcf. Description After Test	2 4.0825 M 1.9920	4.85/(D^2 * L)			
Avg. 4.08/17 Ury Density pcf. Description After Test	3 4.0815 B 8.0190	Wet Density pcf.			
Description After Test Remarks Failure Sketch Trimmed By Trimmed Date Setup By Setup By Setup Date Taken Down By Taken Down Date	Avg. 4.08/17	Dry Density pcf.			
Description Arter rest Remarks Failure Sketch Trimmed By Trimmed Date Setup By Setup Date Taken Down By Taken Down By Taken Down By Luch Luch Luch Taken Down By Luch	Description After Test				
Remorks					
Feilure Sketch Foilure Sketch Trimmed By Trimmed Date Setup By Setup By Setup Date Take Down Date					
Feilure Sketch Trimmed By Trimmed Date Setup By Setup Date Taken Down By Take Down Date		· · · · · · · · · · · · · · · · · · ·			
Foilure Sketch Trimmed By Trimmed Date Setup By Setup Date Taken Down By Take Down Date	Remarks				
Foilure Sketch Trimmed By Trimmed Date Setup By Setup Date Taken Down By Take Down Date					
Failure Sketch Trimmed By Trimmed Date Setup By Setup Date Taken Down By Take Down Date					
Failure Sketch Trimmed By Trimmed Date Setup By Setup Date Taken Down By Take Down Date					
Trimmed By Trimmed Date Setup By Setup Date Taken Down By Take Down Date	Failure Sketch				
Trimmed By Trimmed Date Setup By Setup Date Taken Down By Take Down Date					
Trimmed Date Setup By Setup Date Taken Down By Take Down Date		Trimmed By			
Setup By Setup Date Taken Down By Take Down Date		Trimmed Date			
Setup Date Taken Down By Take Down Date		Setup By			
Taken Down By 1404 Take Down Date 16-5-12		Setup Date //4/27/12			
Take Down Date 6-5-12	1	Taken Down By KUCK			
		Take Down Date 6-5-12			

REVICE LEWING 2/12/38

Schedule CJG-ST1

	TRIAXIA	L CELI	_ SAT	URATIO	N &	BETA	FACTO	R
PROJECT	- 15 ~ 15	177. M	anamay	Cruy	BOHNOM	\		
SAMPLE	~ 0.0-		510	DEP	TH		oland .	
INITIAL C	ELL PRESS	SURE	500		START I	DATE	922/12	
INITIAL P	ORE PRES	SURE	30.0)	CEL	L NUMBER		
INITIAL T	RANSDUCE	R READIN	G	5	TRA	NSDUCER	NUMBER	
						CHANGE IN	PRESSURE	
TOLAL			0511		T	ransducer Ca	onstant	
DATE	TIME	BURETTE READING	PRESSURE	DUCER READING	CELL DELTA	READING CHANGE	PRESSURE	BETA FACTOR (2/1)
6/29/12	0	7,90	50.0	51.1			~~/	
	1		56.0	56.1	5.0		5.0	1.00
				56.1	5.0		5.0	1.00
	- 4			56.1	5.0		9.0.	. 1.00
	0	¥		Jea	5.0		5.0	(100
				1				
	·						-	******
	С. К							
·····								
			·					
							4	
		2						
						26	·	

REITZ & JENS, INC. Consulting Engineers Shegeneouse Sh

e set e se a

/									
		TRIAX	AL CE	ELL CO	ONSOL	IDATIC	N TEST		
	Λ) 18 0	10	R		10		
PROJEC.		eren (allaway		ry FO	IDW	-		
SAMPLE	~20	5-27°0M	(DEPTH.		1 05:		
CONSOL			CUDE	102-1	2	051.00	1	1 .	
CONSUL	IDATION (JELL FREG	SURE	Con.	· · ·	CELL NU	JMBFK		
CONSOLI	DATION F	PORE PRES	SSURE	55.0)				
				CUN	1	1	1		
DATE	TIME	BURETTE	DELTA	DELTA	DELTA	TEMP	REMARKS		
7/2/12	. 0	10.00	VOLONIL	VOLUME	11ME	· · · · · · · · · · · · · · · · · · ·			
	6sec	7.48			10.00				<u>.</u>
	15sec	9.34							
	30500	9.25							
	Imin	9.13			10:01				
	2	.2.01			10202				
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.01			10:04				
	15	8 42			10208			*****	
	30	6.25			10:30				
	60	7.90			11200				
	90	7.63			11:30			,	
	120	7.41			12200				
	150	7.23			12:30				
	185	7,03			13:05				
	300	<u>lili</u>			14:00				
395	3400	6.25			10:00	1125			
7/3/12	12.80	5.28			7:20	1035			
713/12	1725	5.18			13:05			· · ·	•
7/4/12	2786	4.99			8:26	а — — — — — — — — — — — — — — — — — — —			
7/5/12	4160	4.92			7:20				
-							<i></i>		
				-					
									<u> </u>
		· · · · · ·							
					·				

5 15th

REITZ & JENS, INC. Consulting Engineers

Sheet SCHEDULE CJG-ST1 of _____

· · · · · · · · · · · · · · · · · · ·						<u> </u>	
PROJECT	AMORIA	)		PROVING	RING		
SAMPLE	all AWAY CI	Ad Boreon	D	EPTH	~25% b	27% Most	nec Long
NITIAL CELL	. PRESSURE	6	2.0	CELI	to Standa NUMBER	ned Prenton	
NITIAL POR	E PRESSUR	E5	5.0	START	DATE 7	-5-12	
SAMPLE HEI	GHT: AT SE	TUP $\approx 4,0$	16 incha	AT ST	ART OF LOA	ADING	
STRAIN RAT	Е <del>х</del>	0.02%/mi	2	TYPE OF TE	st		
TIME	STRAIN DIAL (.001) IN	LOAD DIAL (.0001) IN	PORE PRESSURE READING	TIME	STRAIN DIAL	LOAD DIAL	PORE PRESSURE
100	(.001) 11	(			(.001) 114	(.0001) IN	NEADING
8:31 AL	10	19.0	55.7			18	
24							
				· · ·			
	· · · · · · · · · · · · · · · · · · ·		·				
					i		
			· · · · · · · · · · · · · · · · · · ·				
						8	
		· · · · · · · · · · · · · · · · · · ·					

58

,

•

REITZ & JENS, INC. Consulting Engineers SheetHEDULE CJG-STA



Sam Desc	ription_ <u>HPC</u>	25-27% LAY G	Depth Com	ented C 5 tan, Tene	Lignofa & Ginsnifs
Type Cell	of TestCC Number	N Z`	Confining Pr	ressure Differe	intial <u>20 psi</u>
Num	ber of Membran	ies <u>2</u>	Filter Strips	Yes No	
	21 21	MOISTUR			STRAIN GAUGE at setup 500
			INITIAL	FINAL	at saturation start 500
W	lare No let Wt. + Tare	<u>- K-123</u> = <u>333, 7</u>	3 <u>L-77</u> 9 <u>307.97</u>	Bowl C 987.93	at consolidation start <u>491</u>
	Wt. + Tare Wt. Water	3 2/0.5	3 250.95	896.40	at axial load start <u>579</u>
	Dry Soil Wt	26.103	6 36.78	554.94	MASS PROPERTIES
	Avg. w %	_ 20.00	26.629	26.305	Wt. Tube + Soil gn
					Wt. Soil <u>432.73</u> gm Tube Diameter
SPE	CIMEN DIMEN	SIONS	in. /	mm.	Sample Length in tube length in
		Final	DIAMET	ER	top trim in. bottom trim in.
1	4.3280		T 2.0025	Final	total trim in. sample length in.
$\frac{2}{3}$	4,3240		M 1.9985 B 2.0065		$\frac{\text{Density constant}}{4.85/(D^2 * L)}$
Avg.	4.32767		2.0005		Dry Density pcf.
Desc	cription After Te	st			
Remo	arks				
	· · · · · ·			]	
F	Fai	lure Sketch	·		
					Trimerel D VINL
					Trimmed Date 7-6-12
					Setup By Kell Setup Date 7-6-12
14		18			

RA/71/7 Deskel Amn'unierin

.

SAMPLE	HP CI	AY Q 25	7. to 279.	MORTHERDER	AM CAM	notal to	che las	17.1
INITIAL C	ELL PRES	SURE	51.0				D-1-17	<u>(10</u> 07e
INITIAL F	ORE PRES	SSURF	50.0		. START	DATE	010	
INITIAL T	RANSDUC	ER READIN	G 51	D	UEI	L NUMBER	R	2
					IR/	ANSDUCER	NUMBER _	2
				1		CHANGE IN	PRESSURE	
TRIAL	TRIAL	PASE	CELL		· 1	ransducer C	onstant	
DATE	TIME	BURETTE	PRESSURE	DUCER	CELL	TRANS	DUCER	BETA
1 9 12		READING		READING	DELTA	CHANGE	CHANGE	FACTOR
-1-12	0	8:10	51.0	50.6				
	2		56.0	55.6	5.0		5.0	1.0
	4 min		11	556	50		5.0	1.0
							310	1.0
				77				
			(A)					
				2				
	a a							

SheeSCHEDULE CJG-ST1

٣

SAMPL	E <u>HP</u>	CLAY @ 2	5% to 27	2 Moisture	DEPTH .	Compie	tel to Standard Prate
CONSO		CELL PRES	SSURE	75.	0	CELL NU	JMBER 2
		PORE PRE	SSURE	55.0	0		
DATE	TIME	BURETTE READING	DELTA VOLUME	SUM DELTA VOLUME	DELTA TIME	TEMP	REMARKS
1-9-12	11:45	10.00			0.		
		8.72	· · · ·		.1		
	7:41.	8.50			15		
	7:47	3.05			1		
	7:49	7.77			4		
	-7:53 - <del>8:00</del>	1,44			8		
	8:15	6.47			75 30		
	8:45	5.68			60		
	9:45	4,58			90.		· · · · · · · · · · · · · · · · · · ·
	10:45	3.76			180		
	13:46	3.10			240		
	16:05	1.24			360		
-10-17	6:25	1.15/10.00			520		I min / pec line Alar
1016	12:24	7.70			1465		- COS A Maring My histma
	5:37	1.07			1911		
			· ·				
	<u></u>						

12200

TRIAXIA	AL CELL	ΔΥΙΔΙ					
			LUADING	FIEST	DATE _	7-10-1	2
PROJECT _	AMEREN	CAllange (	2LAY BOR	PROVIN	G RING _		
SAMPLE _	CLAYC	- 25% +0 2	72 Comparts	d @ the DEPTH	Standard R	rother	
INITIAL CEL	L PRESSUR	e75.	0			2	
INITIAL POP	RE PRESSUR	RE55.	0	STAR	E NOMBER.		
SAMPLE HE	EIGHT: AT SE	TUP			ART OF LO		
STRAIN RA	TE^	0.02%	nin	TYPE OF T	FST C		
TIME					T		
TIME	STRAIN DIAL (.001) IN	LOAD DIAL (.0001) IN	PORE PRESSURE READING	TIME	STRAIN DIAL (.001) IN	LOAD DIAL (.0001) IN	PORE PRESSURE READING
16:19:30	6	22.8	55.6				
	· · ·						
MASS OF TOP C.	AP & POROUS	STONE:	g.				]

i.

Sheet ______ of _____

Projec	t HMUTHEN C	Al Al Ang ( 2 -27% M	Depth Com	an article with	Standard Provitor
Descri	ption CLAY (	CH), GRU	An & Crobbe	ubrann, w	the big them.
-			/		
Туре с	of Test	/	Confining Pres	ssure Differenti	ial 40 psi
Cell N	umber /		Saturate befo	re) after Cons	solidation
Numb	er of Membranes		.Filter Strips	Yes No	LENGTH CHANGE
					STRAIN GAUGE at setup 500
	M	DISTURE (	CONTENT	×	at acturation start 500
		INI	ITIAL	FINAL	
	Tare No.	R.32	<u>B 38</u>	Bowl 3A	at consolidation start <u>400</u>
Dr	v Wt. + Tare	254.90	280.92	513.60	at axial load start <u>615</u>
	Wt. Water		111 201	107 0	
	Dry Soil Wt.	41,30	71.61	19/106	MASS PROPERTIES
	Moisture %	26.554	26.841		Wt. Tube + Soil gr
L	AVG. W 70	L			Wt. lube gi
					Tube Diameter in
			/		Sample Length in
SPE	HEIGHT			mm. FR	top trim in
		Final	Initial	Final	bottom trim in
					sample length in
$\frac{1}{2}$	4.0340		T 1,995 M 1 9895		Density constant $4.85/(D^2 + 1)$
3	4.0435		B 1.9900		Wet Density
Avg.	4,03983		1.99167		Dry Density p
	· · · · · · · · · · · · · · · · · · ·	- 4			
Des	cription After Te	51			
And the first state	1				
	narks	<b>1999 1999 1999 1999 1999 1999 1999</b>			
Ren					
Ren					
Ren		· · · ·			2
Ren		ilure Sketch	, ,		×
Ren	Fa	ilure Sketch			* 
Rem	Fa	ilure Sketch			Trimmed By KER
Rem	Fa	ilure Sketch			Trimmed By Trimmed Date7-6-
Rem	Fa	ilure Sketch			Trimmed By <u>Ken</u> Trimmed Date <u>7-6</u>
Ren	Fa	ilure Sketch			Trimmed By Ken Trimmed Date 7-6 Setup By Ke Setup Date 7-6
Rem	Fa	ilure Sketch			Trimmed By Ken Trimmed Date 7-6 Setup By Ke Setup Date 7-6 Taken Down By Ken

. .

RE/ZL/Z Desked Amounterin

Schedule CJG-ST1

ан. Х	TRIAXI	AL CEL	L SAT	<b>URATI</b>	ON &	BETA	FACTO	)R
PROJECT	r_CM	hum a	LAY					
SAMPLE	CLAY C	14 25%.	-272 Mast	AP DE	оти Гама	partial unit	Ha Sharl	and Parts
INITIAL C	ELL PRES	SURE	51.0		STADT	DATE D		Tec TOCOR
INITIAL P	ORE PRES	SSURE	50.0	)	- START			
INITIAL T	RANSDUC	ER READIN	IG _ 5/.	4				1
						NODOCLI	NUMBER -	
		8			T	CHANGE IN	PRESSURE	:
TRIAL DATE	TRIAL TIME	BASE	CELL	TRANS-	CELL	TRANS	DUCER	BETA
		READING	I RESSORE	READING	DELTA	CHANGE	PRESSURE	FACTOR
7-9-12	0	8.04	<u>50.0</u> 56.0	50.8	60			
	2.		01	55.8	5.0		5.0	1.0
				5518	5.0		5.0	1.0
				11	)			
			0	4	/			
Management and								
			Res	at. At	tor to	AK.		
-9-12	0	1.87	51.0	51.1				
	2		11	56,1	5.0		5.0	1.0
			<i>د</i> [	56.1	5.0		5.0	1.0
		· · · · · · · · · · · · · · · · · · ·						
				/ /				
				l	<u>l`_</u>		[	

SheeSCHEDULE CJG-ST1

TRIAXIAL CELL CONSOLIDATION TEST         PROJECT	1								
PROJECT	r		TRIAX	IAL CE	ELL CO	DNSOLI	DATIO	N TEST	
PROJECT       THELEDI LMINING CHERS         SAMPLE       HP LLMO 25% to 27% Miching DEPTH Computed to Applicate Rest         CONSOLIDATION CELL PRESSURE       95.0       CELL NUMBER         CONSOLIDATION PORE PRESSURE       55.0         DATE       TIME BURETTE VOLUME		An	mai Call	De D	)		e	2	
SAMPLE     HILLHO 25.1 to 27.2 Mothed DEPTH Comparing the fight half that       CONSOLIDATION CELL PRESSURE     95.0     CELL NUMBER       CONSOLIDATION PORE PRESSURE     55.0       DATE     TIME     BURETTE     DELTA       P4.12     71.20     10.0     DELTA     TIME       P4.12     71.20     10.0     0     0       P4.12     12.0     .1     0     0       P1.12     12.0     .1     0     0       P1.51     81.6     1     1     0       P1.52     .1     .2     0     0       P1.52     .1     .2     0     0       P1.52     .20     .20     .20     0       P1.20     .20     .26     .22     0       P1.20     .20     .25     .25     0       P1.20     .20     .25     .25     0       P1.20     .26     .25     .2	PROJEC	T	ALEN LANIA	WAY EN	uas_			11	
CONSOLIDATION CELL PRESSURE	SAMPLE	HPCL	MC-25%	1027%	Moistwee	DEPTH_	Campail	Tel to Sporthal Heile	
CONSOLIDATION PORE PRESSURE $55.0$ DATE TIME BURETTE DELTA DELTA TEMP REMARKS 7.9-12 71.90 10.00 0 11 9.20 1.1 9.20 1.1 9.20 1.1 9.20 1.1 9.20 2.1 9.20 1.1 9.20 2.1 9.20 1.1 9.20 2.1 9.20 1.1 9.20 2.1 9.51 8.16 9.15 8.2 9.15 8.2 9.20 9.2 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20	CONSOL	IDATION	CELL PRES	SSURF	95.0		CELL NU	MBER /	
DATE     TIME     BURETTE     DELTA     SUM DELTA     DELTA     TEMP     REMARKS       7/4/12     7/40     10.00     0     0     0     0       8.66     .25     .25     0     0     0       9.10     8.66     .25     0     0       7.57     8.16     .1     0     0       7.57     8.16     .1     0     0       7.57     8.16     .1     0     0       7.57     8.16     .1     0     0       7.57     8.16     .1     0     0       7.57     8.16     .1     0     0       7.57     8.16     .1     0     0       7.57     8.16     .1     0     0       9.20     .1     .1     0     0       9.20     .1     .1     0     0       9.20     .2     .2     .2     0       9.20     .2     .2     .2     0       9.20     .2     .2     .2     .2       9.20     .2     .2     .2     .2       9.20     .2     .2     .2     .2       9.20     .2     .2     .2					550				
DATE         TIME         BURETTE READING         DELTA VOLUME         DELTA TIME         TEMP         REMARKS           7.4-12         71.92         17.00         0         0         0         0           9.20         1         1         0         0         0         0         0           9.20         1         1         0         0         0         0         0         0           9.20         1         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	CONSUL	IDATION	PURE PRE	SSURE _					
READING         VOLUME         TIME $7.9/12$ $7.90$ $0$ $0$ $9.20$ $1$ $0$ $9.20$ $1$ $0$ $9.20$ $1$ $0$ $9.20$ $1$ $0$ $9.20$ $1$ $1$ $7.57$ $8.16$ $1$ $7.57$ $8.16$ $1$ $7.57$ $8.16$ $1$ $7.57$ $8.16$ $1$ $7.57$ $8.16$ $1$ $7.57$ $8.16$ $1$ $7.57$ $8.16$ $1$ $8.20$ $0$ $30$ $9:50$ $0$ $15$ $9:50$ $10^{100}$ $90^{100}$ $9:50$ $10^{100}$ $90^{100}$ $9:50$ $10^{100}$ $90^{100}$ $9:70$ $20^{100}$ $0^{100}$ $9:70$ $8.75$ $8.75$ $8.76$ $.55$ $.57$ $8.76$ $.55$ <td>DATE</td> <td>TIME</td> <td>BURETTE</td> <td>DELTA</td> <td>SUM DELTA</td> <td>DELTA</td> <td>TEMP</td> <td>REMARKS</td> <td></td>	DATE	TIME	BURETTE	DELTA	SUM DELTA	DELTA	TEMP	REMARKS	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17.0.10		READING	VOLUME	VOLUME	TIME	4		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1-9-12	7:90	. 10.00 A 20			0			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			9.40	}		.1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.65	·		165			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7:51	8.16			1			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		7:52			11. m	2			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		7:54		1	SALFINT	4			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7:58	1	U		8			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		8:05	6	AP1		15			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		8:20	A			30			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		9:30			Auchor	60			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		9:0)		DE	All	10'		· · · · · · · · · · · · · · · · · · ·	
7-0-12       8'24       10,00       0         9.13       .1         8.95       .25         8.78       .5         8.78       .25         8.78       .25         8.78       .25         8.78       .25         8.78       .25         8.78       .25         8.78       .25         8.27       8.34         8.27       8.02         8.33       7.59         8.33       7.59         8.33       7.59         8.33       7.59         8.33       7.59         8.33       7.59         8.33       .25         9.55       .30         9.55       .30         9.55       .30         9.55       .30         9.55       .30         9.55       .30         9.55       .30         9.55       .30         9.55       .30         9.5       .74         10.25       .74         12.26       .71         740       .740         752       .50		1:50				120			
7-10-12 8:25 10.00 9.13 1. 8.78 .25 8:26 8:58 1 8:27 8:34 8:27 8:34 8:27 8:34 8:27 8:34 8:27 8:34 8:27 8:34 8:27 8:34 8:27 8:34 8:27 8:34 8:33 7:59 8:33 7:59 8:40 7.08 15 8:40 7.08 15 8:40 7.08 15 8:40 7.08 15 8:40 7.08 15 8:40 7.08 15 8:40 7.08 15 15 15 15 15 15 15 15 15 15						· · · · ·			
9.13 8.95 8.76 1.25 8.70 8.70 8.70 8.27 8.34 8.27 8.32 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02	7-10-12	8:25	10,00			0			
8.95     .25       8.78     .5       8.27     8.34       8.27     8.34       8.33     7.59       8.33     7.59       8.40     7.08       9.55     1.30       9.25     3.0       9.25     3.23       9.30     15       1.25     3.23       9.155     1.41       10.25     3.74       12.25     1.14       12.25     1.14       12.25     1.14       240       240			9.13			.)		3	
8:26     8:58     1       8:27     8:34     2       8:27     8:34     2       8:33     7.59     3       8:33     7.59     3       8:40     7.08     15       8:55     (200)     30       9:25     5.23     60       9:25     3.14     90       10:25     3.74     120       11:25     2.62     180       12:25     1.71     240       RAN WARN out top of top of breedte will par that At abutst Rates and Astronomy field of the same field of t			8,95			.25			
0.26       8.58       1         8:27       8.34       2         8:27       8.02       4         8:33       7.59       3         8:33       7.59       3         8:40       7.08       15         8:55       4.30       30         9:25       5.23       60         9:25       5.23       60         9:25       5.23       60         10:25       3.74       120         10:25       3.74       120         11:25       1.62       180         12:25       1.71       240         PAN NATION ON TOP & DUPENTIE WILL RUN TO TOT TOP & DUPENTIES TO TOT TOP & DUPENTIES WILL RUN TO TOT TOP & DUPENTIES TO TOT TOP & DUPENTIES WILL RUN TO TOT TOP & DUPENTIES TO TOP & DUPENTIES TO TOP & DUPENTIE		010.4	8.78						
8:21     8:37     2       8:29     8:02     4       8:33     7.59     8       8:40     7.08     15       8:55     1.20     30       9:25     3.23     60       9:55     1.41     90       10:25     3.74     120       11:25     1.62     180       12:25     1.71     240       PAN WARD OUT TOD & DEPENDENT WILL PAN TEST At aloutest Rates same       ASE Opsi     Sample		0.26	0.58						
9. 61     0.02     9       8:33     7.59     8       8:40     7.08     15       8:55     (30     30       9:55     (30     30       9:55     1.41     90       10:25     3.74     120       11:25     3.74     120       11:25     3.74     120       12:25     1.11     240       12:25     1.71     240       PAN WARD OF HOD & breachts Will Raw Host At clockst Rate same       PS 20psi     Sample		8:21	0.37			- 2			
0:32     1.51       8:40     7.08       15       8:55       1:25       5:32       1:25       1:25       1:25       1:25       1:25       1:25       1:25       1:25       1:25       1:25       1:25       1:25       1:25       1:25       1:25       1:25       1:25       1:25       1:25       1:26       1:125       1:27       1:28       1:29       1:29       1:20       1:2125       1:11       2:26       1:11       2:26       1:11       2:26       1:11       2:26       1:11       2:26       1:11       2:26       2:27       2:28       3:30       3:30       3:30       3:30       3:30       3:30       3:30       3:30       3:30       3:30       3:30       3:30       3:30       3:30		0.20	0,0L 7.69			-4			
8:55 (1.30 9:25 5.23 9:55 -1.41 10:25 3.74 11:25 2.62 12:25 1.71 RAW WATCH ONT TOD & DURENTE WILL RUM THAT AT SLOWEST RATE SAME AS 20 psi Sample		8:40	7.08		······	-0		÷ .	
9:25 5.23 9:55 -1.41 10:25 3.74 120 11:25 2.62 12:25 1.71 RAN WARK OUT TOD & DUPENTIE WILL RAN TEST AT SLOWEST RATES SAME RS20psi Sample		8:55	(1,30			30	· · · ·		
9:55 H.AI 10:25 3.74 120 11:25 2.62 180 12:25 1.71 240 RAN WARK out top & basedte Will Run tost At slowest Rates same ASZOPSI Sample		9:25	5.23			60			
10:25 3.74 120 11:25 2.102 180 12:25 1.71 240 PAN WARN out top of breedle Will Raw that At slowest Rates same PSZOpsi Sample		9:55	4.41			90			
11:25 2.102 12:25 1.71 PAN WATER out top & treester Will Raw test At slowest Rates same AS 20ps; Sample		10:25	3.74			120			
PAN WARDS out top of basedte will Run tost At slowest Rates same AS2075; Sample		11:25	2162			180		. Walan da Walau ya bagan na futan ya kajan da kajan da kajangan yanar ya kajangan kajan kajan ya kajan	
ASZOPSI SAMPTE		12:25	1.11		1 14	240		4 4 450.1	
		FAN AC-	WARD ON	top of	DUPLOSE	WIII Ray	~ 7735t	AT SloukST KAPDE SAM	
		102	OPSI 21	11917					
				·				· · · · · · · · · · · · · · · · · · ·	
								2	
				·					

Sheet SCHEDULE CJG-ST1

	AL UELL	. AXIAL-	LOADING	TEST	DATE _		
PROJECT _				PROVIN	IG RING _		
SAMPLE _			r				
INITIAL CEL	L PRESSUR	e9	5.0			1	
INITIAL POP	RE PRESSUR	RE52	and and	CEI	LL NUMBER	1	
SAMPLE HE	EIGHT: AT SE	TUP		STAR			
STRAIN RA	TE	0.02		TYPE OF T	EST $\underline{CC}$	ADING	
ΤΙΜΕ	STRAIN DIAL (.001) IN	LOAD DIAL (.0001) IN	PORE PRESSURE READING	TIME	STRAIN DIAL (.001) IN	LOAD DIAL (.0001) IN	PORE PRESSU READIN
16:14:30	4	27.4	55.5				
			·				
SS OF TOP CA	P & POROUS	STONE:					

REITZ & JENS, INC. Consulting Engineers Schedule CJG-ST1 Sheet ______ of _____
REITZ & JENS, INC.

Appendix B

LABORATORY TESTING OF COAL COMBUSTION PRODUCTS FROM LABADIE ENERGY CENTER Revised August 2013

REITZ & JENS, INC.

REITZ & JENS, INC.

## APPENDIX B LABORATORY TESTING OF LABADIE CCP MATERIALS <u>TABLE OF CONTENTS</u>

### NON-PONDED DRY FLY ASH FROM PRECIPITATORS

	Figure
Specific Gravity	B-1
Particle Size Distribution; Hydrometer and sieve analysis using SHMP	B-2
Particle Size Distribution; Hydrometer and sieve analysis without SHMP	B-3
Moisture Density Test; Standard Proctor with unconfined compression tests	
on samples cured for 4 days	B-4
Hydraulic Conductivity	B-5
Consolidation Test	B-6

## PONDED FLY ASH FROM EXISTING OPERATION

	Figure
Consolidated Undrained Shear Test	B-7
Direct Shear Test with textured HDPE liner	B-8
Direct Shear Test with smooth HDPE liner	B-9
Hydraulic Conductivity	B-10
Consolidation Test	B-11

# BOTTOM ASH FROM EXISTING OPERATION

	Figure
Specific Gravity	B-12
Particle Size Distribution; sieve	B-13
Relative Density Test	B-14
Vacuum Triaxial Shear Test	B-15
Constant Head Permeability (loose and densified)	B-16

# COMBINATIONS OF FLY ASH, BOTTOM ASH, AND GYPSUM

	Figure
Paint Filter Liquids Test, Fly Ash	B-17
Paint Filter Liquids Test, 46% Fly Ash, 20% Bottom Ash, 34% Gypsum	B-18
Paint Filter Liquids Test, 30% Fly Ash, 25% Bottom Ash, 45% Gypsum	B-19
Paint Filter Liquids Test, 36% Fly Ash, 64% Gypsum	B-20
Maximum and Minimum Dry Density, 46% Fly Ash, 20% Bottom Ash, 34% Gypsum	B-21
Maximum and Minimum Dry Density, 30% Fly Ash, 25% Bottom Ash, 45% Gypsum	B-22
Maximum and Minimum Dry Density, 36% Fly Ash, 64% Gypsum	B-23
Set-Up Time and Dry Unit Weight, 46% Fly Ash, 20% Bottom Ash, 34% Gypsum	B-24
Set-Up Time and Dry Unit Weight, 30% Fly Ash, 25% Bottom Ash, 45% Gypsum	B-25
Set-Up Time and Dry Unit Weight, 36% Fly Ash, 64% Gypsum	B-26

**.**...

		SPECIFIC	GRA	VITY OF SO	LIDS		
		Pycno	omet	er Method			
JOB:	Ameren; Labadie C	CP Testing		DATE:_	8/13/10	·	
BORIN	G: Labadie Dry Fly	Ash		TEST B	Y: J. David		··
SAMPL	E: Bulk			COMPUT	ED BY: K. Koo	cher	<u> </u>
Sampl	e or Specimen N	lo.			1	2	
Flask	No.		0		7	7	
fempe	rature of water	and soil, T,	°C		21.5	21.5	
Jish	No.	Cotl					· · · · · · · · · · · · · · · · · · ·
	Dish	3011					· · · · · · · · · · · · · · · · · · ·
Smi	Dry soil		W	5	50.05	50.05	
Gra	Flask + wat	er at T, ^O C	W	DW	679.33	679.28	
in	$W_{c} + W_{bu}$	· · · · · · · · · · · · · · · · · · ·			729.38	729.33	······································
-ght	Flask + wat	er + immersed	soi	W	729.38 [′]	711.88	
Wei	Displaced w	ater, $W + W$ ,	- 1	<u>↓</u> 0,00	17.50	17,45	
		S DW	,	bws	00069	00069	
Corre	ction factor			K	.99900	.99900	
(W_K)	$/ (W_s + W_{bw} -$	W _{bws} )		Gs	2.86	2.87	
ample;	<pre>2 Description #1 Dry fly ash, tan, #2 Dry fly ash, tan, #2</pre>	from precipitators from precipitators			-		· · · · · · · · · · · · · · · · · · ·
	• . • .						
lask	Calibration	Trial					
	/eight	Completed					
1	Cemp.	Annually					

. . .

-REITZ & JENS, INC.-

SCHEDULE CJG-ST1

.

		SPECIFI	C GRAVITY OF	SOLIDS			
JOB: BORIN SAMPI	Ameren (C. NG: Lak JE:	P Ash Studi Dadie Fly Ash	DATE: DATE: TEST COMPL	BY:	210 21 Kocher [§]	J. DAvid	
Sampl	e or Specimen	No.			1	T	
Flask	No.			-7			
Tempe	rature of wate	r and soil, T,	°c	2155	ALEADAT	<b>}</b>	
Dish	No.				ALVE TO T		
	Dish + Dry	Soil					
50	Dish						
rams	Dry soil		Ws	50.05		50.05	
с с	Flask + wat	ter at T, ^O C	W bw	679.33	6/291-291	1079.28	tang n
t. t	$\frac{W_{s} + W_{bw}}{s}$			129.38	TATA AS	729.22	Deala
ei gh	Flask + wat	er + immersed	soil W bws	71188	8004901	711 80	199791
We	Displaced w	vater, W + Why	- W.	1200	)tanar)	111.00	MARIN
	L	<u> </u>	DWS	171.30	AVYY	17.45	1.1.1.1.1.1
(U V)	tion factor		K	-99968	DIAMAS	.99968 C	1.99945
(W K)	$\frac{1}{s} + W_{bw} - \frac{1}{s}$	W _{bws} )	Gs	2.00	2.873	2.87	1834
		50,03398/		2010		Average	
Sample	Description	,		DE		OK	
41.	1			0.			
			•				
JLr	To	Fl. Ag	1 /11 2	11			
1 <i>i</i> 2		A IN AS	INDN-PE	OND EED			
					V.		
		4				······	
	÷			*	÷.,		
Flask C	alibration	Trial		Г — Г	T		-
We	ight						
Ter	mp.					<u></u>	
	-						
						2	
						2	
		-					1
REI	A JENS, IN	U				E OLO CT	1



#### **GRAIN SIZE DISTRIBUTION TEST DATA**

Client: Amere	n Missouri								
Project: CCP	Properties,	Labadie Plant	-						
Project Numb	er: 2008012	2455							
Location: Lab	adie Fly As	h							
Sample Numb	<b>ber:</b> Bulk								
Material Desc	ription: Tar	n, dry fly ash,	with SHMP						
Sample Date:	12/13/2008	3							
Tested By: C.	Cook				Test I	Date: 1/15	/09		
Checked By:	K. Kocher				Title:	P.E.			
Sieve opening	g list: (Defa	ult opening si	zes)						
				Siev	ve Test Da	ata			
Post #200 Was	h Test Weigl	hts (grams): D	ry Sample an	<b>d Tare =</b> 1	174.51				
		I N	are wt. = 1/1. linus #200 fro	.18 <b>m wash =</b>	93.3%				
Drv		Cumulative		с	umulative				
Sample		Pan	Siev	/e	Weight				
and Tare	Tare (grame)	Tare Weight	Open	ing l	Retained	Percen	t		
(grains)		(grains)	512	до 110					
49.99	0.00	0.00	4	#ð	0.00	100.0			
			++ -	-10	0.01	100.0			
			# #	·50 ·50	0.11	99.8			
			#1	00	1.07	99.3 07.0			
			#1 #2	00	3.28	97.9			
			π2	Hydror	notor Tost	Pata			
Hydrometer tes Percent passin Weight of hydro Hygroscopic m	st uses mate g #10 based ometer samp loisture corre	rial passing #1 upon complet ple =49.99 ection:	10 <b>se sample =</b> 10	00.0					
Moist weight Dry weight a Tare weight	and tare = nd tare = =	0.10 0.10 0.00							
Hygroscopic	: moisture = ( perature cor	0.0% rection							
Composite c	orrection (flu	uid density an	d meniscus he	eight) at 2	20 deg. C =	-5			
Meniscus corre	ection only =	1.0 2.86							
Hydrometer typ	<b>be =</b> 152H	2.00							
Hydrometer	effective dep	oth equation: L	<b>. =</b> 16.294964	- 0.164 <b>x</b>	Rm				
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	
0.50	21.9	50.0	45.4	0.0126	51.0	7.9	0.0500	86.9	
1.00	21.9	45.5	40.9	0.0126	46.5	8.7	0.0370	78.3	
2.00	21.9	41.5	36.9	0.0126	42.5	9.3	0.0271	70.6	
4.00	21.9	39.0	34.4	0.0126	40.0	9.7	0.0196	65.9	
8.00	21.9	36.0	31.4	0.0126	37.0	10.2	0.0142	60.1	
15.00	21.9	32.5	27.9	0.0126	33.5	10.8	0.0107	53.4	
30.00	22.3	29.5	25.0	0.0125	30.5	11.3	0.0077	47.8	
60.00	22.3	26.0	21.5	0.0125	27.0	11.9	0.0056	41.1	
120.00	22.4	21.5	17.0	0.0125	22.5	12.6	0.0040	32.6	
278.00	23.4	16.9	12.7	0.0123	17.9	13.4	0.0027	24.3	
1439.00	22.0	9.5	4.9	0.0125	10.5	14.6	0.0013	9.4	

_____ REITZ & JENS, INC. _____

5/20/2011

Fractional Components												
Cabbles	Gravel				Sand					Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total		
0.0	0.0	0.0	0.0	0.0	0.3	6.3	6.6	55.1	38.3	93.4		

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0013	0.0017	0.0022	0.0036	0.0088	0.0141	0.0392	0.0464	0.0580	0.0889

Fineness Modulus	Cu	Cc
0.03	10.86	0.71

_____ REITZ & JENS, INC. _____

				Re	eitz & Jens	s, Inc.				
x		e.	GR	AIN	SIZE ,	ANALY Method)	'SIS	CC.	~ 1/1.	5/09
	Λ	٨			5				<i><b>A</b></i>	ilie
Job	MMERI	- MS1	1 165	ilw G			Lab	test by _	CWL Da	te <u>1/15/</u>
Boring	No	ABAPIEL	)m ASH	in	MAX		Con	nputed b	y <u>Kek</u> Da	te _//9/
Depth	Bul	K					Che	cked by	KER Da	te <u>1/19/</u>
Sample	No.						Hyd	rometer	No	RJ.
Menisc	us Corre	ction (Cm)	1.0				Gra	duate No	. \$	3
% finer	= Rcx / Wo	² x 100		č.						
Date	Time	Elapsed Time	Temp	Hydro Reading	R ¹ =	Particle Diameter	Composite Correction	Rc=	Percent	Finer
<del> </del>		Min.	C	(R)	R + C m	(D) MM.	Cc	R - C _C	Partial	Total
19/09	0857	<u>() -</u>	21.9	E			ļ			
		0.5		30						
	59	2.0		415						
	0901	4,0		39.0	•					
	0905	8,0 .		36.0					,	
	09/2	15/	V	32.5						
	1971	<u> </u>	1	29.5						
• ,	10:57	120	22.4	31.5						
	12183	2000-	23.4	*						
10.0	13:35	278	WOLAN	16.9						
-20-07	28:96	1951	dd.U	9-7						
_										
		and the second second								
			1					2		
	Dich	- Dry Soil	((m))				1			
leight	Dish		(gm)		Notes	on ASTM Proce	dure:	ned unside	down and	
irams	Dry S	oil	(gm)	1		ack for 60 turns	in 60 seconds	(counting	turn upside	
				-1	- do 2. H re	own and back as ydrometer to be adings and pla	s two turns). removed from ced in clean	n suspensi water (sp:	on between in).	
ample d	escription	& Remarks_	So	14:49	1.992	NA	x: 5,03	γ	;	
										•

106

#### REITZ & JENS, INC. **GRAIN SIZE ANALYSIS** (Sieve or Screen Method)

Project Boring No Sample N Depth

	Ameren Ash Testing	Test by CWL 1/16/09
о.	Labadie ASh w/Hex	Entered by KEK 1/19/09
No.	Bulk	Checked by <u>Kell 1/19/09</u>
		Testing Date 1/16/09

	11.0	0:000	Cierce Mart			Cumulative	
	U.S. Standard	Opening	Sleve Wgt.	Sieve	Weight	Weight	Percent
	Sieve Size	(mm)	+ 50ll	vveight	Retained	Retained	Finer
	3-in	75	(grains)	(grams)	(grams)	(grams)	by weight
	2_in	50					
$\left  \right $	1.1/2 in	27.5					
$\left  \right $	4 :	37.5					
ł	2/4 :	25.4					
$\left  \right $	<u>3/4-in.</u>	19.0					
$\left  \right $	<u>1/2-in.</u>	12.7					
$\left  \right $	3/8-in.	9.5					
ł	#3	6.35					
$\left  \right $	#4	4.75					
$\left  \right $	#6	3.35					
L	#8	2.36				0.00	
L	#10	2.00					
L	#16	1.18				0.0/	
L	#18	1.00					
L	#20	0.85		-			
	#30	0.60				0.11	
	#35	0.50					
	#40	0.425					
	#50	0.300				0.25	
	#60	0.250					
	#70	0.212					
	#100	0.150				1.02	
	#120	0.125					
	#140	0.106					
	#200	0.075				378	
	Pa	n				3.33 (+)	tel
Sample Lost in #200 Wash					-		
Total Weight in Grams							
				A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY AND A REAL PROPERTY AND A REAL PRO			

Pre #200 wash We	ights
Soil + Tare	
Tare	
Soil	

Post #200 wash Weights						
Soil + Tare	174.51					
Tare	171.18					
Soil	3.33					

Sample Description & Remarks _ LAbAdis Dry Flh Ash



#### **GRAIN SIZE DISTRIBUTION TEST DATA**

GRAIN SIZE DISTRIBUTION TEST DATA									5/20/20	111
Client: Amere Project: CCP Project Numb Location: Lab Sample Numb Material Desc Sample Date: Tested By: C. Checked By: Sieve opening	en Missouri Properties, J per: 2008012 padie Fly As per: Bulk ription: Tar 12/13/08 Cook K. Kocher g list: (Defa	Labadie Plan 2455 h n, dry fly ash, ult opening s	t without SHM izes)	IP Sie	Test Title: ve Test Da	<b>Date:</b> 1/15/ P.E. ata	09			
Post #200 Was	h Test Weigl	nts (grams): [ ]	Dry Sample and are Wt. = 170.	<b>d Tare =</b> 11	173.76					
Dry Sample and Tare (grams)	Tare (grams)	۲ Cumulative Pan Tare Weight (grams)	/linus #200 from Siev : Open Sizo	n wash = C ve ing e	= 92.7% Cumulative Weight Retained (grams)	Percent Finer				
50.05	0.00	0.00		#8	0.00	100.0				
			#	16	0.00	100.0				
			#	30	0.05	99.9				
			#	50	0.17	99.7				
			#1	00	0.96	98.1				
			#2	00	3.35	93.3				
				Hydroi	meter Tes	t Data				
Hydrometer ter Percent passin Weight of hydr Hygroscopic m Moist weight Dry weight a Tare weight Hygroscopic Automatic tem Composite of Meniscus corre Specific gravity Hydrometer ty Hydrometer	st uses mate g #10 based ometer samp noisture corre- t and tare = = moisture = perature corre- correction (fill ection only = y of solids = poe = 152H effective dep	rial passing # upon comple ole =49.99 ection: 0.10 0.10 0.00 0.0% rection uid density an 1.0 2.87 oth equation: I	10 te sample = 10 d meniscus he _ = 16.294964	0.0 <b>sight) at 2</b> - 0.164 <b>x</b>	20 deg. C = Rm	0				
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer		
0.50	19.8	42.0	41.9	0.0129	43.0	9.2	0.0553	80.1		
1.00	19.8	40.0	39.9	0.0129	41.0	9.6	0.0398	76.3		
2.00	19.8	33.0	32.9	0.0129	34.0	10.7	0.0297	62.9		
4.00	19.8	16.0	15.9	0.0129	17.0	13.5	0.0236	30.4		
8.00	19.8	5.9	5.8	0.0129	6.9	15.2	0.0177	11.1		
15.00	19.8	0.9	0.8	0.0129	1.9	16.0	0.0133	1.6		
30.00	19.2	0.9	0.7	0.0129	1.9	16.0	0.0095	1.3		
60.00	19.2	0.2	0.0	0.0129	1.2	16.1	0.0067	0.0		

Fractional Components										
Cabbles	Gravel			Sand					Fines Clay Total 93.3	
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	<b>Total</b> 93.3
0.0	0.0	0.0	0.0	0.0	0.2	6.5	6.7			93.3

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0172	0.0194	0.0211	0.0235	0.0270	0.0290	0.0550	0.0625	0.0694	0.0915

Fineness Modulus	Cu	Cc		
0.02	1.69	1.11		

_____ REITZ & JENS, INC. _____

				Re	eitz & Jen	s, Inc.				
							1010	`		
			GR			ANALI Mothod	212	(	. ()	15/00
					yarometer	(ivietnod)		( 6	n y	10/01
Job	AMER	EU-A.	SIA T	BATTNO			Lab	test by	JLC D	ate_1/16/0
Boring	No. L	ABADZA	w/o	MAX		to	, Con	nputed b	VKELD	ate 1/zold
Depth	R	S. IK		· · ·		A	Che	cked by	KIRK- D	ate 1/20/
Sampl					KXD	$\sim$	Lud	komotor	No RT	-1
Sampi	e 110		1		(K)		Пус	Inometer		
Meniso	cus Corre	ction (Cm)			$\mathbf{X}$		Gra	duate N	o	
% fine	$r = \frac{Rcx A}{Wo}$	^A x 100			1					
	WO									
		Flansed		Hudro		Dortiolo	Composite		Dennet	<b>F</b> :
Date	Time	Time	Temp	Reading	R ¹ =	Diameter	Correction	Rc=	Fercent	Finer
	Den.	Win.	C	(R)	R+C _m	(D) MM	Cc	R - Cc	Partial	Total
16/09	115	5	198	3						
	0916	-0	19.8	40						
	0918	2	198	33						
	0919	<u> </u>	190	16						
	123		19	5.7		······································				
	0945	30	197	0.9						
	1015	60	192	0.2						
		<b></b>								
		ener er i i filler i difiliel dati - an anda faster								
										-
					the second se				the state to set of the second s	

Date	Time	Time	Temn	Reading	R1=	Diameter	Correction	Rc=	reitent	1 mer
		Min.	C	(R)	R+Cm	(D) MM	C _c	R - Cc	Partial	Total
116/09	0415			-						
infor		-5	198	42						
	0916	/	198	40						
	0918	2	198	32						
	0919	4	198	16						
	0123	8	198	5.9						
	0930	- 15	198	0.9						
	0945	30	197	0.9						
	1015	60	192	0.2			·			
•										
, ,										
	ļ									
							ļ			
			ļ							
						· · · · · · · · · · · · · · · · · · ·				
								11.		
							ļ			
	Dist	+ Dry Soil	lam							
Weight	Dish	+ Dry 3011	(gm)		Notes of	on ASTM Procee	lure:			
In Grams	Dish	cil.	(gm)		1. C	ylinder and conte	ents to be turn	ied upside	down and	
	Ury s		(gm)			own and back as	n ou seconds two turns).	(counting	turn upside	
					2. H	ydrometer to be	removed from	n suspensi	on between	
					re	adings and plac	ed in clean v	water (spi	in).	
			60	- 24 1 2	6		$\sim$ 4	1.4		
Sample c	description	n & Remarks	<u> </u>	<u> </u>	JULL		g h	AY		
						đ.		-	2	
		1.01	palos T	Din Flin	Ach				r	
		- Jower	e which he he	1 1	1010					
							SCHED		IC ST1	
							SUTED	ULE	<u>10-2F3</u>	

÷

·

ingt a m a

	GRAIN SI		
	∧ (Sieve or	Screen Method)	
Project	Ameren		Test by Curc 1/16/09
Boring No.	Lawadie Ash	N/O NA HEX	Entered by 1/20/09
Sample No.	1.3ulk	•	Checked by KEL 1/20/09
Depth			Testing Date 11/6/09

	0				Cumulative	
U.S.	Sieve	Sieve Wgt.	Sieve	Weight	Weight	Percent
Sieve S	Size (mm)	+ 5011 (grame)	Weight	Retained	Retained	Finer
3-in	75	(grams)	(grams)	(grams)	(grams)	by weight
2-in	50	·····				
1.1/2	27.5					
1 1/2	11. 37.3 DE 4					
214 :	20.4					
3/4-11	1. 19.0					
1/2-11	1. 12.7					
3/8-11	9.5			******		
#3	6.35					
#4	4.75					
#6	3.35					
#8	2.36					
#10	2.00					
#16	1.18				0.00	
#18	1.00					
#20	0.85					
#30	0.60		1		0.05	
#35	0.50					
#40	0.425					
#50	0.300				0.17	
#60	0.250					
#70	0.212					
#100	0.150	1			0.96	
#120	0.125				<u> </u>	
#140	0.106					
#200	0.075				3.35	
	Pan				3-65 (+*	tal
Sample L	ost in #200 Wash					· u · )
Total Weid	ht in Grams					
	(	Birth and a state of the state	A REPORT OF A REAL PROPERTY OF A	1	I	

Pre #200 wash Weights					
Soil + Tare					
Tare	170.11				
Soil					
	ليوريك الالاطنان فتتتبيع بنفتا بجاريان الالاك				

Post #200 wash We	ights
Soil + Tare	173.76
Tare	170.11
Soil	3.65

Sample Description & Remarks LAladie Dry Fly Ach SCHEDULE CJG-ST3

||



Client: Ameren Missouri Project: CCP Properties, Labadie Plant Project Number: 2008012455

```
Specimen Data
```

Source: Non-Ponded Dry Fly Ash from Precipitators Sample No.: Bulk Elev. or Depth: Sample Length(in./cm.): Location: Labadie Fly Ash Description: Tan, dry fly ash Sample Date: Preparation Method: ASTM USCS: AASHTO: NM: PI: LL: **Testing Remarks: Test Date:** 1/16/2009 Tested By: J. David Checked By: K. Kocher Title: P.E. Percent retained on No.4 sieve: Percent passing No. 200 sieve: Specific gravity: 2.86

Test Data And Results

Type of test: ASTM D 698-91 Procedure A Standard Mold Dia.: 4.00 in. Hammer Wt.: 5.5 lb. Drop: 12 in. Layers: three Blows per Layer: 25

POINT NO. 1 2 3 4 5 119 WM + WS8.16 8.74 8.81 8.76 8.45 ZAV SpG 2.86 WM 4.58 4.58 4.58 4.58 4.58 WW+T #1 194.80 196.98 238.09 252.30 268.45 114 WD+T #1 182.39 179.70 210.96 220.27 229.54 34.62 TARE #1 37.09 41.04 40.28 40.80 109 MOIST #1 8.4 12.1 16.0 17.8 20.6 WW+T #2 230.09 240.59 229.53 355.14 271.67 WD+T #2 215.11 219.44 236.85 203.11 301.54 104 40.76 TARE #2 40.18 40.83 40.71 40.82 MOIST #2 11.8 16.3 17.8 20.6 8.6 MOISTURE 8.5 12.0 16.1 17.8 20.6 99 DRY DEN 99.0 103.7 107.5 107.8 104.0 94 Max dry den= 107.9 pcf Opt moisture= 17.3 % 13 23 Oversize Correction Not Applied

REITZ & JENS, INC. MOISTURE DENSITY RELATIONSHIP TEST (Compaction Curve)							
Job <u>Ameren UE</u> Boring No. Depth <u>Bulk</u> Sample No. <u>Labadie</u> Mold Vol. <u>130</u> Notes on ASTM Procedure: Ma 1. To obtain moisture content sample, si content sample from one face of cut to 2. Moisture content sample mass to be: 3. Only use ram with circular face in	A3h Siuce F = 1 Y AS (cu. ft.) (Vm) where the of Complete molded soil with the side of Complete soil with the side o	$\frac{1}{2}$	Lab Test b Computed Checked b Mold Diam Mold Heig And Heig And And the center, and bottom. See proc	y by <u>KEN</u> y <u>KEN</u> y <u>KEN</u> ht <u>L</u> ht <u>L</u> ( <u>A</u> STM immediately take edure in Quality	(in) (in) moisture Manual.	Date <u> (1610</u> Date <u>  /9 /09</u> Date <u>  /9/04</u>	
S. Only use ram with circular face in compactor for tests on soil.       est No.     + 10%       Veight of Cylinder & Soil     8.160       Veight of Cylinder     4.58       Vet Weight of Compacted Soil     3.58       Net Unit Weight - PCE     10% of Compacted Soil			+13 8:45 4:58 3:87		+ 1670 8,74 4,58 4,16		
Moisture Content Determination Tare No. Weight of Sample Wet + Tare Weight of Sample Dry + Tare	R 140 194,80	<u>637.</u> 230.09	R50 196.98	R70 240,59	B 32 238.0	R01	
Weight of Water Weight of Tare Weight of Dry Soil Moisture Content (%) Average Moisture Content (%)	34.62 8.4 8.5	40.76 8.c	37.09 12.1	40.18 11.8	41.04	40.83	
Dry Unit Weight - PCF 99.0 103.7 107.5 Sample Description & Remarks TAW Dry Fly Ash FROMA Precipitations							
12 ·				SCHEDITI	E CIG-ST1		

•

						15
Job Ameren UE Hat	Andy	*	l ah Test h	, JRD		Data
Boring No.		Commuted	VIN &	INC	Date.	
Donth RIIK	Computed	DY PORec	/	Date.		
	121		Checked b	yEEA		Date
Sample No. CAMANE 114	Ash dry		Mold Diam	<i>4"</i>	(in)	
Mold Vol. 130	(cu. ft.) (Vm	)	Mold Heid	ht 611	(:)	
		,			(in)	
Notes on ASTM Procedure	Method of Com	paction	Sperchard	ASTM		
1. To obtain moisture content sample	e, slice molded soil	vertically through	h the center and	immediately take	moisture	
content sample from one face of c	ut by taking a thin sl	lice from top to	bottom. See proc	edure in Ouality	e moisture Manual	
2. Moisture content sample mass to b	be: $\geq 100 \text{ g} \text{ (A/B) or}$	≥ 500g (C/D).		Quinty	Windin.	
3. Only use ram with circular face	e in compactor for	tests on soil.	20			
Test No.	+1	9.	+2	2		
Weight of Cylinder & Soil	8.8	1	8.7	10		-
Weight of Cylinder	4,5	B	4.5	ð		
Wet Weight of Compacted Soil	4.23	>	4,18	3		
Wet Unit Weight - PCF	120	0	1254			
Moisture Content Determination	126,	1	1125	<u>.4</u>		
Moisture Content Determination	120		125	<u>.</u>	***	
Moisture Content Determination Tare No.	B-40	<u>B-14</u>	019	Blo		
Moisture Content Determination Tare No. Weight of Sample Wet + Tare Weight of Sample Dry + Tare	B-40 252,30	B-14 271.67	125 19 268.45	н Во 355.14		
Moisture Content Determination Tare No. Weight of Sample Wet + Tare Weight of Sample Dry + Tare Weight of Water	126. 126. 252.30 22.30 22.27	B-14 271.67 236.85	125 268.45 229,54	B(0 355,14 301,54		
Moisture Content Determination Tare No. Weight of Sample Wet + Tare Weight of Sample Dry + Tare Weight of Water Weight of Tare	B-40 252,30 220,27 40,28	B-14 271.67 236.85	125 229,54 229,54	B(0 355,14 301,54		
Moisture Content Determination Tare No. Weight of Sample Wet + Tare Weight of Sample Dry + Tare Weight of Water Weight of Tare Weight of Dry Soil	126. 126. 252,30 230,27 40.28	B-14 271,67 236,85 40,71	125 19 229,54 229,54 40.80	BW 355.14 301.54 40.62		
Moisture Content Determination Tare No. Weight of Sample Wet + Tare Weight of Sample Dry + Tare Weight of Water Weight of Tare Weight of Dry Soil Moisture Content (%)	B-40 252,30 22,30 220,27 40,28	B-14 271,67 236.85 40.71	125 229,54 229,54 40.60	B(0 3755,14 301,54 40,02		
Moisture Content Determination Tare No. Weight of Sample Wet + Tare Weight of Sample Dry + Tare Weight of Water Weight of Tare Weight of Dry Soil Moisture Content (%) Average Moisture Content (%)	126. 126. 252,30 230,27 40.28 17.3	B-14 271.67 236.85 40.71 17.8	125 229 229,54 40.80 2005	B(0 255,14 301.54 40.62 20.6		
Moisture Content Determination Tare No. Weight of Sample Wet + Tare Weight of Sample Dry + Tare Weight of Water Weight of Tare Weight of Dry Soil Moisture Content (%) Average Moisture Content (%)	126 252,30 220,27 40,28 17,3 17,3	B-14 271,67 236,85 40,71 (7,8	125 19 229,54 229,54 40.80 2065 20	B(0 355,14 301,54 40,02 20.6 16		
Moisture Content Determination Tare No. Weight of Sample Wet + Tare Weight of Sample Dry + Tare Weight of Water Weight of Tare Weight of Dry Soil Moisture Content (%) Average Moisture Content (%) Dry Unit Weight - PCF	B-40 252,30 220,27 40.28 17.5 17.5 (C	B-14 271.67 236.85 40.71 (7.8 8	125 229,54 229,54 40.80 205 205	B(0 3755,14 301.54 40.62 20.6		
Moisture Content Determination Tare No. Weight of Sample Wet + Tare Weight of Sample Dry + Tare Weight of Water Weight of Tare Weight of Dry Soil Moisture Content (%) Average Moisture Content (%) Dry Unit Weight - PCF	126 1252,30 230,27 40,28 17,3 17,3 (C	B-14 271.67 236.85 40.71 (7.8 8	125 19 229,54 229,54 40.80 205 20 00 20	$\frac{B(0)}{255.14}$ $\frac{255.14}{301.54}$ $\frac{40.62}{10.6}$ $\frac{10}{6}$		
Moisture Content Determination Tare No. Weight of Sample Wet + Tare Weight of Sample Dry + Tare Weight of Water Weight of Tare Weight of Dry Soil Moisture Content (%) Average Moisture Content (%) Dry Unit Weight - PCF Sample Description & Remarks_	B-40 252,30 220,27 40.28 17.3 17.3 (C	B-14 271.67 236.85 40.71 (7.8 8	125 368.45 229,54 40.80 205 205 205	B(0 355,14 301.54 40.02 20.6 6 10 6 10 cut cut		
Moisture Content Determination Tare No. Weight of Sample Wet + Tare Weight of Sample Dry + Tare Weight of Water Weight of Tare Weight of Dry Soil Moisture Content (%) Average Moisture Content (%) Dry Unit Weight - PCF Sample Description & Remarks	B-40 252,30 220,27 40.28 17.5 17.5 (C	B-14 271.67 236.85 40.71 (7.8 8	125 368.45 229,54 40.80 205 205 205 205	B(0 355,14 301.54 40.62 20.6 6 10 10 10 10 10 10 10 10		
Moisture Content Determination Tare No. Weight of Sample Wet + Tare Weight of Sample Dry + Tare Weight of Water Weight of Tare Weight of Dry Soil Moisture Content (%) Average Moisture Content (%) Dry Unit Weight - PCF Sample Description & Remarks	17.8 17.8 17.8	B-14 271,67 236.85 40.71 17.8 8	125 19 229,54 229,54 20,80 2065 2065 20 104 00-20 00-20 00-20 00-20 00-20 00-20 00-20	B(0 355.14 301.54 40.62 20.6 6 10 10 10 10 10 10		
Moisture Content Determination Tare No. Weight of Sample Wet + Tare Weight of Sample Dry + Tare Weight of Water Weight of Tare Weight of Dry Soil Moisture Content (%) Average Moisture Content (%) Dry Unit Weight - PCF Sample Description & Remarks TAW Dry Fly Agh	B-40 252,30 220,27 40,28 17,3 17,3 17,5 (C	B-14 271.67 236.85 40.71 17.8 8 7.8	125 125 229,54 229,54 229,54 40.80 205 205 205 0020 0020 0020 0020	B(0) 355.14 301.54 40.62 20.6 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10 10.6 10.6 10 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7		
Moisture Content Determination Tare No. Weight of Sample Wet + Tare Weight of Sample Dry + Tare Weight of Water Weight of Tare Weight of Dry Soil Moisture Content (%) Average Moisture Content (%) Dry Unit Weight - PCF Sample Description & Remarks TAW Dry Fly Ash	B-40 252,30 220,27 40.28 17.5 17.5 (C	B-14 271.67 236.85 40.71 (7.8 8 7.8 27.8	B19 229,54 229,54 40.80 205 205 0020 0020 0020 0020	BW 255.14 301.54 40.62 20.6 16 10 d out cylinder		
Moisture Content Determination Tare No. Weight of Sample Wet + Tare Weight of Sample Dry + Tare Weight of Water Weight of Tare Weight of Dry Soil Moisture Content (%) Average Moisture Content (%) Dry Unit Weight - PCF Sample Description & Remarks TAW Dry Fly Ash	126 1252,30 230,27 40,28 17,3 17,3 17,3 17,4 (C	B-14 271.67 236.85 40.71 17.8 8 7.8 7.8	125 229.54 229.54 229.54 2000 2005 2005 2005 2005 2005 2005	B(0 355.14 301.54 40.62 20.6 6 10 d out ciflinder		
Moisture Content Determination Tare No. Weight of Sample Wet + Tare Weight of Sample Dry + Tare Weight of Water Weight of Tare Weight of Dry Soil Moisture Content (%) Average Moisture Content (%) Dry Unit Weight - PCF Sample Description & Remarks TAW Dry Fly Ash	B-40 252,30 220,27 40.28 17.5 17.5 (C	B-14 271.67 236.85 40.71 (7.8 8 7.8 27.8	125 229,54 229,54 229,54 40.80 205 205 205 205 205 205 205 205 205 20	B(0 3755,14 301.54 40.02 20.6 6 10 10 10 10		
Moisture Content Determination Tare No. Weight of Sample Wet + Tare Weight of Sample Dry + Tare Weight of Water Weight of Tare Weight of Dry Soil Moisture Content (%) Average Moisture Content (%) Dry Unit Weight - PCF Sample Description & Remarks TAW Dry Fly Ash	B-40 252,30 220,27 40.28 17.5 17.5 (C	B-14 271.67 236.85 40.71 (7.8 8 7.8 27.8	125 19 229,54 229,54 229,54 20,80 20,80 20,80 20,80 20,80 20,80 20,80 20,80 20,80 20,80 20,80 20,80 20,80 20,80 30 30 5	B(0 255.14 301.54 40.62 20.6 6 10 10 10 10 10		
Moisture Content Determination Tare No. Weight of Sample Wet + Tare Weight of Sample Dry + Tare Weight of Water Weight of Tare Weight of Dry Soil Moisture Content (%) Average Moisture Content (%) Dry Unit Weight - PCF Sample Description & Remarks TAW Dry Fly Ash	B-40 252,30 220,27 40.28 17.3 17.3 (C	B-14 271.67 236.85 40.71 17.8 8 7.8 27.8	125 229 229,54 229,54 40.80 206 206 206 206 206 30	B(0 3755,14 301.54 40.62 20.6 6 10 d out ciflinder		
Moisture Content Determination Tare No. Weight of Sample Wet + Tare Weight of Sample Dry + Tare Weight of Water Weight of Tare Weight of Dry Soil Moisture Content (%) Average Moisture Content (%) Dry Unit Weight - PCF Sample Description & Remarks TAW Dry Fly Ash	B-40 252,30 220,27 40,28 17,3 17,3 17,4 (C	B-14 271.67 236.85 40.71 17.8 8 27.8	125 229,54 229,54 40.80 205 205 205 205 205 205 205 205 205 20	B(0 3755,14 301.54 40.62 20.6 6 10 d out cylinder		

.

4

ф.

: ; }-\$

UNCONFINED COMPRESSION TEST							
	20					l	
ſ	15						
o, to							
je si							
ស៊	MM						
oive v							
less							
du du							
CO							
	5						
						<u>_1</u> _2	
	0					3_4	
	0 1		2	3	4		
		Axial	Strain, %				
Sample No.			1	2		3	4
Unconfined strength, ts	sf		11.351	11.23	5	7.750	5.092
Undrained shear streng	gth, tsf		5.675	675 5.618		3.875	2.546
Failure strain,			0.5	0.3		1.2	2.1
Strain rate, %/min.			0.51	0.82		0.92	0.85
Water content, %			11.3	15.5		16.3	20.0
Wet density, pcf			116.1	126.8	3	127.2	126.8
Dry density, pcf			104.3	109.8	3	109.4	105.6
Saturation, %			50.1	79.4		82.5	91.8
Void ratio			0.6042	0.523	9	0.5295	0.5836
Specimen diameter, in	l.		1.95	1.96		1.99	2.04
Specimen height, in.			4.43	4.45		4.42	3.79
Height/diameter ratio	<b>~ . . .</b>		2.27	2.27		2.22	1.86
Description: Tan, dry f	tly ash, from precipitators	S	A	0.00	T	1 1 1 1 1 1 2	1
		Assumed GS	= 2.68	iype:	Lab Molded Sa	amples	
Project NO.: 20080124	.32	Client:	Ameren Missour	1			
Date: 12/15/2008	Date: 12/13/2008						
testing on 01/20/09 samples from standard							
proctor			Location: Labadie Fly Ash				
Provior	Sample Number: Bulk						
REITZ & JENS I			NS INC				
Figure	CONSULTING ENGINEERS						

Checked By: KEK

#### **UNCONFINED COMPRESSION TEST**

Date:	12/13/2008					
Client:	Ameren Missouri					
Project:	CCP Properties, Labadie Plant					
Project No.:	2008012455					
Location:	Labadie Fly Ash					
Sample Number:	Bulk					
Description:	Tan, dry fly ash, from precipitators					
Remarks:	testing on 01/20/09, samples from standard proctor					
Type of Sample:	Lab Molded Samples					
Assumed Specific Gra	avity=2.68 LL= PL= PI=					

	Parameters for Specimen No. 1
Specimen Parameter	Initial
Moisture content: Moist soil+tare, gms.	261.010
Moisture content: Dry soil+tare, gms.	239.040
Moisture content: Tare, gms.	44.560
Moisture, %	11.3
Moist specimen weight, gms.	404.8
Diameter, in.	1.95
Area, in. ²	3.00
Height, in.	4.43
Wet Density, pcf	116.1
Dry density, pcf	104.3
Void ratio	0.6042
Saturation, %	50.1
т	est Readings for Specimen No. 1

Strain rate, %/min. = 0.51

Unconfined compressive strength = 11.351 tsf at reading no. 16

No.	Def. Dial in.	Load Dial	Load Ibs.	Strain %	Deviator Stress tsf
0	0.0000	0.00	0.0	0.0	0.000
1	0.0020	18.50	18.5	0.0	0.444
2	0.0040	40.30	40.3	0.1	0.967
3	0.0060	72.00	72.0	0.1	1.726
4	0.0080	149.00	149.0	0.2	3.571
5	0.0100	215.00	215.0	0.2	5.151
6	0.0110	251.00	251.0	0.2	6.012
7	0.0120	274.00	274.0	0.3	6.561
8	0.0130	303.00	303.0	0.3	7.254
9	0.0140	375.00	375.0	0.3	8.975
10	0.0150	341.00	341.0	0.3	8.160
11	0.0160	358.00	358.0	0.4	8.565
12	0.0170	378.00	378.0	0.4	9.041
13	0.0180	388.00	388.0	0.4	9.278
14	0.0190	401.00	401.0	0.4	9.587
15	0.0200	412.00	412.0	0.5	9.847
16	0.0210	475.00	475.0	0.5	11.351

5/20/2011

					Test Re	adings for Specimen No. 1	
No.	Def. Dial in.	Load Dial	Load Ibs.	Strain %	Deviator Stress tsf		
17	0.0220	436.00	436.0	0.5	10.416		
18	0.0230	442.00	442.0	0.5	10.557		
19	0.0240	448.00	448.0	0.5	10.698		
20	0.0250	446.00	446.0	0.6	10.648		
21	0.0540	70.00	70.0	1.2	1.660		
					Paran	eters for Specimen No. 2	
Sp	ecimen F	Paramete	r		Ini	tial	
Mois	ture con	tent: Moi	st soil+t	are, gm	<b>s.</b> 180.5	510	
Mois	Moisture content: Dry soil+tare, gms. 162.270						
Mois	ture con	tent: Tare	e, gms.		44.7	/90	
Mois	sture, %				1	5.5	
Mois	st specim	en weigh	nt, gms.		44	4.3	
Diam	neter, in.				1	96	
Area	, in.²				3	.00	
Heig	ht, in.				4	45	
Wet	Density,	pcf			12	6.8	
Dry o	density, p	ocf			10	9.8	
Void	ratio				0.52	39	
Satu	ration, %	)			7	9.4	
	Test Readings for Specimen No. 2						

```
Strain rate, %/min. = 0.82
```

Unconfined compressive strength = 11.235 tsf at reading no. 3

No.	Def. Dial in.	Load Dial	Load Ibs.	Strain %	Deviator Stress tsf
0	0.0000	0.00	0.0	0.0	0.000
1	0.0050	330.00	330.0	0.1	7.906
2	0.0100	457.00	457.0	0.2	10.937
3	0.0150	470.00	470.0	0.3	11.235
4	0.0400	100.00	100.0	0.9	2.377
5	0.0500	61.00	61.0	1.1	1.447
6	0.0550	58.00	58.0	1.2	1.374

Parameters for Specimen No. 3					
Specimen Parameter	Initial				
Moisture content: Moist soil+tare, gms.	194.690				
Moisture content: Dry soil+tare, gms.	173.490				
Moisture content: Tare, gms.	43.420				
Moisture, %	16.3				
Moist specimen weight, gms.	460.4				
Diameter, in.	1.99				
Area, in.²	3.12				
Height, in.	4.42				
Wet Density, pcf	127.2				
Dry density, pcf	109.4				
Void ratio	0.5295				
Saturation, %	82.5				

### Test Readings for Specimen No. 3

**Strain rate, %/min. =** 0.92

Unconfined compressive strength = 7.750 tsf at reading no. 11

No.	Def. Dial in.	Load Dial	Load Ibs.	Strain %	Deviator Stress tsf
0	0.0000	0.00	0.0	0.0	0.000
1	0.0050	15.50	15.5	0.1	0.358
2	0.0100	87.00	87.0	0.2	2.005
3	0.0150	155.00	155.0	0.3	3.569
4	0.0200	198.00	198.0	0.5	4.554
5	0.0250	231.00	231.0	0.6	5.307
6	0.0300	261.00	261.0	0.7	5.989
7	0.0350	283.00	283.0	0.8	6.486
8	0.0400	304.00	304.0	0.9	6.960
9	0.0450	320.00	320.0	1.0	7.318
10	0.0500	332.80	332.8	1.1	7.602
11	0.0550	339.70	339.7	1.2	7.750
12	0.0600	337.90	337.9	1.4	7.701
13	0.0650	318.00	318.0	1.5	7.239
14	0.0700	270.00	270.0	1.6	6.139
15	0.0900	32.00	32.0	2.0	0.724

	Paramete	rs for Specimen No. 4
Specimen Parameter	Initial	
Moisture content: Moist soil+tare, gms.	217.920	
Moisture content: Dry soil+tare, gms.	189.020	
Moisture content: Tare, gms.	44.510	
Moisture, %	20.0	
Moist specimen weight, gms.	410.0	
Diameter, in.	2.04	
Area, in. ²	3.25	
Height, in.	3.79	
Wet Density, pcf	126.8	
Dry density, pcf	105.6	
Void ratio	0.5836	
Saturation, %	91.8	

#### Test Readings for Specimen No. 4

Strain rate, %/min. = 0.85

Unconfined compressive strength = 5.092 tsf at reading no. 15

No.	Def. Dial in.	Load Dial	Load Ibs.	Strain %	Deviator Stress tsf
0	0.0000	0.00	0.0	0.0	0.000
1	0.0050	53.60	53.6	0.1	1.185
2	0.0100	68.70	68.7	0.3	1.517
3	0.0150	81.40	81.4	0.4	1.795
4	0.0200	94.90	94.9	0.5	2.090
5	0.0250	107.90	107.9	0.7	2.373
6	0.0300	118.70	118.7	0.8	2.607
7	0.0350	135.50	135.5	0.9	2.972
8	0.0400	149.70	149.7	1.1	3.279
9	0.0450	162.60	162.6	1.2	3.557
10	0.0550	190.00	190.0	1.5	4.145
11	0.0600	201.90	201.9	1.6	4.399
12	0.0650	214.80	214.8	1.7	4.673
13	0.0700	224.20	224.2	1.8	4.871
14	0.0750	231.80	231.8	2.0	5.030
15	0.0800	235.00	235.0	2.1	5.092
16	0.0850	230.00	230.0	2.2	4.977
17	0.1000	44.00	44.0	2.6	0.948
18	0.1150	25.20	25.2	3.0	0.541

	Unconsolidated Un	IZ & JENS, INC. drained or U	nconfined Test	
Project	A MEREN LA	54012	Test by	Cuc/JSP
Sample No.	Am Labadie Labadie AGh	Composition	1/16/07 Entered by	Cwc
Depth	+10% HOO OF DRY		Testing Date	1/20/09
Description	of Entire Tube BRot	DURTNE	TRI MATING	$\sum$
			A Second Verter	

Description of Test Sample Compartial Ash sample from Standard Product of 99.0 pcf # 8.5 2m

Providence and the second se					
Moisture Contents					
Trial 1		Trial 2			
Tare #	m-19	m-30			
Wet Wt.+Tare	127.52	106.07			
Dry Wt.+Tare	119.71	99.83			
Wt. of Water					
Tare Wt.	21.66	22.06			
Wt. of Soil					
% Moisture	7.97	8.02			
Average	7.99				

Sample Density				
Wet Wt. of Sample (grams)				
Diameter of Sample (Inches)	D=			
Length of Sample (Inches)	L=			
Density Constant	Å			
$C = (4.85 / (D^2 * L))$	$\langle \rangle$			
Wet Density (pcf)	1			
Dry Density (pcf)				

Failure Sketch



Strain (.001")	Load (lbs)	Notes:
240 17		1
280 /2		
280 19		
<del>300</del> 24		
350 21		ġ.
490-22		
450 23		
-500 24		
550 -35		
600		
650		
700		
750		
800		
850		
900		
1000	SCHE	DULE CJG-ST1

(UAD: #14

Rate of Load Application	0.5	%/min
Confining Pressure		psi
Mass of Top Cap		gms

Strain (.001")	Load (lbs)
0	
49	
2002	
<del>38</del> 3	
<del>50</del> .5	
686	
78.7	
<del>80</del> 8	
<del>90</del> 91	
100.00	
120 1	
12012	
160 13	
480 14	
200 15	
220 14	

Notes:

N:\Lab Cert\Lab Forms\UU and QU Data Sheet.xls

Project	Aminin - LABAG	)7 iz	Test by Care /J3P
Boring No.	Am-Labadie		Entered by _ CwC
Sample No.	Ash Testing	(OMPRIMP	Checked by KEIL
Depth	Nat +137.	1/16/09	Testing Date 1/20/09
Description	of Entire Tube	Spec. #1	

Description of Test Sample Compacted Ash Sample from Stand and Provide At 103, 7 pct + 12.024

Moisture Contents					
	Trial 1	Trial 2			
Tare #	m-27	m-35			
Wet Wt.+Tare	127.50	134.01			
Dry Wt.+Tare	116.58	122.46			
Wt. of Water					
Tare Wt.	22.25	22.31			
Wt. of Soil					
% Moisture					
Average % Moisture=		11.3			

10m3: #14

Rate of Load Application	0.513	%/min
<b>Confining Pressure</b>	_	psi
Mass of Top Cap		gms

Strain (.001")	Load (lbs)	
0	0	
<del>10</del> ⋜	18.5	
20 4	40.3	
20	72.8	
40 8	149	
-50 10	512	
-60. 11	251	
20 12	274	
-80 13	303	
æ 14	375	
100 15	341	
<del>\$20</del> [6	358	
140:17	375	
100-(3	38%	
180 19	401	
<b>309</b> 70	412	
220 7	475	

Notes:

Sample Density				
Wet Wt. of Sample (grams)	404.76			
Diameter of Sample (Inches)	D= 1,954			
Length of Sample (Inches)	L= 4,430			
Density Constant				
$C = (4.85 / (D^2 * L))$				
Wet Density (pcf)	116.1			
Dry Density (pcf)	104.3			

Failure Sketch





Strain (.001")	Load (lbs)	Notes:
210 22	436	]
200 >3	442	
200 74	448	_&`
50 25	446	
200 54	<u> 70</u>	
400		
450		
500		
550		
600		
650		
700		
750		
800	1	
850		
900		
1000	SCHED	ULE CJG-SŢĮ

N:\Lab Cert\Lab Forms\UU and QU Data Sheet.xls

Project Aminate	LABADIE	Test by Car / JJP
Boring No. Am Lahadi	e	Entered by CWC
Sample No. ASA TOSAI	ug Compact 20	Checked by
Depth//6++167.		Testing Date 1/20/09
Description of Entire Tube	Spec #2	

Description of Test Sample Compacted Ash Sample from Standard Prover at 107.5 pct 3. 16, 1% M

Moisture Contents			
	Trial 1	Trial 2	
Tare #	m-17	m-48	
Wet Wt.+Tare	79,67	100,84	
Dry Wt.+Tare	71.94	90.30	
Wt. of Water			
Tare Wt.	22.49	22.30	
Wt. of Soil			
% Moisture			
Averag	e % Moisture=	15.5	

Opp	lono	Ľ	2	Ч
-----	------	---	---	---

Rate of Load Application	0.8244	%/min
Confining Pressure	0	psi
Mass of Top Cap		gms

		-
Strain (.001")	Load (lbs)	Notes:
0	Ø	]
±05	330	
20.10	457	]
30 15	470	Parth
48 20		]
50.25		]
£9 30		]
7835		1
-89 4(0	100	
30.45		
100 50	61.	
12055	58	
類のらの		
1606-5		
180 70		
200-75		
220 30		

Sample Density		
Wet Wt. of Sample (grams)	444.25	
Diameter of Sample (Inches)	D= 1,955	
Length of Sample (Inches)	L= 4,445	
Density Constant		
$C = (4.85 / (D^2 * L))$		
Wet Density (pcf)	126.8	
Dry Density (pcf)	109.8	

Failure Sketch





Notes:

N:\Lab Cert\Lab Forms\UU and QU Data Sheet.xls

-<del>SCHED</del>ULE CJG-S<u>T1</u>

Project	AMEREN- LADADEE		Test by	Curl J P
Boring No.	Am Labadie		Entered by	CWC
Sample No.	ASh Testing	Comportio	Checked by	KEL
Depth,	Nat +199.		Testing Date	1/20/09
Description	of Entire Tube	Spec #3		/ / /

Description of Test Sample Compaction Ash sample from Standard Productor At 107.8 pct # 17,8% M

Moisture Contents			
	Trial 1	Trial 2	
Tare #	m-41	m-20	
Wet Wt.+Tare	95.02	99,67	
Dry Wt.+Tare	84.78	88.71	
Wt. of Water			
Tare Wt.	21.82	21.60	
Wt. of Soil			
% Moisture			
Averag	e % Moisture=	10.3	

(on 2.4

Rate of Load Application	0.93	%/min
Confining Pressure	Ĵ	psi
Mass of Top Cap		gms

Strain (001")	Lood (lbc)
00001	Loau (IDS)
0	0
留い	15.5
25 (0	87.
28 15	155
49 26	198
کر ھے ا	231
60 30	261
79,35	283
80.40	304
5 45	390
100.50	332.8
120-55	339.7
140-60	337.9
160 GS	318
12070	270
-200-75	
220- 30	

Notes:

Sample Densit	У
Wet Wt. of Sample (grams)	460.40
Diameter of Sample (Inches)	D= 1,992
Length of Sample (Inches)	L= 4,424
Density Constant	
$C = (4.85 / (D^2 * L))$	1
Wet Density (pcf)	127.2
Dry Density (pcf)	109.4

Failure Sketch





Notes:

N:\Lab Cert\Lab Forms\UU and QU Data Sheet.xls

Project	AMEREN LABA	DIE	Test by	Cave / Kith
Boring No.	LABADIR ASH	+22% MOISTURE	Entered by	CWC
Sample No.	COMPORTED 1	116/09	Checked by	KEL
Depth	Natural + 222 M		Testing Date	1/20/09
Description	of Entire Tube	Spec #4		

Description of Test Sample Computed Ach Jangle from Shadat Prostor at 104.0 pd # 20.6 8m

Ma	oisture Conter	nts
	Trial 1	Trial 2
Tare #	N-G	M.11
Wet Wt.+Tare	104,48	113.44
Dry Wt.+Tare	90.78	98.24
Wt. of Water		
Tare Wt.	22.21	22.30
Wt. of Soil		
% Moisture		
Average	e % Moisture=	20%

Sample Density						
Wet Wt. of Sample (grams)	410.01					
Diameter of Sample (Inches)	D= 2,035					
Length of Sample (Inches)	L= 3788					
Density Constant						
$C = (4.85 / (D^2 * L))$						
Wet Density (pcf)	126.8					
Dry Density (pcf)	105.6					

Failure Sketch

Rate of Load Application	0,85	%/min
Confining Pressure	0	psi
Mass of Top Cap		gms

		_
Strain (.001")	Load (lbs)	Notes:
0	0	]
105	53.6	].
40 60	68.7	]
-30-15	81.4	]
御)の	94.9	]
50 75	107.9	
60 30	118.7	
7025	135.5	
8040	149.7	
90 45	162.6	
_100.	Silver and silver	
120 55	(90,0	
-140 60	Jul.9	
160 65	214,9	
120 70	224.2	
-200-75	231.8	
Ser Co	135.0	



Strain (.001")	Load (lbs)	Notes:
-240 25	230.0	]
200 400	44.0	]
280 /15	25,2	29 ¹
300		
350		ē
400		
450	-	
500		
550		
600		
650		
700		
750		
800		
850		
900		
1000	SCHED	ULE CJG-ST1
		B-4

N:\Lab Cert\Lab Forms\UU and QU Data Sheet.xls

#### Ameren Missouri; Labadie Power Plant UWL Utility Waste Landfill, CCP Properties

Material: 100% non-ponded fly ash, material was molded at 22.5% moisture Hydraulic Conductivity

Soil Co	nditions	1	Test Info	ormation
Pre-test conditions	Post-test Conditions		a (cm^2)=	0.1969
Wet Density = 124.2 (lbs/ft^3)	Wet Density = 128.8 (lbs/ft^3)		L (cm)=	4.9043
% Moisture = 22.5%	% Moisture = 20.1%		A (cm^2)=	19.4657
Dry Density = 101.4 (lbs/ft^3)	Dry Density = 107.2 (lbs/ft^3)	_		

							Trial 1						
			Base	Burette	Top I	Burette							
		Cell Burette		Distance		Distance	Total Head		Weighted	Uncorrected Hydraulic	Correction	Cumulative	Corrected Hydraulic
Date and Time	Elapsed Time	Reading	Reading	from Datum	Reading	from Datum	Across Sample	Temperature	Average Temp.	Conductivity	Factor	Time	Conductivity
	(seconds)	(ml)	(ml)	(cm)	(ml)	(cm)	(cm of water)	(°C)	$(\mathfrak{D})$	(cm/sec)		(sec)	(cm/sec)
3/11/11 11:05	0	16.5	10.00	27.200	0.40	75.968	83.947	21.2					
3/11/11 11:10	300	16.5	9.18	31.366	1.26	71.599	75.413	21.2	21.20	8.86E-06	0.9716241	300	8.61E-06
3/11/11 11:15	600	16.5	8.45	35.074	1.98	67.942	68.047	21.2	21.20	8.68E-06	0.9716241	600	8.43E-06
3/11/11 11:20	900	16.5	7.78	38.478	2.64	64.589	61.290	21.2	21.20	8.67E-06	0.9716241	900	8.42E-06
3/11/11 11:25	1200	16.5	7.21	41.373	3.20	61.744	55.550	21.2	21.20	8.53E-06	0.9716241	1200	8.29E-06
3/11/11 11:30	1500	16.5	6.66	44.167	3.74	59.001	50.013	21.2	21.20	8.56E-06	0.9716241	1500	8.32E-06
3/11/11 11:35	1800	16.5	6.20	46.504	4.20	56.664	45.339	21.2	21.20	8.49E-06	0.9716241	1800	8.25E-06

H.C.= 8.3E-06

# Hydraulic Conductivity (ASTM-D 5084) Flow Rate Calculation

	Job	- Labod	he will	-						
	Locatio	on- Fy	Ash Ji	udy		<b>-</b> 6 19/	G			
	Sample		Ponded	ZI. ARI.		$\mathbf{a} = O_1 M \mathbf{a}$	7			
	Depth-	Aa	r And	ing the	, , , , , , , , , , , , , , , , , , , ,	<b>-</b> 9,900   = 10 411	15			
		ð	24% M	added	#d	<b>-</b> [1. ] 0	/			:
			3	e					a	
		Cell NO	. <u>)</u>				anter	thre	110 M	
		Cell	Base	Тор		run	00000			
		Pressure	Pressure	Pressure	)					
		(p.s.i.)	(p.s.i.)	(p.s.i.)	ר					
	0		105,0	135.5						
¥¢ Data			4	SC.	×2					
Date	lime	Elapsed	Cell	Base	Тор	Тор	Base		<b></b>	
		Minutes	ML	Reading	Reading	g Head	Head	h	_	Hyd.
3/11/1	11:05	0	110.5	10.00	0.41				Temp.	Gradient
	11:10	5	165	9.18	I DE				did	
	11:15	10	16.5	8.45	1.96	3			did	
	11:20	15	16.5	7.78	Level 2104	í			and a	
	11:25	20	10.5	7.21	3.20	)			alla 200	
	11:30	25	110.5	te.loto	3.74	1			dhit 212	
	11:35	il 30	1105	10.20	4 20				alligh	
					11 40				par2	
										<u> </u>
		· ·								
									5	
							L			
									1	
axL	t (sec)	2 x A x t	21/24+					Temp.		Hyd.
		20001	auzai		<u>h2</u>	ln(h1/h2)	К	Cor.	K -Cor.	Gradient
			4		· · · · ·					
			4 - 4 - 51							
										2
								SCHED	ULE CJG-	<b>A-</b>
L								1		,

支払券

TRIAXIAL CELL SETUP & TAKEDOWN Project Labodie UWL - Fly Ash Study _____Dote__3/9/11 Depth Sample ..... Description Non-Ponded air dired fly ash 21 2212 TOM #2 adder perm _Confining Pressure Differential _____ Type of Test_ Cell Number ____ Saturate before after Consolidation ____ Number of Membranes Filter Strips Yes No LENGTH CHANGE STRAIN GAUGE at setup _____ MOISTURE CONTENT at saturation start ____ INITIAL FINAL Tare No. at consolidation start ..... Wet Wt. + Tare Dry Wt. + Tare Wt. Water at axial load start .... Tare Wt. MASS PROPERTIES Dry Soil Wt. Moisture % Wt. Tube + Soil gm. Avg. w % Wt. Tube gm. 189.39 Wt. Soil gm. Tube Diameter in. Sample Length in tube length SPECIMEN DIMENSIONS ' in. in. mm. top trim in. HEIGHT DIAMETER bottom trim in. Initial Final Initial total trim Final in. sample length .961D in. 9295 1.9275 T 49505 1 Density constant 4.85/(D^2 * L) 9310 2 9240 ML 95165 9665 3 1.9285 390 B 1. Wet Density pcf. Avg. 1.95783 Dry Density 1.9600 pcf. ,929 930833 Final 8m = 128,8 Description After Test ______ En = 124.2 2M= 20.1 2m= 22.5 1 = 107 2 k = 101.4Remarks il and a second Failure Sketch Trimmed By Trimmed Date Setup By Setup Date Taken Down By TSCHEDULE CJG

20/21/2 Dealed 2/12/98

	TOLAN							
	IRIAXI	al cel	L SAT	TURATIO	)N &	BETA	FACTO	DR
PROJECT	r <u>America</u>	I LAbadie	Fly Ash 5	mdy				
SAMPLE	1002 Non-	Bondel Fly	Ash Miled	+ 22.5% BEP	'TH		2 4 8	
INITIAL (	CELL PRES	SURE	51.0		START	DATE	3 <u>Alu</u>	
INITIAL F	ORE PRE	SSURE	50.D		CEI	L NUMBER	, 3	
INITIAL T	RANSDUC	ER READIN	с <u> </u>	). 9	TR/	ANSDUCER	NUMBER	
						CHANGE IN	PRESSURE	
TRIAL	TRIAL	BASE	CELL	TRANS-	1	TRANS	onstant SDUCER	DETA
DATE	TIME	BURETTE READING	PRESSURE	DUCER READING	CELL DELTA (1)	READING CHANGE	PRESSURE CHANGE (2)	FACTOR
2/10/11		a.77	<u> </u>	50.6	รัก		47	094
	2			55,3	5.0		417	0.94
			 	39.3	<u> </u>		4.7	0,94
					,			
			194	V-				
			$\langle 0 \rangle$					
			Y					
							<i>1</i> 8	
							10	
							3	
			1					



SCHEDULE CJG-ST1






Client: Ameren Missouri Project: CCP Properties, Labadie Plant Project Number: 2008012455

```
Sample Data
```

Source: Non-Ponded Dry Fly Ash from Precipitators
Sample No.: Bulk
Elev. or Depth: Sample Length(in./cm.):
Location:
Description: Tan, dry fly ash
Liquid Limit: Plasticity Index:
USCS: AASHTO: Figure No.:
Testing Remarks: Non-ponded fly ash mixed at 22.5% moisture

Test Specimen Data

TOTAL	SA	MPLE	BEFORE TEST	AFTER	R TEST
Wet w+t	=	259.16 g.	Consolidometer # = 1	Wet w+t	= 864.23 g.
Dry w+t	=	242.48 g.		Dry w+t	= 837.80 g.
Tare Wt.	=	39.47 g.	<pre>Spec. Gravity = 2.87</pre>	Tare Wt.	= 700.55 g.
Height	=	1.00 in.	<b>Height =</b> 1.00 in.		
Diameter	=	2.50 in.	Diameter = 2.52 in.		
Weight	=	150.72 g.	<b>Defl. Table =</b> Labadie 100 ²	% Fly Ash at	t 65%M
Moisture Wet Den. Dry Den.	= =	8.2 % 117.6 pcf 108.6 pcf	Ht. Solids = 0.5874 in. Dry Wt. = 141.18 g. Void Ratio = 0.697 Saturation = 33.9 %	Moisture Dry Wt. Void Rat	e = 19.3 % = 137.25 g.* tio = 0.677

* Final dry weight used in calculations

End-of-Load Summary									
Pressure	Final	Machine	C _v	cα	Void	% Compression			
(tsf)	Dial (in.)	Defl. (in.)	(ft. ² /day)		Ratio	/Swell			
0.08	0.60000	0.00000			0.697	0.0 Swell			
0.16	0.59950	0.00000	0.01	0.000	0.696	0.1 Comprs.			
0.32	0.59810		0.11	0.000	0.693	0.2 Comprs.			
water	0.59800	0.00000	0.11	0.000	0.693	0.2 Comprs.			
0.64	0.59660	0.00000	0.17		0.691	0.3 Comprs.			
1.30	0.59380	0.00000	0.67	0.000	0.686	0.6 Comprs.			
2.58	0.59040	0.00000	0.46	0.000	0.680	1.0 Comprs.			
5.10	0.58710	0.00000	0.13	0.000	0.675	1.3 Comprs.			
10.26	0.58330	0.00000	0.40	0.000	0.668	1.7 Comprs.			
2.58	0.58560	0.00000	0.43		0.672	1.4 Comprs.			
0.64	0.58750	0.00000	0.37		0.675	1.3 Comprs.			
0.16	0.58860	0.00000	0.01		0.677	1.1 Comprs.			

 $C_c = 0.02$   $P_c = 1.03$  tsf  $C_s = 0.00$ Collapse percentage = 0.0

	CONSOLID	ATION TEST			
	Data 2/22/11 Sat up by A	2 Theorem Number			
	Sample Description:	Job Ameren UE, LARADIE UWL			
	Dey Now-Brided	Test Hole HSH STUDY			
	Fly Ash@ 72/2 6 m	*Sample 2-2-1/2-1/0 *Depth			
	(molded C. 22/2-10m)	Sample Type <u>7-Ly A34 @ 22/27-11</u>			
		$S.G.=2.76$ [X] Measured $\Box$ Assumed			
	USCS: AASHTO:	P.L.= TIT TSF			
	[†] Testing Remarks:				
	Test Specific Data				
	[†] Deflection Table:	[†] $\Box$ Check if sample is to be undercut.			
	Rig No Ring	Sample Undercut= NoNE inch			
	[†] Overburden Pressure= kg/cm ²	Sample Height at Test Start= <u><i>D-9966</i></u> inch			
	Untrimmed Sample Data Initial Maistu	re Content Initial Trimmed Sample Data			
	Wgt. Tube+ Soil= g Tare No.:	<i>L</i> /// Trimmed sample in ring without dish.			
	Wgt. Tube= g Wet Wgt.+Tare=_	259.16/g Wgt. Ring=			
	Wgt. Soil= g Dry Wgt.+Tare=_	Wat Wet Soil=			
ng n	Sample Lgth. (L)= in. Wgt. Water= in. Wgt. Tare= in. Wgt. Wgt. Wgt. Wgt. Wgt. Wgt. Wgt. Wgt	76.50 g wgt. wet son- 77757 g			
Dr.	Tube Constant $(k)$ = Wgt. Dry Soil=	207,02 g WA. Wei 30:1 = 130.12			
,	$k=4.85/(D^2L)$ Water Content	= 8.22 %			
	Wet Unit Wgt.= PCF Dry Unit Wgt.	= <u>109.6</u> PCF			
	START 0 = 5567 15/2 M	ab Deflections Deet Test Comple Dete			
	[†] Sequence [†] Instructions Reading	Difference Dish No .			
	³ 0.25 kg	0.001 in. Wgt. Dish= $0.01.20$ g			
	1 0.5 kg	<u>0.0020</u> in. Tare (Ring+Dish)= 700.55 g			
	v <u>1.0</u> kg	<u>0.0025</u> in. Wet Wgt.+Tare= $864$ , $33$ g			
	1.0 kg ADD WATER .5335	<u>$0.0032$</u> in. Dry Wgt.+Tare= <u>$0.3(.80)$ g</u>			
	V 10 kg	0.0040 in. Wgt. Water= $300.45$ g			
	V 8.0 kg	$h_{0}$ $\rho_{0}$ $\rho_{1}$ $\rho_{2}$ in. Water Content= 19.3( $\rho_{1}$ %)			
	~16.0 kg .5472	0.0015 in.			
	V 32.0 kg	0.0118 in. Squeezings Check if none.			
	<u>8.0</u> kg5469	<u>0.0098</u> in. Tare No.:			
	<u>v 2,0 kg</u>	<u>0.009/</u> in. Dry Wgt.+Tare= g			
	V <u>0,2</u> kg,3477	<u>0.0060</u> m. Wgt. lare= g			
	kg	in g			
	kg	in. Total Dry Wet. Soil=			
	kg	in.			
	kg	in. [†] Use final weight of solids?			
	kg	in.			
	kg	in. [†] PROJ.ENGR. <u>JLF</u>			
		SCHEDULE CJG-ST1			
	NEITZ & JENO, INO.				

s i cui

REITZ &	JENS,	INC.	CO	NSOLIDAT	ION TEST-	TIME SHEET
Consulting	Engineer	s Il		the second of the	(.)/	1 4
R&J Projec	:t: <u>AM</u>	eren a	E CARSA	DIE U	Shee	et _/ of7
Boring:	she w	Sample:	/	Depth:	Rig:	
DATE	LOAD	TESTER'S	TIL	ELAPSED	DIAL	NOTEO
DATE	kg	INITIALS	TIME	TIME, min.	READING	NOTES
2/23/11	0.25	2fc	0900	0,	O ,ia	000
		0 *		-	0	
				- 25	0	-1
				-5	0	
			01		0 <	
			02	2	0	
				<u> </u>		
				From	0	
		· ·	15		0	
			30	300	O I C	A official and a second
			0936	5-5-		Rel Set Gottleplan
	6,30		1000	0	.5999	
					15 778	9
				,25	15998	
					15978	
					. 37901	
			62		. 5778	
					1 2 497	
			00		12/1	
				20	13/7/	
- ₁ ,			30	30	5997	
			100	120	5992	
			1400	240	5991	
			1630	370	5995	
Aladla		MR.)	8:30	1350	5999	
127/11	1.0	125P	9:45	D	5995	
		en mer o		.1	5985	
				.25	.5984	. 9
				وغ م	.5984	
			46	ĺ	.5984	ġ.
			47	2	. 5984	and an a second s
			49	4	. 5983	
			53	8	. 5983	
			10:00	15	,5983	
			15	30	, 5982	
			45	60	.5982	
			11:45	120	. 5982	
			13:45	240	, 5981	
			8:30	1365	. 5981	

÷

&J Projec	t: Am	UE Lab	adie un	· L	Shee	t of Z
Fly#51 Boring:	422127.	₩2 Sample:	1	Depth:	Rig:	/
DATE	LOAD kg	TESTER'S INITIALS	TIME	ELAPSED TIME, min.	DIAL READING	NOTES
2/25/10	1.04H20	966	8:44	0	.5981	added nat
				.)	. 5981	
				.25	.5981	
				. 57	.5981	
			45	1	.598/	
			46	2	. 5980	
			48	4	. 5980	
			52	<u> </u>	. 5980	
			57	19	.5780	
			9.19	50	5900	
	-		9.47	100	. 2700	
			10:44	240	5980	
			16:24	460	5980	
2/28/11			8.44	4320	5987	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2Ke		8:56	0	. 5980	
				.1	5972	and the second
				, 25	. 5971	1 1
			· · · · · · · · · · · · · · · · · · ·	.5	, 597/	
			57	/	. 5970	
			58	2 :	. 5970	
			9:00	4	. 5969	
			04	8	. 5969	
			17	15	. 5968	
			22	30	.5968	
			56	60	· 5161	
			10.56	120	19161	
			12:26	240	.576/	
21/11			16:96	480	, 9760	
3/1/11			01/6	1900	.7766	ŝ
	789		0:01		5961	\$
				.75	5948	
				.5	, 6947	
			2/		5946	
			77	2	5945	
			29	4	5944	
			23	8	. 59 43	
			40	15	,5943	
			55	30	.5942	
			9:25	60	. 59 42	
A	1		10:25	120	. 59 41	
			12:75	240	6940	
	L 1		10.0/	0. 1	I JIIV NO	

&J Project	t: AM	UE Lab	adieuni	1	Shee	et ³ of
Iy As # oring:	2a×a7 ≠	Sample:	1	Depth:	Rig:	1
DATE	LOAD kg	TESTER'S INITIALS	TIME	ELAPSED TIME, min.	DIAL READING	NOTES
3/2/11	429	226	7:40	13955	,5938	
	8 kg		7:55	Ø	.5938	
				.)	.59/8	
		-		.25	. 5915	
				a f	. 5915	
			56	1	.5913	
			57	a c	.59/2	
			59	turp.	,59/2	
			8:03	8	. 591/	
			10	15	. 5910	
			25	30	,5910	
			55	60	.5909	
			8:55	120	. 5908	
			11:55	240	. 5907	
			16:05	490	. 5904	
3/3/11		12	8:35	1480	.5904	
		0				
3/3/11	110.0	AR_	9:15	0	0.5904	
		0.		.1	0,2881	
)				.15	0,5000	
_/			0.1	.5	0.5679	··· -
(7:16	<u> </u>	0.5818	
		(9:17	d	0.5878	
	<u> </u>		7:19	4	0:58/7	
/	·	·	9:23	<u> </u>	0.5676	
_/	\	/	7:30	15	0.5615	
-{)	/	7:45		0.3014	
<u> </u>			10:15	LUD	0.3814	ŝ
)		\	0611	120	0.5874	- **
	, 		4530			
			14:20	305	0.5872	- <u></u>
an Shares I I			10:4D	945	0.5871	
3/4/11		221 C	07:52	135/	. 987/	
	32K9		8:35	0	11961	
					.5845	
				. 29	15843	
18 · · · · · · · · · · · · · · · · · · ·				. 3	0842	
			36		15041	
0100100 <u></u>			17	0	19640	- 14 & 17
			37		15051	
			43	<u> </u>	. 5839	
			50	17	.5838	
	1		7:05	30	. 5838	
the second se		and the second se	the second se	And a state of the		